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SHARPNESS OF THE PERCOLATION TRANSITION IN THE
TWO-DIMENSIONAL CONTACT PROCESS

BY J. VAN DEN BERG1

CWI and VU University Amsterdam

For ordinary (independent) percolation on a large class of lattices it is
well known that below the critical percolation parameter pc the cluster size
distribution has exponential decay and that power-law behavior of this distri-
bution can only occur at pc. This behavior is often called “sharpness of the
percolation transition.”

For theoretical reasons, as well as motivated by applied research, there is
an increasing interest in percolation models with (weak) dependencies. For
instance, biologists and agricultural researchers have used (stationary distrib-
utions of) certain two-dimensional contact-like processes to model vegetation
patterns in an arid landscape (see [20]). In that context occupied clusters are
interpreted as patches of vegetation. For some of these models it is reported
in [20] that computer simulations indicate power-law behavior in some inter-
val of positive length of a model parameter. This would mean that in these
models the percolation transition is not sharp.

This motivated us to investigate similar questions for the ordinary (“ba-
sic”) 2D contact process with parameter λ. We show, using techniques from
Bollobás and Riordan [8, 11], that for the upper invariant measure ν̄λ of this
process the percolation transition is sharp. If λ is such that (ν̄λ-a.s.) there
are no infinite clusters, then for all parameter values below λ the cluster-size
distribution has exponential decay.

1. Introduction and statement of the main result. The contact process was
introduced as a stochastic model for the spread of an infection in a population with
a geometric structure, usually represented by the d-dimensional cubic lattice. Each
vertex x of this lattice represents an individual whose state, infected (1) or healthy
(0), at time t is denoted by σx(t). The dynamic in this model is as follows: A vertex
in state 0 goes to state 1 (“becomes infected”) at a rate equal to λ times the number
of neighbors of that vertex that are in state 1. A vertex in state 1 goes to state 0
(“recovers”) at rate 1. Here λ is the parameter of the model called the infection
rate. In this paper we restrict to the case d = 2. Depending on the applications
one has in mind the terms “infected” and “healthy” are sometimes replaced by
“occupied” and “vacant,” respectively. In the remainder of this paper we will use
this latter terminology.
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The configuration at time t is denoted by σ(t) := (σx(t), x ∈ Z
2). Let μt denote

the distribution of σt when we start at time 0 with all vertices occupied. We will
use the notation |V | for the cardinality of a set V .

It is well known (from a standard coupling argument) that μt is stochastically
dominated by μs if s ≤ t . Hence μt converges weakly to a probability measure de-
noted by ν̄ (=ν̄λ) as t → ∞. This measure ν̄ is called the upper invariant measure.
It is well known (again by standard coupling arguments) that ν̄λ2 stochastically
dominates ν̄λ1 if λ2 > λ1. Realizations are typically denoted by σ = (σx, x ∈ Z

2).
The occupied cluster of a vertex x (i.e., the maximal connected component which
contains x and of which every vertex is occupied) is denoted by Cx . (If x is the
origin 0, we often omit the subscript.)

In this paper we study the sizes of occupied clusters under the measure ν̄. Mo-
tivation comes from work by Liggett and Steif [25] who showed that for λ suffi-
ciently large percolation occurs [i.e., ν̄λ(|C| = ∞) > 0] and from work by biolo-
gists and agricultural researchers. In this latter work (see [20]) limit distributions
of contact-like processes (more complicated than the “basic process” described
above) were used to model vegetation patterns in arid regions in Spain and North
Africa. In this “agricultural” context an occupied cluster is interpreted as a “veg-
etation patch.” For some of these models it was claimed in [20] that simulations
suggest power-law behavior of the cluster size distribution in an interval of some
parameter.

In ordinary percolation models it is known that below the percolation threshold
the distribution of the cluster size has exponential decay and that power-law behav-
ior can only occur at the percolation threshold. Triggered by the above-mentioned
claim in [20] concerning very different behavior in “their” contact-like processes,
we study this question for ν̄λ. Before we state our main result, Theorem 1.1, we
give a brief and somewhat informal overview of earlier work on exponential-decay
results in percolation to place our result in a broader context.

The proof of exponential decay for ordinary (independent) two-dimensional
percolation goes back to the celebrated paper [21] by Kesten. A crucial step in that
paper is, somewhat informally and in “modern” terminology, that if the probabil-
ity of the event A that there is an occupied crossing of a given, large, box (square)
is neither close to 0 nor close to 1, the expected number of so-called pivotal ver-
tices (or, for bond percolation, pivotal edges) is large. (These are vertices with the
property that flipping the state of the vertex flips the occurrence/nonoccurrence of
the event A.) This step was proved in a “constructive” way with a “geometric”
flavor. The above-mentioned large expectation of pivotal vertices implies that the
derivative (w.r.t. the parameter p) of the probability of A is large. Hence, once the
probability of A is not very small, a small increase of p makes it close to 1. This
property would now be called a “sharp-threshold” phenomenon.

Moreover, by separate arguments, so-called finite-size criteria hold: if the prob-
ability of A is smaller than some absolute constant ε, the cluster size is finite a.s.
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(and its distribution has exponential decay), while if it is larger than 1 − ε the sys-
tem percolates. Combining these things gives exponential decay of the cluster size
for all p smaller than pc.

Russo [28] proved a very general “approximate zero-one law” and showed that
the above mentioned sharp-threshold phenomenon can be obtained from this more
general law using only a minimum of percolation arguments. In this way Kesten’s
“constructive, geometric” arguments could be avoided, which is very useful be-
cause carrying out such arguments turns out to be (too) hard in many dependent
models. We should note, however, that for independent percolation the “construc-
tive” argument still gives the shortest self-contained proof and that in some depen-
dent models (see [2]) it gives the only currently known proof.

Unfortunately, the above-mentioned finite-size criteria involved a so-called
RSW result of which no (“reasonably general”) extension to dependent models was
known. This explains why for a long time Russo’s approximate zero-one law did
not receive much attention in the percolation community. In the meantime sharper
and more explicit results related to Russo’s approximate zero-one law were ob-
tained (in other areas of probability and mathematics in general) by Kahn, Kalai
and Linial [19], Talagrand [29] and Friedgut and Kalai [15]. (See also [13] and
[27].)

The importance for percolation of these sharp-threshold results became clear
much later when Bollobás and Riordan [8] proved a more robust version of the
RSW theorem which, combined with a clever use of the sharp-threshold results,
led to the proof of the long-standing conjecture that the critical probability for
random Voronoi percolation in the plane is 1/2 (and that below 1/2 this model has
exponential decay). The robustness of these arguments led to similar results for
several other two-dimensional percolation models (see [3, 9, 11]).

The last-mentioned paper proved for 2D lattice models exponential decay be-
low the percolation threshold under the quite general condition that, informally
speaking, the model has a “nice finitary representation” (in a well-defined sense)
in terms of finite-valued independent random variables (see also [5]). It turned out
that under that condition only a weak (not explicitly quantitative) form, close to
that of Russo’s [28], of the sharp-threshold results was needed. As an example it
was shown that the Ising model (with fixed β < βc and external field parameter h

playing the role of p in ordinary percolation) belongs to this class thus giving
an alternative, more streamlined proof of the main result in Higuchi’s paper [18].
Here the role of finite-valued independent random variables was played by the
“independent updates” in a suitable discrete-time dynamics. Such a dynamics was
possible by (among other things) the nearest-neighbor Gibbs property of the Ising
model.

This is a big difference with the contact process for which we do not know a
suitable discrete-time dynamics. Therefore, we are not able to derive exponential
decay for this model from Theorem 2.2 in [3] but instead exploit the full quan-
titative nature of the sharp-threshold results from [19] and [29] and follow more
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closely the route used in [8] and [11] for the Voronoi model and the Johnson–
Mehl model (which, like the Voronoi model, is a model of planar tessellations but
more complicated than the Voronoi model). Yet another route, namely by using
results in [16], might work if ν̄ would satisfy the strong FKG condition which,
however (as has been shown by Liggett), it does not. We should also note here that
the exponential-decay arguments in [1] and [26], which for ordinary percolation
work in all dimensions, so far have (even in 2D) no suitable analog for dependent
percolation.

Our main result is the following theorem.

THEOREM 1.1. Let λ be such that

ν̄λ(|C| = ∞) = 0.

Then, for every λ′ < λ there exist C1,C2 > 0 such that for all n ≥ 1

ν̄λ′(|C| ≥ n) ≤ C1 exp(−C2n).(1)

Section 2 states properties of the contact process and other more general in-
gredients needed in the proof. It also indicates (see the Remark below the proof
of Lemma 2.3) an alternative proof of the earlier-mentioned result by Liggett and
Steif that percolation occurs for λ large enough.

The proof of Theorem 1.1 is given in Section 3. As mentioned before, the
essence is still (as it was in [21]) to show sharp-threshold behavior for certain
crossing probabilities. To do this we follow the main strategy in [8] and [11]. How-
ever, the model-specific properties of the contact process lead to many nontrivial
differences in the steps. Therefore, and because the contact process is one of the
main random spatial models, the proof is given in detail.

We use several well-known results, techniques and terminology from percola-
tion theory. For an introduction to, and general information on, percolation see
[17] and [10] and contact processes see [23] and [24].

Throughout this paper we use the notation V ⊂⊂ W to express that V is a finite
subset of W .

2. Preliminaries.

2.1. Contact process ingredients. A well-known classical result for the con-
tact process is that there is a critical value λc such that:

(a) If λ < λc the contact process “dies out” and ν̄ is concentrated on the trivial
configuration where all vertices are vacant.

(b) If λ > λc, ν̄ is nontrivial and μt converges exponentially to ν̄ as t → ∞
(see [24], Theorem 2.30 and equation (2.31), which are based on the work by
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Bezuidenhout and Grimmett [6, 7]): For all λ > λc there exist C3,C4 > 0 such
that for all t > 0

μt(σ0 = 1) − ν̄(σ0 = 1) ≤ C3 exp(−C4t).(2)

Since ν̄ is dominated by μt , statement (b) above implies by standard arguments:

THEOREM 2.1. For all λ > λc there exist C3,C4 > 0 such that for all t > 0
and all � ⊂⊂ Z

2

dTV(μt;�, ν̄λ;�) ≤ |�|C3 exp(−C4t),(3)

where dTV denotes variational distance and μt;� (and ν̄λ;�) are the restriction of
μt (resp. ν̄λ) to �.

REMARK. It is trivial from the definition of λc that for λ below pc no percola-
tion of occupied vertices occurs, that is, ν̄λ(|C| = ∞) = 0. As we mentioned in the
Introduction, Liggett and Steif [25] showed that if λ is large enough percolation
does occur. It seems to be widely believed (but no proof is known yet) that the
critical value for having percolation is strictly larger than λc. (See [25] where this
problem is formulated.)

A well known and very useful way to describe the contact process is by means
of a space–time diagram or graphical representation (see, e.g., [23] for historical
background and references). Consider for each vertex v ∈ Z

2 its “time axis” {v} ×
(−∞,∞) and consider five independent Poisson point processes on this time axis:
one with rate λ for each of the four directions (left, right, up, down) in the lattice
and one to indicate a transition from 1 to 0. The Poisson processes of the different
vertices are independent of each other.

The interpretation of a Poisson point on the time axis of v at time t for (say)
the direction “right” is that if v is in state 1 at time t , it “infects” the vertex v +
(1,0). That is, if the latter vertex is not occupied, it becomes occupied. To visualize
this we draw an arrow from (v, t) to (v + (1,0), t). We say that t is the time
coordinate of the arrow. For each of the other three directions we act similarly.
The interpretation of a Poisson point in the fifth process on the time axis of v at
time t is that if v is occupied (i.e., in state 1) at time t−, it becomes immediately
vacant (0). In the space–time picture this is marked by the symbol ∗ at (v, t) (see,
e.g., [24], Part I, Section 1).

An active space–time path is a path that is allowed to move upward in time
along the time axes without hitting ∗ points and to jump from one time axis to
another along, and in the direction of, an arrow. The time coordinates of the arrows
followed by a space–time path will be called the jumping times of the path. For
v,w ∈ Z

2 and s < t we denote by (v, s) → (w, t) that there is an active path
from (v, s) to (w, t). For the contact process starting at time 0 with every vertex
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occupied, a vertex w is occupied at time t > 0 if and only if (in terms of the above-
mentioned space–time diagram) for some vertex v there is an active path from
(v,0) to (w, t). In other words, the joint distribution of the random variables

I {∃v ∈ Z
2 s.t. (v,0) → (w, t)}, w ∈ Z

2

is μt . Similarly, ν̄ is the joint distribution of the random variables

I {∀t < 0∃v ∈ Z
2 s.t. (v, t) → (w,0)}, w ∈ Z

2.

We will often work with the following “truncated” random variables. First some
more notation: The distance between two vertices v = (i1, j1) and w = (i2, j2) is
defined as max(|i1 − i2|, |j1 − j2|) and denoted by d(v,w). The distance d(V,W)

between two subsets V and W of Z
2 is defined as min({d(v,w) :v ∈ V,w ∈ W }).

For � ⊂ Z
2, σ� denotes the collection of random variables (σv, v ∈ �); straight-

forward generalizations of this notation will also be used.
Let

σ (n)
x := I

{∃(y, t) with d(x, y) = ⌊√
n
⌋

or t = −√
n s.t. (y, t) → (x,0)

}
(4)

and let ν̄(n) = ν̄
(n)
λ denote the joint distribution of the random variables σ

(n)
x , x ∈

Z
2.
It is clear from this definition that if � and �′ are two finite subsets of Z

2 and
d(�,�′) > 2

√
n, then σ

(n)
� and σ

(n)
�′ are independent. It is also clear that σ is

stochastically dominated by σ (n).
From Theorem 2.1, and simple estimates concerning the “spatial spread of in-

fection in a limited time interval,” it follows that

∀λ > λc∃C5,C6 > 0 s.t. ∀� ⊂⊂ Z
2

(5)
dTV

(
σ�,σ

(n)
�

) ≤ |�|C5 exp(−C6n
1/2).

REMARK. In this paper we often deal with spatial boxes of length of order n

and distances of order n to each other. The somewhat arbitrary choice of
√

n in the
definition (4) is just one of the many possible choices that are convenient in such
situations.

LEMMA 2.2. Let �1, . . . ,�k , be 3n × n-rectangles with the property that
d(�i,�j ) > 2
√n�, 1 ≤ i < j ≤ k. Further let A1,A2, . . . ,Ak be events that are
completely determined by, and increasing in, the σ variables on �1,�2, . . . ,�k

respectively. Then, for every λ > λc,

k∏
i=1

ν̄λ(Ai) ≤ ν̄λ

(
k⋂

i=1

Ai

)
≤ ν̄

(n)
λ

(
k⋂

i=1

Ai

)

(6)

=
k∏

i=1

ν̄
(n)
λ (Ai) ≤

k∏
i=1

(
ν̄λ(Ai) + C58n2 exp

(−C6
√

n
))

.
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PROOF. The first inequality comes from the well-known positive associa-
tion of ν̄λ (which goes back to Harris’s inequality) and the last inequality comes
from (5). The second inequality and the equality follow immediately from the de-
finitions. �

Let, for a rectangular box R in the lattice, H(R) denote the event that there is an
occupied horizontal crossing of R. Further, let H(n,m) denote the event that there
is an occupied horizontal crossing of the box [0, n] × [0,m]. For vertical occupied
crossings we use a similar notation, with V instead of H . From now on when we
write “crossing” we always mean “occupied crossing.”

LEMMA 2.3 (Finite-size criterion).

∃ε̂ > 0, ∀λ > λc, ∃N̂, ∀N ≥ N̂

the following holds:

(a)

If ν̄λ(V (3N,N)) < ε̂, the distribution of |C| has exponential decay.(7)

(b)

If ν̄λ(H(3N,N)) > 1 − ε̂, then ν̄λ(|C| = ∞) > 0.(8)

PROOF. The analog of part (a) was proved for ordinary percolation by Kesten
in [22] by a block argument. His proof can be, and has been in the literature,
easily adapted to dependent models with sufficient spatial mixing (e.g., see [3],
Lemma 3.8). The mixing property described by (6) above is more than enough for
this purpose. Essential is that the “extra term” [here C58n2 exp(−C6

√
n)] in the

factors in the right-hand side of (6) goes to 0 as n → ∞.
The analog of (b) was proved for ordinary percolation in [14] by giving a suit-

able (and now well known) lower bound for the probability of having a horizontal
crossing of a 4n × 2n box in terms of the probability of the analogous event for a
2n × n box. If for some n this probability is sufficiently close to 1, one can then
iterate this procedure and conclude that the probability, say rk , of a crossing of a
given 2k+1n × 2kn box goes very fast to 1 as k → ∞. (So fast that

∑
k(1 − rk) is

finite.) By Borel–Cantelli it then follows that a.s. there is a K , such that for all odd
k ≥ K , there is horizontal crossing of the rectangle [0,2k+1n]×[0,2kn] and for all
even k ≥ K there is a vertical crossing of [0,2kn]×[0,2k+1n]. By pasting together
these crossings one gets an infinite occupied path. Hence, the system percolates.
For dependent percolation models with sufficiently strong mixing properties sim-
ple modifications of such arguments can be obtained (and have been obtained in
the literature). Informally speaking, instead of blowing the rectangles up by a fac-
tor 2, this is then done by a factor 3 to obtain an extra strip in the middle of the
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next rectangle in order to separate the other two strips so that the crossing events
of these other two strips are almost independent. See, for instance, [4], proof of
Theorem 4.8, for a case where this has been carried out in detail. In practically
the same way this can be carried out in our current situation by using Lemma 2.2
above in the same way as Lemma 2.3 was used in [4], proof of Theorem 5.1. �

REMARK. For our purpose (as will become clear later in this paper) we do
not need N̂ in Lemma 2.3 to be uniform in λ if λ is bounded away from λc.
However, although this is not explicitly stated in the literature but pointed out to
me by Geoffrey Grimmett (private communication), (2) and related bounds are, by
the nature of their proofs in the literature, uniform in λ, if λ is bounded away from
λc. Now such uniformity would also give uniformity of N̂ , in the sense mentioned
above. This then, in turn, would clearly give an alternative proof of the earlier
mentioned result by Liggett and Steif that ν̄λ has percolation if λ is large enough:
Take some λ′ > λc. Fix N such that for all λ > λ′ the “if-then statement” (b) in
Lemma 2.3 holds. It is easy to see that, with N fixed, if λ > λ′ is large enough,
the condition in that “if-then statement” (b) holds; hence ν̄λ(|CO | = ∞) > 0. Since
this result is already known and not the main subject of this paper, we do not work
out the details of such alternative proof. It should also be noted that Liggett and
Steif prove more than percolation of ν̄. They show, for large λ, domination of
high-density product measures.

The following involves what in the Introduction was called a robust version of
RSW.

PROPOSITION 2.4. Let λ > λc. If

for some ρ > 0 lim sup
n→∞

ν̄λ(H(ρn,n)) > 0,

then

for all ρ > 0 lim sup
n→∞

ν̄λ(H(ρn,n)) > 0.

PROOF. A similar result was proved by Bollobás and Riordan [8] for the ran-
dom Voronoi model (and slightly modified to the above form in [4]). As remarked
in [9] (see also [3], Section 3.4, the first three paragraphs) it holds for many per-
colation models on Z

2, namely, those that satisfy: (i) a sufficiently strong mixing
property, (ii) a straightforward “geometric” condition about lattice paths (which
enables pasting together paths that cross each other), (iii) positive association and
(iv) the condition that ν̄ is invariant under the symmetries of Z

2.
Lemma 2.2 above is more than needed for (i) and it is easy to see that the

probability measures ν̄λ, λ > λc also satisfies the other conditions. �
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2.2. Influence and sharp-threshold results. Let 
 = {0,1}n and let Pp denote
the product measure with parameter p on 
. Let A be an event (i.e., a subset of

) and let, for 1 ≤ i ≤ n, Ii denote the probability that i is pivotal for A. It is often
called the influence of i. More precisely,

Ii := Pp

({
ω ∈ 
 : exactly one of ω and ω(i) is in A

})
,

where ω(i) is the configuration obtained from ω by flipping the ith component
of ω. Talagrand ([29], Corollary 1.2) proved the following theorem. See also [15]
and [19] for strongly related results. Note that our Ii differs a factor 1/p from the
expression μp(Ai) in Talagrand’s paper.

THEOREM 2.5.∑
i

Ii ≥ Pp(A)(1 − Pp(A))

Kp log(2/p)
log

(
1

p maxi Ii

)
,(9)

where K is a universal positive constant.

REMARK.

(i) Strictly speaking Talagrand’s result is slightly stronger than Theorem 2.5
above but in the case of small p (to which we will apply it), it makes essentially
no difference.

(ii) If the event A is increasing (i.e., its indicator function is a coordinate-wise
nondecreasing function on 
), the left-hand side of (9) is, according to Russo’s
formula, equal to d/dpPp(A). By this it is easy to see that Theorem 2.5 implies
that if, throughout some interval, say (p1,p2), maxi Ii is “very small” and Pp1(A)

is “not too small,” then Pp2(A) is “close to 1.” For such reasons Theorem 2.5
and related theorems are often indicated by the name “sharp-threshold” results, in
addition to names like “influence results.”

Now suppose there are at least m indices i with the property that Ii = maxj Ij .
There are two possibilities:

(a) maxi Ii ≤ logm
pm

. If this holds then, by Theorem 2.5,

∑
i

Ii ≥ Pp(A)(1 − Pp(A))

Kp log(2/p)
log

(
m

logm

)
≥ Pp(A)(1 − Pp(A))

K̃p log(2/p)
logm(10)

for some universal constant K̃ .
(b) maxi Ii ≥ logm

pm
. Then trivially,

∑
i

Ii ≥ mmax
i

Ii ≥ logm

p

which is larger than or equal to some universal constant times the right-hand side
of (10). Hence, by adjusting the value K if needed, the following holds:
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COROLLARY 2.6. Let m denote the cardinality of {i : Ii = maxj Ij }. Then

∑
i

Ii ≥ Pp(A)(1 − Pp(A))

Kp log(2/p)
logm.

REMARK. The case m = n of this corollary is essentially in [15] where it is
derived from the results/methods in [19]. The general case, and its derivation from
Theorem 2.5, was shown to me by Oliver Riordan (private communication; see
also [12]).

We will use a generalization of Theorem 2.5 and Corollary 2.6 as described
below.

Let 
 be as before. Let V ⊂ {1, . . . , n} and let 0 < p1,p2 < 1. Let Pp1,p2 de-
note the product measure on 
 under which each component with index in V is
1 with probability p1 and each with index in V c is 1 with probability p2. The
generalization of Theorem 2.5 is the following theorem.

THEOREM 2.7.

∑
i

Ii ≥ Pp1,p2(A)(1 − Pp1,p2(A))

K ′ max(p1,p2) log(2/min(p1,p2))
log

(
1

max(p1,p2)maxi Ii

)
,

where K ′ is a universal constant.

REMARK. In [12] (see Theorem 5 in [12] and the discussion below that the-
orem) it is indicated how to prove Theorem 2.7 by modifications of the proofs in
Talagrand’s paper. An alternative way is to start from the special case for p = 1/2
of Theorem 2.5 above and obtain the full case (and its generalization where dif-
ferent coordinates may have a different parameter p) from that special case by,
informally speaking, representing (approximately) the toss of a biased coin by a
combination of tosses of several fair coins.

From Theorem 2.7 the following corollary is obtained in exactly the same way
as Corollary 2.6 was obtained from Theorem 2.5.

COROLLARY 2.8. Let m denote the cardinality of {i : Ii = maxj Ij }. Then

∑
i

Ii ≥ Pp1,p2(A)(1 − Pp1,p2(A))

K ′ max(p1,p2) log(2/(min(p1,p2)))
logm.

Combined with a straightforward modification of the earlier-mentioned Russo’s
formula this gives:
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COROLLARY 2.9. Let m be as in the previous corollary. If the event A is
increasing in the coordinates with parameter p1 and decreasing in the coordinates
with parameter p2, then

∂

∂p1
Pp1,p2(A) − ∂

∂p2
Pp1,p2(A)

(11)

≥ Pp1,p2(A)(1 − Pp1,p2(A))

K ′ max(p1,p2) log(2/(min(p1,p2))
logm.

3. Proof of Theorem 1.1. Let λ1 > λc be such that under ν̄λ1 the cluster
size distribution does not have exponential decay. Let λ2 > λ1. We will show that
ν̄λ2(|CO | = ∞) > 0. This will immediately imply Theorem 1.1.

Let λ1 be as fixed above and let ε̂ and N̂ = N̂(λ1) be as in Lemma 2.3. Let Ln

denote a specific 4n × n rectangle; its precise choice does not matter but for later
convenience we choose [n,5n] × [n,2n]. By Lemma 2.3 we have that

ν̄λ1(V (3n,n)) > ε̂ for all n ≥ N̂

which by Proposition 2.4 implies lim supn→∞ ν̄λ1(H(Ln)) > 0; so there exists an
ε̃ > 0 and a sequence n1, n2, . . . such that

ν̄λ1(H(Lni
)) > ε̃ for all i.(12)

From now on we consider such fixed sequence.
In the Introduction to the contact process in the beginning of Section 1 we

assumed that the recovery rate is 1. Of course the contact process with infec-
tion rate λ and recovery rate δ is simply a time-rescaled version of the contact
process with infection rate λ/δ and recovery rate 1. In particular, these two con-
tact processes have exactly the same upper invariant measure. For application of
the results in Section 2.2 it is more convenient to work with one-parameter Pois-
son processes for which at each site of the lattice the total rate of all the Poisson
processes is constant, say 1. Therefore, we consider the contact process with infec-
tion rate q/4 and recovery rate 1 − q , where now q ∈ (0,1) is the parameter. Note
that in terms of the space–time diagram this means that on each time axis we have
a marked Poisson point process with density 1 and each point corresponds with a
→, ←, ↓, ↑ or ∗ with probability q/4, q/4, q/4, q/4 and 1−q , respectively. With
respect to this new parameter q we use the notation Pq for the law governing the
above-marked Poisson point process and the notation ν̄〈q〉 for the upper invariant
measure of the corresponding contact process. From the above it is immediate that

ν̄〈q〉 = ν̄q/(4(1−q)), q ∈ (0,1),(13)

or, equivalently, ν̄λ = ν̄〈4λ/(1+4λ)〉, for λ ∈ (0,∞). In particular, by (12),

ν̄〈q1〉(H(Lni
)) > ε̃ for all i,(14)

where q1 = 4λ1/(1 + 4λ1).
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Let ν̄
(n)
〈q〉 be the distribution of (η

(n)
x , x ∈ Z

d) defined by [compare with (4)]

η(n)
x := I

{∃(y, t) with d(x, y) = ⌊√
n
⌋

or
(15)

t < −√
n s.t. (y, t)

(q,1−q)→ (x,0)
}
,

where (y, t)
(q,1−q)→ (x,0) denotes that there is a space–time path from (y, t) to

(x,0) in the space–time diagram with Poisson intensity q/4 for each of the four
types of arrows and Poisson intensity 1 − q for ∗’s.

It is clear that ν̄
(n)
〈q〉 dominates ν̄〈q〉; hence, by (14),

ν̄
(ni)〈q1〉(H(Lni

)) > ε̃ for all i.(16)

Although ν̄
(n)
λ is, of course, not the same as ν̄

(n)
〈4λ/(1+4λ)〉, it is straightforward

to get analogs of the earlier “approximation lemmas.” In particular we get, as an
analog of (5),

∀q > 4λc/(1 + 4λc)∃C7,C8 > 0 s.t. ∀� ⊂⊂ Z
2

(17)
dTV

(
ν̄〈q〉;�, ν̄

(n)
〈q〉;�

) ≤ |�|C7 exp(−C8n
1/2).

Throughout the proof of Theorem 1.1, except at the very end (see Proposition 3.5,
where we translate back to parameter λ), we will work with parameter q as de-
scribed above.

A key step toward application of the results in Section 2.2 is a suitable “time-
discretized” version of ν̄

(n)
〈q〉 . A significant obstacle is to obtain an analog of (16)

for these discrete variables.
Recall from the beginning of this section that Ln is the box [n,5n]× [n,2n]. To

“get ample room for the underlying Poisson points” we also consider the larger box
Bn := [0,6n] × [0,3n]. Let ν̄

(n)
〈q〉 be as before. Note that the collection of random

variables (η
(n)
x , x ∈ Ln) is completely determined by the (marked) Poisson points

in the space–time area ST(n) := Bn × [−n,0]. (In fact only a subset of that area
is involved but for convenience we consider this whole area.) Let as before, Pq

denote the probability measure governing the marked Poisson points.
Let 0 < α < 1. Later we choose α sufficiently small. Let δ = n−α .

DEFINITION 3.1. We say that an active space–time path π is δ-stable if the
following hold:

(i) If s and t are two different jump times of π , then |t − s| > δ.
(ii) If (y, s) is the starting point or endpoint of an arrow of π and there is a ∗ at

(y, t), then |t − s| > δ.
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The following lemma (and the global structure of its proof) is the analog of
Theorem 6.1 for the Voronoi model in [8] and Theorem 8 for the Johnson–Mehl
tessellations in [11] (see also [12]). Since the proof is subtle and differs in many
details from that in [8] and [11] we give a full proof.

REMARK. In some sense the proof of Lemma 3.2 is easier and shorter than
that of the corresponding results in [8] and [11]. This is partly due to the fact that in
our model the continuous object that has to be properly discretized (the time axis)
is one dimensional. This enables us to “play” with the order (in time) of the Poisson
points. On the other hand, our model has some extra complications, for example,
there is no natural order on the arrow values assigned to the Poisson points (an
arrow to the right is not always better than an arrow to the left). Fortunately these
issues can be handled quite smoothly.

LEMMA 3.2 (Stability coupling). Let 0 < q < q ′ < 1. For each n there is
a coupling of Pq and Pq ′ such that w.h.p. (i.e., with probability tending to 1 as

n → ∞) the following holds: For every x ∈ Ln that has η
(n)
x = 1 in the first copy,

there is a (y, t) ∈ Z
2 × (−∞,0) with d(x, y) = 
√n� or t = −√

n such that there
is a δ-stable space–time path in the second copy from (y, t) to (x,0) and hence
η

(n)
x also equals 1 in the second copy.

PROOF. Let δ1 = n−α/2. So δ � δ1. We partition every “time axis” {x} ×
[−∞,0], x ∈ Z

2, in intervals {x}× (−(k +1)δ1,−kδ1], k = 0,1, . . . , of length δ1.
From now on when we use the word “interval,” we will always mean an interval
of the above form with x ∈ Bn and (k + 1)δ1 ≤ n. Note that the total number of
intervals is Mn := |Bn|
n/δ1�. Let In denote the union of these intervals.

Note that the total number of Poisson points in In is Poisson distributed with
mean δ1Mn. To construct the coupling first draw a number N according to the
above-mentioned Poisson distribution. Now assign N points (called “particles”)
randomly, uniformly and independently of each other to the above mentioned
set In. If a particle is assigned to the space–time location (x, t), we say that its
time coordinate is t . Call an interval “occupied” if it has at least one particle. Call
two different intervals {x} × (−(k + 1)δ1,−kδ1] and {y} × (−(l + 1)δ1,−lδ1]
neighbors if d(x, y) ≤ 1 and |k − l| ≤ 1. This gives rise in an obvious way to the
notion of “clusters (of occupied intervals).” (This notion of cluster is of course dif-
ferent from that introduced earlier in this paper. Since this “new” notion of cluster
is used only in this proof and the other notion is not used here, this should not
cause any confusion and we even use the same notation C .)

We have already assigned to each particle a precise location in In. However, we
“suppress” this precise information and only “keep” the following partial informa-
tion: for each interval the number of particles assigned to it and for each occupied
cluster of intervals the relative order (w.r.t. their time coordinates) of all particles
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in that cluster. We also assign, with equal probabilities (1/4), a tentative ←, →, ↑
or ↓ to each particle (independent of the other particles). The interpretation is that
if eventually a particle is chosen to represent an arrow, the type of arrow is exactly
its above-mentioned tentative one.

REMARK. From now on when we mention a cluster C , we mean not only its
corresponding set of intervals but also the above-mentioned partial information
about the particle locations as well as the tentative arrows assigned to the particles.

By the size of a cluster we mean the number of particles in the cluster.

CLAIM. There is a constant D = D(α) such that

lim
n→∞P

(∃ an occupied cluster with size ≥ D(α)
) = 0.(18)

PROOF. Let D be a positive integer. If the occupied cluster of a given interval e

has size ≥ D there is a connected set of D (not necessarily occupied) intervals,
such that e is one of these intervals and the number of particles in the union of
these intervals is ≥ D. Note that the number of choices for e is Mn ≤ n4 (for n

sufficiently large) and that for each choice of e the number of possible connected
sets of D intervals is smaller than or equal to some constant C(D) which depends
on D only. Further, the number of particles in the union of D given intervals is
Poisson distributed with mean Dδ1 = Dn−α/2. So the probability that this number
of particles is ≥ D is at most (Dn−α/2)D . Hence, the probability that there is an
occupied cluster of size ≥D is at most

n4C(D)(Dn−α/2)D.

If we take D = �9/α�, this probability goes indeed to 0 as n → ∞. This proves
the above claim. �

Let C be a cluster in the sense given in the remark above. Now consider for both
parameter values, q and q ′, the conditional distribution of the precise configuration
for C , that is, the types (∗, ←, →, ↑ or ↓) and precise locations of all particles in
C , given the partial information. The two conditional distributions can be coupled
by the following natural procedure which gives two “typical realizations” (one for
each of the two parameter values) of the precise configuration.

The first step in this procedure is to assign to each particle i, independent of
the other particles, a random variable Ui uniformly distributed on (0,1). These
variables will be used below to decide if a particle corresponds with an arrow or
with a ∗.

The next step is to go from relative order of positions to precise positions. Con-
sider the conditional distribution of the precise time coordinates of the particles
of C , given their (already known) relative order in time and the intervals they are
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located in. Now simply assign the precise locations by drawing from this distribu-
tion. Later we will refer to this procedure as the “time assignment procedure.”

Note that both steps above are the same for both “realizations,” the one for
parameter q and the one with parameter q ′. However, the next and final step in
which the types of the particles are fully determined will take into account the
parameter value: for each particle i of C do the following: If Ui < q , the type of
i in each of the two copies is equal to the earlier mentioned tentative arrow. If
Ui ∈ (q, q ′), its type is ∗ in copy 1 and equal to the tentative arrow in copy 2. If
Ui > q ′, the type is ∗ in both copies.

Now we have two realizations, say ωC (1) and ωC (2), and it is easy to see that
they are “typical” w.r.t. the two conditional distributions mentioned above (the
first for parameter q , the second for parameter q ′). So we indeed have a coupling
of these two conditional distributions. Also note that ωC (2) ≥ ωC (1) in the sense
that the particle locations are exactly the same and each particle in ωC (1) that has
an arrow-type has the same arrow-type in ωC (2). Let this coupling be denoted by
PC .

Doing this for each cluster, independently of the other clusters, gives a natural
coupling of the two probability measures in the statement of the lemma. However,
it is not yet what we want. Although it satisfies the property between brackets at
the end of the lemma, it does not necessarily satisfy the stability property in the
lemma. The coupling we do want is obtained as follows where we go back to
the level of a given cluster C . Recall the two copies ωC (1) and ωC (2) above and
their joint distribution PC . From PC we will construct a modified distribution P̃C
of which the two marginal distributions are the same as those of PC . To avoid an
abundance of notation we will drop the subscript C from ωC (1) and ωC (2).

Recall the time assignment procedure in the second step of the construction of
PC . Let B be the event that in ω(1) [and hence, since the particle locations for
ω(1) and ω(2) are the same, also in ω(2)] there are two different particles in C
whose time coordinates differ at most δ. The probability of B (or, more precisely,
the conditional probability of B given the partial information on C ) is maximal if

C consists of one interval only, in which case it is less than or equal to |C|2 2δ
δ1

=
|C|22n−α/2, where |C| denotes the number of particles in C ; so

PC (B) ≤ |C|22n−α/2.(19)

Recall the use of the variables Ui in the determination of the types of the points.
Let G be the event that each particle in ω(1) is of type ∗ and each particle in ω(2)

has an arrow type. Note that this event happens if and only if Ui ∈ (q, q ′) for all
particles i in C so that we have

PC (G) = (q ′ − q)|C|.

By this and (19) we have (with D = D(α) as in the claim above)

PC (G) ≥ PC (B) if |C| ≤ D(20)
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and n is sufficiently large. From now on we assume in this proof that n is indeed
sufficiently large in this sense.

Now let B ′ denote B \ G. If |C| ≤ D then by (20) there is a measurable subset
G′ ⊂ G \ B and a 1–1 map ψ :B ′ → G′ with the property that ψ and ψ−1 are
PC -preserving. To each pair (ω(1),ω(2)) ∈ B ′ this map assigns the pair

ψ(ω(1),ω(2)) = (
(ψ(ω(1),ω(2)))(1), (ψ(ω(1),ω(2)))(2)

)
.

Now a modified coupling called P̃C is obtained from PC by exchange between
B ′ and G′ of the second copy, using the map ψ as follows. (Such type of mod-
ification is called a “cross-over” in [8].) If |C| ≥ D we simply take P̃C = PC .
Otherwise, a typical pair (ω̃(1), ω̃(2)) under P̃C is drawn as follows. First draw
a pair (ω(1),ω(2)) under PC . If (ω(1),ω(2)) ∈ (B ′ ∪ G′)c, take (ω̃(1), ω̃(2))

equal to (ω(1),ω(2)). If (ω(1),ω(2)) ∈ B ′, take ω̃(1) = ω(1) and ω̃(2) =
(ψ(ω(1),ω(2)))(2). Finally, if (ω(1),ω(2)) ∈ G′ take ω̃(1) = ω(1) and ω̃(2) =
(ψ−1(ω(1),ω(2)))(2). Since in all cases ω̃(1) = ω(1), it is immediate that the first
marginal of P̃C is equal to that of PC . A short inspection shows that also the second
marginal of P̃C is equal to that of PC .

Now the “overall” coupling of Pq and Pq ′ announced in the statement of the
lemma is obtained in a natural and straightforward way by constructing the pair
(ω̃C (1), ω̃C (2) for each cluster C separately, independently of the other clusters.

To check the required properties of this coupling first look again at one sin-
gle cluster C . Suppose that |C| ≤ D. Let (ω(1),ω(2)) and the corresponding pair
(ω̃(1), ω̃(2)) be as above. So, in particular, ω̃(1) = ω(1). Suppose that ω̃(1) has
a certain active space–time path π within C . Note that π is also an active space–
time path for ω(1) and [because ω(2) ≥ ω(1) in the sense mentioned earlier in
this proof] also for ω(2). For our purpose we may assume that π is part of a path
that guarantees for some x ∈ Ln, that η

(n)
x = 1 (see the statement of Lemma 3.2).

Therefore, by considering a trajectory of this longer path between entering and
leaving the cluster, we may assume that π starts at the bottom of some interval and
ends at the top of some interval. We will show that ω̃(2) has a δ-stable space–time
path π̃ that “corresponds” with π . More precisely, although the jump-times of the
path π̃ may differ a bit from the corresponding jump times of π , it will start and
end at the same space–time points as the beginning, respectively end, of π .

First we assume that π makes at least one jump. Since ω(1) has at least one
arrow in C , (ω(1),ω(2)) is not in G, so we have only the following two possible
cases:

(i) If (ω(1),ω(2)) ∈ B ′ = B \ G, then its image under the map ψ is in G \ B .
Hence, since the relative order and the tentative arrow types of all the particles
are fixed and by the definition of G no particle in ω̃(2) has a ∗, there is indeed a
natural path π̃ in the configuration ω̃(2) that corresponds with π . Moreover, by the
definition of Bc no two particles in ω̃(2) have time coordinates that differ at most
δ and hence π̃ is δ-stable.
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(ii) If (ω(1),ω(2)) ∈ Bc ∩ Gc, we have ω̃(2) = ω(2). From the definition of
Bc it follows that π itself is δ-stable so we can take π̃ equal to π .

Now suppose π makes no jump. So π is, in fact, the union of a finite number
of consecutive intervals on the time axis of a vertex. Note that by definition of a
cluster each of these intervals has at least one particle. Hence, (ω(1),ω(2)) is not
in G because otherwise in the configuration ω(1) each of these intervals would
have a ∗ which contradicts the fact that π is an active path. If it is not in B either,
ω̃(2) = ω(2) and we can simply take π̃ = π . Finally, if (ω(1),ω(2)) is in B \ G,
then its image is in G \ B so ω̃(2) has no ∗ particles and again the conclusion
follows immediately.

Using the above-mentioned δ-stability property of the single-cluster couplings
yields a similar property for the “overall” coupling of Pq and Pq ′ . The only thing
that could go “wrong” is if there is a cluster with size ≥ D(α). However, by the
claim, this has probability going to 0 as n → ∞. The proof of Lemma 3.2 is com-
plete. �

We proceed with the proof of Theorem 1.1. Fix a value q̂ in the interval (q1, q2),
where q1 = 4λ1/(4λ1 + 1) as before [see below (14)] and q2 = 4λ2/(4λ2 + 1).

Now we are ready to introduce 0 − 1 valued random variables to which we can
apply the results in Section 2.2. Let the box Bn and the space–time region ST(n)

be as before (see a few lines before Definition 3.1). Now partition every time axis
in intervals of length δ, with δ as defined just before Definition 3.1.

As before, we have on each time axis a Poisson point process with density 1
and each Poisson point is, independently of the others, of type ∗ with probability
1 − q and of each of the types →, ←, ↑, ↓ with probability q/4. Let v ∈ Bn and
k ∈ N, 0 ≤ k ≤ n/δ. By the kth interval of v for the above-mentioned partition, we
will mean {v} × (−kδ, (−k + 1)δ], and we define

X(v,k,δ)∗ := I {∃ a Poisson point of type ∗ in the kth interval of v}.
Similarly define

X(v,k,δ)→ := I {∃ a Poisson point of type → in the kth interval of v}
and, analogously, X(v,k,δ)← , X

(v,k,δ)
↑ and X

(v,k,δ)
↓ . Note that this is a collection of

independent 0 − 1 valued random variables.
Recall the definition of η

(n)
v and ν̄

(n)
〈q〉 below equation (14). The X variables de-

fined above give only “crude” information about the space–time diagram; they tell
which of the types ∗, →, etc., occur in each interval but they do not tell their
precise locations inside the intervals. Nevertheless, this incomplete information is
often enough to conclude that there is a certain space–time path. Let η

(n,δ)
v be the

indicator of the event that the values of the X(·,·,δ) variables imply that η
(n)
v = 1.
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REMARK. Note that if η
(n)
v = 1 then, after for some Poisson points with

mark ∗, this mark is replaced by an arrow still η
(n)
v = 1. The same remark holds

for η
(n,δ)
v instead of η

(n)
v .

It is easy to see that

η(n)
v ≥ η(n,δ)

v ≥ I
{∃(w, t) with d(v,w) = ⌊√

n
⌋

or t = −√
n s.t.

(21)
∃δ-stable space–time path from (w, t) to (v,0)

}
.

Hence, with the following notation (where R is a box)

H(n,δ)(R) := {∃η(n,δ)-occupied horizontal crossing of R
}
,

we get

Pq̂

(
H(ni,δ)(Lni

)
) ≥ Pq1

(∃η(ni)-occupied horizontal crossing of Lni

) − ε(ni)

= ν̄
(ni)〈q1〉

(
H(Lni

) − ε(ni)
)
,

where ε(n) is a function of n that goes to 0 as n → ∞ and where the inequality
comes from the second inequality in (21) and Lemma 3.2 and the equality comes
directly from the definitions.

By (16), and obvious monotonicity [see the Remark preceding (21)], this gives
the following lemma.

LEMMA 3.3. For each choice of α the following holds for all sufficiently
large i:

Pq

(
H(ni,δ)(Lni

)
)
>

ε̃

2
, q ≥ q̂.(22)

Now we “wrap around the box Bni
horizontally” by identifying every vertex

(6ni, y) on Bni
with the vertex (0, y) thus turning this box into a cylinder. Define

η
(ni,δ,C)
v as the natural analog for the cylinder of η

(ni,δ)
v .

REMARK. “By the truncation to distance
√

n of these variables” and because
the left- and right-hand side of Lni

have distance larger than
√

n to the boundary
of Bni

, the event that there is a η
(ni,δ,C)· -occupied horizontal crossing of Lni

and
the event that there is a η

(ni,δ)· -occupied horizontal crossing of Lni
are the same.

Let A(ni,δ) be the event that at least one of the (6ni − 1) horizontal translates
of Lni

on this cylinder has an η
(ni,δ,C)· -occupied horizontal crossing. Note that

the event A(ni,δ) is still defined in terms of the random variables X·,k,δ defined
earlier. Moreover, this event is increasing in the X variables corresponding with
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arrows and decreasing in those corresponding with ∗’s. For each choice of α the
following holds for all sufficiently large i:

Pq

(
A(ni,δ)

) ≥ Pq

(
H(ni,δ)(Lni

)
)
>

ε̃

2
, q ≥ q̂,(23)

where the first inequality is (taking into account the above remark) trivial and the
last inequality is exactly Lemma 3.3.

As stated before the X variables are independent 0−1 valued random variables.
Further, for each v and k, X(v,k,δ)∗ has probability 1−exp(−(1−q)δ) to be 1. Each
random variable X(v,k,δ)→ has probability 1 − exp(−δq/4) to be 1. The same holds
for the other three arrow types.

Also note that the event A(ni,δ) is partially symmetric in the following sense: for
fixed value k and fixed 0 ≤ l ≤ 3n all variables Xv,k,δ→ with v ∈ Bn with y− coor-
dinate l, “play the same role.” In particular, each of them has the same probability
to be pivotal for the event A(ni,δ). The same statement holds for each of the other
three arrow types and for type ∗. Further note that for each k and l the number of
such random variables X(v,k,δ)→ is of order n. Again, the same statement holds for
each of the other types.

We will apply Corollary 2.9 with m equal to our “current” n and with p1 and p2

equal to 1 − exp(−δq/4) and 1 − exp(−(1 − q)δ), respectively. For our purpose
we should think of n as very large and hence, δ very small. For fixed n (and hence,
δ), the p1 and p2 above are functions of q and

dp1

dq
= δ

4
exp(−δq/4)

which is of order δ. More precisely, there are positive constants C′ and C′′ such
that

C′δ ≤ dp1

dq
≤ C′′δ for all δ ∈ (0,1) and q ∈ [q̂, q2).

Similarly, p1 and p2 are also of order δ and dp2/dq is of order −δ. Therefore,
when we take the derivative with respect to q of the probability of the event A(ni,δ),
the factor of order δ that comes from max(p1,p2) in the denominator in the right-
hand side of (11) is canceled by a factor of order δ that comes from dp1/dq and
dp2/dq . Essentially the only “remaining” effect of δ comes from the logarithmic
expression in the denominator in the right-hand side of (11). More precisely what
we get is

d

dq
Pq

(
A(ni,δ)

) ≥ C9Pq(A
(ni,δ))(1 − Pq(A

(ni,δ)) logn

log(2/δ)
, q ∈ [q̂, q2),(24)

where C9 > 0 depends on q̂ and q2 only.
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Let ε∗ > 0. By (23), (24) and because Pq(A
(ni,δ)) is clearly nondecreasing in q ,

it follows that, for every choice of α, the following holds for all sufficiently large i:
If Pq2(A

(ni ,δ)) < 1 − ε∗ then, for all q ∈ [q̂, q2),

d

dq
Pq

(
A(ni,δ)

) ≥ C9
ε̃

2
ε∗ logn

log(2/δ)
≥ C10ε̃ε

∗

α

(where the last inequality used that δ = n−α) and hence,

Pq2

(
A(ni,δ)

) ≥ (q2 − q̂)C10ε̃ε
∗/α.

By choosing α sufficiently small this gives the following lemma.

LEMMA 3.4. For every ε∗ > 0 there is an α > 0 such that for all sufficiently
large i

Pq2

(
A(ni,δ)

)
> 1 − ε∗.(25)

Now if there is a horizontal crossing of one of the above-mentioned translates
of Lni

, there must be a horizontal crossing in the “hard” direction of at least one of
the following (six) translates (on the cylinder) of the rectangle [0,3ni] × [ni,2ni]:

[jni, (j + 3)ni(mod 6ni)] × [ni,2ni], 0 ≤ j ≤ 5.

Hence, by the usual “square root trick,”

Pq2

(
H(ni,δ)([0,3ni] × [ni,2ni])) ≥ 1 − (

1 − Pq2

(
A(ni,δ)

))1/6

which, combined with Lemma 3.4, immediately gives that for every ε∗ > 0 there
is an α > 0 s.t. for all sufficiently large i

Pq2

(
H(ni,δ)([0,3ni] × [0, ni])) > 1 − ε∗.(26)

Finally the following proposition is obtained.

PROPOSITION 3.5.

lim
i→∞ ν̄λ2(H(3ni, ni)) = 1.(27)

PROOF. Let ε∗ > 0 be given. By (13) (and the definition of q2), ν̄λ2(H(3ni,

ni)) = ν̄〈q2〉(H(3ni, ni)). Hence, by (17), lim infi→∞ ν̄λ2(H(3ni, ni)) is equal to

lim infi→∞ ν̄
(ni)〈q2〉(H(3ni, ni)) which by the first inequality in (21) is larger than or

equal to

lim inf
i→∞ Pq2

(
H(ni,δ)([0,3ni] × [0, ni])).

This last expression is, by (the statement ending with) (26) and a suitable
choice of α, larger than 1 − ε∗. Summarizing, we have that for every ε∗ > 0,
lim infi→∞ ν̄λ2(H(3ni, ni)) is larger than 1 − ε∗. �
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Proposition 3.5, together with the finite-size criterion Lemma 2.3, immediately
yields ν̄λ2(|CO | = ∞) > 0 which, as observed in the beginning of this section,
completes the proof of Theorem 1.1.

Acknowledgments. I thank Oliver Riordan for a very useful discussion con-
cerning influence and sharp-threshold results and in particular for pointing out
Corollary 2.6 for general m. The work in this paper was partly done during visits
to the Isaac Newton Institute in June 2008, the Institut Henri Poicaré in October
2008 and the Institut Mittag Leffler in April and June 2009. I thank these institutes
for their support and hospitality. Finally, I thank Jeff Steif and Geoffrey Grim-
mett for several useful discussions and an anonymous referee for many valuable
detailed comments and suggestions for improvement on an earlier version of this
paper.

REFERENCES

[1] AIZENMAN, M. and BARSKY, D. J. (1987). Sharpness of the phase transition in percolation
models. Comm. Math. Phys. 108 489–526. MR874906

[2] BÁLINT, A., CAMIA, F. and MEESTER, R. (2009). Sharp phase transition and critical behav-
iour in 2D divide and colour models. Stochastic Process. Appl. 119 937–965. MR2499865

[3] VAN DEN BERG, J. (2008). Approximate zero-one laws and sharpness of the percolation tran-
sition in a class of models including two-dimensional Ising percolation. Ann. Probab. 36
1880–1903. MR2440926

[4] VAN DEN BERG, J., BROUWER, R. and VÁGVÖLGYI, B. (2008). Box-crossings and continu-
ity results for self-destructive percolation in the plane. In In and Out of Equilibrium 2
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