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LIMIT THEOREMS FOR POWER VARIATIONS OF PURE-JUMP
PROCESSES WITH APPLICATION TO ACTIVITY ESTIMATION

BY VIKTOR TODOROV AND GEORGE TAUCHEN

Northwestern University and Duke University

This paper derives the asymptotic behavior of realized power variation
of pure-jump Itô semimartingales as the sampling frequency within a fixed
interval increases to infinity. We prove convergence in probability and an as-
sociated central limit theorem for the realized power variation as a function
of its power. We apply the limit theorems to propose an efficient adaptive es-
timator for the activity of discretely-sampled Itô semimartingale over a fixed
interval.

1. Introduction. Realized power variation of a discretely sampled process
can be defined as the sum of the absolute values of the increments of the process
raised to a given power. The leading case is when the power is 2, which corre-
sponds to the realized variance that is widely used in finance. It is well known
that under very weak conditions (see, e.g., [16]) the realized variance converges to
the quadratic variation of the process as the sampling frequency increases. Powers
other than 2 have also been used as a way to measure variation of the process over
a given interval in time as well as for estimation in parametric or semiparametric
settings. Recently, Ait-Sahalia and Jacod [2] have used the realized power varia-
tion as a way to test for presence of jumps on a given path and [17] have used it to
test for common arrival of jumps in a multivariate context.

The limiting behavior of the realized power variation has been studied in the
continuous semimartingale case in [6] and [4]. Some of these results are extended
by [7] to situations when jumps are present but only when they have no asymptotic
effect on the behavior of the realized power variation. A comprehensive study of
the limiting behavior of the realized power variation when the observed process is
a continuous semimartingale plus possible jumps is contained in [15]. This work
includes also cases when jumps affect the limit of the realized power variation.

A common feature of the above cited papers is that the observed process always
contains a continuous martingale. At the same time there are different applica-
tions, for example, for modeling internet traffic [24] or volume of trades [3] and
asset volatility [23], where pure-jump semimartingales, that is, semimartingales
without a continuous martingale and nontrivial quadratic variation, seem to be
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more appropriate. Parametric models of pure-jump type for financial prices and/or
volatility have been proposed in [5, 12, 18], among others. The main goal of this
paper is to derive the limit behavior of the realized power variation of pure-jump
semimartingales.

Some work has already been done in this direction. When the power exceeds
the (generalized) Blumenthar–Getoor index of the jump process, it follows from
[19] and [15] that the (unscaled) realized power variation converges almost surely
to the sum of jumps raised to the corresponding power, which in general is not
predictable ([16], Definition I.2.1) although the exact rate of this convergence is
not known.

The limiting behavior of the realized power variation when the power is less
than the Blumenthal–Getoor index is not known in general (apart from the fact
that it explodes). Here we concentrate precisely on this case. We make an assump-
tion of locally stable behavior of the Lévy measure of the jump process. That is
we assume that the Lévy measure behaves like that of a stable process around
zero, while its behavior for the “big” jumps is left unrestricted. This assumption
allows us to derive the asymptotic behavior of the realized power variation in this
case. Unlike the case when the power exceeds the Blumenthal–Getoor index, here
the realized power variation needs to be scaled down by a factor determined by
the Blumenthal–Getoor index and its limit is an integral of a predictable process.
The latter is a direct measure for the stochastic volatility of the discretely-observed
process, which is of key interest for financial applications. Thus the realized power
variation for powers less than the Blumenthal–Getoor index contains information
for the value of this index as well as the underlying stochastic volatility, and hence
the importance of the limit results for this range of powers that are derived here.
Finally, in earlier work [25–27], some limit theorems for realized power variations
for pure-jump processes were studied, but the results apply in somewhat limit-
ing situations regarding time-dependence and presence of a drift term (i.e., an ab-
solutely continuous process), both of which are very important characteristics of
financial data.

A distinctive feature of this paper is that the convergence results for the realized
power variation are derived on the space of functions of the power equipped with
the uniform topology. In contrast, all previous work has characterized the limiting
behavior for a fixed power. The uniform convergence is important when one needs
to use an infinite number of powers in estimation or the power of the realized power
variation needs first to be estimated itself from the data. Such a case is illustrated
in an application of the limit theorems derived in the paper.

Our application is for the estimation of the activity level of a discretely observed
process. The latter is the smallest power for which the realized power variation
does not explode (formally the infimum). In the case of a pure-jump process the
activity level is just the Blumenthal–Getoor index of the jumps and when a contin-
uous martingale is present it takes its highest value of 2. Apart from the importance
of the Blumenthal–Getoor index in itself, the activity level provides information
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on the type of the underlying process (e.g., whether it contains a continuous mar-
tingale or not). The latter determines the appropriate scaling factor of the realized
power variation in estimating integrated volatility measures.

We use the realized power variation computed over two different frequencies to
estimate the activity level. The choice of the power is critical as it affects both effi-
ciency and robustness. We develop an adaptive estimation strategy using our limit
results. In a first step we construct an initial consistent estimator of the activity, and
then, based on the first step estimator, we choose the optimal power to estimate the
activity on the second step.

The paper is organized as follows. Section 2 presents the theoretical setup. Sec-
tion 3 derives convergence in probability and associated central limit theorems for
the appropriately scaled realized power variation. Section 4 applies the limit results
of Section 3 to propose an efficient adaptive estimator of the activity of a discretely
sampled process. Section 5 contains a short Monte Carlo study of the behavior of
the estimator. Proofs are given in Section 6.

2. Theoretical setup. The theoretical setup of the paper is as follows. We
will assume that we have discrete observations of some one-dimensional process,
which we will always denote with X. The process will be defined on some filtered
probability space (�, F ,P) with F denoting the filtration. We will restrict atten-
tion to the class of Itô semimartingales, that is, semimartingales with absolutely
continuous characteristics (see, e.g., [16]).

Throughout we will fix the time interval to be [0, T ], and we will suppose that
we observe the process X at the equidistant times 0,�n, . . . , [T/�n]�n, where
�n > 0. The asymptotic results in this paper will be of fill-in type, that is, we will
be interested in the case when �n ↓ 0 for a fixed T > 0.

The activity of the jumps in X is measured by the so-called (generalized)
Blumenthal–Getoor index. All of our limiting results for the realized power varia-
tion will depend in an essential way on it. The index is defined as

inf
{
r > 0 :

∑
0≤s≤T

|�Xs |r < ∞
}
,(2.1)

where �Xs := Xs − Xs−. The index was originally defined in [10] only for pure-
jump Lévy processes. The definition in (2.1) extends it to an arbitrary jump semi-
martingale and was proposed in [1]. We recall the following well-known facts:
(1) the index takes its values in [0,2]; (2) it depends on the particular realization
of the process on the given interval; (3) the value of 1 for the index separates finite
from infinite variation jump processes.

Finally, we define the main object of our study, the realized power variation. It
is constructed from the discrete observations of the process as

Vt(p,X,�n) =
[t/�n]∑
i=1

|�n
i X|p, p > 0, t > 0,(2.2)
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where �n
i X := Xi�n − X(i−1)�n . Our main focus will be the behavior of

Vt(p,X,�n) when X is pure-jump semimartingale and we will restrict further
attention to the case when the power is below the Blumenthal–Getoor index and
the drift term has no asymptotic effect.

3. Limit theorems for power variation. We start with deriving the asymp-
totic limit of the appropriately scaled realized power variation and then proceed
with a central limit theorem associated with it. To ease exposition we first present
the results in the Lévy case and then generalize to the case when X is a semimartin-
gales with time-varying characteristics. For completeness we state corresponding
results in the case when X is a continuous martingale (plus jumps) as well.

3.1. Convergence in probability results. The convergence in probability re-
sults have been already derived in [4, 6, 15, 24–26] among others with various
degrees of generality. We briefly summarize them here as a starting point of our
analysis. We first introduce some notation that will be used throughout. We set
μp(β) := E(|Z|p), where Z is a random variable with a standard stable distri-
bution with index β if β < 2 [i.e., with characteristic function E(exp(iuZ)) =
exp(−|u|β)], and with standard normal distribution if β = 2 (i.e., normal with
mean 0 and variance 1). Further, μp,q(β) := E|Z(1)|p1 |Z(1) + Z(2)|p2 , where Z(1)

and Z(2) are two independent random variables whose distribution is standard sta-
ble with index β if β < 2 and is standard normal if β = 2. Finally, we denote
�A,β := 2A

∫∞
0 (1−cos(x)

xβ+1 ) dx for β ∈ (0,2) and A > 0.
Throughout, κ(x) will denote a continuous truncation function, that is, a con-

tinuous function with bounded support such that κ(x) ≡ x around the origin, and
κ ′(x) := x − κ(x).

3.1.1. The Lévy case.

THEOREM 3.1. (a) Suppose X is given by

dXt = mc dt + σ dWt +
∫

R

κ(x)μ̃(dt, dx) +
∫

R

κ ′(x)μ(dt, dx),(3.1)

where mc and σ �= 0 are constants, and Wt is a standard Brownian motion; μ is
a homogenous Poisson measure with compensator F(dx)dt . Denote with β ′ the
Blumenthal–Getoor index of the jumps in X. Then, if β ′ < 2 and for a fixed T > 0,
we have

�1−p/2
n VT (X,p,�n)

P−→ T |σ |pμp(2),(3.2)

locally uniformly in p ∈ (0,2).
(b) Suppose X is given by

dXt = md dt +
∫

R

κ(x)μ̃(dt, dx) +
∫

R

κ ′(x)μ(dt, dx),(3.3)
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where md is some constant; μ is a Poisson measure with compensator ν(x) dx

where

ν(x) = ν1(x) + ν2(x),(3.4)

with

ν1(x) = A

|x|β+1 and |ν2(x)| ≤ B

|x|β ′+1
when |x| ≤ x0(3.5)

for some A > 0, B ≥ 0 and x0 > 0; β ∈ (0,2) and β ′ < β . Assume that md −∫
R

κ(x)ν(x) dx = 0 if β ≤ 1. Then for a fixed T > 0, we have

�1−p/β
n VT (X,p,�n)

P−→ T �
p/β
A,βμp(β),(3.6)

locally uniformly in p ∈ (0, β).

REMARK 3.1. The crucial assumption in the pure-jump case is the decom-
position of the Lévy measure in (3.4). This assumption implies that locally the
process behaves like the stable, that is, the very small jumps of the process are as
if from a stable process. This assumption allows to scale the realized power varia-
tion using the Blumenthal–Getoor index β . We note that ν2(x) is not necessarily a
Lévy measure (since it can be negative) and thus (3.5) does not allow to represent
X (in distribution) as a sum of two independent jump processes, the first being the
stable and the second with Blumenthal–Getoor index of β ′.

REMARK 3.2. If jumps are of finite variation, in part (b) of the theorem we
restrict X to be equal to the sum of the jumps on the interval. The reason for this is
that if a drift term is present (or equivalently a compensator for the small jumps),
then it “dominates” the jumps and determines the behavior of the realized power
variation (see, e.g., [15]).

REMARK 3.3. When p > β in the pure-jump case the limit of the realized
power variation is just the some of the pth absolute power of the jumps, and this
result does not follow from a law of large numbers but rather by proving that an
approximation error for this sum vanishes almost surely. Thus the behavior of the
realized power variation for p < β and p > β is fundamentally different. The case
p = β is the dividing one. In this case the realized power variation (unscaled)
converges neither to a constant nor to the sum of the absolute values of the jumps
raised to the power β (which is infinite). It can be shown that after subtracting the
“big” increments, that is, keeping only those for which |�n

i X| ≤ K�
1/β
n , for an

arbitrary constant K > 0, the realized power variation converges to a nonrandom
constant.

We note that the behavior of the realized power variation for p ≥ β in the pure-
jump case is very different from the case when X does not contain jumps. In the
latter case for all powers (p � 2) the limit of the realized power variation is de-
termined by law of large numbers, and hence we always need to scale the realized
power variation in order to converge to a nondegenerate limit (see, e.g., [4]).
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3.1.2. Extension to general semimartingales. Now we extend Theorem 3.1 to
the case when σ and ν (and the drift terms mc and md ) in (3.1) and (3.3) are
stochastic. Nothing fundamentally changes, apart from the fact that the limits are
now random (depending on the particular realization of the process X). In the case
of continuous martingale plus jumps, we can substitute (3.1) with the following:

dXt = mct dt + σ1t dWt +
∫

R

κ(δ(t, x))μ̃(dt, dx)

(3.7)
+
∫

R

κ ′(δ(s, x))μ(dt, dx),

where mct is locally bounded and σ1t is a process with càdlàg paths; in addition
|σ1t | > 0 and |σ1t−| > 0 for every t > 0 almost surely; μ is a homogenous Poisson
measure with compensator F(dx)dt and δ(t, x) is a predictable function satisfy-
ing

the process t → supx
|δ(t,x)|
γ (x)

is locally bounded with∫
R
(|γ (x)|β ′ ∧ 1)F (dx) < ∞ for some nonrandom function γ (x)(3.8)

and some constant β ′ ∈ [0,2].
Additionally we assume that σ1t is an Itô semimartingale satisfying equations simi-
lar to (3.7) and (3.8) (with arbitrary driving Brownian motion and Poisson measure
(and jump size function) satisfying a condition as (3.8) with β ′ = 2) with locally
bounded coefficients. We note that the generalized Blumenthal–Getoor index of
the jumps of X in (3.7) is bounded by the nonrandom β ′.

In the pure-jump case more care is needed in introducing time variation. Es-
sentially we should keep the behavior around 0 of the jump compensator intact.
Therefore the generalization of (3.3) that we consider is given by

dXt = mdt dt +
∫

R

σ2t−κ(x)μ̃(dt, dx) +
∫

R

σ2t−κ ′(x)μ(dt, dx),(3.9)

where mdt and σ2t are processes with càdlàg paths; μ is a jump measure with com-
pensator ν(x) dx dt where ν(x) is given by (3.4). We note that under this specifi-
cation, the generalized Blumenthal–Getoor index of X in (3.9) equals β on every
path, where β is the constant appearing in (3.5). Further we assume |σ2t | > 0 and
|σ2t−| > 0 for every t > 0 almost surely and impose the following dynamics for
the process σ2t :

dσ2t = b2t dt + σ̃2t dWt +
∫

R2
κ(δ(t, x))μ̃(dt, dx)

(3.10)
+
∫

R2
κ ′(δ(t, x))μ(dt, dx),

where W is a Brownian motion; μ is a homogenous Poisson measure on R
2 with

compensator ν(dx) dt for ν denoting some σ -finite measure on R
2, satisfying
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μ(dt,A × R) ≡ μ(dt,A) for any A ∈ B(R0) with R0 := R \ {0}; δ(t,x) is an
R-valued predictable function satisfying

the process t → supx
|δ(t,x)|
γ (x)

is locally bounded with∫
R2(|γ (x)|β+ε ∧ 1)ν(x) dx < ∞ for some nonrandom function(3.11)

on R
2, γ (x), where β is the constant in (3.5), and for ∀ε > 0.

Additionally we assume that mdt and σ̃2t are Itô semimartingales satisfying equa-
tions similar to (3.7) and (3.8) (with arbitrary driving Brownian motion and Pois-
son measure) with locally bounded coefficients. This specification for σ2t is fairly
general and it importantly allows for dependence between the driving jump mea-
sure in (3.9) and σ2t , which is important for financial applications (see, e.g., the
COGARCH model of [18]).

The restrictions on σ1t and σ2t in (3.7) and (3.10) are stronger than needed for
the convergence in probability results in the next theorem, but they will be used
for deriving the central limit results in the next subsection. These assumptions are
nevertheless weak and therefore we impose them throughout. For example, the
Itô semimartingale restrictions on σ1t and σ2t and their coefficients, together with
conditions (3.8) and (3.11), will be automatically satisfied if X solves

dXt = f (Xt−) dLt(3.12)

for some twice continuously differentiable function f (·) with at most linear growth
and L being the Lévy process in (3.1) or (3.3) (see, e.g., Remark 2.1 in [15]). The
next theorem states the general result on convergence in probability of realized
power variation.

THEOREM 3.2. (a) Suppose X is given by (3.7) and (3.8) is satisfied with
β ′ < 2. Then for a fixed T > 0 we have

�1−p/2
n VT (X,p,�n)

P−→ μp(2)

∫ T

0
|σ1s |p ds,(3.13)

locally uniformly in p ∈ (0,2).
(b) Suppose X is given by (3.9), (3.10) and (3.5) holds with β ′ < β . Further

assume mds − σ2s−
∫
R

κ(x)ν(x) dx is identically zero on [0, T ] on the observed
path if β ≤ 1. Then for a fixed T > 0 we have

�1−p/β
n VT (X,p,�n)

P−→ �
p/β
A,βμp(β)

∫ T

0
|σ2s |p ds,(3.14)

locally uniformly in p ∈ (0, β).

REMARK 3.4. As seen from the above theorem, in both cases the (scaled)
realized power variation estimates an integrated volatility measure

∫ T
0 |σis |p ds for
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i = 1,2, which is important for measuring volatility in financial applications. What
is different in the two cases is the scaling factor that is used. The latter depends on
the activity of X that we formally define later in Section 4 and then estimate using
the limit theorems of the current section.

3.2. CLT results. Since in our application we make use of the realized power
variation over two frequencies, �n and 2�n, we derive a CLT for the vector
(VT (X,p,2�n),VT (X,p,�n))

′. In the next and subsequent theorems L − s will
stand for convergence stable in law (see, e.g., [16] for a definition for filtered prob-
ability spaces).

3.2.1. The Lévy case. As for the convergence in probability we start with the
Lévy case. The result is given in the following theorem.

THEOREM 3.3. (a) Suppose X is given by the process in (3.1) with Blumen-
thal–Getoor index β ′ < 1. Then, for a fixed T > 0 and any 0 < pl ≤ ph < 1 such
that β ′

2−β ′ < pl ≤ ph < 1, we have

�−1/2
n

(
�

1−p/2
n VT (X,p,2�n) − 2p/2−1T |σ |pμp(2)

�
1−p/2
n VT (X,p,�n) − T |σ |pμp(2)

)
L−s−→ �2,T (p),(3.15)

where the convergence takes place in C(R2, [pl,ph]), the space of R
2-valued con-

tinuous functions on [pl,ph] equipped with the uniform topology; �2,T (p) is a
continuous centered Gaussian process, independent from the filtration on which
X is defined, with the following variance–covariance Cov(�2,T (p),�2,T (q)) for
some p,q ∈ [pl,ph]:
T |σ |2p

(
2(p+q)/2−1(μp+q(2) − μp(2)μq(2)

)
μq,p(2) − 2p/2μp(2)μq(2)

μp,q(2) − 2q/2μp(2)μq(2) μp+q(2) − μp(2)μq(2)

)
.

(b) Suppose X is given by the process in (3.3), and (3.5) holds with β ′ < β/2.
Then, for a fixed T > 0 and any 0 < pl ≤ ph < 1 such that either (i) (

2−β
2(β−1)

∨
ββ ′

2(β−β ′) ) < pl ≤ ph < β/2 when β >
√

2 or (ii) md ≡ 0, ν and κ symmetric and
ββ ′

2(β−β ′) < pl ≤ ph < β/2, we have

�−1/2
n

(
�

1−p/β
n VT (X,p,2�n) − 2p/β−1T �

p/β
A,βμp(β)

�
1−p/β
n VT (X,p,�n) − T �

p/β
A,βμp(β)

)
(3.16)

L−s−→ �β,T (p),

where the convergence takes place in C(R2, [pl,ph]), the space of R
2-valued con-

tinuous functions on [pl,ph] equipped with the uniform topology; �β,T (p) is a
continuous centered Gaussian process, independent from the filtration on which
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X is defined, with the following variance–covariance Cov(�β,T (p),�β,T (q)) for
some p,q ∈ [pl,ph]:
T �

2p/β
A,β

(
2(p+q)/β−1(μp+q(β) − μp(β)μq(β)

)
μq,p(β) − 2p/βμp(β)μq(β)

μp,q(β) − 2q/βμp(β)μq(β) μp+q(β) − μp(β)μq(β)

)
.

REMARK 3.5. The result in part (a) for a fixed p has been already shown (see,
e.g., [4] and references therein). In the pure-jump case (3.3), the result in (3.16) for
a fixed p has been derived by [25] but only in the case when there is no drift [i.e.,
only under condition (ii) in part (b) of Theorem 3.3] and a slightly more restrictive
condition on the residual measure ν2. The general treatment here is important for
financial applications, as the presence of risk premium means theoretically that the
dynamics of traded assets should contain a drift term. Allowing for a drift term is
also important for applications to processes exhibiting strong mean reversion like
asset volatilities and trading volumes (see, e.g., [3]).

REMARK 3.6. Theorem 3.3 shows that the convergence of the scaled and cen-
tered power variation is uniform over p. This result has not been shown before.
The uniformity is important, for example, in adaptive estimation where the power
of the realized power variation to be used needs to be estimated from the data. This
is illustrated in our application in Section 4.

REMARK 3.7. Comparing Theorem 3.3 with Theorem 4.1 we see that both in
parts (a) and (b) we have imposed the stricter restrictions,

p ∈
(

2 − β

2(β − 1)
∨ ββ ′

2(β − β ′)
, β/2

)
[with β = 2 for part (a)] and β ′ < β/2. The lower bound for p is determined from
the presence of a “less active” component in X. The restriction p >

2−β
2(β−1)

comes
from the presence of a drift term. We note that it is more restrictive the lower the
β is. In fact when β ≤ √

2, the presence of a drift term will slow down the rate
of convergence of the scaled power variation, and therefore the limiting result in
(3.16) will not hold. In contrast for high values of β , p >

2−β
2(β−1)

is very weak and
in the limiting case when β = 2 [part (a) of the theorem] it is never binding. We
can interpret the restrictions p >

ββ ′
2(β−β ′) and β ′ < β/2 similarly. They come from

the presence in X of a less active jump component with Blumenthal–Getoor index
β ′.

Also, the restriction p < β/2, which in particular implies that the function |x|p
is subadditive, is crucial for bounding the effect of the “residual” jump components
in X.

REMARK 3.8. We can also derive a central limit theorem when p ∈ (β/2, β)

(and when there are no “residual” jump components). In this case pure-continuous
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and pure-jump martingales differ. While in the former case the rate of convergence
continuous to be

√
�n, in the latter the rate slows down. The precise result is the

following:
Suppose X is symmetric stable plus a drift, that is, the process in (3.3) with

ν2(x) ≡ 0 and further md −∫
R

κ(x)ν1(x) dx ≡ 0 when β ≤ 1. Set a = md +∫
R
(x−

κ(x))ν1(x) dx when β > 1 and a = 0 when β ≤ 1. Then for a fixed p ∈ (β/2 ∨
1
β

1{β>1∩a �=0}, β) we have

�p/β−1
n

(
�1−p/β

n VT (X,p,�n) − T �
p/β
A,βμp(β)

) L−→ ST ,(3.17)

where St is pure-jump Lévy process with Lévy density 1{x>0}2A
p

1
x1+β/p and zero

drift with respect to the “truncation” function κ(x) = x. This is an asymmetric
stable process with index β/p ∈ (1,2).

As seen from (3.17), as we increase p the rate of convergence of the realized
power variation slows down from

√
�n to 1. Therefore this range of powers is less

attractive for estimation purposes. This will be further discussed in Section 4.

3.2.2. Extension to general semimartingales. We proceed with the analogue
of Theorem 3.3 in the more general setup of Section 3.1.2. We state the case when
β >

√
2 only, since as seen from Theorem 3.3 and Remark 3.8, the case β ≤√

2 needs an assumption of zero drift, and this limits its usefulness for financial
applications where the drift arises from the presence of risk premium.

THEOREM 3.4. (a) Suppose X is given by (3.7), and (3.8) is satisfied with
β ′ < 1. Then, for a fixed T > 0 and any 0 < pl ≤ ph < 1 such that β ′

2−β ′ < pl ≤
ph < 1, we have

�−1/2
n

⎛⎜⎝�1−p/2
n VT (X,p,2�n) − 2p/2−1μp(2)

∫ T

0
|σ1s |p ds

�1−p/2
n VT (X,p,�n) − μp(2)

∫ T

0
|σ1s |p ds

⎞⎟⎠
(3.18)

L−s−→ �2,T (p),

where the convergence takes place in C(R2, [pl,ph]), the space of R
2-valued con-

tinuous functions on [pl,ph] equipped with the uniform topology; �2,T (p) is a
continuous centered Gaussian process, independent from the filtration on which
X is defined, with the following variance–covariance Cov(�2,T (p),�2,T (q)) for
some p,q ∈ [pl,ph]:∫ T

0
|σ1s |2p ds

×
(

2(p+q)/2−1(μp+q(2) − μp(2)μq(2)
)

μq,p(2) − 2p/2μp(2)μq(2)

μp,q(2) − 2q/2μp(2)μq(2) μp+q(2) − μp(2)μq(2)

)
.
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(b) Suppose X is given by (3.9)–(3.11) with β >
√

2 and (3.5) holds with β ′ <
β/2. Then, for a fixed T > 0 and any 0 < pl ≤ ph < 1 such that (

2−β
2(β−1)

∨ β−1
2 ∨

ββ ′
2(β−β ′) ) < pl ≤ ph < β/2, we have

�−1/2
n

⎛⎜⎝�1−p/β
n VT (X,p,2�n) − 2p/β−1�

p/β
A,βμp(β)

∫ T

0
|σ2s |p ds

�1−p/β
n VT (X,p,�n) − �

p/β
A,βμp(β)

∫ T

0
|σ2s |p ds

⎞⎟⎠
(3.19)

L−s−→ �β,T (p),

where the convergence takes place in C(R2, [pl,ph])—the space of R
2-valued con-

tinuous functions on [pl,ph] equipped with the uniform topology; �β,T (p) is a
continuous centered Gaussian process, independent from the filtration on which
X is defined, with the following variance–covariance Cov(�β,T (p),�β,T (q)) for
some p,q ∈ [pl,ph]:
�

2p/β
A,β

∫ T

0
|σ2s |2p ds

×
(

2(p+q)/β−1(μp+q(β) − μp(β)μq(β)
)

μq,p(β) − 2p/βμp(β)μq(β)

μp,q(β) − 2q/βμp(β)μq(β) μp+q(β) − μp(β)μq(β)

)
.

Part (a) of the theorem has been derived in [4], while part (b) is a new result.
We note that compared with the Lévy case in part (b) of the theorem we have
a slightly stronger restriction for p, that is, p cannot be arbitrarily small when
β is close to 2. This is of no practical concern as the very low powers are not
very attractive because of the high associated asymptotic variance. This is further
discussed in Section 4.

4. Application: Adaptive estimation of activity. We proceed with an appli-
cation of our limit results. We first define our object of interest, the activity level
of the discretely-observed process, and show how the realized power variation can
be used for its inference. Following that we develop an adaptive strategy for its
estimation.

4.1. Definitions. We define the activity level of an Itô semimartingale X as the
smallest power for which the realized power variation does not explode, that is,

βX,T := inf
{
r > 0 : plim

�n → 0
V (r,X,�n)T < ∞

}
.(4.1)

βX,T takes values in [0,2] and is defined pathwise. It is determined by the most
active component in X and the order of the different components forming the Itô
semimartingale from least to most active is: finite activity jumps, jumps of finite
variation, drift (absolutely continuous process), infinite variation jumps, continu-
ous martingale. When the dominating component of X is its jump part (and only
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then), βX,T coincides with the generalized Blumenthal–Getoor index. Thus, for X

in (3.7), βX,T ≡ 2, and for X in (3.9) and (3.10), βX,T ≡ β . We note that βX,T

determines uniquely the appropriate scale for the realized power variation in the
estimation of the integrated volatility measures of the process (see Theorems 3.1
and 3.2).

When the process is observed discretely, βX,T is unknown and our goal is to
derive an estimator for it. Since the scaling of the realized power variation depends
on the activity level, we can identify the latter by taking a ratio of the realized
power variation over two scales. Therefore our estimation will be based on the
following function of the power:

bX,T (p) = ln(2)p

ln(2) + ln[VT (X,p,2�n)] − ln[VT (X,p,�n)] , p > 0.(4.2)

A two-scale approach for related problems has been previously used also in [1, 24,
28].

4.2. Limit behavior of bX,T (p). For ease of exposition here we restrict atten-
tion to the Lévy case. The extension to the general semimartingales in (3.7), (3.9)
and (3.10) follows from an easy application of Theorem 3.4. In what follows, for
any p and q both in (0, β/2) we denote

Kp,q(β) = β4

ln2(2)pqμp(β)μq(β)

(
3μp+q(β) + μp(β)μq(β)

(4.3)
− 21−p/βμp,q(β) − 21−q/βμq,p(β)

)
.

COROLLARY 4.1. (a) Suppose X is given by (3.1). Then for a fixed T > 0 and
any 0 < pl ≤ ph < 1 we have√

T

�n

(
bX,T (p) − 2

) L−s−→ Z2(p), uniformly on [pl,ph],(4.4)

where Z2(p) is a centered Gaussian process on [pl,ph] with Cov(Z2(p),Z2(q))

= Kp,q(2) for some p,q ∈ [pl,ph] and independent from the filtration on which X

is defined, provided β ′ < 1 and β ′
2−β ′ < pl ≤ ph < 1, where β ′ is the Blumenthal–

Getoor index of X.
(b) Suppose X is given by (3.3). Then for a fixed T > 0 and any 0 < pl ≤ ph < 1

we have √
T

�n

(
bX,T (p) − β

) L−s−→ Zβ(p), uniformly on [pl,ph],(4.5)

where Zβ(p) is a centered Gaussian process on [pl,ph] with Cov(Zβ(p),Zβ(q))

= Kp,q(β) for some p,q ∈ [pl,ph] and independent from the filtration on which X
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is defined, provided (3.5) holds with β
′
< β/2 and either (i) (

2−β
2(β−1)

∨ ββ ′
2(β−β ′) ) <

pl ≤ ph < β/2 when β >
√

2 or (ii) md ≡ 0, ν symmetric and ββ ′
2(β−β ′) < pl ≤

ph < β/2.

As seen from the corollary, bX,T (p) will estimate the activity level only for
powers that are below the activity level, which of course is unknown. Corollary 4.1
shows further that the power is also crucial for the rate at which the activity level
is estimated. The range of values of p for which bX,T (p) is

√
�n-consistent for

βX,T defined in (4.1) depends on the activity of the most active part of the process,
but also on the activity of the less active parts, that is, β ′ in part (a) and β ′ ∨ 1
in part (b). For example, when the observed process is a continuous martingale
plus jumps [part (a) of the corollary], then the activity of the jumps needs to be
sufficiently low in order to estimate βX,T at a rate

√
�n. Similar observation holds

for the pure-jump case as well. The activity of the less active components of X is
unknown but we want an estimator of βX,T that is robust, in the sense that it has√

�n rate of convergence for most values of β ′. Based on the corollary, this means
that we need to use values of p that are “sufficiently” close to half of the activity
level βX,T /2.

The presence of a less active component in the observed process aside, the
power at which bX,T (p) is evaluated is also important for the rate of convergence
and the asymptotic variance of the estimation of the overall activity index. There
is a difference between case (a) and case (b) in this regard. When the activity
level of X is 2 (and there are no jumps), bX,T (p) will be

√
�n-consistent for any

power. In contrast, in the pure-jump case, this will be true only for powers less
than β/2. Using powers p ∈ (β/2, β) slows down the rate of convergence from√

�n to 1, as pointed out in Remark 3.8. In Figure 1 we plotted the asymptotic
standard deviation of bX,T (p) for different values of the activity index βX,T . For
activity less than 2 the asymptotic variance has a pronounced U-shape pattern, and
as a result it is minimized somewhere within the admissible range (for

√
�n-rate

of convergence), but the minimizing power depends on β . On the other hand, when
βX,T = 2, i.e. when continuous martingale is present, the asymptotic variance is

minimized for p = 1 (p = βX,T /2 is admissible if βX,T ≡ 2), although
√

Kp,p(2)

changes very little around 1. These observations are further confirmed from Fig-
ure 2, which plots the power at which the asymptotic variance is minimized as a
function of the activity level.

REMARK 4.1. We note that in Corollary 4.1 (and in fact throughout the paper)
we kept T fixed. What happens if T goes to infinity? In this case the result in
Corollary 4.1 will remain valid without any assumption on the relative speed of
T ↑ ∞ and �n ↓ 0 but only in the case when X is symmetric stable. In all other
cases captured by the specification in (3.3) we will need to impose a restriction
on the relative speed with which T increases. This happens because the error in
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FIG. 1. Asymptotic Standard Deviation of bX,T (p) for different values of p and the activity level
βX,T defined in (4.1). Kp,q(β) is defined in (4.3).

estimating βX,T depends on �n and cannot vanish by just increasing the time
span T .

4.3. Two-step estimation of activity. We turn now to the explicit construction
of an estimator of the activity level guided by the results of Corollary 4.1. Our goal
here is to derive a point estimator of the activity level which has good robustness
and efficiency properties. As we noted in the previous subsection, the powers used
in the construction of an estimator for the activity level are crucial for its consis-
tency, rate of convergence and asymptotic efficiency. Importantly, whether to use
a given power in the estimation depends on the value of βX,T which is unknown
and is itself being estimated.

This suggests implementing an adaptive (two-stage) estimation procedure,
where on a first stage we construct an initial consistent estimator of the activity.
Any estimator with arbitrary rate of convergence on this first stage can be used; the
only requirement is that it is consistent. Then, on a second stage, we can use the
first-stage estimator to select the power(s) at which bX,T (p) is evaluated. This can
be done because the convergence in (4.4) and (4.5) is uniform in p. We give the
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FIG. 2. Minimizing power p of the asymptotic variance Kp,p(βX,T ) as a function of the activity
level βX,T defined in (4.1).

generic construction of the two-stage estimator in the Lévy case in the following
theorem.

THEOREM 4.1. Fix some T > 0 and suppose X is given either by (3.1) or
(3.3) with activity level βX,T defined in (4.1). Let β̂

f s
X,T be an arbitrary consis-

tent estimator of βX,T constructed from X0,X�n, . . . ,X�n[T/�n], that is, we have

β̂
f s
X,T

P−→ βX,T as �n → 0. Suppose the functions fl(z) and fh(z) are contin-
uously differentiable in z in a neighborhood of βX,T and we have identically
0 < fl(z) < fh(z). Set

τ ∗
1 = fl(βX,T ) and τ ∗

2 = fh(βX,T ),

τ̂1 = fl(β̂
f s
X,T ) and τ̂2 = fh(β̂

f s
X,T ).

Finally, denote

β̂ts
X,T =

∫ τ̂2

τ̂1

w(u)bX,t (u) du,(4.6)
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where w(·) is some weighting function, which is either continuous on [τ ∗
1 , τ ∗

2 ] or

Dirac mass at some point in [τ ∗
1 , τ ∗

2 ] and such that
∫ τ∗

2
τ∗

1
w(u)du = 1. Then we have

√
T

�n

(β̂ts
X,T − βX,T )

L−s−→ ε ×
√√√√∫ τ∗

2

τ∗
1

∫ τ∗
2

τ∗
1

Ku,v(βX,T )w(u)w(v) dudv,(4.7)

where ε is standard normal defined on an extension of the original probability
space provided:

(a) if X is given by (3.1), then τ ∗
2 < βX,T /2 and the Blumenthal–Getoor index of

the jumps in X, β ′, is such that β ′
2−β ′ < τ ∗

1 (which implies β ′ < 1),

(b) if X is given by (3.3), then τ∗
2 < β/2 and either (i) β >

√
2 and τ ∗

1 > (
2−β

2(β−1)
∨

ββ ′
2(β−β ′) ) or (ii) md ≡ 0, ν and κ symmetric and τ ∗

1 >
ββ ′

2(β−β ′) , where β ′ is a
constant satisfying (3.5).

The two-step estimator can be viewed as a weighted average of bX,T (p) over
an adaptively selected region of powers. This range is determined on the basis
of an initial consistent estimator of the activity. The averaging of the powers on
the second stage might be beneficial since the correlation between the centered
bX,T (p) evaluated over different powers is not perfect. We would expect that the
biggest benefit from averaging different powers in the estimation will come from
using powers that are sufficiently apart. However, as we saw from Figure 1, signif-
icantly different powers would imply that at least one of them is associated with
too high asymptotic variance and this could offset the benefit from the averaging.
Therefore, in practice on the second stage one can just evaluate bX,T (p) at a single
power. This case is stated in the next corollary.

COROLLARY 4.2. Let β̂
f s
X,T be an arbitrary consistent estimator of βX,T

constructed from X0,X�n, . . . ,X�n[T/�n], that is, we have β̂
f s
X,T

P−→ βX,T as
�n → 0. Set

β̂ts
X,T ≡ bX,T (τ̂ ) with τ̂ := f (β̂

f s
X,T ),(4.8)

where f (·) is some continuous function and further we set τ ∗ := f (βX,T ). Then
we have for a fixed T√

T

�n

(β̂ts
X,T − βX,T )

L−s−→ ε ×
√

Kτ∗,τ∗(βX,T )(4.9)

for ε being standard normal, provided βX,T > 2τ ∗ and for β ′ as in Theorem 4.1
we have:

(a) if X is given by (3.1), then β ′ < 2τ∗
1+τ∗ ,
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(b) if X is given by (3.3), then β ′ < 2βτ∗
β+2τ∗ and if md �= 0 and/or ν is not symmetric

then in addition we also have β >
√

2 and τ ∗ <
2−β

2(β−1)
.

A natural choice for the function f (·), that is, the power that is used on the sec-
ond stage, will be the one that minimizes the asymptotic variance Kp,p(β). This
is further discussed in the numerical implementation in the next section. Alter-
natively, one can sacrifice some of the efficiency in exchange for robustness to a
wider range of β ′ by picking power closer to βX,T /2. We finish this section with
stating the equivalent of Corollary 4.2 in the case when X is a semimartingale
with time-varying characteristics. The theorem gives also feasible estimates of the
asymptotic variance of the two-step estimator.

THEOREM 4.2. Suppose β̂
f s
X,T and β̂ts

X,T are given by (4.8) for some fixed
T > 0.

(a) If X is given by (3.7) and (3.8) is satisfied with β ′ < 2τ∗
1+τ∗ , then we have

1√
�n

(β̂ts
X,T − 2)

L−s−→ ε ×
√

Kτ∗,τ∗(2)

√∫ T
0 |σ1s |2τ∗

ds∫ T
0 |σ1s |τ∗

ds
,(4.10)

where ε is standard normal and is defined on an extension of the original proba-
bility space.

(b) If X is given by (3.9)–(3.11) with β >
√

2 and (3.5) holds with β ′ <
βτ∗

1+τ∗
and τ ∗ ∈ (

2−β
2(β−1)

∨ β−1
2 , β/2), then we have

1√
�n

(β̂ts
X,T − β)

L−s−→ ε ×
√

Kτ∗,τ∗(β)

√∫ T
0 |σ2s |2τ∗

ds∫ T
0 |σ2s |τ∗

ds
,(4.11)

where ε is standard normal and is defined on an extension of the original proba-
bility space.

(c) A consistent estimator for the asymptotic variance of both (4.10) and (4.11)
is given by

�−1
n K

f (β̂ts
X,T ),f (β̂ts

X,T )
(β̂ts

X,T )

μ2
f (β̂ts

X,T )
(β̂ts

X,T )

μ2f (β̂ts
X,T )

(β̂ts
X,T )

VT (X,2f (β̂ts
X,T ),�n)

V 2
T (X,f (β̂ts

X,T ),�n)
.(4.12)

REMARK 4.2. Although the choice of the first-step estimator does not affect
the first-order asymptotic properties of the two-stage estimator, in practice it can
matter a lot. One possible choice for a first-step estimator of the activity is

β̃X,T = 2

ln(k)

(
ln(V ′

T (α,X,�n)) − ln(V ′
T (α,X,2�n))

)
,(4.13)
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where V ′
T (α,X,�n) =∑[T/�n]

i=1 1{|�n
i X|≥α

√
�n} and α > 0 is an arbitrary constant.

It is easy to show that under the assumptions of Theorem 3.4, β̃X,T is a consistent
estimator for βX,T . Another alternative first step estimator is bX,T (p) evaluated at
some small power. The latter will be a consistent estimator only if we know apriori
that the true value of βX,T is higher than some positive number.

5. Numerical implementation. In this section we test on simulated data the
limit results of Section 3. We do this by investigating the finite sample performance
of the activity estimator of Section 4. In our Monte Carlo study we work with the
following model for X:

Xt = σ1Wt + σ2
∑

0≤s≤t

�Xs,(5.1)

where the jumps of X are with either of the following two compensators:

A
e−λ|x|

|x|β+1 dx ds or λcδ{x=±r} dx ds.(5.2)

The first compensator is that of a tempered stable [11, 21] whose Blumenthal–
Getoor index is the parameter β and the second compensator is of a compound
Poisson (which has of course a Blumenthal–Getoor index of 0). Note that for the
tempered stable process the value of β ′ in (3.5) is equal to β − 1 ∨ 0. Therefore,
the assumption β ′ < β/2 in Theorems 3.3 and 3.4 will always be satisfied.

In Table 1 we listed the four different cases we consider in the Monte Carlo. The
first two correspond to pure-jump processes with two different values of the level
of activity. The last two cases correspond to a setting where a Brownian motion is
present and therefore overall activity of X is 2. In Case D the jumps in addition to
the Brownian motion have 20% share in the total variation of X on a given interval,
which is consistent with empirical findings for financial price data.

If we think of a unit of time being a day, then in our Monte Carlo on each “day”
we sample M = 390 times. This corresponds to approximately every minute for
6.5 hours trading day and every 5 minutes for 24 hours trading day. The activity
estimation is performed over 22 days, that is, we set T = 22. This corresponds

TABLE 1
Parameter setting for the Monte Carlo

Case σ 2
1 σ 2

2 Jump specification

A 0.0 1.0 Tempered stable with A = 1, β = 1.50 and λ = 0.25
B 0.0 1.0 Tempered stable with A = 1, β = 1.75 and λ = 0.25
C 0.8 0.0 None
D 0.8 1.0 Rare-jump with λc = 0.3333, r = 0.7746
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to 1 calendar month of financial data. This Monte Carlo setup is representative of
a typical financial application that we have in mind. We do not report results for
other choices of T and M although we experimented with. Quite intuitively, an
increase T led to a reduction in the variance of the estimators, while an increase
in M led to the elimination of any existing biases. Finally, we consider 10,000
number of Monte Carlo replications.

Following our discussion in Section 4.3 we calculate over each simulation the
following two-step estimator β̂ts

X,T . In the first stage we evaluate the function
bX,T (p) at p = 0.1. This yields an initial consistent, albeit far from efficient, esti-
mator for the activity, provided of course the activity is above 0.1. Then, given our
first step estimator of the activity, we compute the power at which Kp,p(β̂

f s
X,T ) is

minimized [recall the definition of Kp,q(β) in (4.3)]. Our two-stage estimator is
simply the value of bX,T (p) at this optimal power.

In the Monte Carlo we compare the performance of our estimator with an ad-
hoc one where we simply evaluate bX,T (p) at the fixed “low” power p = 0.1. In
Figure 3 we plot the histograms of the two estimators β̂ts

X,T and bX,T (0.1). As we
can see from this figure, the adaptive estimation of the activity clearly outperforms
the ad-hoc one based on a fixed power. In all cases β̂ts

X,T is much more concen-

FIG. 3. Histograms of β̂ts
X,T and bX,T (0.1) from the Monte Carlo.
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TABLE 2
Comparison between two-step and one-step estimator

Summary statistics

Estimator β Median IQR MAD

Case A
βts

X,T 1.50 1.5237 0.0495 0.0247
bX,T (0.1) 1.50 1.4985 0.0632 0.0316

Case B
βts

X,T 1.75 1.7075 0.0590 0.0294
bX,T (0.1) 1.75 1.6785 0.0814 0.0407

Case C
βts

X,T 2.00 2.0001 0.0719 0.0359
bX,T (0.1) 2.00 2.0005 0.1176 0.0588

Case D
βts

X,T 2.00 1.9632 0.0664 0.0332
bX,T (0.1) 2.00 1.9865 0.1164 0.0573

Note: IQR is the inter-quartile range, and MAD is the mean ab-
solute deviation.

trated around the true value. This is further confirmed from Table 2, which reports
summary statistics for the two estimators. The interquartile range for the ad-hoc
estimator is from 30% to 60% wider than that of the adaptive estimator. A similar
conclusion holds also for the mean absolute deviation reported in the last column
of the table. Thus, we can conclude that choosing an “optimal” power can lead to
nontrivial improvements in the estimation of the activity, which is consistent with
our theoretical findings in Section 4.2.

We next investigate how well we can apply the feasible CLT for the two-step ac-
tivity estimator. For each estimated β̂ts

X,T we calculate standard errors using (4.12).
Table 3 provides summary statistics for how well these estimated asymptotic stan-
dard errors track the exact finite-sample standard error of the two-step estimator
β̂ts

X,T . Since X is simulated from a Lévy process, the latter is computed as the

standard error of β̂ts
X,T over the Monte Carlo replications.

6. Proofs. The proof of Theorems 3.1 and 3.2 follows from results in [24]
and therefore is omitted here. For the rest of the results, we first proof the ones
for the Lévy case, and then proceed with those involving semimartingales with
time-varying characteristics. In what follows we use E

n
i−1 and P

n
i−1 as a shorthand

for E(·|F(i−1)�n) and P(·|F(i−1)�n), respectively. In the proofs K will denote a
positive constant that does not depend on the sampling frequency and might change
from line to line.
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TABLE 3
Precision of standard error estimation for the two-step estimator

Summary statistics for Âse(βts
X,T ))

√
T
�n

Var(βts
X,T ) Median IQR MAD

Case A
3.3341 3.2774 0.2005 0.1005

Case B
4.0320 3.8366 0.2638 0.1320

Case C
4.9588 4.6678 0.2609 0.0590

Case D
4.6626 4.7929 0.4596 0.2298

Notes: Var(βts
X,T ) is the exact variance of the two-step estimator,

computed from the 10,000 Monte Carlo replications of the estimator.
Âse(βts

X,T )) is the estimated asymptotic standard error using (4.12).
MAD is computed around the exact standard error of the estimator√

T
�n

Var(βts
X,T ).

6.1. Proof of Theorem 3.3. The proof of the theorem consists of showing (1)
finite-dimensional convergence (i.e., identifying the limit) and (2) tightness of the
sequence. In the proof we will show part (b) only. Part (a) can be established in
exactly the same way. We will assume that A in (3.5) is that of a standard stable
process and therefore �A,β = 1. The result for an arbitrary A then will follow
trivially by rescaling (and centering). In what follows L will stand for a standard
symmetric β-stable process, defined on some probability space which is possibly
different from the original one.

Step 1 (Finite-dimensional convergence). We start with establishing the final-
dimensional convergence. It will follow from Lemma 6.1 below in which we de-
note with • the Hadamard product of two matrixes (i.e., the element-by-element
product). The stated lemma is slightly stronger than what we need for two reasons.
First, it contains locally uniform convergence in t and in the theorem we work with
a fixed T . Second, in the lemma we will show the finite-dimensional convergence
for a process X defined in the following way:

Xt =
∫ t

0
mds ds +

∫ t

0

∫
R

σ s−κ(x)μ̃(ds, dx) +
∫ t

0

∫
R

σ s−κ ′(x)μ(ds, dx),(6.1)

where μ is the Poisson measure of Theorem 3.3; for arbitrary càdlàg processes
σs and σ̃s with K−1 < |σs | < K and 0 ≤ |σ̃s | ≤ K for some K > 0 and a Brown-
ian motion Wt , σ s is defined via σ s = σ(i−1)�n + σ̃(i−1)�n(Ws − W(i−1)�n) for
s ∈ [(i − 1)�n, i�n) and further mds = md,(i−1)�n for s ∈ [(i − 1)�n, i�n). Ob-
viously Xt includes the Lévy case of Theorem 3.3, and the generalization will be
needed later for the proof of Theorem 3.4.
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LEMMA 6.1. Let p = (p1, . . . , pk)
′ for some integer k, μp = (μp1, . . . ,μpk

)′
and 1k is k ×1 vector of ones. Then, if X is given by (6.1) and under the conditions
of Theorem 3.3(b) (in particular all elements of p are in [pl,ph]), we have the
following convergence locally uniformly in t:

1√
�n

Ṽt (p,X,�n)
L−s−→ �(p)t ,

Ṽt (p,X,�n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1k−p/β
n • Vt(p,X,2�n) − �

1k−p/β
n • 2p/β−1k

•μp(β) •
[t/�n]∑
i=1

(∫ i�n

(i−1)�n

|σ s |β ds

)p/β

�
1k−p/β
n • Vt(p,X,�n) − �

1k−p/β
n • μp(β)

•
[t/�n]∑
i=1

(∫ i�n

(i−1)�n

|σ s |β ds

)p/β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(6.2)

Vt(p,X, ι�n) = (Vt (p1,X, ι�n), . . . , Vt (pk,X, ι�n))
′, ι = 1,2,

and the R
2k-valued process �(p)t is defined on an extension of the original prob-

ability space, is continuous, and conditionally on the σ -field F of the original
probability space is centered Gaussian with variance–covariance matrix process
given by Ct defined via

Ct(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0
|σs |pi+pj ds 2pi/β+pj /β−1(μpi+pj

(β) − μpi
(β)μpj

(β)
)

for i = 1, . . . , k; j = 1, . . . , k,∫ t

0
|σs |pi−k+pj−k ds

(
μpi−k+pj−k

(β) − μpi−k
(β)μpj−k

(β)
)

for i = k + 1, . . . ,2k; j = k + 1, . . . ,2k,∫ t

0
|σs |pi−k+pj ds

(
μpi−k,pj

(β) − 2pj /βμpi−k
(β)μpj

(β)
)

for i = k + 1, . . . ,2k; j = 1, . . . , k.

(6.3)

PROOF. We start with some notation. We set C̃ = Ct when t = 1 and σ s ≡ 1
for ∀s ∈ [0,1]. We further denote

Yt =
∫ t

0
mds ds +

∫ t

0

∫
R

κ(x)μ̃(ds, dx) +
∫ t

0

∫
R

κ ′(x)μ(ds, dx),(6.4)

and

Xt(τ ) = Xt −∑
s≤t

�Xs1{|�Xs |<|σ s−|τ },

(6.5)
Yt (τ ) = Yt −∑

s≤t

�Ys1{|�Ys |<τ }, τ > 0.
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First, we have

�1−1/2−pi/β
n |Vt(pi,X,�n) − Vt(pi,X(τ),�n)| u.c.p.−→ 0, i = 1, . . . , k,

(6.6)
�1−1/2−pi/β

n |Vt(pi,X,2�n) − Vt(pi,X(τ),2�n)| u.c.p.−→ 0, i = 1, . . . , k,

using the algebraic inequality ||a + b|p − |a|p| ≤ |b|p for p ≤ 1 and the fact
that pi < β/2 for i = 1, . . . , k. Therefore we are left with showing (6.2) with
Vt(p,X,�n) and Vt(p,X,2�n) substituted with Vt(p,X(τ),�n) and Vt(p,X(τ),

2�n), respectively.
For arbitrary power p we set

ζ(p)ni = (ζ(p)ni1, ζ(p)ni2)
′, i = 1,2, . . . ,

[
t

2�n

]
,

ζ(p)ni1 = �1/2
n

(
�−p/β

n |�n
2i−1X(τ)|p + �−p/β

n |�n
2iX(τ)|p

− 2μp(β)

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)p/β)
,

ζ(p)ni2 = �1/2
n

(
�−p/β

n |�n
2i−1X(τ) + �n

2iX(τ)|p

− 2p/βμp(β)

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)p/β)
.

It is convenient also to write further ζ(p)ni1 = ξ(p)2i−1 + ξ(p)2i with

ξ(p)j = �1/2
n

(
�−p/β

n |�n
jX(τ)|p − μp(β)

(
1

�n

∫ j�n

(j−1)�n

|σ s |β ds

)p/β)
for j = 1,2, . . . ,2[ t

2�n
]. Using Theorem IX.7.19 in [16] it suffices to show the

following for all t > 0 and arbitrary element p from the vector p:∣∣∣∣∣
[t/(2�n)]∑

i=1

E
n
2i−2(ζ(p)ni )

∣∣∣∣∣ P−→ 0,(6.7)

[t/(2�n)]∑
i=1

(
E

n
2i−2[ζ(pq)

n
isζ(pr)

n
il] − E

n
2i−2(ζ(pq)

n
is)E

n
2i−2(ζ(pr)

n
il)
)

(6.8)
P−→ Ct

(
q + (2 − s)k, r + (2 − l)k

)
,

where s, l = 1,2 and q, r = 1, . . . , k,

[t/(2�n)]∑
i=1

E
n
2i−2|ζ(p)ni |2+ι P−→ 0 for some 0 < ι < β/p − 2,(6.9)
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[t/(2�n)]∑
i=1

E
n
2i−2[ζ(p)ni (�

n
2i−1M + �n

2iM)] P−→ 0(6.10)

for M being an arbitrary bounded local martingale defined on the original proba-
bility space.

We start with (6.7). We prove it for the first element of ζ(p)ni and arbitrary
element p of the vector p, the proof for the second element of ζ(p)ni is similar.
Because of the assumption on the Lévy measure in (3.4) we can write

E
n
i−1

(
|�−1/β

n �n
i X(τ)|p − μp(β)

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)p/β)
=

3∑
j=1

An
ij

for i = 1,2, . . . ,2[ t
2�n

] and where

An
i1 = E

n
i−1

(∣∣∣∣�−1/β
n

∫ i�n

(i−1)�n

σ s− dLs

∣∣∣∣p − μp(β)

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)p/β)
,

An
i2 = E

n
i−1

(∣∣∣∣�−1/β
n

∫ i�n

(i−1)�n

σ s− dLs + ai�
−1/β
n

∣∣∣∣p
−
∣∣∣∣�−1/β

n

∫ i�n

(i−1)�n

σ s− dLs

∣∣∣∣p),

An
i3 = E

n
i−1|�−1/β

n �n
i X(τ)|p − E

n
i−1

∣∣∣∣�−1/β
n

∫ i�n

(i−1)�n

σ s− dLs + ai�
−1/β
n

∣∣∣∣p,

with

ai = md,(i−1)�n�n

−
(∫

|x|>τ
κ ′(x)ν1(x) dx + 2

∫
x:ν2(x)<0,|x|<τ

κ(x)ν2(x) dx

)
(6.11)

×
∫ i�n

(i−1)�n

σ s ds,

where we recall that L is a standard stable process which is defined on an extension
of the original probability space and is independent of it. We have ai = 0 for β ≤√

2, because of our assumption of the symmetry of ν(x) and md,(i−1)�n ≡ 0 for
this case. Also, by the assumptions of the theorem, β ′ < β/2 ≤ 1 and therefore the
integral with respect to ν2 in the definition of ai is well defined. Then, using the
algebraic inequality |x + y|p ≤ |x|p + |y|p for p ≤ 1 and arbitrary x and y, it is
easy to show that for An

i3 we have

|An
i3| ≤ K�−p/β

n E
n
i−1

∣∣∣∣∫ i�n

(i−1)�n

σ s− dL̃(1)
s

∣∣∣∣p + K�−p/β
n E

n
i−1

∣∣∣∣∫ i�n

(i−1)�n

σ s− dL̃(2)
s

∣∣∣∣p
+ K�−p/β

n E
n
i−1

∣∣∣∣∫ i�n

(i−1)�n

σ s− dL̃(3)
s

∣∣∣∣p,
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where K is some constant and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̃(1) is a pure-jump Lévy process with Lévy density of
−2ν2(x)1{x:ν2(x)<0,|x|<τ }, zero drift and zero truncation function;

L̃(2) is a pure-jump Lévy process with Lévy density of
ν2(x)1{x:ν2(x)>0,|x|<τ } − ν2(x)1{x:ν2(x)<0,|x|<τ },
zero drift and zero truncation function;

L̃(3) is a pure-jump Lévy process with Lévy density of
ν1(x)1{|x|>τ }, zero drift and zero truncation function.

(6.12)

The three processes are well defined because β ′ < 1 and are defined on an exten-
sion of the original probability space and independent from the original filtration.
Then, using the fact that σ s− is independent from the processes L̃(i) for i = 1,2,3,
E|σ s |p < ∞ for s ∈ [(i − 1)�n, i�n) and any positive p, the Hölder’s inequality,
and the basic one |∑i |ai ||p ≤∑i |ai |p for p ≤ 1 and arbitrary ai , we easily have

|An
i3| ≤ K�p/β ′∧1−p/β−ι

n(6.13)

for any ι > 0. Taking into account the restriction on p and β ′, we have p/β ′ ∧ 1 −
p/β − ι > 1/2 for some ι > 0. In a similar way we can show |Ãn

i3| ≤ K�
1/2+ι
n for

some ι > 0 where

Ãn
i3 = E

n
i−1

(
|�−1/β

n �n
i X(τ)|p�n

i W

−
∣∣∣∣�−1/β

n

∫ i�n

(i−1)�n

σ s− dLs + ai�
−1/β
n

∣∣∣∣p�n
i W

)
.

Further, since
∫ i�n

(i−1)�n
σ s− dLs

d= Lbi,n
for bi,n = ∫ i�n

(i−1)�n
|σ s |β ds, and using the

self-similarity property of a strictly stable process, we have An
i1 = 0. We have

similarly Ãn
i1 = 0, where

Ãn
i1 = E

n
i−1

(∣∣∣∣�−1/β
n

∫ i�n

(i−1)�n

σ s− dLs

∣∣∣∣p�n
i W

− μp(β)

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)p/β

�n
i W

)
,

because W is independent from L. Next, to prove (6.7), we need only show that
|An

i2| ≤ K�
1/2+ι
n for some ι > 0. We show this only for the case β >

√
2, since for

β ≤ √
2 it is trivially satisfied. For the proof we make use of the following general

inequality for arbitrary real numbers x and y and p ≤ 1:∣∣|x + y|p − |x|p − p|x|p−1 sign{x}y1{|x|�=0,|y|≤|x|/2}
∣∣

(6.14)

≤ K
|y|p+1−ι

|x|1−ι
1{|x|�=0} + |y|p1{|x|=0∪|y|>|x|/2}
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for some ι > 0 and a positive constant K . The inequality follows by looking at the
difference |x + y|p − |x|p on the following two sets: |y| ≤ |x|/2 and |y| > |x|/2.
On the former we apply a second-order Taylor series approximation and further use
|y|/|x| ≤ 1/2 on this set [therefore (6.14) holds with K = 2p−2−ιp(1 − p)]. On
the set |y| > |x|/2 we use the subadditivity of the function |x|p . We can substitute
in the above inequality x with �

−1/β
n Lbi,n

and y with ai�
−1/β
n . Then, by first

conditioning on the filtration generated by σ s , and then using the fact that L has
symmetric distribution, we get

E
n
i−1
(|�−1/β

n Lbi,n
|p−1 sign{Lbi,n

}ai�
−1/β
n 1{|Lbi,n

|�=0,|Lbi,n
|≥2|ai |}

)= 0.(6.15)

Next we have for some p0,p1 > 0 (note that we have universal bounds on σs and
σ̃s )

E
n
i−1

(∫ i�n

(i−1)�n

|σ s |p0 ds

)−p1

≤ KE
n
i−1(Tb ∧ �n)

−p1 < K�−p1
n ,(6.16)

where Tb is the hitting time of the Brownian motion (Ws − W(i−1)�n)s≥(i−1)�n of
the level b for b = −σ(i−1)�n/(2K) �= 0 for some positive K , whose negative pow-
ers (of Tb) are finite. Then for ι such that 0 < ι < p− 2−β

2(β−1)
(recall the assumption

on p for β >
√

2) we have

E
n
i−1

( |ai�
−1/β
n |p+1−ι

|�−1/β
n Lbi,n

|1−ι
1{Lbi,n

�=0}
)

≤ E
n
i−1[|ai�

−1/β
n |p+1−ι|�−1/β

n b
1/β
i,n |ι−1]E(|L1|ι−1)(6.17)

≤ K�1/2+ι′
n ,

with some ι′ > 0 and a positive constant K . This follows from the self-similarity
of the strictly stable process, the fact that E|L1|1−ι < ∞ since ι ∈ (0,1) (see, e.g.,
[22]) and the preceding inequality (6.16). Similarly, for some ι ∈ (0,p − 2−β

2(β−1)
)

using the Chebyshev’s inequality we have

E
n
i−1|ai�

−1/β
n |p1{|Lbi,n

|<2|ai |} ≤ KE(|L1|ι−1)�(1−1/β)(p+1−ι)
n

(6.18)
≤ K�1/2+ι′

n

with some ι′ > 0. Combining (6.13)–(6.18) and using that stable distribution has
a density with respect to Lebesgue measure (see, e.g., Remark 14.18 in [22]) we
prove |An

i2| ≤ K�
1/2+ι
n for some ι > 0 and thus (6.7) follows. Similarly we have

|Ãn
i2| ≤ K�

1/2+ι
n for some ι > 0 where

Ãn
i2 = E

n
i−1

(∣∣∣∣�−1/β
n

∫ i�n

(i−1)�n

σ s− dLs + ai�
−1/β
n

∣∣∣∣p�n
i W

−
∣∣∣∣�−1/β

n

∫ i�n

(i−1)�n

σ s− dLs

∣∣∣∣p�n
i W

)
.
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Before proceeding with (6.8) we derive a result that we make use of later for the
proof of Theorem 3.4. First, for two random variables X1 and X2 and some ε > 0
we have

P(|X1 + X2| ≤ ε) ≤ P(|X1| ≥ ε) + P(|X2| ≤ 2ε).(6.19)

Then we can apply this inequality twice, use the fact that
∫
[−1,1] |x|β ′+α′

ν2(x) dx

< ∞ for any α′ > 0, the fact that |�Xs(τ)| ≤ τ |σ s−|; the fact that the stable
distribution has finite moments for powers that are negative but higher than −1;
the bound in (6.16) and finally the Chebyshev’s inequality to get

P
n
i−1
(
�−1/β

n |�n
i X(τ)| ≤ ε

)≤ 3∑
j=1

P
n
i−1

(∣∣∣∣∫ i�n

(i−1)�n

σ s− dL̃(j)
s

∣∣∣∣≥ 0.5�1/β
n ε

)

+ P
n
i−1(|ai�

−1/β
n + �−1/β

n Lbi,n
| ≤ 4ε)(6.20)

≤ K

(
εα + �(1−1/β)α

n + �
p/β ′−p/β−α′
n

εp

)
for any α ∈ (0,1), p ≤ β ′ and α′ > 0 and where K is some positive constant that
does not depend on ε. Similarly for two random variables X1 and X2 and p > 0
and ε > 0 we can derive

E
(|X1 + X2|−p1{|X1+X2|≥ε}

)
≤ K

[
ε−p

P(|X2| ≥ kε) + E
(|X1|−p1{|X1|>(1−k)ε}

)]
for any k ∈ (0,1) and where the constant K depends on k only. Using this inequal-
ity then it is easy to derive the following bound:

E
n
i−1
(|�−1/β

n �n
i X(τ)|−p1{�−1/β

n |�n
i X(τ)|≥ε}

)
(6.21)

≤ K

(
ε(1−p)∧0−α′ + �

1−β ′/β−α′
n

εp+β ′

)
for any p,α′ > 0 and where the constant K does not depend on ε.

We continue with (6.8). First using Lemma 1(b) in [24], since for each element
p of the vector p we have 2p < β , we have [recall the notation in (6.4) and (6.5)]

E
n
i−1|�−1/β

n �n
i Y (τ )|pq+pr − E

n
i−1|�−1/β

n �n
i Y (τ )|pq E

n
i−1|�−1/β

n �n
i Y (τ )|pr

P−→ C̃(k + q, k + r),

1
2E

n
2i−2|�−1/β

n �n
2i−1Y(τ) + �−1/β

n �n
2iY (τ )|pq+pr

− 1
2E

n
2i−2|�−1/β

n �n
2i−1Y(τ) + �−1/β

n �n
2iY (τ )|pq

× E
n
2i−2|�−1/β

n �n
2i−1Y(τ) + �−1/β

n �n
2iY (τ )|pr

P−→ C̃(q, r),
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E
n
2i−2|�−1/β

n �n
2i−1Y(τ) + �−1/β

n �n
2iY (τ )|pq |�−1/β

n �n
2i−1Y(τ)|pr

− E
n
2i−2|�−1/β

n �n
2i−1Y(τ) + �−1/β

n �n
2iY (τ )|pq E

n
i−1|�−1/β

n �n
i Y (τ )|pr

P−→ C̃(q, k + r),

where q, r = 1, . . . , k and for the first limit i = 1,2, . . . ,2[ t
2�n

] while for the last

two i = 1,2, . . . , [ t
2�n

]. Next, by Riemann integrability, we have

�n

[t/�n]∑
i=1

∣∣σ(i−1)�n

∣∣p P−→
∫ t

0
|σs |p ds, p > 0.(6.22)

Therefore, to show (6.3) we need only to prove that for arbitrary p < β

E
n
i−1

∣∣|�−1/β
n X(τ)|p − ∣∣�−1/β

n σ(i−1)�nY (τ )
∣∣p∣∣≤ K�ι

n(6.23)

for some ι > 0. But this follows by using the Burkholder–Davis–Gundy inequality
(if β > 1) and the elementary one (

∑
i |ai |)p ≤∑

i |ai |p for arbitrary reals ai and
some p ≤ 1, together with the definition of the process σ s .

Turning to (6.9), we show it only for the first component of ζ(p)ni , the proof for
the second one being exactly the same. Using again Lemma 1(b) in [24] we have

E
n
i−1
(
�−(2+ι)p/β

n |�n
i Y (τ)|(2+ι)p)

(6.24)
P−→ E

(|L1|(2+ι)p)
for i = 1,2, . . . ,2[ t

2�n
] and 0 < ι < β/p − 2. Then (6.9) follows by combining

this result with (6.22)–(6.23). We are left with proving (6.10). It suffices to show

�1/2
n

2[t/(2�n)]∑
i=1

E
n
i−1

(
�−p/β

n |�n
i X(τ)|p�n

i M

(6.25)

− μp(β)

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)p/β

�n
i M

)
P−→ 0.

First, if M is a discontinuous martingale, then using (6.7)–(6.9), we have that∑2[t/(2�n)]
i=1 ξ(p)ni is C-tight, that is, it is tight and any limit is continuous. At

the same time
∑2[t/(2�n)]

i=1 �n
i M trivially converges to a discontinuous limit.

Therefore the pair (
∑2[t/(2�n)]

i=1 ξ(p)ni ,
∑2[t/(2�n)]

i=1 �n
i M) is tight (see [16], The-

orem VI3.33(b)). But then the left-hand side of (6.25) converges to the pre-
dictable version of the quadratic covariation of the limits of

∑2[t/(2�n)]
i=1 ξ(p)ni

and
∑2[t/(2�n)]

i=1 �n
i M (use Theorem VI.6.29 of [16] for this), which is zero since

continuous and discontinuous martingales are orthogonal (see [16], Proposition
I.4.15).

Second if M is a continuous martingale orthogonal to the Brownian motion Wt

used in defining σ t , we can proceed similarly to [4] and argue as follows. If we
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set Nt = E(|�n
i X(τ)|p|Ft ) for t ≥ (i − 1)�n, then (Nt )t≥(i−1)�n is a martingale.

It remains also martingale, conditionally on F(i−1)�n , for the filtration generated
by the Poisson measure μ and the Brownian motion (Wt − W(i−1)�n)t≥(i−1)�n

since �n
i X is uniquely determined by these processes. Therefore, by a martingale

representation theorem (see [16], Theorem III.4.34)

Nt = N(i−1)�n +
∫ t

(i−1)�n

∫
R

δ′(s, x)μ̃(ds, dx)

+
∫ t

(i−1)�n

ηs dWs,

when t ≥ (i −1)�n for an appropriate predictable function δ′(s, x) and process ηs .
Therefore Nt is a sum of pure-discontinuous martingale, which hence is orthogonal
to Mt −M(i−1)�n (see [16], Definition I.4.11), and a continuous martingale which
is also orthogonal to Mt −M(i−1)�n because of our assumption on M . This implies
that for M a continuous martingale orthogonal to the Brownian motion we have

E
n
i−1

([
�−p/β

n |�n
i X(τ)|p − μp(β)

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)p/β]
�n

i M

)
= E

n
i−1(�

n
i N�n

i M) = 0,

and this shows (6.25) in this case.
The only case that remains to be covered is when M = W . For this case we can

use the bounds derived above for Ãi1, Ãi2 and Ãi3 and from here (6.25) follows
easily in this case. �

Step 2 (Tightness). We are left with establishing tightness, which follows from
the next lemma.

LEMMA 6.2. Assume that X is given by (6.1) and that the conditions of The-
orem 3.3 hold. Then for a fixed T > 0 we have that the sequence

1√
�n

ṼT (p,X,�n)

for ṼT (p,X,�n) defined in (6.2), is tight on the space of continuous functions

C(R2, [pl,ph]) equipped with the uniform topology, where pl and ph satisfy the
conditions of part (b) of Theorem 3.3.

PROOF. We will prove only that the sequence

V̂T (p,X,�n) = �1/2−p/β
n VT (p,X,�n)

− �1/2
n μp(β)

[T/�n]∑
i=1

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)p/β
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is tight in the space of R-valued functions on [pl,ph] and the arguments generalize
to the tightness of 1√

�n
ṼT (p,X,�n). For arbitrary pl ≤ p < q ≤ ph we can write

|V̂T (q,X,�n) − V̂T (p,X,�n)| ≤
4∑

i=1

An
i (p, q),

where

An
1(p, q) = �−1/2

n

∣∣�1−q/β
n

(
VT (q,X,�n) − VT (q,X(τ),�n)

)
− �1−p/β

n

(
VT (p,X,�n) − VT (p,X(τ),�n)

)∣∣,
and for i = 2,3,4, An

i (p, q)
d= Ãn

i (p, q) with

Ãn
2(p, q) = �1/2

n

∣∣∣∣∣
[T/�n]∑

i=1

[∣∣∣∣�−1/β
n

∫ i�n

(i−1)�n

σ s− dLs

∣∣∣∣q

− μq(β)

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)q/β

−
∣∣∣∣�−1/β

n

∫ i�n

(i−1)�n

σ s− dLs

∣∣∣∣p

+ μp(β)

(
1

�n

∫ i�n

(i−1)�n

|σ s |β ds

)p/β]∣∣∣∣∣,
Ãn

3(p, q) = �1/2
n

∣∣∣∣∣
[T/�n]∑

i=1

[∣∣∣∣�−1/β
n

∫ i�n

(i−1)�n

σ s− dLs + ai�
−1/β
n

∣∣∣∣q

−
∣∣∣∣�−1/β

n

∫ i�n

(i−1)�n

σ s− dLs

∣∣∣∣q
−
∣∣∣∣�−1/β

n

∫ i�n

(i−1)�n

σ s− dLs + ai�
−1/β
n

∣∣∣∣p

+
∣∣∣∣�−1/β

n

∫ i�n

(i−1)�n

σ s− dLs

∣∣∣∣p]
∣∣∣∣∣,

where ai is defined in (6.11) in the proof of Lemma 6.1 and Ãn
4(p, q) is a residual

term whose moments involve the processes L̃(1), L̃(2) and L̃(3) of (6.12). It can be
shown using the continuity of the power function and the restriction on ν2(x) that

lim sup
�n↓0

E

(
sup

p,q∈[pl,ph]
Ãn

4(p, q)
)

= 0.(6.26)
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For An
1(p, q) we can first apply the inequality ||a + b|p − |a|p| ≤ |b|p for p ≤ 1,

and then use the continuity of the power function for positive powers to show that

sup
p,q∈[pl,ph]

An
1(p, q)

a.s.−→ 0.(6.27)

For Ãn
2(p, q) we easily have for p,q ∈ [pl,ph]

E(Ãn
2(p, q))2 ≤ K(p − q)2,(6.28)

and Theorem 12.3 in [8] implies tightness. Turning to Ãn
3(p, q), it is identically

0 for β ≤ √
2 due to our assumptions. So we look at the case β >

√
2. We can

decompose Ãn
3(p, q) as Ãn

3(p, q) ≤ Ãn
31(p, q) + Ãn

32(p, q) with⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ãn

31(p, q) = �1/2
n

∣∣∣∣∣
[T/�n]∑

i=1

[ci(q) − ci(p)]1{Cn
i }

∣∣∣∣∣,
Ãn

32(p, q) = �1/2
n

∣∣∣∣∣
[T/�n]∑

i=1

[ci(q) − ci(p)]1{(Cn
i )c}

∣∣∣∣∣,
where Cn

i = {| ∫ i�n

(i−1)�n
σ s− dLs | �= 0, | ∫ i�n

(i−1)�n
σ s− dLs | ≥ 2|ai |} and

ci(p) =
∣∣∣∣�−1/β

n

∫ i�n

(i−1)�n

σ s− dLs + ai�
−1/β
n

∣∣∣∣p −
∣∣∣∣�−1/β

n

∫ i�n

(i−1)�n

σ s− dLs

∣∣∣∣p.

For Ãn
31(p, q) we can write

E(Ãn
31(p, q))2 ≤ KE

([ci(q) − ci(p)]21{Cn
i }
)

(6.29)

+ K�n

([T/�n]∑
i=1

E
n
i−1
([ci(q) − ci(p)]1{Cn

i }
))2

.

For the first expectation on the left-hand side of (6.29) we have, similarly to (6.28),

E
([ci(q) − ci(p)]21{Cn

i }
)≤ K(p − q)2.(6.30)

For the second expectation on the right-hand side of (6.29), we apply the following
inequality, similarly to (6.14). For every x and y and p,q ∈ [pl;ph] we have∣∣|x + y|p − |x|p − |x + y|q + |x|q

− (p|x|p−1 − q|x|q−1) sign{x}y1{|x|�=0,2|y|≤|x|}
∣∣1{|x|�=0,2|y|≤|x|}

≤ K|p − q|(|y|pl+1−ι + |y|ph+1−ι)

|x|1−ι
1{|x|�=0}

for some 0 < ι < 1.
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Substituting in the above inequality x with �
−1/β
n

∫ i�n

(i−1)�n
σ s− dLs and y with

ai�
−1/β
n and using the fact that (p|x|p−1 − q|x|q−1) sign{x}1{|x|�=0,2|y|≤|x|} is odd

in x, we get

E
(
E

n
i−1
([ci(q) − ci(p)]1{Cn

i }
))2

≤ K(p − q)2(|�n|2(pl+1−ι)(1−1/β) + |�n|2(ph+1−ι)(1−1/β))
for some ι < pl − 2−β

2(β−1)
. For Ãn

32(p, q) we have for sufficiently small �n

sup
p,q∈[pl,ph]

Ãn
32(p, q) ≤ K�1/2

n

[T/�n]∑
i=1

a
pl

i �−pl/β
n 1{(Cn

i )c}.

Then using the definition of the set (Cn
i )c and the calculation in (6.18) we can

conclude

lim sup
�n↓0

E

(
sup

p,q∈[pl,ph]
Ãn

32(p, q)
)

= 0.(6.31)

Combining the above results we get the tightness of V̂T (q,X,�n) on the space of
continuous functions of p in the interval [pl,ph]. �

6.2. Proof of Remark 3.8. In what follows we denote

χn
i := �p/β

n

(|�−1/β
n �n

i X|p − �
β
A,βμp(β)

)
.

It is no restriction, of course, to assume that the constant A in (3.5) corresponds
to that of a standard stable, and we proceed in the proofs with that assumption. In
view of Theorem XVII.2.2 in [13] we need to prove the following:

1

�n

E
(
χn

i 1{|χn
i |≤1}

)→ −2
β

β − p

A

β
,(6.32)

1

�n

[
E
(
(χn

i )21{|χn
i |≤K}

)− (E(χn
i 1{|χn

i |≤K}
))2]→ 2K2−β/p β

2p − β

A

β
,(6.33)

1

�n

E
(
1{χn

i >K}
)→ 2Kβ/p A

β
and

(6.34)
1

�n

E
(
1{χn

i <−K}
)→ 0,

where K > 0 is an arbitrary positive constant.

We recall that X is symmetric stable process plus a drift, that is, Xt
d= Lt + at ,

where Lt denotes symmetric stable process with Lévy density equal to ν1(x) in
(3.5) and a = md + ∫

R
(x − κ(x))ν1(x) dx when β > 1 and a = 0 when β ≤ 1.

Using the self-similarity of the symmetric stable we have �
−1/β
n �n

i X
d= L1 +

a�
1−1/β
n .
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First we state several basic facts about the stable distribution that we make use
of in the proof. We recall that for the tail of the symmetric stable we have (see, e.g.,
[29]) P(L1 > x) ∼ P(L1 < −x) ∼ A

β
1
xβ as x ↑ +∞ where for two functions f (·)

and g(·), f (�n) ∼ g(�n) means lim�n↓0
f (�n)
g(�n)

=1. Therefore the tail probability
of the stable distribution varies regularly at infinity, and we can use this fact and
Theorems 8.1.2 and 8.1.4 in [9] to write for p ∈ (β/2, β)

E
(|L1|p1{L1>x}

)∼ E
(|L1|p1{L1<−x}

)
(6.35)

∼ xp−β β

β − p

A

β
,

E
(|L1|2p1{|L1|≤x}

)∼ 2x2p−β β

2p − β

A

β
,(6.36)

as x ↑ ∞. We continue with the proof of (6.32)–(6.34). We start with showing
(6.32). First we have

1

�n

E(χn
i ) = �p/β−1

n E(|L1 + a�1−1/β
n |p − |L1|p)

+ �p/β−1
n E

(|L1|p − �
β
A,βμp(β)

)
(6.37)

→ 0.

We note that the second term on the right-hand side of (6.37) is identically zero,
while the convergence of the first term can be split into two cases. First, when
p ≤ 1 the result follows from the bound for the term An

i2 in (6.17) and (6.18) in the
proof of Theorem 3.3, provided p > 1/β . When p > 1 the convergence follows
from a trivial application of the Taylor expansion.

Second using the rate of decay of the tail probability of the stable distribution
we have

�p/β−1
n P

(∣∣|L1 + a�1−1/β
n |p − �

β
A,βμp(β)

∣∣> �−p/β
n

)→ 0.

Third using a Taylor expansion around L1 and the fact that we evaluate L1 on a
set growing to infinity at the rate �

−1/β
n , we have

�p/β−1
n E(|L1 + a�1−1/β

n |p − |L1|p)1{||L1+a�
1−1/β
n |p−�

β
A,βμp(β)|>�

−p/β
n } → 0.

Thus to prove (6.32) we need to show

�p/β−1
n E|L1|p1{||L1+a�

1−1/β
n |p−�

β
A,βμp(β)|>�

−p/β
n } → 2

β

β − p

A

β
.

But this follows from (6.35) with

x = ((
�

β
A,βμp(β) + �−p/β

n

)1/p ± a�1−1/β
n

)
,
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and hence we are done. We turn now to (6.33). It is easy to show that

�2p/β−1
n E(|L1 + a�1−1/β

n |2p − |L1|2p)1{||L1+a�
1−1/β
n |p−�

β
A,βμp(β)|≤K�

−p/β
n }

→ 0.

Therefore, (6.33) will follow if we can show

�2p/β−1
n E|L1|2p1{||L1+a�

1−1/β
n |p−�

β
A,βμp(β)|≤K�

−p/β
n }

(6.38)

→ 2K2−β/p β

2p − β

A

β
.

To show (6.38) we can apply (6.36) with

x = ((
�

β
A,βμp(β) + K�−p/β

n

)1/p ± a�1−1/β
n

)
.

Finally, (6.34) follows trivially from the expression for the tail probability of a
stable stated earlier.

6.3. Proof of Corollary 4.1. Again, as in the proof of Theorem 3.3 we will
show only part (b), the proof of part (a) being identical. Since the process X has
no fixed time of discontinuity, the result of Lemma 6.1 implies that the conver-
gence in (6.2) holds for an arbitrary fixed T > 0. Then, there is a set �n on which
2VT (X,p,2�n) �= VT (X,p,�n) for p ∈ [pl,ph] and from Theorem 3.2 (under
the conditions of this theorem) �n → �. On �n bX,T (p) is a continuous trans-
formation of VT (X,p,2�n) and VT (X,p,�n), and thus Lemma 6.1 implies the
finite-dimensional convergence of the sequences on the left-hand sides of (4.4) and
(4.5). Similarly, since tightness is preserved under continuous transformations, us-
ing Lemma 6.2 we have that the left-hand sides of (4.4) and (4.5) are tight. Hence
the result of Theorem 4.1 follows.

6.4. Proof of Theorem 4.1. We first show the result for the case when w(u) is
continuous on [τ ∗

1 , τ ∗
2 ]. Set

τ1(z) = fl(z) and τ2(z) = fh(z).

Since τ1(z) is continuous in a neighborhood of βX,T and τ1(βX,T ) >
β ′

2−β ′ as well
as τ2(βX,T ) < βX,T /2 when X is given by (3.1), then there are z∗ < βX,T < z∗

such that for all z ∈ (z∗, z∗) ⇒ τ1(z) >
β ′

2−β ′ and τ2(z) < βX,T /2. Similarly if X

is given by (3.3), then βX,T ≡ β , and due to the assumptions of the theorem, there

exist z∗ < β < z∗ such that for z ∈ (z∗, z∗) ⇒ τ1(z) > (
2−β

2(β−1)
∨ ββ ′

2(β−β ′) ) and

τ2(z) < β/2 when β >
√

2 and z ∈ (z∗, z∗) ⇒ τ1(z) >
ββ ′

2(β−β ′) and τ2(z) < β/2

when β ≤ √
2.

Denote with A the subset of (z∗, z∗) for which τ1(z) and τ2(z) are continuously
differentiable. From the assumptions of Theorem 4.1 the set A contains a neighbor-
hood of βX,T . Then, using a Taylor expansion on the set Bn := {ω : β̂f s

X,T ∈ A∩�n}
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where �n is the set defined in the proof of Corollary 4.1 above, we can write

�−1/2
n (β̂ts

X,T − βX,T ) = 1Bn

∫ τ∗
2

τ∗
1

w(u)
{
�−1/2

n

(
bX,t (u) − βX,T

)}
du

+ 1Bn�
−1/2
n �T (βX,T )(β̂

f s
X,T − βX,T )(6.39)

+ 1Bc
n
�−1/2

n (β̂ts
X,T − βX,T ),

where βX,T is between β̂
f s
X,T and βX,T and

�T (z) = w(τ2(z))∇zτ2(z)
(
bX,T (τ2(z)) − βX,T

)
− w(τ1(z))∇zτ1(z)

(
bX,T (τ1(z)) − βX,T

)
.

The last term on the right-hand side of (6.39) is asymptotically negligible be-
cause β̂

f s
X,T is consistent for βX,T . We now show that the second term in (6.39)

is asymptotically negligible. First note that since β̂
f s
X,T

P−→ βX,T we also have

βX,T
P−→ βX,T . Then to establish the asymptotic negligibility it suffices to show

that

P

(
�−1/2

n

∫ τ 2

τ 1

∣∣(bX,T (u) − βX,T

)
w(u)

∣∣du > ε

)
↓ 0 for ε ↑ +∞,(6.40)

where τ 1 := τ1(βX,T ) and τ 2 := τ2(βX,T ). For any ε > 0 we have

P

(
�−1/2

n

∫ τ 2

τ 1

∣∣(bX,T (u) − βX,T

)
w(u)

∣∣du > ε

)

≤ P(βX,T ∈ Ac) + P

(
1{βX,T ∈A}

∫ τ 2

τ 1

∣∣�−1/2
n

(
bX,T (u) − βX,T

)
w(u)

∣∣du > ε

)
.

The first probability in the second line of (6.40) is converging to 0 as �n ↓ 0, while
the second one converges to zero as ε ↑ +∞. This is because when βX,T ∈ A,
τ 1 > pl and τ 2 < ph where pl < ph are some constants that satisfy the conditions
of Theorem 3.3, and as a consequence of this theorem �

−1/2
n (bX,t (u) − βX,T )

converges uniformly in u for u ∈ [pl,ph].
We are left with the first term in (6.39). Using the uniform convergence result

of Theorem 3.3, the fact that the integration over a bounded interval is continuous
for the uniform metric on the space of continuous functions (in fact for this even
finite dimensional convergence suffices) we have∫ τ∗

2

τ∗
1

w(u)
{
�−1/2

n

(
bX,T (u) − βX,T

)}
du

L−s−→
∫ τ∗

2

τ∗
1

ZβX,T
(u)w(u)du,
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where

Zβ(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β2

u ln 2

1

T �
u/β
A,βμu(β)

(
�

(2)
β,T (u) − 21−u/β�

(1)
β,T (u)

)
if β < 2,

4

u ln 2

1

T |σ |uμu(2)

(
�

(2)
2,T (u) − 21−u/2�

(1)
2,T (u)

)
if β = 2,

and �
(1)
β,T and �

(2)
β,T are the first and second elements, respectively, of the limiting

Gaussian process of part (a) and (b) of Theorem 3.3. The proof of Theorem 4.1
for the case of continuous w(u) then easily follows. The proof in the case of w(u)

being Dirac mass at some point follows from the proof of Corollary 4.2 given
below.

6.5. Proof of Corollary 4.2. Denote with A the set of values of z for which
f (z) ∈ (pl,ph) for some 0 < pl < ph < βX,T /2 satisfying the conditions of The-
orem 3.3 in the different cases for βX,T . Finally, set Bn := {ω : β̂f s

X,T ∈ A ∩ �n}.
We know that this set contains neighborhood of βX,T because of the continuity of
f (·) and the fact that p∗ ∈ (pl,ph). Then we can write

�−1/2
n

(
β̂ts

X,T − βX,T

)= 1Bn�
−1/2
n

(
bX,T (τ ∗) − βX,T

)+ 1Bc
n
�−1/2

n (β̂ts
X,T − βX,T )

+ 1Bn�
−1/2
n �T (f (β̂

f s
X,T ))

(
f (β̂

f s
X,T ) − f (βX,T )

)
,

where f (β̂
f s
X,T ) is between f (β̂

f s
X,T ) and f (βX,T ) and

�T (z) = �
(1)
T (z) + �

(2)
T (z), �

(1)
T (z) = bX,T (z) − βX,T

z
− b2

X,T (z) − β2
X,T

βX,T z
,

�
(2)
T (z) = b2

X,T (z)

z ln 2

(∇z[�1−z/βX,T
n VT (z,X,�n)]

�
1−z/βX,T
n VT (z,X,�n)

− ∇z[(2�n)
1−z/βX,T VT (z,X,2�n)]

(2�n)
1−z/βX,T VT (z,X,2�n)

)
.

The result of Corollary 4.2 then will follow if we can show that �
−1/2
n �T (f (β̂

f s
X,t ))

is bounded in probability on the set Bn. But this holds true because we can prove
exactly as in Theorem 3.3 that

�−1/2
n

(
�n

[T/�n]∑
i=1

|�−1/βX,T
n �n

i X|p ln |�−1/βX,T
n �n

i X|1{|�n
i X|>0}

− T E(|L1|p ln |L1|)
)

converges uniformly in p (under the same conditions for the power as in that the-
orem).
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6.6. Proof of Theorem 3.4. We do not show here part (a). The finite-
dimensional convergence for this case (without jumps in X) has been already
shown in [4] (extending their result to the case with jumps satisfying the condi-
tions of Theorem 3.4, part(a) follows trivially using the subadditivity of |x|p for
p ≤ 1). The tightness can be shown in exactly the same way as part (b) (i.e., in the
decomposition in equation (8.2); in [4] we can apply the same techniques as in the
proof of our Lemma 6.2).

PROOF OF PART(B). We will establish only the finite-dimensional conver-
gence, the proof the tightness is done exactly as in Lemma 6.2. Also we will prove
the finite-dimensional convergence for a fixed p and the second element of the
vector on the left-hand side in (3.19). The generalization will follow immediately.

As in the previous proofs we assume that A in (3.5) corresponds to that of a
standard stable. Upon using a localization argument as in [15] we can and will
assume the following stronger assumption on the various processes in (3.9) and
(3.10):

We have |mdt | + |bt | + |σ2t | + |σ2t |−1 + |σ̃2t | ≤ K and |δ(t,x)| ≤ γ (x) ≤ K for
some positive constant K which bounds also the coefficients in the Itô semimartin-
gale representations of the processes mdt and σ̃2t ;

∫
R

1|x|>Kν(x) dx = 0.
We can make the following decomposition:

�−1/2
n

(
�1−p/β

n VT (X,p,�n) − μp(β)

∫ T

0
|σ2s |p ds

)
=

5∑
i=1

Ai,

A1 = �1/2
n

[T/�n]∑
i=1

(
|�−1/β

n �n
i X|p − μp(β)

(
1

�n

∫ i�n

(i−1)�n

|σ 2s |β ds

)p/β)
,

A2 = μp(β)�1/2
n

[T/�n]∑
i=1

ai2,

ai2 =
(

1
�n

∫ i�n

(i−1)�n
|σ 2s |β ds

)p/β

− ∣∣σ2,(i−1)�n

∣∣p,

A3 = μp(β)�1/2
n

[T/�n]∑
i=1

ai3,

ai3 = 1
�n

∫ i�n

(i−1)�n

(∣∣σ2,(i−1)�n

∣∣p − |σ 2s |p)ds,

A4 = �−1/2
n μp(β)

∫ T

0
(|σ 2s |p − |σ2s |p) ds,

A5 = �1/2
n

[T/�n]∑
i=1

(|�−1/β
n �n

i X|p − |�−1/β
n �n

i X|p),
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where for i = 1, . . . , [T/�n] and s ∈ [(i − 1)�n, i�n)

σ 2s = σ2,(i−1)�n + σ̃2,(i−1)�n

(
Ws − W(i−1)�n

)
,

Xs = X(i−1)�n +
∫ s

(i−1)�n

md,(i−1)�n du +
∫ s

(i−1)�n

∫
R

σ 2u−κ(x)μ̃(du, dx)

+
∫ s

(i−1)�n

∫
R

σ 2u−κ ′(x)μ(du, dx), s ∈ [(i − 1)�n, i�n

)
.

We start with A1. We can apply directly Lemma 6.1 to show that A1 converges
stably to the limit on the right-hand side of (3.19) (recall our stronger assumption
on the process σ2 stated at the beginning of the proof). We continue with the term
A2 which we now show is asymptotically negligible. First we denote the set

Bi,n :=
{
ω : sup

s∈[(i−1)�n,i�n]
∣∣σ2,(i−1)�n − σ 2s

∣∣> 0.5σ2,(i−1)�n

}
.

Then, using the exponential inequality for continuous martingales with bounded
variation [see, e.g., [20]] it is easy to derive∣∣En

i−11{Bi,n}an
i2

∣∣≤ Ke−K/�n, E
n
i−11{Bi,n}(an

i2)
2 ≤ Ke−K/�n.

Using a second-order Taylor expansion and the fact that σ 2s is bounded from below
on the set (Bi,n)

c, we get∣∣En
i−1
(
1{(Bi,n)c}an

i2
)∣∣

≤ KE
n
i−1

(
1{(Bi,n)c}

1

�n

∫ i�n

(i−1)�n

∣∣|σ 2s |β − ∣∣σ2,(i−1)�n

∣∣β ∣∣ds

)2

+ KE
n
i−1

(
1

�n

∫ i�n

(i−1)�n

(
σ 2s − σ 2,(i−1)�n

)2
ds

)
≤ K�n,

where we also made use of the following inequality:∣∣∣∣En
i−1

(
1{(Bi,n)c}

∫ i�n

(i−1)�n

(
σ 2s − σ2,(i−1)�n

)
ds

)∣∣∣∣
=
∣∣∣∣En

i−1

(
1{Bi,n}

∫ i�n

(i−1)�n

(
σ 2s − σ2,(i−1)�n

)
ds

)∣∣∣∣≤ Ke−K/�n.

Finally, a first-order Taylor expansion together with the fact that σ 2s is bounded
from below on the set (Bi,n)

c gives

E
n
i−1
(
1{(Bi,n)c}an

i2
)2

≤ KE
n
i−1

(
1{(Bi,n)c}

1

�n

∫ i�n

(i−1)�n

∣∣|σ 2s |β − ∣∣σ2,(i−1)�n

∣∣β ∣∣ds

)2

≤ K�n.
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Combining the above two inequalities we get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�1/2

n

[T/�n]∑
i=1

E
n
i−1ai2

u.c.p.−→ 0,

�n

[T/�n]∑
i=1

E
n
i−1(ai2)

2 u.c.p.−→ 0.

This implies the asymptotic negligibility of A2. We continue with A3. We can use
the standard inequality |a + b|p ≤ |a|p + |b|p for 0 < p ≤ 1 as well as Hölder’s
inequality to get∣∣En

i−11{Bi,n}an
i3

∣∣≤ Ke−K/�n, E
n
i−11{Bi,n}(an

i3)
2 ≤ Ke−K/�n.

Similar inequalities as for ai2 on the set (Bi,n)
c give∣∣En

i−11{(Bi,n)c}an
i3

∣∣≤ K�n, E
n
i−1
(
1{(Bi,n)c}an

i3
)2 ≤ K�n.

These two inequalities establish the asymptotic negligibility of A3. We continue
with A4. First, for some ε > 0 denote the set Bn

i,ε := {ω : sups∈[(i−1)�n,i�n] |σ2s −
σ 2s | > ε}. Then we can decompose A4 into

A4 = μp(β)(C1 + C2 + C3),

C1 = �−1/2
n

[T/�n]∑
i=1

∫ i�n

(i−1)�n

g(σ2s)(σ2s − σ 2s) ds,

C2 = p(p − 1)�−1/2
n

[T/�n]∑
i=1

1(Bn
i,ε)

c

∫ i�n

(i−1)�n

|σ ∗
2s |p−2(σ2s − σ 2s)

2 ds,

C3 = �−1/2
n

[T/�n]∑
i=1

1Bn
i,ε

∫ i�n

(i−1)�n

(|σ 2s |p − |σ2s |p − (σ2s − σ 2s)g(σ2s)
)
ds,

where σ ∗
2s is a number between σ2s and σ 2s and g(x) = p sign{x}|x|p−1. Note

that for ε sufficiently small C2 is well defined because of the boundedness from
below of |σ2s |.

Using the Burkholder–Davis–Gundy inequality, Hölder’s inequality, the as-
sumption of Itô semimartingale for the process σ̃2 (due to which the leading
term in σ2s − σ 2s is

∫ s
(i−1)�n

∫
R2 κ(δ(u,x))μ̃(u,x)) and the integrability condi-

tion for the dominating function of the jumps in σ2t , γ (x), in (3.11), we have for
s ∈ [(i − 1)�n, i�n)⎧⎪⎪⎨⎪⎪⎩

E
n
i−1|σ2s − σ 2s |p ≤ K|s − (i − 1)�n|p/β−ε

for p ≤ β, ∀ε > 0,

E
n
i−1|σ2s − σ 2s |p ≤ K|s − (i − 1)�n|

for p > β

(6.41)
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for some constant K that does not depend on �n. We will show that the three terms
C1, C2 and C3 are asymptotically negligible. For C1 and C2 we make use of the
fact that a sufficient condition for asymptotic negligibility of

∑[T/�n]
i=1 ξn

i , where ξn
i

is Fi�n -measurable, is
∑[T/�n]

i=1 E
n
i−1|ξn

i | P−→ 0 (see Theorem VIII.2.27 of [16] (or
the first part of Lemma 4.1 in [14])). Note that for C2 we use the fact that σ ∗

2s is
bounded by a constant on the set (Bn

i,ε)
c. For C3 we can first make use of Doob’s

inequality to show that P(ω ∈ Bn
i,ε) ≤ K�n for some constant K that depends

on ε. Then, since E(
∫ i�n

(i−1)�n
(|σ2s |p − |σ 2s |p − (σ2s − σ 2s)g(σ2s)) ds)k ≤ K�k+1

n

for some k > 2 and constant K > 0, using Hölder’s inequality we have that C3 is
also asymptotically negligible. This proves the asymptotic negligibility of the term
A4.

We are left with proving asymptotic negligibility of A5. We start with some
preliminary results that we will make use of. We have for 0 < p < β ∧ 1

E
n
i−1

∣∣∣∣�−1/β
n

∫ i�n

(i−1)�n

(
mds − md,(i−1)�n

)
ds

∣∣∣∣p ≤ K�3p/2−p/β
n ,(6.42)

where we made use of Hölder’s inequality and the fact that mds is an Itô semi-
martingale with bounded coefficients and therefore E|mds − md,(i−1)�n | ≤ K|s −
(i − 1)�n|1/2 for s ∈ [(i − 1)�n, i�n). Similarly for p ≤ β and arbitrary ε > 0

E
n
i−1

∣∣∣∣�−1/β
n

∫ i�n

(i−1)�n

∫
R

(σ2s− − σ 2s−)κ(x)μ̃(ds, dx)

+ �−1/β
n

∫ i�n

(i−1)�n

∫
R

(σ2s− − σ 2s−)κ ′(x)μ(ds, dx)

∣∣∣∣p(6.43)

≤ K�p/β−ε
n ,

where we made use of Hölder’s inequality, the Burkholder–Davis–Gundy inequal-
ity (recall β > 1) and (6.41).

Further, for some deterministic sequence εn ↓ 0 denote

Sn
i := {ω :�−1/β

n |�n
i X| > εn ∩ �−1/β

n |�n
i X − �n

i X| < 0.5εn}.
Then we can apply the result in (6.20) to get for any α,α′ ∈ (0,1)

P
n
i−1(�

−1/β
n |�n

i X| ≤ εn) ≤ K

(
εα
n + �(1−1/β)α

n + �
1−β ′/β−α′
n

ε
β ′
n

)
.(6.44)

Similarly using the same arguments as above and (6.21), we get for εn ↓ 0, some
α > 0, and any α′ > 0

E
n
i−1
(|�−1/β

n �n
i X|−α1{|�−1/β

n �n
i X|>εn}

)
(6.45)

≤ K

(
ε(1−α)∧0−α′
n + �

1−β ′/β−α′
n

ε
α+β ′
n

)
.
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Finally, using (6.42) and (6.43), we get for any α′ > 0

P
n
i−1(�

−1/β
n |�n

i X − �n
i X| ≥ 0.5εn) ≤ K

�1−α′
n

ε
β
n

.(6.46)

We are now ready to prove the asymptotic negligibility of A5. We can make the
following decomposition using a Taylor expansion on the set Sn

i :

|�−1/β
n �n

i X|p − |�−1/β
n �n

i X|p
= g(�−1/β

n �n
i X

∗)(�−1/β
n �n

i X − �−1/β
n �n

i X)1Sn
i

+ (|�−1/β
n �n

i X|p − |�−1/β
n �n

i X|p)1(Sn
i )c ,

where �n
i X

∗ is between �n
i X and �n

i X and recall g(x) = p sign{x}|x|p−1. Then

using the definition of the set Sn
i we have |�−1/β

n �n
i X

∗| ≥ 0.5|�−1/β
n �n

i X|.
Therefore, using the definition of the function g(·), it clearly suffices to show

T1 := �−1/2
n E

n
i−1(|�−1/β

n �n
i X|p−1|�−1/β

n �n
i X − �−1/β

n �n
i X|1Sn

i
)

(6.47)
≤ K�α′

n ,

T2 := �−1/2
n

∣∣En
i−1
{
(|�−1/β

n �n
i X|p − |�−1/β

n �n
i X|p)1(Sn

i )c
}∣∣

(6.48)
≤ K�α′

n

for some α′ > 0. Setting εn = �x
n for some x > 0, we can use the Hölder inequality

to bound T1

T1 ≤ �−1/2
n

(
E

n
i−1|�−1/β

n �n
i X|(p−1)β/(β−1)1Sn

i

)(β−1)/β

(6.49)
× (En

i−1|�−1/β
n �n

i X − �−1/β
n �n

i X|β)1/β .

Then using the bounds in (6.42), (6.43) and (6.45) we get

T1 ≤ K�1/β−1/2−α′
n

(
�x(p−1+(β−1)/β)∧0

n
(6.50)

+ �(1−β ′/β)(β−1)/β−x(1−p)−xβ ′(β−1)/β
n

)
for some α′ > 0. Similarly for T2 we can use Hölder’s inequality to get

T2 ≤ �−1/2
n

(
E

n
i−1

∣∣|�−1/β
n �n

i X|p − |�−1/β
n �n

i X|p∣∣β/p)p/β

(6.51)
× (Pn

i−1((S
n
i )c))1−p/β.

Then using the bounds in (6.42), (6.43), (6.44) and (6.46) we get

T2 ≤ K�p/β−1/2−α′
n

(
�(1−p/β)x

n + �(1−1/β)(1−p/β)
n

(6.52)
+ �(1−β ′/β)(1−p/β)−(1−p/β)β ′x

n + �(1−p/β)(1−xβ)
n

)
for some α′ > 0. Finally, we can make use of the restrictions on p and β ′ to pick
x >

β−2p
2(β−p)

for which (6.47) and (6.48) will be fulfilled. �
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6.7. Proof of Theorem 4.2. The proof follows directly from the fact that under
the conditions of the theorem: (1) the functions μp(β) and μp,p(β) are contin-
uous both in β and p; (2) β̂ts

X,T is consistent for β; (3) VT (X,p,�n) converges
uniformly in p (after scaling appropriately).
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