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SHARP THRESHOLDS FOR THE RANDOM-CLUSTER
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A sharp-threshold theorem is proved for box-crossing probabilities on
the square lattice. The models in question are the random-cluster model near
the self-dual point psd(q) = √

q/(1 + √
q), the Ising model with external

field, and the colored random-cluster model. The principal technique is an
extension of the influence theorem for monotonic probability measures ap-
plied to increasing events with no assumption of symmetry.

1. Introduction. The method of “sharp threshold” has been fruitful in proba-
bilistic combinatorics (see [20, 27] for recent reviews). It provides a fairly robust
tool for showing the existence of a sharp threshold for certain processes governed
by independent random variables. Its most compelling demonstration so far in the
field of physical systems has been the proof in [9] that the critical probability of
site percolation on the Voronoi tessellation generated by a Poisson process on R

2

equals 1
2 .

Each of the applications alluded to above involves a product measure. It was
shown in [16] that the method may be extended to nonproduct probability mea-
sures satisfying the FKG lattice condition. The target of this note is to present two
applications of such a sharp-threshold theorem to measures arising in statistical
physics, namely those of the random-cluster model and the Ising model. In each
case, the event in question is the existence of a crossing of a large box, by an open
path in the case of the random-cluster model, and by a single-spin path in the case
of the Ising model. A related but more tentative and less complete result has been
obtained in [16] in the first case, and the second case has been studied already in
[7] and [23, 24].

Our methods for the Ising model can be applied to a more general model termed
here the colored random-cluster model (CRCM), see Section 8. This model is re-
lated to the so-called fractional Potts model of [26], and the fuzzy Potts model and
the divide-and-color model of [5, 13, 21, 22].

The sharp-threshold theorem used here is an extension of that given for product
measure in [15, 37], and it makes use of the results of [16]. It is stated, with an
outline of the proof, in Section 5. The distinction of the current sharp-threshold
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theorem is that it makes no assumption of symmetry on either the event or measure
in question. Instead, one needs to estimate the maximum influence of the various
components, and it turns out that this may be done in a manner which is very
idiomatic for the models in question. The sharp-threshold theorem presented here
may find further applications in the study of dependent random variables.

2. The models.

2.1. The random-cluster model. The random-cluster model on a connected
graph G has two parameters: an edge-weight p and a cluster-weight q . See Sec-
tion 3 for a formal definition. When q ≥ 1 and G is infinite, there is a critical value
pc(q) that separates the subcritical phase of the model [when p < pc(q) and there
exist no infinite clusters] and the supercritical phase. It has long been conjectured
that, when G is the square lattice Z

2,

pc(q) =
√

q

1 + √
q

, q ≥ 1.(2.1)

This has been proved rigorously in three famous cases. When q = 1, the random-
cluster model is bond percolation, and the exact calculation pc(1) = 1

2 was shown
by Kesten [28]. When q = 2, the model is intimately related to the Ising model, and
the calculation of pc(2) is equivalent to that of Onsager and others concerning the
Ising critical temperature (see [1, 3] for a modern treatment of the Ising model).
Formula (2.1) has been proved for sufficiently large values of q (currently q ≥
21.61) in the context of the proof of first-order phase transition, see [19, 29–31].
We recall that, when q ∈ {2,3, . . .}, the critical temperature Tc of the q-state Potts
model on a graph G satisfies

pc(q) = 1 − e−1/Tc .(2.2)

A fairly full account of the random-cluster model, and its relation to the Potts
model, may be found in [19].

Conjecture (2.1) is widely accepted. Physicists have proceeded beyond a “mere”
calculation of the critical point, and have explored the behavior of the process at
and near this value. For example, it is believed that there is a continuous (second-
order) phase transition if 1 ≤ q < 4, and a discontinuous (first-order) transition
when q > 4, see [6]. Amongst recent progress, we highlight the stochastic Löwner
evolution process SLE16/3 associated with the cluster boundaries in the critical
case when q = 2 and p = √

2/(1 + √
2), see [35, 36].

The expression in (2.1) arises as follows through the use of planar duality. When
the underlying graph G is planar, it possesses a (Whitney) dual graph Gd. The
random-cluster model on G with parameters p, q may be related to a dual random-
cluster model on Gd with parameters pd, q , where

pd

1 − pd
= q(1 − p)

p
.(2.3)
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The mapping p �→ pd has a fixed point p = psd(q), where

psd(q) :=
√

q

1 + √
q

is termed the self-dual point. The value p = psd(q) is especially interesting when
G and Gd are isomorphic, as in the case of the square lattice Z

2. See [19], Chap-
ter 6. We note for future use that

p < psd(q) if and only if pd > psd(q).(2.4)

Henceforth, we take G = Z
2. The inequality

pc(q) ≥ psd(q), q ≥ 1,(2.5)

was proved in [17, 38] using Zhang’s argument (see [18], page 289). Two further
steps would be enough to imply the complementary inequality pc(q) ≤ psd(q):
firstly, that the probability of crossing a box [−m,m]2 approaches 1 as m → ∞,
when p > psd(q); and secondly, that this implies the existence of an infinite cluster.
The first of these two claims is proved in Theorem 3.1.

Kesten’s proof for percolation, [28], may be viewed as a proof of the first claim
in the special case q = 1. The second claim follows for percolation by RSW-type
arguments, see [32–34] and [18], Section 11.7. Heavy use is made in these works
of the fact that the percolation measure is a product measure, and this is where the
difficulty lies for the random-cluster measure.

We prove our main theorem (Theorem 3.1 below) by the method of influence
and sharp threshold developed for product measures in [15, 25]. This was adapted
in [16] to monotonic measures applied to increasing events, subject to a certain
hypothesis of symmetry. We show in Section 5 how this hypothesis may be re-
moved, and we apply the subsequent inequality in Section 6 to the probability of a
box-crossing, thereby extending to general q the corresponding argument of [10].

2.2. Ising model. We shall consider the Ising model on the square lattice Z
2

with edge-interaction parameter β and external field h. See Section 4 for the rele-
vant definitions. Write βc for the critical value of β when h = 0, so that

1 − e−2βc = psd(2),

where psd(2) is given as in (2.1). Two notions of connectivity are required: the
usual connectivity relation ↔ on Z

2 viewed as a graph, and the relation ↔∗,
termed ∗-connectivity, and obtained by adding diagonals to each unit face of Z

2.
Let πβ,h denote the Ising measure on Z

2 with parameters β , h.
Higuchi proved in [23, 24] that, when β ∈ (0, βc), there exists a critical value

hc = hc(β) of the external field such that:

(a) hc(β) > 0,
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(b) when h > hc, there exists πβ,h-almost-surely an infinite + cluster of Z
2,

and the radius of the ∗-connected − cluster at the origin has exponential tail,
(c) when 0 < h < hc, there exists πβ,h-almost-surely an infinite ∗-connected −

cluster of Z
2, and the radius of the + cluster at the origin has exponential tail.

A further approach to Higuchi’s theorem has been given recently by van den Berg
[7]. A key technique of the last paper is a sharp-threshold theorem of Talagrand
[37] for product measures. The Ising measure π�,β,h on a box � is of course not
a product measure, and so it was necessary to encode it in terms of a family of
independent random variables. We show here that the influence theorem of [16]
may be extended and applied directly to the Ising model to obtain the necessary
sharp threshold result. (The paper [7] contains results for certain other models
encodable in terms of product measures, and these appear to be beyond the scope
of the current method.)

2.3. Colored random-cluster model. The Ising model with external field is a
special case of a class of systems that have been studied by a number of authors,
and which we term colored random-cluster models (CRCM). Sharp-threshold re-
sults may be obtained for such systems also. Readers are referred to Section 8 for
an account of the CRCM and the associated results.

3. Box-crossings in the random-cluster model. The random-cluster mea-
sure is given as follows on a finite graph G = (V ,E). The configuration space
is � = {0,1}E . For ω ∈ �, we write η(ω) = {e ∈ E :ω(e) = 1} for the set of
“open” edges, and k(ω) for the number of connected components in the open graph
(V , η(ω)). Let p ∈ [0,1], q ∈ (0,∞), and let φp,q be the probability measure on
� given by

φp,q(ω) = 1

Z

{∏
e∈E

pω(e)(1 − p)1−ω(e)

}
qk(ω), ω ∈ �,(3.1)

where Z = ZG,p,q is the normalizing constant. We shall assume throughout this
paper that q ≥ 1, so that φp,q satisfies the so-called FKG lattice condition

μ(ω1 ∨ ω2)μ(ω1 ∧ ω2) ≥ μ(ω1)μ(ω2), ω1,ω2 ∈ �.(3.2)

Here, as usual,

ω1 ∨ ω2(e) = max{ω1(e),ω2(e)},
ω1 ∧ ω2(e) = min{ω1(e),ω2(e)}

for e ∈ E. As a consequence of (3.2), φp,q satisfies the FKG inequality. See [19]
for the basic properties of the random-cluster model.

Consider the square lattice Z
2 with edge-set E, and let � = {0,1}E. Let � =

�n = [−n,n]2 be a finite box of Z
2, with edge-set E�. For b ∈ {0,1} define

�b
� = {ω ∈ � :ω(e) = b for e /∈ E�}.
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On �b
� we define a random-cluster measure φb

�,p,q as follows. For p ∈ [0,1] and
q ∈ [1,∞), let

φb
�,p,q(ω) = 1

Zb
�,p,q

{ ∏
e∈E�

pω(e)(1 − p)1−ω(e)

}
qk(ω,�), ω ∈ �b

�,(3.3)

where k(ω,�) is the number of clusters of (Z2, η(ω)) that intersect �. The bound-
ary condition b = 0 (resp., b = 1) is usually termed “free” (resp., “wired”). It is
standard that the weak limits

φb
p,q = lim

n→∞φb
�n,p,q

exist, and that they are translation-invariant, ergodic, and satisfy the FKG inequal-
ity. See [19], Chapter 4.

For A,B ⊆ Z
2, we write A ↔ B if there exists an open path joining some a ∈ A

to some b ∈ B . We write x ↔ ∞ if the vertex x is the endpoint of some infinite
open path. The percolation probabilities are given as

θb(p, q) = φb
p,q(0 ↔ ∞), b = 0,1.

Since each θb is nondecreasing in p, one may define the critical point by

pc(q) = sup{p : θ1(p, q) = 0}.
It is known that φ0

p,q = φ1
p,q if p �= psd(q), and we write φp,q for the common

value. In particular, θ0(p, q) = θ1(p, q) for p �= pc(q). It is conjectured that
φ0

p,q = φ1
p,q when p = pc(q) and q ≤ 4.

Let Bk = [0, k] × [0, k − 1], and let Hk be the event that Bk possesses an open
left–right crossing. That is, Hk is the event that Bk contains an open path having
one endvertex on its left side and one on its right-hand side.

THEOREM 3.1. Let q ≥ 1. We have that

φp,q(Hk) ≤ 2ρ
psd−p
k , 0 < p < psd(q),(3.4)

φp,q(Hk) ≥ 1 − 2ν
p−psd
k , psd(q) < p < 1,(3.5)

for k ≥ 1, where

ρk = [2qηk/p]c/q, νk = [2qηk/pd]c/q(3.6)

and

ηk = φ0
psd(q),q(0 ↔ ∂�k/2) → 0 as k → ∞.(3.7)

Here, c is an absolute positive constant, and pd satisfies (2.3).
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When k is odd, we interpret ∂�k/2 in (3.7) as ∂��k/2�.
In essence, the probability of a square-crossing has a sharp threshold around the

self-dual “pivot” psd(q). Related results were proved in [16], but with three relative
weaknesses, namely: only nonsquare rectangles could be handled, the “pivot” of
the threshold theorems was unidentified, and there was no result for infinite-volume
measures. The above strengthening is obtained by using the threshold Theorem 5.1
which makes no assumption of symmetry on the event or measure in question. The
corresponding threshold theorem for product measure leads to a simplification of
the arguments of [10] for percolation, see [20], Section 5.8.

Since φ0
�n,p,q ≤st φp,q ≤st φ1

�n,p,q and Hk is an increasing event, Theorem 3.1
implies certain inequalities for finite-volume probabilities also.

No estimate for the rate at which ηk → 0 is implicit in the arguments of this
paper, and indeed one of the targets of the current work is to show that no estimate
is necessary for sharp threshold. It is expected that ηk → 0 at a rate that depends
on whether or not the phase transition is continuous: one expects that ηk decays as
a power when 1 ≤ q < 4, and as an exponential when q > 4 (see [19], Section 6.4).
This would imply a threshold of order either 1/ log k or 1/k in (3.4)–(3.5). That
the radius R of the open cluster at the origin is φ0

psd(q),q -a.s. finite is a consequence
of the (a.s.) uniqueness of the infinite open cluster whenever it exists. See [19],
Theorem 6.17(a), for a proof of the relevant fact that

θ0(psd(q), q) = 0, q ≥ 1.(3.8)

We shall prove a slightly more general result than Theorem 3.1. Let Bk,m =
[0, k]×[0,m] and let Hk,m be the event that there exists an open left–right crossing
of Bk,m.

THEOREM 3.2. Let q ≥ 1. We have that

φp1,q(Hk,m)[1 − φp2,q(Hk,m)] ≤ ρ
p2−p1
k , 0 < p1 < p2 ≤ psd(q),(3.9)

φp1,q(Hk,m)[1 − φp2,q(Hk,m)] ≤ ν
p2−p1
m+1 , psd(q) ≤ p1 < p2 < 1,(3.10)

for k,m ≥ 1, where ρk (resp., νk) is given in (3.6) with p = p1 (resp., p = p2), and
φpsd(q),q is to be interpreted as φ0

psd(q),q .

4. Box-crossings in the Ising model. Let � be a box of Z
2. The spin-space

of the Ising model on � is � = {−1,+1}�, and the Hamiltonian is

H�(σ) = −β
∑

e=〈x,y〉∈E�

σxσy − h
∑
x∈�

σx,

where β > 0, h ≥ 0. The relevant Ising measure is given by

π�,β,h(σ ) ∝ e−H�(σ), σ ∈ �,
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and it is standard that the (weak) limit measure πβ,h = lim�→Z2 π�,β,h exists. We
shall also need the + boundary-condition measure π+

β,0 given as the weak limit
of π�,β,0 conditional on σx = +1 for x ∈ ∂�. (Here, ∂� denotes as usual the
boundary of �, that is, the set of x ∈ � possessing a neighbor not belonging to
�). By the FKG inequality or otherwise, π+

β,0(σ0) ≥ 0, and the critical value of β

when h = 0 is given by

βc = sup{β :π+
β,0(σ0) = 0}.

As remarked in Section 2, 1 − e−2βc = psd(2). It is well known that there exists
a unique infinite-volume measure for the Ising model on Z

2 if either h �= 0 or
β < βc, and thus πβ,h is this measure. By Holley’s theorem, (see [19], Section 2.1,
e.g.), πβ,h is stochastically increasing in h.

Let

θ+(β,h) = πβ,h(0
+↔ ∞), θ−(β,h) = πβ,h(0

−↔∗ ∞),

where the relation
+↔ (resp.,

−↔∗) means that there exists a path of Z
2 each of

whose vertices has state +1 (resp., a ∗-connected path of vertices with state −1).
The next theorem states the absence of coexistence of such infinite components,
and its proof (given in Section 7) is a simple application of the Zhang argument
for percolation (see [18], Section 11.3).

THEOREM 4.1. We have that

θ+(β,h)θ−(β,h) = 0, β ≥ 0, h ≥ 0.

There exists hc = hc(β) ∈ [0,∞) such that

θ+(β,h)

{= 0, if 0 ≤ h < hc,
> 0, if h > hc.

Recall from [23, 24] that hc(β) > 0 if and only if β < βc. It is proved in [24] that

θ±(β,hc(β)) = 0,(4.1)

but we shall not make use of this fact in the proofs of this paper. Indeed, one of
the main purposes of this article is to show how certain sharp-thresholds for box-
crossings may be obtained using a minimum of background information on the
model in question.

Let Hk,m be the event that there exists a left–right + crossing of the box Bk,m =
[0, k] × [0,m]. Let x+ = max{x,0}.

THEOREM 4.2. Let 0 ≤ β < βc and R > 0. There exist ρi,+ = ρi,+(β) and
ρi,− = ρi,−(β,R) satisfying

ρi,+ρi,− → 0 as i → ∞,(4.2)

such that: for 0 ≤ h1 ≤ hc ≤ h2 < R,

πβ,h1(Hk,m)[1 − πβ,h2(Hk,m)] ≤ ρ
hc−h1
k,+ ρ

h2−hc
m,− , k,m ≥ 1.(4.3)
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The proof of this theorem shows also that

πβ,h1(Hk,m)[1 − πβ,h2(Hk,m)] ≤ ρ
h2−h1
k,+ , h1 ≤ h2 ≤ hc,

πβ,h1(Hk,m)[1 − πβ,h2(Hk,m)] ≤ ρ
h2−h1
m,− , hc ≤ h1 ≤ h2.

As in Theorem 3.1, the proof neither uses nor implies any estimate on the rate
at which ρi,± → 0. The ρi,± are related to the tails of the radii of the + cluster and
the − ∗-cluster at the origin. More explicitly,

ρi,+ = [2(1 + e8β)πβ,hc(0
+↔ ∂�i/2)]B+,(4.4)

ρi,− = [2(1 + e8β+2R)πβ,hc(0
−↔∗ ∂�i/2)]B−,(4.5)

where

B+ = 2cξβ,hc, B− = 2cξβ,R,

and ξβ,h is given in the forthcoming (7.4). Equation (4.2) holds by Theorem 4.1
with h = hc(β). It is in fact a consequence of (4.1) that ρi,± → 0 as i → ∞.

5. Influence and sharp threshold. Let S be a finite set. Let μ be a measure
on � = {0,1}S satisfying the FKG lattice condition (3.2), and assume that μ is
positive in that μ(ω) > 0 for all ω ∈ �. It is standard that, for a positive measure
μ, (3.2) is equivalent to the condition that μ be monotone, which is to say that
the one-point conditional measure μ(σx = 1|σy = ηy for y �= x) is nondecreasing
in η. Furthermore, (3.2) implies that μ is positively associated, in that increasing
events are positively correlated. See, for example, [19], Chapter 2.

For p ∈ (0,1), let μp be given by

μp(ω) = 1

Zp

{∏
s∈S

pω(s)(1 − p)1−ω(s)

}
μ(ω), ω ∈ �,(5.1)

where Zp is chosen in such a way that μp is a probability measure. It is easy to
check that each μp satisfies the FKG lattice condition.

Let A be an increasing event, and write 1A for its indicator function. We define
the (conditional) influence of the element s ∈ S on the event A by

JA,p(s) = μp(A|1s = 1) − μp(A|1s = 0), s ∈ S,(5.2)

where 1s is the indicator function that ω(s) = 1. Note that JA,p(s) depends on
the choice of μ. The conditional influence is not generally equal to the (absolute)
influence of [25],

IA,p(s) = μp

(
1A(ωs) �= 1A(ωs)

)
,

where the configuration ωs (resp., ωs ) is that obtained from ω by setting ω(s) = 1
[resp., ω(s) = 0].
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THEOREM 5.1. There exists a constant c > 0 such that the following holds.
For any such S, μ, and any increasing event A �= ∅,�,

d

dp
μp(A) ≥ cξp

p(1 − p)
μp(A)

(
1 − μp(A)

)
log[1/(2mA,p)],(5.3)

where mA,p = maxs∈S JA,p(s) and ξp = mins∈S[μp(1s)(1 − μp(1s))].

COROLLARY 5.1. In the notation of Theorem 5.1,

μp1(A)[1 − μp2(A)] ≤ κB(p2−p1), 0 < p1 ≤ p2 < 1,

where

B = inf
p∈(p1,p2)

{
cξp

p(1 − p)

}
, κ = 2 sup

p∈(p1,p2),

s∈S

JA,p(s).

The corresponding inequality for product measures may be found in [37], Corol-
lary 1.2. Throughout this note, the letter c shall refer only to the constant of Theo-
rem 5.1.

PROOF OF THEOREM 5.1. It is proved in [8, 16] that

d

dp
μp(A) = 1

p(1 − p)

∑
s∈S

μp(1s)
(
1 − μp(1s)

)
JA,p(s).(5.4)

Let K = [0,1]S be the “continuous” cube, endowed with Lebesgue measure λ,
and let B be an increasing subset of K . The influence IB(s) of an element s is
given in [11] as

IB(s) = λ
(
1B(ψs) �= 1B(ψs)

)
,

where ψs (resp., ψs) is the member of K obtained from ψ ∈ K by setting ψ(s) = 1
[resp., ψ(s) = 0]. The conclusion of [11] may be expressed as follows. There exists
a constant c > 0, independent of all other quantities, such that: for any increasing
event B ⊆ K , ∑

s∈S

IB(s) ≥ cλ(B)
(
1 − λ(B)

)
log[1/(2mB)],(5.5)

where mB = maxs∈S IB(s). The main result of [11] is a lower bound on mB that is
easily seen to follow from (5.5).

Equation (5.5) does not in fact appear explicitly in [11], but it may be derived
from the arguments presented there, very much as observed in the case of the
discrete cube from the arguments of [25]. See [15], Theorem 3.4. The factor of 2
on the right-hand side of (5.5) is of little material consequence, since the inequality
is important only when mB is small, and, when mB < 1

3 say, the 2 may be removed
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with an amended value of the constant c. The literature on influence and sharp-
threshold can seem a little disordered, and a coherent account may be found in
[20]. The method used there introduces the factor 2 in a natural way, and for this
reason we have included it in the above.

It is shown in [16] (see the proof of Theorem 2.10) that there exists an increas-
ing subset B of K such that μp(A) = λ(B), and JA,p(s) ≥ IB(s) for all s ∈ S.
Inequality (5.3) follows by (5.4)–(5.5). �

PROOF OF COROLLARY 5.1. By (5.3),(
1

μp(A)
+ 1

1 − μp(A)

)
μ′

p(A) ≥ B log(κ−1), p1 < p < p2,

whence, on integrating over (p1,p2),

μp2(A)

1 − μp2(A)

/ μp1(A)

1 − μp1(A)
≥ κ−B(p2−p1).

The claim follows. �

6. Proofs of Theorems 3.1 and 3.2. Note first that a random-cluster measure
has the form of (5.1) with S = E and μ(ω) = qk(ω), and it is known and easily
checked that μ satisfies the FKG lattice condition when q ≥ 1 (see [19], Sec-
tion 3.2, e.g.). We shall apply Theorem 5.1 to a random-cluster φp,q measure with
q ≥ 1. It is standard (see [19], Theorem 4.17(b)) that

p

q
≤ p

p + q(1 − p)
≤ φp,q(1e) ≤ p,(6.1)

whence

φp,q(1e)[1 − φp,q(1e)] ≥ p(1 − p)

q
.

We may thus take

B = c

q
(6.2)

in Corollary 5.1.
Let q ≥ 1, 1 ≤ k,m < n, and consider the random-cluster measures φb

n,p =
φb

�n,p,q on the box �n. For e ∈ E
2, write J b

k,m,n(e) for the (conditional) influence

of e on the event Hk,m under the measure φb
n,p . We set J b

k,m,n(e) = 0 for e /∈ E�n .

LEMMA 6.1. Let q ≥ 1. We have that

sup
e∈E2

J 0
k,m,n(e) ≤ q

p
ηk, 0 < p ≤ psd(q), 1 ≤ k,m < n,(6.3)

sup
e∈E2

J 1
k,m,n(e) ≤ q

pd
ηm+1, psd(q) ≤ p < 1, 1 ≤ k,m < n,(6.4)
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where pd satisfies (2.3) and

ηk = φ0
psd(q),q(0 ↔ ∂�k/2) → 0 as k → ∞.

PROOF. For any configuration ω ∈ � and vertex z, let Cz(ω) be the open clus-
ter at z, that is, the set of all vertices joined to z by open paths.

Suppose first that 0 < p ≤ psd(q), and let e = 〈x, y〉 be an edge of �n.
We couple the two conditional measures φ0

n,p(·|ω(e) = b), b = 0,1, in the fol-
lowing manner. Let �n be the configuration space of the edges in �n, and let
T = {(π,ω) ∈ �2

n :π ≤ ω} be the set of all ordered pairs of configurations. There
exists a measure μe on T such that:

(a) the first marginal of μe is φ0
n,p(·|1e = 0),

(b) the second marginal of μe is φ0
n,p(·|1e = 1),

(c) for any subset γ of �n, conditional on the event {(π,ω) :Cx(ω) = γ },
the configurations π and ω are μe-almost-surely equal on all edges having no
endvertex in γ .

The details of this coupling are omitted. The idea is to build the paired configura-
tion (π,ω) edge by edge, beginning at the edge e, in such a way that π(f ) ≤ ω(f )

for each edge f examined. The (closed) edge-boundary of the cluster Cx(ω) is
closed in π also. Once this boundary has been uncovered, the configurations π ,
ω on the rest of space are governed by the same (conditional) measure, and may
be taken equal. Such an argument has been used in [2] and [19], Theorem 5.33(a),
and has been carried further in [4].

We claim that

J 0
k,m,n(e) ≤ φ0

n,p(Dx |1e = 1),(6.5)

where Dx is the event that Cx intersects both the left and right sides of Bk,m. This
is proved as follows. By (5.2),

J 0
k,m,n(e) = μe(ω ∈ Hk,m,π /∈ Hk,m)

≤ μe(ω ∈ Hk,m ∩ Dx)

≤ μe(ω ∈ Dx) = φ0
n,p(Dx |1e = 1),

since, when ω /∈ Dx , either both or neither of ω, π belong to Hk,m. By (6.5),

J 0
k,m,n(e) ≤ φ0

n,p(Dx)

φ0
n,p(1e)

.(6.6)

On Dx , the radius of the open cluster at x is at least 1
2k. Since φ0

n,p ≤st φp,q and
φp,q is translation-invariant,

φ0
n,p(Dx) ≤ φp,q(x ↔ x + ∂�k/2) = φp,q(0 ↔ ∂�k/2).
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By (3.8),

φp,q(0 ↔ ∂�k/2) ≤ φ0
psd(q),q(0 ↔ ∂�k/2) → 0 as k → ∞,

and, by (6.1) and (6.6), the conclusion of the lemma is proved when p ≤ psd(q).
Suppose next that psd(q) ≤ p < 1. Instead of working with the open paths, we

work with the dual open paths. Each edge ed = 〈u, v〉 of the dual lattice traverses
some edge e = 〈x, y〉 of the primal, and, for each configuration ω, we define the
dual configuration ωd by ωd(ed) = 1 − ω(e). Thus, the dual edge ed is open if and
only if e is closed. It is well known (see [19], Equation (6.12), e.g.) that, with ω

distributed according to φ1
n,p , ωd has as law the random-cluster measure, denoted

φn,pd,d, on the dual of �n with free boundary condition. The event Hk,m occurs
if and only if there is no dual open path traversing the dual of Bk,m from top to
bottom. We may therefore apply the above argument to the dual process, obtaining
thus that

J 1
k,m,n(e) ≤ φn,pd,d(Vu)

φn,pd,d(1e)
,(6.7)

where Vu is the event that Cu intersects both the top and bottom sides of the dual
of Bk,m.

On the event Vu, the radius of the open cluster at u is at least 1
2(m + 1). Since

φn,pd,d ≤st φpd,q ,

φn,pd,d(Vu) ≤ φpd,q

(
u ↔ u + ∂�(m+1)/2

) = φpd,q

(
0 ↔ ∂�(m+1)/2

)
.

As above, by (2.4),

φpd,q

(
0 ↔ ∂�(m+1)/2

) ≤ φ0
psd(q),q

(
0 ↔ ∂�(m+1)/2

) = ηm+1,

and this completes the proof when p ≥ psd(q). �

PROOF OF THEOREM 3.2. This follows immediately from Corollary 5.1 by
(6.2) and Lemma 6.1. �

PROOF OF THEOREM 3.1. By planar duality,

φ0
p,q(Hk) = 1 − φ1

pd,q
(Hk),

where p, pd are related by (2.3), see [19], Theorems 6.13, 6.14. Since φ0
psd(q),q ≤st

φ1
psd(q),q ,

φ0
psd(q),q(Hk) ≤ 1

2 ≤ φ1
psd(q),q(Hk),

and Theorem 3.1 follows from Theorem 3.2. �
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7. Proof of Theorems 4.1 and 4.2. Only an outline of the proof of The-
orem 4.1 is included here, since it follows the “usual” route (see [18], Sec-
tion 11.3, or [19], Section 6.2, for examples of the argument). The measure πβ,h is
automorphism-invariant, ergodic, and has the finite-energy property. By the main
result of [12], the number N+ (resp., N−) of infinite + clusters (resp., infinite −
∗-connected clusters) satisfies

either πβ,h(N
± = 0) = 1 or πβ,h(N

± = 1) = 1.

Assume that θ+(β,h)θ−(β,h) > 0, which is to say that πβ,h(N
+ = N− = 1) = 1.

One may find a box � sufficiently large that, with πβ,h-probability at least 1
2 : the

top and bottom of its boundary ∂� are + connected to infinity off �, and the left
and right sides are − ∗-connected to infinity off �. Since N+ = 1 almost surely,
there is a + path connecting the two infinite + paths above, and this contradicts
the fact that N− = 1 almost surely.

We turn to the proof of Theorem 4.2. For the moment, let πβ,h be the Ising
measure on a finite graph G = (V ,E) with parameters β ≥ 0 and h ≥ 0. It is well
known than πβ,0 satisfies the FKG lattice condition (3.2) on the partially ordered
set V = {−1,+1}V . We identify V with {0,1}V via the mapping σx �→ ωx =
1
2(σx + 1), and we choose p by

p

1 − p
= e2h.(7.1)

Then πβ,h may be expressed in the form (5.1), and we may thus apply the results
of Section 5. By conditioning on the states of the neighbors of x,

e2h−�β

e�β + e2h−�β
≤ πβ,h(1x) ≤ e2h+�β

e−�β + e2h+�β
,(7.2)

where � is the degree of the vertex x, and 1x is the indicator function that σx = +1.
Therefore,

πβ,h(1x)[1 − πβ,h(1x)] ≥ min
{

e2h

(e�β + e2h−�β)2 ,
e2h

(e−�β + e2h+�β)2

}
(7.3)

= e2h+2�β

(1 + e2h+2�β)2 .

This bound will be useful with � = 4, and we write

ξβ,h = e2h+8β

(1 + e2h+8β)2 .(7.4)

Note that ξβ,h is decreasing in h.
We follow the argument of the proof of Theorem 5.1. Let β ∈ [0, βc), h > 0,

and 1 ≤ k,m ≤ r < n, and consider the Ising measure πn,h = π�n,β,h on the box
�n = [−n,n]2. For x ∈ Z

2, write Jk,m,n(x) for the (conditional) influence of x on
the event Hk,m under the measure πn,h. We set Jk,m,n(x) = 0 for x /∈ �n.
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LEMMA 7.1. Uniformly in x ∈ Z
2,

Jk,m,n(x) ≤ (1 + e8β−2h)
(7.5)

×
[
πn,h(Bk,m

+↔ ∂�r) + sup
x∈�r

πn,h(x
+↔ x + ∂�k/2)

]
,

Jk,m,n(x) ≤ (1 + e8β+2h)
(7.6)

×
[
πn,h(Bk,m

−↔∗ ∂�r) + sup
x∈�r

πn,h(x
−↔∗ x + ∂�m/2)

]
.

PROOF. Let h > 0. Let C+
x be the set of all vertices joined to x by a path of

vertices all of whose states are +1 (thus, C+
x = ∅ if σx = −1). We may couple the

conditioned measures πn,h(·|σx = b), b = ±1, such that the Ising equivalents of
(a)–(c) hold as in Section 6. As in (6.6),

Jk,m,n(x) ≤ πn,h(D
+
x )

πn,h(1x)
,(7.7)

where D+
x is the event that C+

x intersects both the left and right sides of Bk,m. On
D+

x , the radius of C+
x is at least 1

2k.
For x /∈ �r ,

πn,h(D
+
x ) ≤ πn,h(Bk,m

+↔ ∂�r).

For x ∈ �r , we shall use the bound

πn,h(D
+
x ) ≤ πn,h(x

+↔ x + ∂�k/2).

Combining the above inequalities with (7.2), we obtain (7.5).
Let C−

x be the set of all vertices joined to x by a ∗-connected path of vertices
all of whose states are −1. The event Hk,m occurs if and only if there is no −
∗-connected path from the top to the bottom of Bk,m. Therefore, the conditional
influence of x on Hk,m equals that of x on this new event. As in (7.7),

Jk,m,n(x) ≤ πn,h(V
−
x )

πn,h(1 − 1x)
,(7.8)

where V −
x is the event that C−

x intersects both the top and bottom of Bk,m. The
above argument leads now to (7.6). �

PROOF OF THEOREM 4.2. Let R > hc and δ > 0, and let k,m ≤ r < n. We
set

κδ
n,r,+ = 2(1 + e8β)

[
πn,hc−δ(Bk,m

+↔ ∂�r) + sup
x∈�r

πn,hc−δ(x
+↔ x + ∂�k/2)

]
,

κδ
n,r,− = 2(1 + e8β+2R)

×
[
πn,hc+δ(Bk,m

−↔∗ ∂�r) + sup
x∈�r

πn,hc+δ(x
−↔∗ x + ∂�m/2)

]
.
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Let 0 < h1 < hc < h2 ≤ R, and choose δ < min{hc − h1, h2 − hc}. By (7.1),
(7.3), Lemma 7.1 and Theorem 5.1, fn(h) = πn,h(Hk,m) satisfies

1

fn(h)(1 − fn(h))
· dfn

dh
≥ B+ log(1/κδ

n,r,+), h1 ≤ h ≤ hc − δ,(7.9)

where B+ = 2cξβ,hc , see (7.4). The corresponding inequality for hc + δ ≤ h ≤ R

holds with κδ
n,r,+ replaced by κδ

n,r,−, and B+ replaced by B− = 2cξβ,R .
We integrate (7.9) over the intervals (h1, hc −δ) and (hc +δ, h2), add the results,

and use the fact that fn(h) is nondecreasing in h, to obtain that

log
fn(h)

1 − fn(h)

∣∣∣∣
h2

h1

≥ (hc − δ − h1)B+ log(1/κδ
n,r,+)

+ (h2 − hc − δ)B− log(1/κδ
n,r,−).

Take the limits as n → ∞, r → ∞, and δ → 0 in that order, and use the monotonic-
ity in h of πβ,h, to obtain the theorem. �

8. The colored random-cluster model. There is a well known coupling of
the random-cluster and Potts models that provides a transparent explanation of how
the analysis of the former aids that of the latter. Formulated as in [14] (see also the
historical account of [19]), this is as follows. Let p ∈ (0,1) and q ∈ {2,3, . . .}.
Let ω be sampled from the random-cluster measure φp,q on the finite graph
G = (V ,E). To each open cluster of ω, we assign a uniformly chosen element
of {1,2, . . . , q}, these random spins being independent between clusters. The en-
suing spin-configuration σ on G is governed by a Potts measure, and pair-spin
correlations in σ are coupled to open connections in ω. This coupling has inspired
a construction that we describe next.

Let p ∈ (0,1), q ∈ (0,∞), and α ∈ (0,1). Let ω have law φp,q . To the ver-
tices of each open cluster of ω, we assign a random spin chosen according to the
Bernoulli measure on {0,1} with parameter α. These spins are constant within
clusters, and independent between clusters. We call this the colored random-
cluster model (CRCM). With σ the ensuing spin-configuration, we write κp,q,α

for the measure governing the pair (ω,σ ), and πp,q,α for the marginal law of σ .
When q ∈ {2,3, . . .} and qα and q(1 −α) are integers, the CRCM is a vertex-wise
contraction of the Potts model from the spin-space {1,2, . . . , q}V to  = {0,1}V .

The CRCM has been studied in [26] under the name “fractional fuzzy Potts
model,” and it is inspired in part by the earlier work of [13, 21, 22], as well as the
study of the so-called “divide-and-colour model” of [5].

The following seems to be known, see [13, 21, 22, 26], but the short proof given
below may be of value.

THEOREM 8.1. The measure πp,q,α is monotone for all finite graphs G and
all p ∈ (0,1) if and only if qα,q(1 − α) ≥ 1.
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We identify the spin-vector σ ∈  with the set A = {v ∈ V :σv = 1}. Let πh =
πp,q,α,h be the probability measure obtained from πp,q,α by including an external
field with strength h ∈ R,

πh(A) ∝ eh|A|πp,q,α(A), A ⊆ V.(8.1)

It is an elementary consequence of Theorem 8.1 and (8.1) that, when qα,q(1 −
α) ≥ 1, πh is a monotone measure, and πh is increasing in h. When q = 2 and
α = 1

2 , πh is the Ising measure with external field. The purpose of this section is to
extend the arguments of Section 4 to the CRCM with external field.

There is a special case of the CRCM with an interesting interpretation. Let ω

be sampled from φp,q as above, and let σ = (σv :v ∈ V ) be a vector of indepen-
dent Bernoulli (γ ) variables. Let B be the event that σ is constant on each open
cluster of ω. The pair (ω,σ ), conditional on B , is termed the massively colored
random-cluster measure (MCRCM). The law of σ is simply πp,2q,1/2,h where
h = log[γ /(1 − γ )].

Just as πp,q,α and φp,q may be coupled via κp,q,α , so we can couple πh with an
“edge-measure” φh = φp,q,α,h via the following process. With B given as above,
and (ω,σ ) ∈ B , denote by σ(C) the common spin-value of σ on an open cluster
C of ω. Let κh = κp,q,α,h be the probability measure on � ×  given by

κh(ω,σ ) ∝ φp,q(ω)1B(ω,σ )
∏
C

[(
αeh|C|)σ(C)

(1 − α)1−σ(C)],(8.2)

where the product is over the open clusters C of ω, and |C| is the number of
vertices of C. The marginal and conditional measures of κh are easily calculated.
The marginal on  is πh, and the marginal on � is φh = φp,q,α,h given by

φh(ω) ∝ φp,q(ω)
∏
C

[
αeh|C| + 1 − α

]
, ω ∈ �.(8.3)

Note that φ0 = φp,q . Given ω, we obtain σ by labeling the open clusters with
independent Bernoulli spins in such a way that the odds of cluster C receiving
spin 1 are αeh|C| to 1 − α.

By (8.1), or alternatively by summing κh(ω,σ ) over ω, we find that

πh(A) ∝ eh|A|(1 − p)|�A|ZA,qαZA,q(1−α), A ⊆ V,(8.4)

where �A is the set of edges of G with exactly one endvertex in A, and ZB,q is
the partition function of the random-cluster measure on the subgraph induced by
B ⊆ V with edge-parameter p and cluster-weight q . It may be checked as in the
proof of Theorem 8.1 that, for given p, q , α, the measure πh is bounded above
(resp., below) by a product measure with parameter a(h) [resp., b(h)] where

a(−h) → 0, b(h) → 1, as h → ∞.(8.5)

The measure φh has a number of useful properties, following.
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PROPOSITION 8.1. Let qα,q(1 − α) ≥ 1.

(i) The probability measure φh is monotone.
(ii) The marginal measure of κh on �, conditional on σx = b, satisfies

κh(·|σx = 1) ≥st κh(·|σx = 0), h ≥ 0,

κh(·|σx = 1) ≤st κh(·|σx = 0), h ≤ 0.

(iii) If p1 ≤ p2 and the ordered three-item sequence (0, h1, h2) is monotonic,
then φp1,q,α,h1 ≤st φp2,q,α,h2 .

(iv) We have that φp,q,α,h ≤st φp,Q, where Q = Q(h) is defined by

Q(h) =
⎧⎨
⎩

qα, h > 0,
q, h = 0,
q(1 − α), h < 0.

We assume henceforth that qα,q(1 − α) ≥ 1, and we consider next the infinite-
volume limits of the above measures. Let G be a subgraph of the square lattice Z

2

induced by the vertex-set V , and label the above measures with the subscript V .
By standard arguments (see [19], Chapter 4), the limit measure

φh = lim
V ↑Z2

φV,h

exists, is independent of the choice of the V , and is translation-invariant and er-
godic. By an argument similar to that of [19], Theorem 4.91, the measures πV,h

have a well-defined infinite-volume limit πh as V ↑ Z
2. Furthermore, the pair

(φh,πh) may be coupled in the same manner as on a finite graph. That is, a fi-
nite cluster C of ω receives spin 1 with probability αeh|C|/[αeh|C| + 1 − α]. An
infinite cluster receives spin 1 (resp., 0) if h > 0 (resp., h < 0). When h = 0, the
spin of an infinite cluster has the Bernoulli distribution with parameter α.

Since φh is translation-invariant, so is πh. As in [19], Theorem 4.10, πh is pos-
itively associated, and the proof of [19], Theorem 4.91, may be adapted to obtain
that πh is ergodic. By a simple calculation, the πV,h have the finite-energy prop-
erty, with bounds that are uniform in V (see [19], Equation (3.4)), and therefore so
does πh. Adapting the notation used in Section 4 for the Ising model, let

θ1(p, q,α,h) = πh(0
1↔ ∞),

θ0(p, q,α,h) = πh(0
0↔∗ ∞).

As in Theorem 4.1, and with an essentially identical proof,

θ1(p, q,α,h)θ0(p, q,α,h) = 0.(8.6)

By the remark after (8.1) and [19], Theorem 4.10, πh is stochastically increasing
in h, whence there exists hc = hc(p, q,α) ∈ R ∪ {±∞} such that

θ1(p, q,α,h)

{= 0, if h < hc,
> 0, if h > hc.
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By comparisons with product measures [see the remark prior to (8.5)], we have
that |hc| < ∞.

We call a probability measure μ on  subcritical (resp., supercritical) if the μ-
probability of an infinite 1-cluster is 0 (resp., strictly greater than 0); we shall use
the corresponding terminology for measures on �. There is a second type of phase
transition, namely the onset of percolation in the measure φh. An infinite edge-
cluster under φh forms part of an infinite vertex-cluster under πh. Let pc(q) be
the critical point of the random-cluster measure φp,q on Z

2, as usual. By Proposi-
tion 8.1(iv), φh is subcritical for all h when p < pc(q min{α,1 −α}); in particular,
for such p, φh is subcritical for h lying in some open neighborhood of hc. On the
other hand, suppose that φ0 = φp,q is supercritical. By the remarks above, θ1 > 0
for h > 0, and θ0 > 0 for h < 0. By (8.6), θ1 is discontinuous at h = hc = 0. By
Proposition 8.1(iii), φh ≥st φ0, whence θ1 is discontinuous at h = hc = 0 whenever
p > pc(q).

With k,m ∈ N, let Hk,m be the event that there exists a left–right 1-crossing of
the box Bk,m. A result corresponding to Theorem 4.2 holds, subject to a condition
on φh with h near hc. This condition has not, to our knowledge, been verified for
the Ising model, although it is expected to hold. In this sense, the next theorem
does not quite generalize Theorem 4.2.

THEOREM 8.2. Let R ≥ 0. When hc �= 0, we require in addition that R ≤
|hc|. Suppose that φh is subcritical for h ∈ [hc − R,hc + R]. There exist ρi,1 =
ρi,1(p, q,α,R) and ρi,0 = ρi,0(p, q,α,R) satisfying

ρi,1ρi,0 → 0 as i → ∞,

such that: for h1 ∈ [hc − R,hc], h2 ∈ [hc, hc + R],
πh1(Hk,m)[1 − πh2(Hk,m)] ≤ ρ

hc−h1
k,1 ρ

h2−hc
m,0 , k,m ≥ 1.

As in the proof of Theorem 4.2, the first step is to establish bounds on the one-
point marginals of πh. This may be strengthened to a finite-energy property, but
this will not be required here. The proof is deferred to the end of the section.

LEMMA 8.1. Let G = (V ,E) be a finite graph with maximum vertex-degree
�. Then

αeh

αeh + 1 − α
(1 − p)� ≤ πh(σx = 1) ≤ 1 − 1 − α

αeh + 1 − α
(1 − p)�.

Consider the subgraph of Z
2 induced by �n = [−n,n]d , and let x ∈ �n. Objects

associated with the finite domain �n are labeled with the subscript n. For b = 0,1,
let πb

n,h (resp., φb
n,h) be the marginal measure on n (resp., �n) of the coupling

κn,h conditioned on σx = b.
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By Proposition 8.1, φ1
n,h ≥st φ0

n,h when h ≥ 0, and φ1
n,h ≤st φ0

n,h when h ≤
0. It is convenient to work with a certain coupling of the pairs (φ0

n,h,π
0
n,h)

and (φ1
n,h,π

1
n,h). Recall that Cx(ω) denotes the open cluster at x in the edge-

configuration ω ∈ �.

LEMMA 8.2. Let h ∈ R. There exists a probability measure κ01
n,h on (�n ×

n)
2 with the following properties. Let (ω0, σ 0,ω1, σ 1) be sampled from (�n ×

n)
2 according to κ01

n,h.

(i) For b = 0,1, ωb has law φb
n,h.

(ii) For b = 0,1, σb has law πb
n,h.

(iii) If h ≤ 0, ω0 ≥ ω1. If h ≥ 0, ω1 ≥ ω0.
(iv) The spin configurations σ 0 and σ 1 agree at all vertices y /∈ Cx(ω

0) ∪
Cx(ω

1).

PROOF. Assume first that h ≥ 0. There exists a probability measure φn on
�2

n, with support D1 = {(ω0,ω1) ∈ �2
n :ω0 ≤ ω1}, whose first (resp., second) mar-

ginal is φ0
n,h (resp., φ1

n,h). By sampling from φn in a sequential manner beginning
at x, and proceeding via the open connections of the upper configuration, we
may assume in addition that (ω0,ω1) ∈ D2, where D2 is the set of pairs such
that ω0(e) = ω1(e) for any edge e having at most one endpoint in Cx(ω

1). Let
(ω0,ω1) ∈ D = D1 ∩ D2.

The spin vectors σb may be constructed as follows:

(a) attach spin b to the cluster Cx(ω
b),

(b) attach independent Bernoulli spins to the other ωb-open clusters in such a
way that the odds of cluster C receiving spin 1 are αeh|C| to 1 − α.

We may assign spins σb to the open clusters of the ωb in such a way that: σb has
law πb

n,h, and σ 0
y = σ 1

y for y /∈ Cx(ω
1). Write κ01

n,h for the joint law of the ensuing
pairs (ω0, σ 0), (ω1, σ 1).

When h ≤ 0, let κ01
n,h be the coupling as above, with the differences that: ω0 ≥

ω1, and σ 0
y = σ 1

y for y /∈ Cx(ω
0). �

We seek next a substitute for Lemma 7.1 in the current setting. Let Jk,m,n(x)

be the conditional influence of vertex x on the event Hk,m, with reference measure
πn,h on �n.

Let (ω0, σ 0,ω1, σ 1) be sampled according to the measure κ01
n,h of Lemma 8.2.

Define random clusters CH
x ,CV

x ⊆ Z
2 as follows,

CH
x (ω0, σ 0,ω1, σ 1) := {z ∈ Z

2 :∃y ∈ Cx(ω
0), y

1↔ z in σ 1},
CV

x (ω0, σ 0,ω1, σ 1) := {z ∈ Z
2 :∃y ∈ Cx(ω

1), y
0↔∗ z in σ 0}.
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Notice that, if h ≥ 0 (resp., h ≤ 0), CH
x (resp., CV

x ) is the spin-1 cluster (resp.,
spin-0 ∗-cluster) at x under σ 1 (resp., σ 0). It may be checked as before that:

Jk,m,n(x) ≤ κ01
n,h(C

H
x contains a horizontal crossing of Bk,m),(8.7)

Jk,m,n(x) ≤ κ01
n,h(C

V
x contains a vertical ∗-crossing of Bk,m).(8.8)

The notation CH
x , CV

x is introduced in order to treat the cases h > 0 and h < 0
simultaneously.

LEMMA 8.3. Let R be as in Theorem 8.2.

(i) If θ1(p, q,α,hc) = 0, and φh is subcritical for h ∈ [hc −R,hc], there exists
νk,1 satisfying νk,1 → 0 as k → ∞ such that

lim sup
n→∞

sup
h∈[hc−R,hc]

sup
x∈�n

Jk,m,n(x) ≤ νk,1.

(ii) If θ0(p, q,α,hc) = 0, and φh is subcritical for h ∈ [hc, hc +R], there exists
νm,0 satisfying νm,0 → 0 as m → ∞ such that

lim sup
n→∞

sup
h∈[hc,hc+R]

sup
x∈�n

Jk,m,n(x) ≤ νm,0.

PROOF. We prove part (i) only, the proof of (ii) being similar. If [hc −R,hc] ⊆
[0,∞), let φ = φhc ; if [hc −R,hc] ⊆ (−∞,0], let φ = φhc−R . By Proposition 8.1,
and the assumptions of (i),

(a) φn,h ≤st φ for n ≥ 1 and h ∈ [hc − R,hc],
(b) φ is subcritical,
(c) πhc is subcritical, and πn,h ≤st πn,hc for h ∈ [hc − R,hc].

By Lemma 8.1, there exists L > 0 such that

πn,h(σx = 1)πn,h(σx = 0) ≥ L(8.9)

for all n ≥ 1, x ∈ �n, and h ∈ [hc − R,hc + R]. Let

Ax(ω) = sup{r ≥ 0 :x ↔ x + ∂�r}
denote the radius rad(Cx) of the edge cluster Cx = Cx(ω) at x, and note that
φ(Ax < ∞) = 1.

Let r ≥ max{k,m} and x ∈ �r . By (8.7) and the positive association of π1
n,h,

and as in (6.6),

Jk,m,n(x) ≤ κ01
n,h

(
rad(CH

x ) ≥ k/2
)

≤
∞∑

a=0

φ0
n,h(Ax = a)α1

n,h(x, a, k/2)

≤ 1

L

∞∑
a=0

φn,h(Ax = a)αn,h(x, a, k/2),
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where

α
ξ
n,h(x, a, b) = π

ξ
n,h(x + �a

1↔ x + ∂�b|σy = 1 for y ∈ x + �a).

Since αn,h(x, a, b) is nondecreasing in a, and furthermore φn,h ≤st φ and φ is
translation-invariant,

sup
x∈�r

Jk,m,n(x) ≤ 1

L

∞∑
a=0

φ(A0 = a) sup
x∈�r

{αn,h(x, a, k/2)}.(8.10)

By (8.9) and the fact that πn,h ≤st πn,hc ,

αn,h(x, a, k/2) ≤ min
{

1,
1

L|�r | πn,hc(x + �a
1↔ x + ∂�k/2)

}
.(8.11)

Suppose now that x ∈ �n \ �r . Then

Jk,m,n(x) ≤ κ01
n,h(C

H
x ∩ Bk,m �= ∅)

≤
∞∑

a=0

φ0
n,h(Ax = a)β1

n,h(x, a)

≤ 1

L

∞∑
a=0

φn,h(Ax = a)βn,h(x, a),

where

β
ξ
n,h(x, a) = π

ξ
n,h(x + �a

1↔ Bk,m|σy = 1 for y ∈ x + �a)

is a nondecreasing function of a. Since φn,h ≤st φ, and φ is translation-invariant,

Jk,m,n(x) ≤ 1

L

∞∑
a=0

φ(A0 = a)βn,h(x, a).

As above,

βn,h(x, a) ≤ 1

L|�a | πn,h(x + �a
1↔ Bk,m)

≤ 1

L|�a | πn,h(Bk,m
1↔ ∂�r−a) if a ≤ r,

whence

Jk,m,n(x) ≤ 1

L

∞∑
a=0

φ(A0 = a)min
{

1,
1

L|�a | πn,hc(Bk,m
1↔ ∂�r−a)

}
,(8.12)

where the minimum is interpreted as 1 when a > r .
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We add (8.10)–(8.11) and (8.12), and take the limit n → ∞, to obtain by the
bounded convergence theorem that

lim sup
n→∞

sup
x∈�n

Jk,m,n(x)

≤ 1

L

[ ∞∑
a=0

φ(A0 = a)min
{

1,
1

L|�a | πhc(x + �a
1↔ ∂�k/2)

}

+
∞∑

a=0

φ(A0 = a)min
{

1,
1

L|�a | πhc(Bk,m
1↔ ∂�r−a)

}]
.

We now send r → ∞. Since θ1(p, q,α,hc) = 0 by assumption, the last sum-
mand tends to 0. By the bounded convergence theorem,

lim sup
n→∞

sup
x∈�n

Jk,m,n(x) ≤ νk,1,(8.13)

where

νk,1 = 1

L

∞∑
a=0

φ(A0 = a)min
{

1,
1

L|�a | πhc(x + �a
1↔ ∂�k/2)

}
.

By the bounded convergence theorem again, νk,1 → 0 as k → ∞. Since (8.10)–
(8.11) and (8.12) are uniform in h ∈ [hc − R,hc], one may include the supremum
over h in (8.13), as required for the lemma. �

PROOF OF THEOREM 8.2. Let fn(h) = πn,h(Hk,m). By (5.3) and Lemma 8.1,

1

fn(h)[1 − fn(h)]
d

dh
fn(h) ≥ cL log

[
1

2 maxx Jk,m,n(x)

]
,(8.14)

with L as in the proof of Lemma 8.3. Let

ξn,k,1 = sup
h∈[hc−R,hc]

sup
x∈�n

2Jk,m,n(x), ξn,m,0 = sup
h∈[hc,hc+R]

sup
x∈�n

2Jk,m,n(x).

By (8.14),

log
fn(h)

1 − fn(h)

∣∣∣∣
h2

h1

≥ (hc − h1)cL log(ξ−1
n,k,1) + (h2 − hc)cL log(ξ−1

n,m,0),

whence

fn(h1)[1 − fn(h2)] ≤ ξ
cL(hc−h1)
n,k,1 ξ

cL(h2−hc)
n,m,0 .

Take the limit as n → ∞ and use Lemma 8.3. �

PROOF OF PROPOSITION 8.1. A strictly positive measure μ on � = {0,1}E
is monotone if and only if: for all ω ∈ � with ω(e) = ω(f ) = 0, e �= f ,

μ(ωe,f )μ(ω) ≥ μ(ωe)μ(ωf ),(8.15)
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see, for example, [19], Theorem 2.19. Given two strictly positive measures μ1 and
μ2, at least one of which is monotone, it is sufficient for μ1 ≤st μ2 that:

μ1(ω
e)

μ1(ω)
≤ μ2(ω

e)

μ2(ω)
, ω ∈ �, e ∈ E.(8.16)

This is proved in [19], Theorem 2.6. Condition (8.16) is nontrivial only when
ω(e) = 0.

We shall prove (i) by checking that φh satisfies (8.15). Write C(ω) for the set of
open clusters under ω, and let fh(k) = αehk +1−α. Substituting (8.3) into (8.15),
we must check

φp,q(ωe,f )φp,q(ω)
∏

C∈C(ωe,f )

fh(|C|) ∏
C∈C(ω)

fh(|C|)
(8.17)

≥ φp,q(ωe)φp,q(ω
f )

∏
C∈C(ωe)

fh(|C|) ∏
C∈C(ωf )

fh(|C|).

On using the monotonicity of φp,q , and on canceling the factors fh(|C|) for C ∈
C(ω) ∩ C(ωe,f ), we arrive at the following three cases.

(i) There are clusters C1,C2 ∈ C(ω), such that C1 ∪ C2 ∈ C(ωe) = C(ωf ). It
suffices that

qfh(a)fh(b) ≥ fh(a + b), a = |C1|, b = |C2|,
and this is easily checked for a, b ≥ 0 since qα,q(1 − α) ≥ 1.

(ii) There are clusters C1,C2,C3 ∈ C(ω), such that C1 ∪ C2 ∈ C(ωe) and C2 ∪
C3 ∈ C(ωf ). It suffices that

fh(a + b + c)fh(b) ≥ fh(a + b)fh(b + c), a = |C1|, b = |C2|, c = |C3|,
and this is immediate.

(iii) There are clusters C1,C2,C3,C4 ∈ C(ω) such that C1 ∪ C2 ∈ C(ωe) and
C3 ∪ C4 ∈ C(ωf ). In this case, inequality (8.17) simplifies to a triviality.

It may be checked similarly that the marginal measure of κh( ·|σx = b) on � is
monotone if either h ≥ 0, b = 1 or h ≤ 0, b = 0. One uses the expression

κh(ω|σx = b) ∝ φp,q(ω)ehb|Cx(ω)| ∏
C∈C(ω)\{Cx(ω)}

fh(|C|), ω ∈ �.

Parts (ii) and (iii) then follow by checking (8.16) with appropriate μi . Part (iv)
follows from part (iii) by taking the limit as |h| → ∞. Many of the required calcu-
lations are rather similar to part (i), and we omit further details. �

PROOF OF THEOREM 8.1. We identify the spin-vector σ ∈  with the set
A = {v ∈ V :σv = 1}. In order that π = πp,q,α be monotone, it is necessary and
sufficient [see inequality (8.15)] that

π(Axy)π(A) ≥ π(Ax)π(Ay), A ⊆ V, x, y ∈ V \ A, x �= y.(8.18)
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Let A ⊆ V , x, y ∈ V \ A, x �= y. Let a be the number of edges of the form 〈x, z〉
with z ∈ A, let b be the number of edges of the form 〈x, z〉 with z /∈ A and z �= x, y,
and let e be the number of edges joining x and y.

We write Ax = A ∪ {x}, etc. By (8.4) with h = 0,

π(Ax)

π(A)
= (1 − p)b+e−a

ZAx,qαZAx,q(1−α)

ZA,qZA,q(1−α)

= α

1 − α
· φA,q(1−α)(Ix)

φAx,qα(Ix)
,

where Ix is the event that x is isolated, and φA,q is the random-cluster measure on
the subgraph induced by vertices of A with edge-parameter p and cluster-weight q .
Similarly,

π(Axy)

π(Ay)
= α

1 − α
· φAy,q(1−α)(Ix)

φAxy,qα(Ix)
.

The ratio of the left to the right-hand sides of (8.18) is

φAx (Ix)

φAxy (Ix)
· φAy (Ix)

φA(Ix)
= φAxy,qα(Ix |Iy)

φAxy,qα(Ix)
· φA,q(1−α)(Ix |Iy)

φA,q(1−α)(Ix)
.(8.19)

Inequality (8.18) holds by the positive association of random-cluster measures with
cluster-weights at least 1.

That the conditions are necessary for monotonicity follows by an example. Sup-
pose 0 < qα < 1 and q(1 − α) ≥ 1. Let G be a cycle of length four, with vertices
(in order, going around the cycle) u,x, v, y. Take A = {u, v} above, so that e = 0.
The final ratio in (8.19) equals 1, and the penultimate is strictly less than 1. �

PROOF OF LEMMA 8.1. By Proposition 8.1(iv) and inequality (6.1),

φh(Ix) ≥ φp,Q(Ix) ≥ (1 − p)�,

where Ix is the event that x is isolated. Conditional on Ix , the spin of x under the
coupling κh has the Bernoulli distribution with parameter αeh/[αeh + 1 − α]. �
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