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RANDOM PERMUTATIONS WITH CYCLE WEIGHTS

BY VOLKER BETZ1, DANIEL UELTSCHI2 AND YVAN VELENIK3

University of Warwick, University of Warwick and Université de Genéve

We study the distribution of cycle lengths in models of nonuniform ran-
dom permutations with cycle weights. We identify several regimes. Depend-
ing on the weights, the length of typical cycles grows like the total number n

of elements, or a fraction of n or a logarithmic power of n.

1. Introduction. We study the cycle distributions in models of weighted ran-
dom permutations. The probability of a permutation π of n elements is defined
by

P(π) = 1

hnn!
∏
j≥1

θ
rj (π)

j ,(1.1)

where (θ1, θ2, . . .) ≡ θ are real nonnegative numbers, rj (π) denotes the number of
j -cycles in π [we always have

∑
j jrj (π) = n] and hn is the normalization. We

are mainly interested in the distribution of cycle lengths in the limit n → ∞ and in
how these lengths depend on the set of parameters θ .

The probability P is really a probability on sequences r = (r1, r2, . . .) that sat-
isfy

∑
j jrj = n. It is well known that r is the sequence of “occupation numbers” of

a partition λ of n. That is, if λ denotes the partition λ1 ≥ λ2 ≥ · · · with
∑

i λi = n,
then rj is the number of λi that satisfies λi = j . Thus we are really dealing with
random partitions. The number of permutations that are compatible with occupa-
tion numbers r is equal to

n!∏
j≥1 j rj rj ! .

It follows that the marginal of (1.1) on partitions is given by

P(λ) = 1

hn

∏
j≥1

1

rj !
(

1

j
θj

)rj

.(1.2)

The formulas look simpler and more elegant for permutations than for partitions
and this is why we consider the former.
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Random permutations with the uniform distribution have a compelling history
[1, 6, 7, 13]. They are a special case of the present setting, with θj ≡ 1. The uniform
distribution of random partitions has been studied, for example, in [8, 12, 16, 18].
They do not fit the present setting because there are no parameters θ that make
the right-hand side of (1.2) constant. Another distribution for random partitions
is the Plancherel measure, where the probability of λ is proportional to 1

n!(dimλ)2;
the “dimension” dimλ of a partition is defined as the number of Young tableaux
in Young diagrams and it does not seem to have an easy expression in terms of r.
Here again, we do not know of any direct relation between weighted random per-
mutations and the Plancherel measure.

The present model was introduced in [4] but variants of it have been studied
previously. The case of constant θj ≡ θ is known as the Ewens distribution. It
appears in the study of population dynamics in mathematical biology [9]; detailed
results about the number of cycles were obtained by Hansen [14] and by Feng
and Hoppe [10]. The distribution of cycle lengths was considered by Lugo [15].
Another variant of this model involves parameters θj ∈ {0,1}, with finitely many
1’s [2, 17] or with parity dependence [15].

Weighted random permutations also appear in the study of large systems of
quantum bosonic particles [3, 5], where the parameters θ depend on such quanti-
ties as the temperature, the density and the particle interactions. The θj ’s are thus
forced upon us and they do not necessarily take a simple form. This motivates the
present study where we only fix the asymptotic behavior of θj as j → ∞.

The relevant random variables in our analysis are the lengths �i = �i(π) of
the cycle containing the index i = 1, . . . , n. These random variables are always
identically distributed and obviously not independent. Another relevant random
variable is the number of indices belonging to cycles of length between a and b,
Na,b(π) = #{i = 1, . . . , n :a ≤ �i(π) ≤ b}. It follows from the exchangeability of
�1, . . . , �n that

1

n
E(Na,b) = P(�1 ∈ [a, b]).(1.3)

The properties of the distribution of �1 that we derive below can then be translated
into properties of the expectation of Na,b.

From a statistical mechanics point of view it is natural to introduce the sequence
α = (α1, α2, . . .) of parameters such that e−αj = θj . The model has an important
symmetry which is also a source of confusion, namely, the probability of the per-
mutation π is left invariant under the transformation

αj �→ αj + cj, hn �→ e−cnhn(1.4)

for any constant c ∈ R. In particular, the case αj = cj is identical to αj ≡ 0, the
case of uniform random permutations.

The general results which we prove in this article rely on various technical as-
sumptions. To keep this Introduction simple, we only describe the results in the
particular but interesting case αj ∼ jγ .
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• The case γ < 0 is a special case of the model studied in [4] which is close to the
uniform distribution.

• In the case γ = 0, that is, when θj → θ (the Ewens case, asymptotically), we
find that P(�1 > sn) → (1 − s)θ . Thus, almost all indices belong to cycles
whose length is a fraction of n. Precise statements and proofs can be found
in Section 2.

• The case 0 < γ < 1 is surprising. At first glance we might expect smaller cycles
than in the uniform case αj ≡ 0. However, we find that almost all indices belong
to a single giant cycle! The symmetry (1.4) is indeed playing tricks on us. In
addition, we prove that the probability of the occurrence of a single cycle of
length n is strictly positive and strictly less than 1. This is explained in detail in
Section 3.

• The case γ = 1 corresponds to uniform permutations because of the symmetry
(1.4).

• When γ > 1, the cycles become shorter and �1 behaves asymptotically as
( 1
γ−1 logn)1/γ ; see Section 4.

Weighted random permutations clearly show a rich behavior and only a little
part has been uncovered so far. The case of negative parameters αj 
 −jγ re-
mains to be explored and the future will hopefully bring more results regarding
concentration properties.

In the case of uniform permutations, it is known that the random variables rk
converge to independent Poisson random variables with parameter 1/k in the limit
n → ∞ [1, 13]. An open problem is to understand how this generalizes to weighted
random permutations.

2. Asymptotic Ewens distribution. In the case of the uniform distribution, it
is an easy exercise to show that P(�1 = a) = 1/n for any a = 1, . . . , n. It follows
that P(�1 > sn) → 1 − s for any 0 ≤ s ≤ 1. This result was extended to the case of
small weights in [4]. We consider here parameters that are close to Ewens weights.
A result similar to (a) below has been recently derived by Lugo [15].

THEOREM 2.1. Let θ ∈ R+. We suppose that
∑∞

j=1
1
j
|θj − θ | < ∞ if θ ≥ 1 or

that
∑∞

j=1 |θj − θ | < ∞ if θ < 1.

(a) The distribution of �1 satisfies, for 0 ≤ s ≤ 1,

lim
n→∞P(�1 > sn) = (1 − s)θ .(2.1)

(b) The joint distribution of �1 and �2 satisfies, for 0 ≤ s, t ≤ 1,

lim
n→∞P(�1 > sn, �2 > tn)

(2.2)

= θ

1 + θ
(1 − s − t)θ+1+ + 1 + θ(s ∨ t)

1 + θ
(1 − s ∨ t)θ ,
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where f+ denotes the positive part of a function f .

Let us recall a few properties that are satisfied by the normalization factors hn.
Summing over the length j of the cycle that contains 1 we find the useful relation

P(�1 ∈ [a, b]) = 1

n!hn

b∑
j=a

(n − 1)!
(n − j)!θj (n − j)!hn−j = 1

n

b∑
j=a

θj

hn−j

hn

.(2.3)

Choosing [a, b] = [1, n], we get

hn = 1

n

n∑
j=1

θjhn−j , h0 = 1.(2.4)

Next, let Gh(s) = ∑
n≥0 hns

n be the generating function of the sequence (hn). One
can view a permutation as a combinatorial structure made of cycles. It follows from
standard combinatorics results that Gh(s) = exp

∑
j≥1

1
j
θj s

j . We also refer to [4]
for a direct proof of this formula. The first step in the proof of Theorem 2.1 is to
control the normalization hn. Here, (θ)n = θ(θ + 1) · · · (θ + n − 1) denotes the
ascending factorial.

PROPOSITION 2.2. Under the assumptions of Theorem 2.1, we have

hn = C(θ)
(θ)n

n!
(
1 + o(1)

)
with C(θ) = exp

∑
j≥1

1

j
(θj − θ).

PROOF. We have

Gh(s) = exp
{
θ

∑
j

1

j
sj + ∑

j

1

j
(θj − θ)sj

}
= (1 − s)−θeu(s)(2.5)

with

u(s) = ∑
j≥1

1

j
(θj − θ)sj .(2.6)

Notice that u(1) = lims↗1 u(s) exists. Let cj be the Taylor coefficients of eu(s),
that is, eu(s) = ∑

cj s
j . Then, by Leibniz’ rule,

hn = 1

n!
dn

dsn
Gh(s)

∣∣∣∣
s=0

= (θ)n

n!
∑
k≥0

dn,kck(2.7)

with

dn,k =
⎧⎨
⎩

n(n − 1) · · · (n − k + 1)

(θ + n − 1) · · · (θ + n − k)
, if k ≤ n,

0, otherwise.
(2.8)
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It is not hard to check that

dn,k ≤
{

1, if θ ≥ 1,
θ−1k + 1, if θ > 0.

(2.9)

Let U(s) = ∑ 1
j
|θj − θ |sj and Cj be the Taylor coefficients of eU(s). It is clear

that |cj | ≤ Cj for all j . When θ ≥ 1, the first bound of (2.9) and the dominated
convergence theorem imply

lim
n→∞

∑
k≥0

dn,kck = ∑
k≥0

ck = eu(1) = C(θ).(2.10)

When θ < 1, the second bound of (2.9) gives dn,k|ck| ≤ (θ−1k + 1)Ck . The se-
quence (kCk) is absolutely convergent:

∑
kCk = d

ds
eU(s)

∣∣∣∣
s=1

= eU(1)U ′(1) = e
∑

(1/j)|θj−θ | ∑ |θj − θ | < ∞.(2.11)

We again obtain (2.10) by the dominated convergence theorem. �

PROOF OF THEOREM 2.1. We show that, for any 0 < s < t < 1, we have

lim
n→∞P(�1 ∈ [sn, tn]) = (1 − s)θ − (1 − t)θ .(2.12)

Using Proposition 2.2, we have

P(�1 ∈ [sn, tn]) = 1

n

tn∑
j=sn

θj

hn−j

hn

= θ

n

tn∑
j=sn

(θ)n−j

(n − j)!
n!

(θ)n

(
1 + o(1)

)
.(2.13)

Here and throughout this article, when a and b are not integers we use the conven-
tion

b∑
j=a

f (j) = ∑
j∈[a,b]∩N

f (j) =
�b�∑

j=�a�
f (j).(2.14)

We now use the identity

(θ)n = �(n + θ)

�(θ)
(2.15)

and the asymptotic

�(n + θ)

n! = nθ−1(
1 + o(1)

)
.(2.16)

We get

P(�1 ∈ [sn, tn]) = θ

n

tn∑
j=sn

(
1 − j

n

)θ−1(
1 + o(1)

)
.(2.17)
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As n → ∞, the right-hand side converges to the Riemann integral θ
∫ t
s (1 −

ξ)θ−1 dξ and we obtain the first claim of Theorem 2.1.
Let us now turn to the second claim. Let 1 ≤ a ≤ b ≤ n and 1 ≤ c ≤ d ≤ n. We

get an expression for the joint probability of �1 and �2 in a similar fashion as for
(2.3). When both indices belong to different cycles (noted 1 �∼ 2), we have

P(�1 ∈ [a, b], �2 ∈ [c, d],1 �∼ 2) = 1

n!hn

∑
j∈[a,b]
k∈[c,d]
j+k≤n

∑
|c1|=j

|c2|=k

θj θk

∑
π ′

∏
�≥1

θ
r�(π

′)
� .(2.18)

Here c1 and c2 denote the cycles that contain 1 and 2, respectively, and π ′ denotes
a permutation of the n − j − k indices that do not belong to c1 or c2. The number
of cycles of length j that contain 1 but not 2 is (n−2)!

(n−1−j)! ; given c1, the number of

cycles of length k that contain 2 is (n−j−1)!
(n−j−k)! . Since the sum over π ′ gives (n − j −

k)!hn−j−k , we get

P(�1 ∈ [a, b], �2 ∈ [c, d],1 �∼ 2) = 1

n(n − 1)

∑
j∈[a,b]
k∈[c,d]
j+k≤n

θj θk

hn−j−k

hn

.(2.19)

When both indices belong to the same cycle one can first sum over the length j

of the common cycle, then over j − 2 indices other than 1, 2 and then over j − 1
locations for 2. This gives (n−2)!

(n−j)!(j − 1) possibilities. The sum over permutations
on remaining indices gives (n − j)!hn−j . The result is

P(�1 ∈ [a, b], �2 ∈ [c, d]) = 1

n(n − 1)

∑
j∈[a,b]
k∈[c,d]
j+k≤n

θj θk

hn−j−k

hn

(2.20)

+ 1

n(n − 1)

∑
j∈[a,b]∩[c,d]

(j − 1)θj

hn−j

hn

.

Let ε > 0 and set a = sn, c = tn and b = d = n. We assume, without loss of
generality, that 1 ≥ s ≥ t ≥ 0. Using the above expression, Proposition 2.2 and
equations (2.15) and (2.16), we deduce that, for n large,

P(�1 ≥ sn, �2 ≥ tn)

= θ2

n2

∑
j≥sn,k≥tn

j+k≤(1−ε)n

(
1 − j + k

n

)θ−1(
1 + oε(1)

)
(2.21)

+ θ

n2

∑
sn≤j≤(1−ε)n

(j − 1)

(
1 − j

n

)θ−1(
1 + oε(1)

) + O(ε).
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Taking first the limit n → ∞ and then the limit ε → 0, the right-hand side of the
latter expression is seen to converge to

1{s+t≤1}θ2
∫ 1

s+t
(ξ − s − t)(1 − ξ)θ−1 dξ + θ

∫ 1

s
ξ(1 − ξ)θ−1 dξ(2.22)

and the second claim of Theorem 2.1 follows. �

3. Slowly diverging parameters. This section is devoted to parameters αj

that grow slowly to +∞. The typical case is αj = jγ with 0 < γ < 1 but our
conditions allow more general sequences. As mentioned in the Introduction, the
system displays a surprising behavior: almost all indices belong to a single giant
cycle.

THEOREM 3.1. We assume that 0 <
θn−j θj

θn
≤ cj for all n and for j = 1, . . . , n

2 ,

with constants cj that satisfy
∑

j≥1
cj

j
< ∞. Then

lim
m→∞ lim

n→∞P(�1 > n − m) = 1.

It may be worth recalling that in this article n always denotes the number of
elements and that P depends on n. The proof of this theorem can be found later in
this section. In the case αj = jγ we have

θn−j θj

θn

= e−nγ [(1−j/n)γ +(j/n)γ −1] ≈
{

e−jγ
, if j � n,

e−cnγ
, if j = sn,

(3.1)

where the constant in the last equation is c = (1 − s)γ + sγ − 1. It is positive
for 0 < γ < 1 and the condition of the theorem is fulfilled. Another interesting
example is θj = j−γ with γ > 0, where we can choose cj = 2j−γ .

Let us understand why parameters αj = jγ favor longer and longer cycles when
γ < 1. The heuristics are actually provided by statistical mechanics, namely, we
can write the probability P(π) as a Gibbs distribution 1

Z
e−H(π) with “Hamil-

tonian” H(π) = ∑n
i=1

α�i (π)

�i (π)
. Thus, an “energy” αj

j
= jγ−1 is associated with each

index i that belongs to a cycle of length j . Indices in longer cycles have lower
energy so they are favored. This discussion also provides an illustration for the
symmetry (1.4); it amounts to shifting the Hamiltonian by a constant and this does
not affect the Gibbs distribution.

We can state a more precise result than Theorem 3.1 if we make the additional
assumption that θn+1

θn
converges to 1 as n → ∞. This condition is easy to check

when αj = jγ , 0 < γ < 1 or when αj = γ log j , γ > 0.

THEOREM 3.2. Suppose that the assumptions of Theorem 3.1 hold true. In
addition, we suppose that θn+1

θn
converges to 1 as n → ∞. Then

∑
j hj < ∞, and
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for any fixed m ≥ 0,

lim
n→∞P(�1 = n − m) = hm∑

j≥0 hj

.

Theorem 3.2 shows in particular that a single cycle of length n occurs with
probability 1/

∑
j hj , but that finite cycles may be present as well.

This theorem is proved at the end of the section. We first obtain estimates for hn.

PROPOSITION 3.3. Under the assumptions of Theorem 3.1 there exists a con-
stant B such that, for all n ≥ 1,

1 ≤ nhn

θn

≤ B.

The constant B depends on {cj } only.

PROOF. The lower bound follows obviously from (2.4) but the upper bound
requires some work. Let an = nhn

θn
. The relation (2.4) can be written as

an = 1 +
n−1∑
j=1

1

j

θn−j θj

θn

aj .(3.2)

We can rewrite this relation as

an =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 +
(n−1)/2∑

j=1

θn−j θj

θn

(
aj

j
+ an−j

n − j

)
, if n is odd,

1 +
n/2−1∑
j=1

θn−j θj

θn

(
aj

j
+ an−j

n − j

)
+ 2θ2

n/2

nθn

an/2, if n is even.

(3.3)

We define the sequence (bn) by the recursion equation

bn = 1 +
n/2∑
j=1

cj

(
bj

j
+ bn−j

n − j

)
.(3.4)

It is clear that an ≤ bn for all n. Next, let m be a number such that

2

n

n/2∑
j=1

cj + ∑
j>m/2

cj

j
≤ 1

2
(3.5)

for all n ≥ m. Such an m exists because (cj /j) is summable and the first term of

the above equation is less than 2√
n

∑√
n

j=1
cj

j
+ ∑

j>
√

n
cj

j
= o(1). We set

B = 2 max
1≤j≤m

bj .(3.6)



320 V. BETZ, D. UELTSCHI AND Y. VELENIK

Notice that B depends on the cj s but not on the θj s. Finally, we introduce another
sequence (b′

n) defined by

b′
n =

⎧⎪⎨
⎪⎩

bn, if n ≤ m,

1 +
n/2∑
j=1

cj

(b′
j

j
+ 2B

n

)
, if n > m.(3.7)

It is clear that b′
n ≤ 1

2B for n ≤ m; we now show by induction that b′
n ≤ B for all n.

We have

b′
n − b′

m = 2B

n

n/2∑
j=1

cj −
m/2∑
j=1

cj

b′
m−j

m − j
+

n/2∑
j=m/2+1

cj

b′
j

j

(3.8)

≤
(

2

n

n/2∑
j=1

cj + ∑
j>m/2

cj

j

)
B.

This is less than 1
2B by definition (3.5) of m. Since b′

m ≤ 1
2B , we find that b′

n ≤ B

for all n. The final step is to see that bn ≤ b′
n. This is clear when n ≤ m and we get

it by induction when n > m:

bn+1 = 1 +
n/2∑
j=1

cj

(
bj

j
+ bn−j+1

n − j + 1

)
(3.9)

≤ 1 +
n/2∑
j=1

cj

(b′
j

j
+ 2B

n + 1

)
= b′

n+1.

We have shown that an ≤ bn ≤ b′
n ≤ B for all n. �

PROOF OF THEOREM 3.1. Using Proposition 3.3 we get

P(�1 ≤ n − m) = 1

n

n−1∑
j=m

θn−j

hj

hn

≤ B

n−1∑
j=m

1

j

θn−j θj

θn

(3.10)

≤ B

n/2∑
j=m

cj

j
+ B

n−1∑
j=n/2

cn−j

j
.

The last term goes to zero as n → ∞. The first term goes to zero as n → ∞ and
m → ∞. �

PROOF OF THEOREM 3.2. From equation (2.3)

P(�1 = n − m) = 1

n
θn−m

hm

hn

= θn−m

θn

θn

nhn

hm.(3.11)
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Further, (2.4) can be written as

nhn

θn

=
n/2∑
j=0

(
θn−jhj

θn

+ θjhn−j

θn

)
.(3.12)

This is actually correct for odd n only; there is an unimportant correction for even
n coming from j = n/2. Since hj ≤ B

θj

j
(Proposition 3.3), the summand is less

than Bcj (
1
j

+ 1
n−j

) ≤ 2B
cj

j
. For each j , and as n → ∞, we have θn−j

θn
→ 1 and

θj hn−j

θn
≤ B

cj

n−j
→ 0. The right-hand side of (3.12) then converges to

∑
j hj by

dominated convergence. We can now take the limit n → ∞ in (3.11) and we indeed
obtain the claim. �

4. Quickly diverging parameters. Here we treat parameters θj = e−αj with
αj diverging quickly, or equivalently θj decaying quickly. More precisely, we shall
make the following two assumptions: for some M > 0, all k ≥ 1 and two coprime
numbers j1, j2 ≥ 4,

0 ≤ θk ≤ eMk

k! , θj1 > 0, θj2 > 0.(4.1)

It is necessary to impose some kind of aperiodicity condition on the set of indices
corresponding to nonvanishing coefficients θj . This prevents us from prescribing,
for example, permutations with only even lengths of cycles. In this case we have
hn = 0 for all odd n, as can be easily seen from the recursion (2.4); Proposition 4.5
below would fail.

Our assumptions allow us to get the asymptotics of hn using the saddle point
method. We write down the steps explicitly in order to keep the article self-
contained. A slightly shorter path would be to prove that our assumptions imply
that ef , with f (z) = ∑∞

j=0 θj z
j , is “Hayman admissible” and to use standard re-

sults [11]. Hayman admissibility is implicitly derived in our proof.
We describe general results in Section 4.1, relegating proofs to Section 4.2.

The general results turn out to be somewhat abstract so we use them to study the
particularly interesting class αj = jγ , γ > 1, in Section 4.3.

4.1. Main properties. We now describe three general theorems about cycle
lengths. In all theorems conditions (4.1) are silently assumed. The first statement
concerns the absence of macroscopic cycles.

THEOREM 4.1. For arbitrarily small δ > 0 and arbitrarily large k > 0, there
exists n0 = n0(δ, k) such that

P
(

max
1≤i≤n

�i ≥ δn
)

≤ n−k

for all n ≥ n0.
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More precise information about typical cycle lengths can be extracted from the
following result. Let rn > 0 be defined by the equation∑

j≥1

θj r
j
n = n.(4.2)

That such rn exists uniquely is immediate.

THEOREM 4.2. Let a(n), b(n) be such that

lim
n→∞

1

n

a(n)∑
j=1

θj r
j+1/2
n = 0, lim

n→∞
1

n

n∑
j=b(n)

θj r
j+1/2
n = 0.

Then

lim
n→∞P

(
�1 ∈ [a(n), b(n)]) = 1.

When the information about the coefficients θj is sufficiently detailed, some
control on rn is possible and Theorem 4.2 can be used to obtain sharp results.
This is exemplified in Section 4.3 for the special case αj = α(j) = jγ with γ > 1.

In such cases, the sum
∑∞

j=1 θj r
j+1/2
n (whose value is r

1/2
n n) is dominated by

the terms corresponding to indices j close to the solution jmax of the equation
α′(j) = log rn.

Finally, it is also possible to extract from Theorem 4.2 a general result proving
absence of small cycles.

THEOREM 4.3.

lim
n→∞P

(
�1 ≤ logn

log rn
− 3

4

)
= 0.

We shall see below that the proof of Theorem 4.3 is straightforward; nonethe-
less, the result is quite strong. In the case where only finitely many θj are
nonzero, we find rn ∼ n1/j0 , where j0 is the last index with nonzero θj . Thus
logn/ log rn ≈ j0 and we obtain the probability that �1 ≤ j0 − 1 is zero. It follows
that almost all cycles have length j0, a fact already observed in [2, 17]. On the
other hand, if infinitely many θj are nonzero, it is easy to see that logn/ log rn
diverges. Thus �1 goes to infinity in probability. To summarize, the only way to
force a positive fraction of indices to lie in finite cycles is to forbid infinite cycles
altogether, in which case typical cycles have the maximal length that is allowed.

4.2. Proofs of the main properties. We now prove Theorems 4.1–4.3. We use
the following elementary result, which is a consequence of the first assumption
in (4.1).
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LEMMA 4.4. Let f (x) = ∑∞
k=0 ckx

k with Taylor coefficients that satisfy 0 ≤
ck ≤ eMkk−k for some M > 0 and all k ≥ 1. Then for all δ > 0 and all x ≥ 0, we
have

f ′(x) ≤ (1 + δ)eMf (x) + eM/δ.

PROOF. Let k0 = k0(x) = �(1 + δ)eMx�. We decompose

f ′(x) =
∞∑

k=1

ckkxk−1 =
k0∑

k=1

ckkxk−1 + R(x).

By our assumptions,

R(x) =
∞∑

k=k0+1

ckkxk−1 ≤ eM
∞∑

k=k0+1

(
xeM

k

)k−1

≤ eM
∞∑

k=k0+1

(
1

1 + δ

)k

≤ eM/δ.

On the other hand, for the terms up to k0, we have k ≤ k0 ≤ (1 + δ)xeM and thus

k0∑
k=1

ckkxk−1 ≤ (1 + δ)eM
k0∑

k=0

ckx
k ≤ (1 + δ)eMf (x).

This completes the proof. �

Let us define the functions

Iβ(z) =
∞∑

j=1

jβθj z
j

for β ∈ R. φ(z) := I−1(z) plays a special role since the generating function of (hn)

is given by Gh(z) = exp(φ(z)). All Iβ are analytic by the first assumption in (4.1),
monotone increasing and positive on {z > 0} together with all their derivatives and
Iβ+1(z) = zI ′

β(z). Lemma 4.4 implies that for each β > 0 there exists C such that
for all z ≥ 0 we have

I ′
β(z) ≤ CIβ(z).(4.3)

Recall that rn = I−1
0 (n), where I−1

0 denote the inverse function.

PROPOSITION 4.5. We have

hn = r−n
n√

2πI1(rn)
eφ(rn)(1 + o(1)

)
.
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PROOF. Condition (4.1) on Taylor coefficients implies that I0(z) < D̃ ×
exp(Cz). Then

rn ≥ c logn(4.4)

for some c > 0. On the other hand, rn diverges more slowly than n1/4 since I0(x)

diverges faster than x4 by (4.1).
For the saddle point method, we use Cauchy’s formula and we obtain

hn = 1

2πrn

∫ π

−π
eφ(reiγ )−niγ dγ

(4.5)

= eφ(r)

2πrn

[∫ γ0

−γ0

eφ(reiγ )−φ(r)−niγ dγ + 2
∫ π

γ0

eφ(reiγ )−φ(r)−niγ dγ

]

for any r > 0 and any 0 < γ0 < π . We choose the r = rn defined by equation
(4.2) since it is the minimum point of r−neφ(r) and γ0 = γ0(n) = r

−(1+δ)
n for some

0 < δ < 1/2. The leading order of the first term above can be found by expanding
φ(z) − n log z around γ = 0. We have

φ(rneiγ ) − φ(rn) − niγ = ∑
j≥1

θj

j
rj
n (eijγ − 1 − ijγ ).(4.6)

Expanding eijγ − 1 − ijγ = −1
2j2γ 2 + R(jγ ) with |R(jγ )| ≤ 1

3!(jγ )3 we get

φ(rneiγ ) − φ(rn) − niγ = −1

2
γ 2

∑
j≥1

jθj r
j
n + A(γ )

(4.7)

= −1

2
γ 2I1(rn) + A(γ )

with

|A(γ )| ≤ γ 3
0

3!
∑
j≥1

j2θj r
j
n = γ 2

r1+δ
n 3!I2(rn)(4.8)

for all γ ≤ γ0. Now, by (4.3), we have I2(rn) ≤ CrnI1(rn). Thus, as n → ∞,
the term A(γ ) is negligible compared to γ 2I1(rn) in the first integral, which is
therefore given by∫ γ0

−γ0

e−1/2γ 2I1(rn)(1+o(1)) dγ = 1√
I1(rn)

∫ γ0
√

I1(rn)

−γ0
√

I1(rn)
e−(1/2)ξ2(1+o(1)) dξ

(4.9)

=
√

2π

I1(rn)

(
1 + o(1)

)
.

The last equality is justified by the fact that γ0(n)I1(rn) ≥ r−1−δ
n I0(rn) ≥ r−2

n n,
which diverges as n → ∞.
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We now turn to the second term in (4.5). We want to show that it is negligi-
ble and we estimate it by replacing the integral by π times the maximum of the
integrand. In view of (4.9) it is enough to show that

lim
n→∞

1

2
log I1(rn) − Re

(
φ(rn) − φ(rneiγ )

) = −∞(4.10)

for all γ ∈ [γ0, π]. For the first term we have log I1(rn) ≤ log(CrnI0(rn)) ≤
C̃ logn. For the second term we have

Re
(
φ(rn) − φ(rneiγ )

) = ∑
j≥1

1

j
θj r

j
n

(
1 − cos(γj)

)
(4.11)

≥ θj1

j1
rj1
n

(
1 − cos(γj1)

) + θj2

j2
rj2
n

(
1 − cos(γj2)

)
,

where j1 and j2 are picked according to (4.1). The right-hand side is zero at γ = 0
and it is strictly positive when γ ∈ (0, π] (j1 and j2 are coprime); so its minimum
is attained at γ0 when n is sufficiently large (recall that γ0 → 0 when n → ∞).
Expanding the cosine, we get

Re
(
φ(rn) − φ(rneiγ )

) ≥ c′r4
nγ 2

0 = c′r2−2δ
n ≥ cc′(logn)2−2δ.(4.12)

This dominates the first term of (4.10) since δ < 1/2 and the proof is comple-
te. �

PROOF OF THEOREM 4.1. Clearly,

P
(
max

i
�i > δn

)
≤ nP (�1 > δn).(4.13)

We have I1(rn) ≤ C2r2
nφ(rn) by (4.3) and thus Proposition 4.5 gives hn ≥ C′r−n−1

n

for n large enough. Since all the hn−j ’s are clearly bounded by some D > 0, we
have by (2.3)

nP (�1 > δn) ≤ Drn+1
n

n∑
j=δn

(
eM

j

)j

≤ Drn+1
n n

(
eM

δn

)δn

(4.14)

≤ Dn

(
eMr

2/δ
n

δn

)δn

.

The statement is trivial [and seen directly from (2.3)] if only finitely many θj are
nonzero; thus we may assume there are infinitely many nonzero θj . Then I0(z)

grows faster at infinity than any power of z and rn diverges more slowly than any
power of n. The last bracket is less than 1 for n large enough so that the right-hand
side vanishes in the limit n → ∞. �

In order to make more precise statements about the length of typical cycles we
need a better control over the terms appearing in (2.3). By the previous result it
suffices to consider the case where j is not too close to n.
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PROPOSITION 4.6. For each δ > 0 there exists Cδ such that, for all n ∈ N and
all j < (1 − δ)n, we have

hn−j

hn

≤ Cδr
j+1/2
n .

PROOF. By Proposition 4.5 we have

hn−j

hn

≈ rj
n

(
rn

rn−j

)n−j(
I1(rn)

I1(rn−j )

)1/2

eφ(rn−j )−φ(rn)

= rj
n exp

(−(
φ(rn) − φ(rn−j )

− (n − j)
(
ln(rn) − ln(rn−j )

)))( I1(rn)

I1(rn−j )

)1/2

(4.15)

= rj
n exp

(
−

(
φ(rn) − φ(rn−j )

− φ′(rn−j )rn−j ln
(

rn

rn−j

)))(
I1(rn)

I1(rn−j )

)1/2

when both n and n − j are large. Put rn−j = x and rn = x + u. Since n �→ rn is
increasing, we have u > 0. The exponent above then has the form

φ(x + u) − φ(x) − xφ′(x) ln
(

x + u

x

)
(4.16)

= (
φ(x + u) − φ(x) − φ′(x)u

) + φ′(x)

(
u − x ln

(
x + u

x

))
.

The first bracket in the right-hand side is greater than 1
2u2φ′′(x) since all deriva-

tives of φ are positive on R
+. The second bracket is always positive. Thus, for all

n ∈ N and all j ≤ (1 − δ)n, there exists C′
δ > 0 such that

hn−j

hn

≤ C′
δr

j
ne−(1/2)(rn−rn−j )2φ′′(rn−j )

(
I1(rn)

I1(rn−j )

)1/2

.(4.17)

By (4.3), I1(x) = xI ′
0(x) ≤ CxI0(x). We also have I0(x) ≤ I1(x). Since I0(rn) =

n, we get

I1(rn)

I1(rn−j )
≤ Crn

n

n − j
≤ C

δ
rn.(4.18)

This proves the claim. �

PROOF OF THEOREM 4.2. The claims follows immediately from (2.3) and
Proposition 4.6. �
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PROOF OF THEOREM 4.3. Let m = logn/ log rn − 3
4 . We use equation (2.3),

bounding θj by a constant and using Proposition 4.6 for the ratio of normalization
factors. Since rn diverges, we have

P(�1 ≤ m) ≤ C

n

m∑
j=1

rj+1/2
n = C

n
r3/2
n

rm
n − 1

rn − 1
≤ C′

n
rm+1/2
n ,(4.19)

if n is large enough. The right-hand side is equal to C′r−1/4
n and it vanishes in the

limit n → ∞. �

4.3. An explicit example. In this subsection we treat explicitly the case αj =
α(j) = jγ with γ > 1 as an example of application of the previous general results.
We first observe that the assumptions (4.1) are trivially satisfied so that the general
results in this section apply.

The main result of this subsection is that typical cycles are of size ( 1
γ−1 logn)1/γ

to leading order.

THEOREM 4.7. Let αj = jγ , with γ > 1. Then

�1

((1/(γ − 1)) logn)
1/γ

→ 1(4.20)

in probability.

Let us define

�(j) = α(j) − α(jmax) − (j − jmax) log rn.(4.21)

The proof of Theorem 4.7 follows from two simple technical estimates.

LEMMA 4.8. Let jmax ∈ R be such that α′(jmax) = log rn.

(a) Assume that γ ≥ 2. Then for all j ≥ 1, there exists c = c(γ ) > 0 such that

�(j) ≥ cα′′(jmax)(j − jmax)
2.(4.22)

(When j ≥ jmax, one can choose c = 1
2 .)

(b) Assume that γ ∈ (1,2). Then, for all 1 ≤ j ≤ 2jmax, there exists c = c(γ ) > 0
such that

�(j) ≥ cα′′(jmax)(j − jmax)
2.(4.23)

(When j ≤ jmax, one can choose c = 1
2 .) Moreover, for all j > 2jmax, there

exists c = c(γ ) > 0 such that

�(j) ≥ cjγ .(4.24)
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PROOF. We start with the case γ ≥ 2. First of all, since jmax = (α′)−1(log rn),
we have for any j > jmax

�(j) = α(j) − α(jmax) − (j − jmax) log rn

= α(j) − α(jmax) − (j − jmax)α
′(jmax)(4.25)

=
∫ j

jmax

ds

∫ s

jmax

α′′(t)dt ≥ 1

2
α′′(jmax)(j − jmax)

2,

since α′′ is an increasing function. Similarly, we have for any 1
2jmax ≤ j < jmax

�(j) =
∫ jmax

j
ds

∫ jmax

s
α′′(t)dt

≥ 1

2
α′′

(
1

2
jmax

)
(j − jmax)

2(4.26)

= 21−γ α′′(jmax)(j − jmax)
2.

Finally, for 0 ≤ j < 1
2jmax we use

�(j) =
∫ jmax

j
ds

∫ jmax

s
α′′(t)dt ≥

∫ jmax

jmax/2
ds

∫ jmax

s
α′′(t)dt

(4.27)

≥ 1

2
α′′

(
1

2
jmax

)
1

4
j2

max ≥ 2−γ−1α′′(jmax)(j − jmax)
2.

Let us now turn to the case γ ∈ (1,2). The proof is completely similar. When
j ≤ jmax we use (observe that α′′ is a decreasing function now)

�(j) =
∫ jmax

j
ds

∫ jmax

s
α′′(t)dt ≥ 1

2
α′′(jmax)(j − jmax)

2.(4.28)

When jmax < j ≤ 2jmax we use

�(j) =
∫ j

jmax

ds

∫ s

jmax

α′′(t)dt ≥ 1

2
α′′(2jmax)(j − jmax)

2

(4.29)
= 2γ−3α′′(jmax)(j − jmax)

2.

Finally, when j > 2jmax we have

�(j) =
∫ j

jmax

ds

∫ s

jmax

α′′(t)dt ≥ 1

2
α′′(j)(j − jmax)

2

(4.30)

≥ 1

8
α′′(j)j2 = 1

8
γ (γ − 1)jγ . �
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COROLLARY 4.9. For any γ > 1, we have, as n → ∞,

jmax =
(

1

γ − 1
logn

)1/γ (
1 + o(1)

)
,(4.31)

log rn = α′(jmax) = γ

(
1

γ − 1
logn

)(γ−1)/γ (
1 + o(1)

)
,(4.32)

e−α(jmax)rjmax
n = n1+o(1).(4.33)

PROOF. We start with the case γ ≥ 2. Using the previous lemma, it immedi-
ately follows that

I0(rn) = ∑
j≥1

e−α(j)rj
n ≤ e−α(jmax)rjmax

n

∑
j≥1

e−cα′′(jmax)(j−jmax)
2

(4.34)
≤ C1e−α(jmax)rjmax

n .

Since for j < jmax, �(j) ≤ 1
2α′′(jmax)(j − jmax)

2, we also have

I0(rn) ≥ e−α(�jmax�)r�jmax�
n ≥ e−(1/2)α′′(jmax)e−α(jmax)rjmax

n .(4.35)

Using the relation I0(rn) = n, (4.34) and (4.35) immediately imply the claimed
asymptotics.

Let us now turn to the case γ ∈ (1,2). The lemma implies that

I0(rn) = e−α(jmax)rjmax
n

∑
j≥1

e−�(j)

(4.36)

≤ C2e−α(jmax)rjmax
n

{
α′′(jmax)

−1/2 + ∑
j>2jmax

e−cjγ
}
.

Since jmax ↗ ∞ as n → ∞, we see that
∑

j>2jmax
e−cjγ � α′′(jmax)

−1/2 and thus
that, for large n,

I0(rn) ≤ C3α
′′(jmax)

−1/2e−α(jmax)rjmax
n .(4.37)

As above, we also have

I0(rn) ≥ e−α(�jmax�)r�jmax�
n ≥ e−(1/2)α′′(jmax)e−α(jmax)rjmax

n
(4.38)

≥ C4e−α(jmax)rjmax
n .

The claimed asymptotics follow as before. �

PROOF OF THEOREM 4.7. Let ε > 0. It is sufficient to check that Theo-
rem 4.2 applies with a(n) = (1 − ε)jmax and b(n) = (1 + ε)jmax. It follows
from Lemma 4.8 and Corollary 4.9 that

1

n

∞∑
j=b(n)

e−α(j)rj+1/2
n ≤ no(1)

∞∑
j=b(n)

e−cα′′(jmax)(j−jmax)
2
,(4.39)
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which goes to 0 as n → ∞, since

e−cα′′(jmax)(b(n)−jmax)
2 = n−cε2γ (1+o(1)).(4.40)

Similarly,

1

n

a(n)∑
j=1

e−α(j)rj+1/2
n ≤ no(1)

a(n)∑
j=1

e−cα′′(jmax)(j−jmax)
2

(4.41)
≤ no(1)e−cα′′(jmax)j

2
maxε

2
,

which again goes to 0 as n → ∞. �
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