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VRRW ON COMPLETE-LIKE GRAPHS: ALMOST SURE
BEHAVIOR

BY VLADA LIMIC AND STANISLAV VOLKOV
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By a theorem of Volkov [12] we know that on most graphs with positive
probability the linearly vertex-reinforced random walk (VRRW) stays within
a finite “trapping” subgraph at all large times. The question of whether this
tail behavior occurs with probability one is open in general. In his thesis, Pe-
mantle [5] proved, via a dynamical system approach, that for a VRRW on any
complete graph the asymptotic frequency of visits is uniform over vertices.
These techniques do not easily extend even to the setting of complete-like
graphs, that is, complete graphs ornamented with finitely many leaves at each
vertex. In this work we combine martingale and large deviation techniques to
prove that almost surely the VRRW on any such graph spends positive (and
equal) proportions of time on each of its nonleaf vertices. This behavior was
previously shown to occur only up to event of positive probability (cf. Volkov
[12]). We believe that our approach can be used as a building block in study-
ing related questions on more general graphs. The same set of techniques is
used to obtain explicit bounds on the speed of convergence of the empirical
occupation measure.

1. Introduction. Consider a complete-like graph Gd with d ≥ 2 interior ver-
tices (or sites) and ri ≥ 0 exterior vertices or leaves attached to the ith interior site,
i ∈ {1, . . . , d}. More precisely, denote by Vd = {1,2, . . . , d, �1

1, . . . , �
1
r1

, . . . , �d
1 ,

. . . , �d
rd

} the set of sites of Gd , and by Ed the set of its edges. Typically we de-
note the edge connecting two different sites v and w by {v,w}. Any two sites that
share an edge are called neighbors. If v and w are neighbors we also write v ∼ w.
Then Ed consist of d(d − 1)/2 edges connecting each pair of interior sites, as well
as of the edges {i, �i

r}, for each i ∈ {1, . . . , d} and r = 1, . . . , ri . We will refer to �i
r

as the r th leaf attached to the interior vertex i. It is possible that ri = 0 for some i,
in which case there is no leaf attached to i. If ri = 0, for all i = 1, . . . , d , then Gd is
the complete graph on d vertices. Any graph from the above class can be viewed
as a “perturbation” of the complete graph.

We start by recalling the (discrete-time) linearly vertex reinforced random walk
(VRRW) (see, e.g., [6]). This process can be constructed on general bounded de-
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gree graphs, but since the current work concerns VRRW on complete-like graphs
given above, the definition below can be read with this special setting in mind.

The time t will run through positive integers. We denote by X(t) the position
(site) of the walk at time t . Assume that z(0, v) are given positive integer quantities.
For example, it could be z(0, v) ≡ 1, v ∈ Vd . Without loss of generality, we can
assume that the initial time is t0 =∑v∈Vd

z(0, v). Let Z(t, v) equal z(0, v) plus
the number of visits to vertex v ∈ Vd up to time t , t ≥ t0. Note that in this way we
have

∑
v∈Vd

Z(t, v) ≡ t for t ≥ t0. Denote by (Ft , t ≥ t0) the filtration generated
by (X(t), t ≥ t0) (or equivalently by (Z(t, v), t ≥ t0), v ∈ Vd ) up to time t . Then
on the event {X(t) = v} the transitions of our process are given by

P
(
X(t + 1) = w|Ft

)= Z(t,w)∑
y∈Vd :y∼v Z(t, y)

(1.1)

for all w ∈ Vd , w ∼ v. In particular, when at �i
r , the walk must return to i in the

next step.
Let

π(t) = 1

t
(Z(t,1),Z(t,2), . . . ,Z(t, d),

Z(t, �1
1), . . . ,Z(t, �1

r1
), . . . ,Z(t, �d

1), . . . ,Z(t, �d
rd

))

be the occupation measure generated by the VRRW above at time t , determined
by the vector of its atoms. Let π∞ = limt→∞ π(t) be the asymptotic occupation
measure on the event where this limit exists, and set π∞ = (0,0, . . . ,0) on the
complement. Note that π(t) ∈ R

|Vd |, for all t , where |Vd | := d +∑d
i=1 ri , and we

use this fact without further mention. Set

πunif :=
(

1

d
,

1

d
, . . . ,

1

d
,0, . . . ,0

)
,

where the initial d coordinates are positive, and the other
∑d

i=1 ri are equal to 0.
The first goal of this paper is to prove

THEOREM 1. For VRRW on Gd , d ≥ 3, we have P(π∞ = πunif) = 1.

The next statement is related to the slow speed of convergence noticed by Pe-
mantle and Skyrms in [7]. Denote by ‖ · ‖ = ‖ · ‖∞ the maximum norm on R

|Vd |.

THEOREM 2. Let Gd be the complete-like graph on d ≥ 3 vertices. Then for
any δ > 0

P

(
lim sup
t→∞

‖π(t) − πunif‖t1/3−δ < ∞
)

= 1 if d = 3,4,(1.2)

P

(
lim sup
t→∞

‖π(t) − πunif‖t1/(d−1) < ∞
)

= 1 if d ≥ 5.(1.3)
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Moreover, for each d ≥ 3, if |Vd | ≥ d + 1 (there exists at least one leaf) and any
δ > 0

P

(
lim inf
t→∞ ‖π(t) − πunif‖t (d−2)/(d−1)+δ = ∞

)
= 1.(1.4)

In particular, the empirical occupation measure converges to πunif at least as fast
as an inverse of a certain power function, and not faster than an inverse of another
power function (provided |Vd | > 0). Note that (1.4) gives an upper bound on the
power exponent which is strictly smaller than 1. To the best of our knowledge, this
is the first rigorous result verifying “slow convergence” for this class of models.
However, the problem of finding a lower bound on the speed in the case of the
complete graph is still open, and we believe that the true rate of convergence is
closer to the one in (1.2) and (1.3). We wish to point out that computer simulations
seem to be misleading in predicting/confirming any of the above results, due to
the slow speed of convergence. With this in mind, it is worth mentioning that our
computer simulations seem to suggest that for d = 3

log M(‖π(t) − πunif‖)
log t

→ −1

2
,

where M(X) stands for the median of a random variable X. The special case d = 2
will be discussed in Section 3.4.

There exist a few mathematical results on the asymptotic behavior of VRRW
preceding this work. As mentioned in the abstract, Pemantle [5] proved that on any
complete graph the asymptotic frequencies of visits by the VRRW are the same for
all vertices. The papers [8] and [11] study the VRRW on the integers Z. Pemantle
and Volkov [8] prove that this VRRW cannot get trapped on a subgraph spanned
by 4 sites, and moreover that it gets trapped on a random subgraph spanned by 5
subsequent sites with a positive probability. Tarrès [11] proved that this striking
behavior occurs almost surely, using subtle martingale and coupling techniques.

A study by Volkov [12] exhibits a family of “trapping subgraphs” for the VRRW
on a general graph, where the range of the VRRW is contained in any such sub-
graph. Recent results of Benaïm and Tarrès [2] show similar localization phenom-
enon for certain natural generalizations of VRRW. The asymptotic results in both
[2] and [12] are shown to hold only on an event of positive probability. Volkov [13]
initiated the analysis of nonlinearly reinforced VRRW. His analysis mostly con-
centrated on the power-law reinforcement functions and the VRRW on Z. Many
interesting open questions remain.

The rest of the paper is organized as follows. Sections 1.1–1.3 recall a few tech-
niques used in related settings, and establish some preliminary results. In Section 2
we introduce a modified VRRW on a triangle with one special (more reinforced)
vertex and study the asymptotics of weights on the nonspecial vertices. Section 3
contains the proof of Theorem 1 in the general (and novel) case of complete-like
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graphs Gd , and Section 4 discusses some generalizations for d-partite graphs with
leaves. Finally, in Section 5 we show Theorem 2.

We will use the symbol ∧ (resp., ∨) to denote the operation of taking the min-
imum (resp., maximum) of two or more numbers. For f and g, two sequences
of positive functions defined on the positive reals, we write f (t) = O(g(t)) if
lim supt f (t)/g(t) is finite, g(t) � f (t) or f (t) = �(g(t)) if both f (t) = O(g(t))

and g(t) = O(f (t)), and f (t) = o(g(t)) if limt f (t)/g(t) = 0. The above nota-
tions extend in a straightforward way to the stochastic setting.

1.1. Multi-color Pólya urns and VRRW on complete graphs. We devote this
short subsection to a calculation that will hopefully both stimulate the reader’s in-
terest in the problem, and point out some of the difficulties awaiting. In addition,
we will use a modification of the supermartingale below in arguments of Section 3.
Fix d ≥ 2, and let � be the d-color Pólya urn started with one ball of each color.
In particular, at each step, one ball is drawn from the urn at random, and it is
placed back immediately together with another ball of the same color. As usual,
let the initial time be d , and for each time t ≥ d denote by �i(t) the number of
balls of color i, i = 1, . . . , d in the urn at time t . In this way

∑d
i=1 �i(t) = t al-

ways. A slick way (see [12], Section 2.1) to prove convergence of the frequencies
�i(t)/t , i = 1, . . . , d , to nontrivial (nonzero, a.s.) random variables is via the fol-
lowing martingale method. Using classical martingales �i(t)/t for showing this
convergence is not optimal for showing that the limit is nonzero, almost surely.
Define

Mi(t) := log(t) − log
(
�i(t) − 1

)
,

and then check that the drift of this process equals

E
(
Mi(t + 1) − Mi(t)|Ft

)= log
(

1 + 1

t

)
− �i(t)

t
log
(

1 + 1

�i(t) − 1

)
,

and is therefore almost surely negative. Thus Mi(t) is a nonnegative supermartin-
gale and it converges almost surely to a finite quantity, hence �i(t)/t converges
almost surely to a positive quantity.

Next consider the VRRW on complete graph with d vertices. The only differ-
ence of transitions of (Z(t,1), . . . ,Z(t, d)) from those of (�1(t), . . . ,�d(t)) is
that �i(t + 1) becomes 1 + �(t) with probability proportional to �i(t) no matter
which ball was drawn at time t − 1, while Z(t + 1, i) becomes 1 + Z(t, i) with
probability proportional to Z(t, i) only if the current position of the VRRW is not
i; in turn this proportion is taken with respect to the values at all but the currently
visited site. If one tries simply to recycle the above supermartingale by subtracting
a drift increment of order 1/t at each time t when Z(t, i) = Z(t − 1, i) + 1, then
on the event that Z(t, i) is asymptotically of order larger than t/ log(t) [this hap-
pens, since Z(t, i) ∼ t/d , a.s.] the sum of the drift increments diverges and it not
possible to conclude convergence of Mi(t). One could think that there should be a
simple way to overcome the above difficulty, but we are not aware of one.
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1.2. Large deviation tools. Part of our analysis (cf. Section 3.3) will use the
strategy of Volkov [12] (see also [2]).

We recall the following classical facts. Let ξi be i.i.d. random variables with
P{ξi = 1} = 1 − P{ξi = 0} = p ∈ (0,1). Define for a,p ∈ (0,1),

H(a,p) := a log
a

p
+ (1 − a) log

1 − a

1 − p
≥ 0.(1.5)

Recall an elementary fact from large deviation theory (see, e.g., [9]): for any a+ ∈
[p,1) and any a− ∈ (0,p], we have

P

{
1

n

n∑
i=1

ξi ≥ a+
}

≤ e−nH(a+,p), P

{
1

n

n∑
i=1

ξi ≤ a−
}

≤ e−nH(a−,p).(1.6)

It is easy to verify (see also Propositions 2.2 and 2.3 in [12]) that

H(a,p) = δ2

2p(1 − p)
+ �

(
δ3

p2(1 − p)2

)
if a = p ± δ, where δ  1 and

(1.7)
H(a,p) = p(r log r − r + 1) + �(p2)

if a = rp, r = �(1), and a ∨ p  1.

1.3. Urn and martingale tools. We start by recalling the results on urns from
Pemantle and Volkov [8]. We will often use them directly in coupling arguments;
however we will also need to generalize Theorem 3 below (see Lemma 1) during
the course of our analysis.

The urn model defined below generalizes both the (original) Pólya and the
Friedman urn, and it is sometimes referred to as the generalized Pólya urn. Con-
sider the dynamics

(Xn+1, Yn+1) = (Xn + a,Yn + b) with probability
Xn

Xn + Yn

,

(1.8)

(Xn+1, Yn+1) = (Xn + c,Yn + d) with probability
Yn

Xn + Yn

.

We do not necessarily assume that the random numbers Xn,Yn (of balls) are inte-
ger valued. When

(a
c

b
d

)
is a multiple of the identity matrix (resp., a = d and b = c

are all nonzero), we recover Pólya’s (resp., Friedman’s) urn. In all cases where(a
c

b
d

)
has a left eigenvector (v1, v2) with positive components and abcd > 0,

Freedman’s analysis [3] can be carried through to show that Xn/(Xn + Yn) con-
verges a.s. to v1/(v1 + v2). When a > d,b > 0 and c = 0 the urn is still Friedman
like: although (0,1) is an eigenvector, it is easy to see that the principal eigen-
vector is (a − d, b) and that Xn/(Xn + Yn) → (a − d)/[(a − d) + b] a.s. The
case ad = bc = 0 is trivial, so we are left with the cases ad > 0 = b = c and
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ad > 0 = bc < b + c. Multiplication of
(a
c

b
d

)
by a constant does not affect the

asymptotic behavior. Due to symmetry, the interesting behavior is captured in the
following two theorems.

THEOREM 3 ([8], Theorem 2.2). Suppose a > d = 1, and b = c = 0. Then
logXn/ logYn → a.

THEOREM 4 ([8], Theorem 2.3). Suppose a = d = 1, b = 0 and c > 0. Then
Xn/(cYn) − logYn converges to a random limit in (−∞,∞).

REMARK 1. (1) Theorem 3 implies that for any ε > 0 we have X
(1/a−ε)
n ≤

Yn ≤ X
(1/a+ε)
n for all large n, almost surely. Since Xn +Yn � n, this easily implies

that Xn is equal to a · n plus lower order terms, while Yn is asymptotically equal
to n1/a multiplied by a random factor An, where for any ε > 0 An ∈ (n−ε, nε) for
all large n.

(2) The result in Theorem 4 may be more surprising, in that it shows Yn to be
of the order n/ logn multiplied by a specific constant, with a random lower order
correction. That is, Xn is asymptotically cYn(A + logYn), where A is a random
constant. This class of urns was used in [8] to prove that VRRW on Z cannot get
trapped on a subgraph spanned by 4 subsequent points. Note that in the special case
c = 1, the urn process corresponds to a VRRW on the graph G with V (G) = {u, v},
having one edge between u and v and one loop connecting u to itself, observed at
the times of successive visits to vertex u. Thus VRRW on this G spends roughly
n/ logn units of time at v up to time n.

(3) Both of the above theorems can be derived using an elegant method of
Athreya and Ney [1], by embedding the urn into a continuous time multi-type
branching process. However, the proof by embedding (see also [4] for recent
progress) is much less robust to “variations” in dynamics than the martingale
proofs of [8]. One such variation is the setting where some (or all) of the para-
meters a, b, c, d are perturbed about fixed values (their means), and where the
distribution of these random perturbations varies over time. Section 2 is devoted
to proving some extensions in this direction that turn out to be essential for our
analysis.

In the current work, we will repeatedly bound the lim sup (by a finite random
quantity) of a process that has supermartingale increments whenever its value is
sufficiently large via a separate martingale technique (see Chapter 4 of [10] for a
similar idea in a somewhat simpler setting).

In our general setting, we are given (ξn, n ≥ 0), a discrete-time process (not nec-
essarily bounded below nor above), adapted to a filtration (Fn, n ≥ 0). In addition,
suppose there exists a, b ∈ R, b > 0 such that:
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(1) ξ has supermartingale increments on [a,∞), that is,

E
(
(ξk+1 − ξk)1{ξk≥a}|Fk

)≤ 0;(1.9)

(2) the overshoot of ξ across a is asymptotically bounded by b, that is,

o∗(a) := lim sup
k

1{ξk<a<ξk+1}(ξk+1 − a) ≤ b almost surely;(1.10)

(3) the tail variance of ξ on [a,∞) is finite, that is,∑
k

E
[
(	ξk)

21{ξk≥a}
]
< ∞ where 	ξk := ξk+1 − ξk.(1.11)

LEMMA 1. Under the above assumptions

ξ∗ := lim sup
n→∞

ξn < ∞, a.s.

PROOF. Due to shift and scaling, without loss of generality (WLOG) we may
assume that a = −1 and b = 1. Next fix a small δ > 0, and define

B
(n)
δ =

{
sup
k≥n

1{ξk<−1<ξk+1}
(
ξk+1 − (−1)

)≤ 1 + δ
}
.

Property (1.10) can be restated as limn→∞ P(B
(n)
δ ) = 1. We shall now introduce

an auxiliary process

ξ ′,(n,δ) ≡ xi′ := (ξ ′
k, k ≥ n),

adapted to the filtration generated by (ξk, k ≥ n), and such that the three properties
(1.9)–(1.11) hold for ξ ′, with a = δ and b = 0. Moreover, the inequality in (1.9)
for ξ ′ becomes equality

E
(
(ξ ′

k+1 − ξ ′
k)1{ξ ′

k≥δ}|Fk

)= 0, k ≥ n,(1.12)

and also

B
(n)
δ ⊂ ⋂

k≥n

{ξk ≤ ξ ′
k} almost surely.(1.13)

Define ξ ′
n ≡ ξ ′,(n,δ)

n := ξn, and for k ≥ n let

ξ ′
k+1 :=

⎧⎨⎩
ξ ′
k + 	ξk − E(	ξk|Fk), if ξk ≥ −1,

(ξ ′
k + 	ξk) ∧ δ, if ξk < −1 and ξ ′

k < δ,
ξ ′
k, if ξk < −1 and ξ ′

k ≥ δ.
(1.14)

If ξ ′
k ≥ δ then either ξk ≥ −1 in which case the increment of ξ ′ is the Doob–

Meyer martingale “correction” of the increment of ξ , or ξk < −1 and then ξ ′
does not change value. So indeed, (1.9) holds for ξ ′ as (1.12). The property (1.10)
is immediate since a positive overshoot of ξ ′ across δ may occur only as a re-
sult of a jump of ξ when its current value is greater than −1, but these jumps
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are asymptotically negligible by (1.11). Similarly, (1.11) for ξ ′ is easy to de-
rive from the definition (1.14), the property (1.11) for ξ , and the standard fact
E((	ξk − E(	ξk|Fk))

2|Fk) ≤ E((	ξk)
2|Fk), almost surely. Finally, using (1.9)

and the definition of B
(n)
δ , one can check inductively that (1.13) holds. Namely,

ξn ≤ ξ ′
n is the base of induction, and for k ≥ n either −1 ≤ ξk ≤ ξ ′

k (the last
inequality is by induction hypothesis) in which case 	ξ ′

k ≥ 	ξk due to (1.9)

yielding ξk+1 ≤ ξ ′
k+1, or ξk < −1 and ξ ′

k ≥ δ in which case on B
(n)
δ we have

ξk+1 < δ ≤ ξ ′
k = ξ ′

k+1, or finally ξk < −1 and ξk ≤ ξ ′
k < δ in which case again

on B
(n)
δ we have ξk+1 = ξk + 	ξk ≤ δ ∧ (ξ ′

k + 	ξk) = ξ ′
k+1. Therefore,

P(ξ∗ = ∞) ≤ P
((

B
(n)
δ

)c)+ P

(
lim sup

k

ξ ′(n,δ)
k = ∞

)
.

We conclude that it suffices to show

P

(
lim sup

k

ξ ′(n,δ)
k = ∞

)
= 0(1.15)

for a fixed δ > 0 and each n ≥ 1.
Again by shift and scaling of space, and additional shift of time, we can hence-

forth assume that a = b = 0, and that (1.12) holds. It is clear that if the process ξ

switches sign only finitely many times then it either spends all but finitely many
units of time being nonnegative, in which case by the martingale convergence the-
orem it converges, or it spends all but finitely many units of time being nonpositive.
On both events ξ∗ is finite. It remains to prove the claim on the event A± where ξ

switches sign infinitely often. In fact we will prove here a stronger claim, namely
that

A± ∩ {ξ∗ = 0} = A± ∩ {ξ∗ ≤ 0} = A± almost surely.(1.16)

The first identity above is clear from the definitions of A± and ξ∗. Fix ε > 0. For
n ≥ 1, define the process

S
(n)
k :=

k−1∑
i=n

(ξi+1 − ξi)1{ξi≥0}, k ≥ n,

with the convention S
(n)
n = 0, and note that by assumption (1.12) on ξ , S

(n)· is a
martingale started from 0 at time n.

Due to Doob’s maximal inequality we have

P

(
sup
k≥n

∣∣S(n)
k

∣∣> ε
)

≤ 4
∑

k≥n E[(ξk+1 − ξk)
21{ξk≥0}]

ε2

and in particular, due to (1.11), we can find n1 ≥ 1 such that this probability is
smaller than ε, hence

P

(
sup

k,j≥n1

∣∣S(n1)
k − S

(n1)
j

∣∣> 2ε
)

≤ 2ε.(1.17)
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Consider ξ on the event

A± ∩
{

sup
k,j≥n1

∣∣S(n1)
k − S

(n1)
j

∣∣≤ 2ε
}
,

and note that now the maximal value of ξ on any excursion into [0,∞) that begins
after time n1 cannot exceed supn≥n1

1{ξn<0<ξn+1}ξn+1 + 2ε ≤ on1(1) + 2ε, where
on1(1) → 0, as n1 → ∞. Since ε can be taken arbitrarily small, we obtain (1.16).

�

The above result (1.16) can be improved in the following sense. Assume that
ξ satisfies (1.9)–(1.11). Denote by A±

a the event {ξ − a switches sign infinitely
often}.

LEMMA 2. On A±
a , we have

ξ∗ ≤ a + b, a.s.

PROOF. We may assume again that a = −1 and b = 1, and that ξ0 < −1. Let
T0 = 0, and for m ≥ 1 let Tm be the mth downward crossing time of −1 by ξ .
Note that on the event A±

−1, Tm is finite almost surely and that also Tm → ∞ as
m → ∞. It is clear how to generalize the construction of ξ ′,(n,δ) from the proof of
Lemma 1 by replacing a fixed time n by a stopping time Tm, m ≥ 0. Of course,
the construction extends only on the event {Tm < ∞}, on the complement one
can define the process as identity δ (for example). We will henceforth abbreviate
ξ ′′,(m,δ) ≡ ξ ′,(Tm,δ).

Using (1.17) and (1.11) one can easily check, as in the proof of previous lemma,
that

lim
m→∞ sup

k≥Tm

ξ ′′
k

,(m,δ) ≤ δ.

Indeed, the overshoots of ξ ′′
k

,(m,δ) across δ are becoming negligible as m increases,
and (1.11) controls its fluctuations. In particular,

ξ∗1A±
−1

≤
(
lim
m

sup
k≥Tm

ξ ′′
k

,(m,δ)
)
1A±

−1
≤ δ.

Since δ > 0 is arbitrary, it follows that P(A±
−1 ∩ {ξ∗ > 0}) = 0, as claimed. �

REMARK 2. We will sometimes consider a process ξ adapted to the filtra-
tion F , where the conditions (1.9)–(1.11) apply up to additional constraint. More
precisely

E
(
(ξk+1 − ξk)1{ξk≥a}|Fk

)
1Ek

≤ 0, lim sup
k

1{ξk<a<ξk+1}(ξk+1 − a)1Ek
≤ b,
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and ∑
k

E
[
(	ξk)

21{ξk≥a}∩Ek

]
< ∞,

where Ek is an Fk-measurable event. In such a situation we will (nonrigorously)
state that ξ satisfies (1.9)–(1.11) on

⋂
k≥n Ek (for some large n) and conclude the

result of Lemma 1 on the same event. The corresponding rigorous formulation of
this argument is to work instead with the stopped process ξ(T ) := {ξk∧T , k ≥ n},
where a stopping time

T := inf{k ≥ n : 1Ek
= 0}

is defined precisely so that {T = ∞} =⋂k≥n Ek . Then ξ(T ) satisfies the original
(1.9)–(1.11), and the asymptotics of ξ(T ) and ξ (as k → ∞) match on the event
{T = ∞}.

2. Modified VRRW on a triangle. In this section we consider a modified
VRRW (MVRRW) on a triangle. Define τ

(3)
0 = 0. The transition probabilities of

MVRRW are as for the VRRW on the triangle, with one difference: when the
special vertex 3 is visited for the kth time, at the stopping time

τ
(3)
k ≡ τk := min{t > τk−1 :X(t) = 3}, k ≥ 1,(2.1)

its weight Z(τk,3) becomes H(k) rather than Z(τk − 1,3) + 1 [and for t ∈
(τk, τk+1) we set Z(t,3) = H(k)]. Here we assume that the sequence H(k) is
measurable with respect to Fτk

, the σ -algebra generated by the process up to time
τk , that H(1) ≥ 1 and that for k = 0,1,2, . . . the following property holds:

H(k + 1) ≥ H(k) + 1.(2.2)

Thus, the special vertex 3 gets reinforced by a larger amount than nonspecial ver-
tices 1 and 2.

We study the above MVRRW with intention of applying it several times in Sec-
tion 3. A typical application is in the following context: suppose that the underlying
graph is complete graph on d vertices where d ≥ 4. If one “clumps together” all
but two of the vertices (say i and j ), then the VRRW generates (with the appropri-
ate time change) a MVRRW on a triangle, where i and j correspond to 1 and 2,
and the clump corresponds to the special vertex 3.

To simplify notation we will denote

U(t) := Z(t,1), V (t) := Z(t,2) and W(t) = Z(t,3).

The goal of this section is to show that U(t) � V (t). Before stating the main result
rigorously, we do some preliminary comparisons and calculations.

First, observe that using elementary arguments (in particular, Pólya urn-like
transitions of the process, when viewed from the special vertex 3) one can show
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that for MVRRW both U(t) → ∞ and V (t) → ∞, almost surely. Similarly, it is
easy to see that it is impossible that after some finite time the particle oscillates
between nonspecial vertices 1 and 2. Hence W(t) → ∞, and τk < ∞, for all k,
almost surely. Second, let us show that W(t) cannot be too small with respect to
U(t) + V (t) (which seems obvious but still requires a proof). Let ηn, n ≥ 0 be the
times of the successive visits to vertices 1 or 2, that is

ηn+1 = inf
{
t > ηn :X(t) ∈ {1,2}}.

Let Yn = W(ηn) and Xn = U(ηn) + V (ηn). Then it is simple to construct a cou-
pling of (Xn,Yn) with the urn (X′

n, Y
′
n), featured in Theorem 4 with a = c = d = 1,

b = 0, such that

Xn = X′
n and Yn ≥ Y ′

n for all n.(2.3)

This yields

lim inf
n→∞

Yn

Xn/ logXn

≥ 1.

To simplify notation let

φ(x) = x/ logx.

Then the above can be rewritten as

lim inf
n→∞

W(ηn)

φ(U(ηn) + V (ηn))
≥ 1.

Noting that in between the consecutive times ηn the process W increases, while
U + V stays the same, we get

lim inf
t→∞

W(t)

φ(U(t) + V (t))
≥ 1.(2.4)

Similarly, considering the process (U(t),V (t),W(t)) at times when the MVRRW
X(t) visits vertex 1 and comparing the increments at vertices 1 and 2 [the former
always increases by 1 while the latter increases by at least 1 with probability at
least V (t)/(U(t) + V (t))] we obtain that

lim inf
t→∞

V (t)

φ(U(t))
≥ 1,(2.5)

and in a symmetric way the symmetric result

lim inf
t→∞

U(t)

φ(V (t))
≥ 1.(2.6)

To simplify notations further, recall (2.1), (2.2) and denote

U(τk) = u, V (τk) = v, W(τk) = a = H(k), n(k) = n = u + v.
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We omit the index “k” from the notation in the forthcoming argument, whenever
not in risk of confusion. Relations (2.4)–(2.6) imply (in a straightforward way) that
for sufficiently large k we have

u > φ(v)/2, v > φ(u)/2 �⇒ min{u, v} > φ(n)/4 and
(2.7)

a > φ(n)/2.

At time τk + 1 the walk has to visit either site 1 or 2, and moreover P(X(τk + 1) =
1) = u/(u + v), P(X(τk + 1) = 2) = v/(u + v).

For m ≥ 1, consider the events

Am(k) = {X(τk + 1) = 1,X(τk + 2) = 2,

X(τk + 3) = 1,X(τk + 4) = 2, . . . ,(2.8)

X
(
τk + (2m − 1)

)= 1, but X(τk + 2m) = 3
}
,

Bm(k) = {X(τk + 1) = 1,X(τk + 2) = 2, . . . ,X(τk + 2m − 1) = 1,
(2.9)

X(τk + 2m) = 2, but X(τk + 2m + 1) = 3}.
Symmetrically define events Ām(k), B̄m(k) where the walker starts the excursion
away from vertex 3 at vertex 2, and on Ām(k) [resp., B̄m(k)] it visits 2 (resp., 1)
immediately before returning to 3. Note that Am,Bm, m ≥ 1 are disjoint. On Am ∪
Bm, during this excursion, vertex 1 is visited exactly m times, while vertex 2 is
visited m− 1 times on Am and m times on Bm. Symmetric statements apply to Ām

and B̄m. It is easy to see that

P

(⋃
m

(Am ∪ Bm)
∣∣Fτk

)
= P
(
X(τk + 1) = 1, τk+1 < ∞|Fτk

)
= P
(
X(τk + 1) = 1|Fτk

)
a.s.,

since τk+1 < ∞, almost surely. Next observe that for m ≥ 1 (where an empty
product is equal to 1)

P(Am|Fτk
) = u

u + v

m−2∏
j=0

(
v + j

v + j + a
· u + j + 1

u + j + 1 + a

)
a

a + v + m − 1

and

P(Bm|Fτk
) = u

u + v

m−2∏
j=0

(
v + j

v + j + a
· u + j + 1

u + j + 1 + a

)

× v + m − 1

a + v + m − 1

a

a + u + m
.
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Now define

Cm(k) ≡ Cm =
∞⋃

i=m

(Ai ∪ Bi)

to be the event that vertex 1 is visited at least m times during the excursion (recall
that there is dependence of u, v, a, and hence of Am,Bm, and Cm on k). Then

P(Cm|Fτk
) = u

u + v

m−2∏
j=0

(
v + j

v + j + a
· u + j + 1

u + j + 1 + a

)
.

If we denote

λu = a

a + u
, λv = a

a + v
and ν = (1 − λu)(1 − λv)

then, provided m2/u  1 and m2/v  1,

P(Cm(k)|Fτk
)

= u

u + v
· νm−1

(2.10)

× (1 + 0/v)(1 + 1/v) . . . (1 + (m − 2)/v)

(1 + 0/(a + v))(1 + 1/(a + v)) . . . (1 + (m − 2)/(a + v))

× (1 + 1/u)(1 + 2/u) . . . (1 + (m − 1)/u)

(1 + 1/(a + u))(1 + 2/(a + u)) . . . (1 + (m − 1)/(a + u))

= u

u + v
· νm−1(1 + O(m2/u) + O(m2/v)

)
.(2.11)

Set m = m(k) = log3 n(k)+1, then by (2.7) we have m2/u, m2/v < 4 log7(n)/n =
o(1). Similarly, by (2.7), we have

ν = 1

(a/u + 1)(a/v + 1)
≤ 1

(a/n + 1)2 ≤ 1

(1 + 1/(2 logn))2 ,(2.12)

and so a straightforward calculus manipulation yields

νm−1 ≤ n1−logn.

Consequently,

P
(
Cm(k)(k)|Fτk

)= P
(
C(logn)3+1|Fτk

)
< νm−1(1 + o(1)

)≤ 1 + o(1)

nlogn−1 .(2.13)

Therefore, by the Borel–Cantelli lemma,

only finitely many of Cm(k)(k) occur, a.s.(2.14)
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If m ≤ m(k) = log3 n+1, then we can simplify the conditional probabilities of Am

and Bm as follows:

P(Am|Fτk
) = u

u + v
λvν

m−1[1 + O(log7 n/n)],(2.15)

P(Bm|Fτk
) = u

u + v
λu(1 − λv)ν

m−1[1 + O(log7 n/n)],(2.16)

P(Ām|Fτk
) = v

u + v
λuν

m−1[1 + O(log7 n/n)],(2.17)

P(B̄m|Fτk
) = v

u + v
λv(1 − λu)ν

m−1[1 + O(log7 n/n)].(2.18)

Now let

ξ(t) := U(t)

U(t) + V (t)
.

LEMMA 3. We have

P

(
lim inf
t→∞ ξ(t) > 0

)
= 1,

and by symmetry P(lim supt→∞ ξ(t) < 1) = 1.

PROOF. It suffices to restrict attention to times τk since by (2.14) the values
of ξ during the interval (τk, τk+1) differ (asymptotically) from ξ(τk) by at most
order log3(U(τk)+V (τk))/(U(τk)+V (τk)). Recall that we abbreviate V (τk) = v,
U(τk) = u, n = u + v. In particular, n ≥ k + O(1) for each k ≥ 1, almost surely,
since between any two visits to site 3, either site 1 or 2 is visited at least once.

Define (recall the example in Section 1.1)

�(t) = log
(
U(t) + V (t)

)− log
(
V (t) − 1

)
.

We will estimate the drift of � (in the case where v < n/3, hence v < u/2) by
comparing our MVRRW setting to that of the 2-color Pólya urn. In the latter case,
with probability u/(u + v) the new value is

Pólya↑ = log(n + 1) − log(v − 1),

and with probability v/(u + v) the new value is

Pólya↓ = log(n + 1) − log(v).

Thus, the drift increment of � under the law of the Pólya urn is negative, since

u

u + v
log

n + 1

v − 1
+ v

u + v
log

n + 1

v
− log

n

v − 1
< 0,(2.19)

see also Section 1.1.
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Our goal is to bound the drift of � under the modified VRRW law by its coun-
terpart under the Pólya urn process. Intuitively, this makes sense since the shuttles
pull the ratio U/(U + V ) closer to 1/2, which corresponds to even more negative
drift of �. Note that

E(�(τk+1)|Fτk
)

=
∞∑

m=1

(
P(Am|Fτk

) log
n + 2m − 1

v + m − 2
+ P(Bm|Fτk

) log
n + 2m

v + m − 1

+ P(Ām|Fτk
) log

n + 2m − 1

v + m − 1
+ P(B̄m|Fτk

) log
n + 2m

v + m − 1

)
= (P(B1|Fτk

) + P(B̄1|Fτk
)
)

log
n + 2

v

+
∞∑

m=1

(
P(Am|Fτk

) log
n + 2m − 1

v + m − 2
+ P(Ām|Fτk

) log
n + 2m − 1

v + m − 1

)

+
∞∑

m=2

(
P(Bm|Fτk

) + P(B̄m|Fτk
)
)

log
n + 2m

v + m − 1

= I + II + III.

Then

II ≤
∞∑

m=1

(
log

n + 1

v − 1
P(Am|Fτk

) + log
n + 1

v
P(Ām|Fτk

)

)
(2.20)

and

III ≤
∞∑

m=2

(
log

n + 1

v − 1
P(Bm|Fτk

) + log
n + 1

v
P(B̄m|Fτk

)

)
,(2.21)

since for m ≥ 2 and v < n/3

n + 2m

v + m − 1
− n + 1

v
< 0.

Finally, since for u > v,

P(B1|Fτk
) = u

n

v

v + a

a

a + u + 1
>

v

n

u

u + a

a

a + v + 1
= P(B̄1|Fτk

),

we have

I = (P(B1|Fτk
) + P(B̄1|Fτk

)
)

log
n + 2

v
(2.22)

= (P(B1|Fτk
) − P(B̄1|Fτk

)
)

log
n + 2

v
+ P(B̄1|Fτk

)2 log
n + 2

v
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≤ (P(B1|Fτk
) − P(B̄1|Fτk

)
)

log
n + 2

v

+ P(B̄1|Fτk
)

(
log

n + 1

v − 1
+ log

n + 1

v

)
≤ (P(B1|Fτk

) − P(B̄1|Fτk
)
)

log
n + 1

v − 1

+ P(B̄1|Fτk
)

(
log

n + 1

v − 1
+ log

n + 1

v

)
= P(B1|Fτk

) log
n + 1

v − 1
+ P(B̄1|Fτk

) log
n + 1

v
.(2.23)

For the first inequality (the third line in the display) above we use the fact that(
n + 2

v

)2

≤ (n + 1)2

v(v − 1)
whenever v <

n

3
.

Therefore,

I + II + III ≤ log
n + 1

v − 1

∞∑
m=1

(
P(Am|Fτk

) + P(Bm|Fτk
)
)

+ log
n + 1

v

∞∑
m=1

(
P
(
Ām|Fτk

) + P(B̄m|Fτk
)
)
,

and by noting
∞∑

m=1

(
P(Am|Fτk

) + P(Bm|Fτk
)
)= u/(u + v)

and
∞∑

m=1

(
P(Ām|Fτk

) + P(B̄m|Fτk
)
)= v/(u + v),

we arrive to the following bound: provided v < n/3 (that is, v < u/2), the drift
increment of the � process under the modified VRRW law is smaller than the ex-
pression on the left-hand side of (2.19). In particular, � has supermartingale incre-
ments whenever its value is larger than log 4. It is simple to check that � satisfies
properties (1.9)–(1.11) with a = log 4 [note that this a is different from a ≡ a(k)

above] and b = 0 (any b ≥ 0 would suffice). Namely, we have just verified (1.9),
while (1.10) is true since the steps �(τk+1) − �(τk) are asymptotically of order at
most log4(n)/n, due to the lower bound (2.7) on v and estimate (2.14). Similarly,
(1.11) holds since∣∣∣∣ log

(
u + v + 2m

v − 1 + m

)
− log

(
u + v

v − 1

)∣∣∣∣= O

(
m

v
∧ u

v

)
= O

(
m logn

n
∧ logn

)
,
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where the upper bound u/v = O(logn) will be useful for atypically large m. Due
to (2.12), the above estimate implies the following bound:

E
((

�(τk+1) − �(τk)
)21{�(τk)≥log 4}|Fτk

)
≤ c

[
log8 n

n2 + log2 n × P(Clog3 n+1|Fτk
)

]
(2.24)

≤ c

(
log8 n

n2 + e−c′ log2 n

)
,

where c ∈ (0,∞) and c′ ∈ (0,1) do not depend on k. Recall that n ≥ k, for all
k, so the sequence (2.24) of upper bounds is summable in k. Now Lemma 1
yields that lim supt �(t) is finite almost surely, and this is equivalent to saying
that lim inft ξ(t) is strictly positive, almost surely. �

3. Analysis on complete-like graphs. We will denote by G = Gd a complete-
like graph of interest. Our main goal in this section is to prove the following result
leading to Theorem 1.

PROPOSITION 1. The VRRW on G satisfies: (i)

lim inf
t

Z(t, i)

Z(t, j)
> 0 a.s.,

for any two different interior sites i, j .
(ii) If �1, . . . , �r are the leaves attached to an interior site g, then{

lim inf
t

min
i �=g

∑
j /∈{i,g} Z(t, j)∑

j �=i Z(t, j)
> δ

}
⊂
{

lim sup
t

(
∑r

j=1 Z(t, �j ))
1+δ∑

i �=g Z(t, i)
= 0
}

(3.1)
a.s.,

where the sums above [except for
∑r

j=1 Z(t, �j )] are taken over the interior sites
only.

In the following subsections we prove the above proposition, treating several
different cases separately. Property (ii) above will be used in the proof of The-
orem 1. It gives a priori bounds on the total empirical frequency of the leaves,
that simplify the large deviations estimates relative to the corresponding argument
in [12] (see Section 3.3 for details).

3.1. Graphs with leaves at a single vertex. We start by considering the sim-
plest noncomplete graph from the class of graphs described in the Introduction.
Here there are three “interior” sites 1, 2 and 3, forming a triangle, and there
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is an additional leaf �3
1 = � ∼ 3. As in the study of MVRRW we will denote

U(t) = Z(t,1), V (t) = Z(t,2), W(t) = Z(t,3) and, moreover,

L(t) = Z(t, �).

Clearly, the process (U,V,W), observed only at times (σk)k≥0, where σ0 = t0
(assume without loss of generality that Xt0 ∈ {1,2,3}) and

σk := min
{
j > σk−1 :Xj �= Xσk−1,Xj ∈ {1,2,3}}, k ≥ 1,

has the law of (Z(t,1),Z(t,2),Z(t,3)) generated by the motion of a particle ac-
cording to a MVVRW with a special vertex 3. Therefore, Lemma 3 insures that
U(t) � V (t), or equivalently, that both

lim sup
t→∞

U(t)

V (t)
and lim sup

t→∞
V (t)

U(t)
(3.2)

are finite random variables, almost surely. As in (2.1), denote by τ
(g)
k the time

of the kth successive visit to site g, where g ∈ {1,2,3}. Easy comparison of
(L(τ

(3)
k ),U(τ

(3)
k ) + V (τ

(3)
k )) with the Pólya urn ensures preliminary estimate

lim sup
k

L(τ
(3)
k )

U(τ
(3)
k ) + V (τ

(3)
k )

< ∞, a.s.(3.3)

As we will soon see, L(τ
(3)
k )  U(τ

(3)
k ) + V (τ

(3)
k ) as a lower (random) power.

First note that for any t

W(t) ≤ U(t + 1) + V (t + 1) + L(t + 1) + W(t0),

so that (3.2) and (3.3) imply

lim sup
t

W(t)

U(t)
< ∞ almost surely,(3.4)

and in turn that

min

{
lim inf

t

U(t)

t
, lim inf

t

V (t)

t

}
> 0 almost surely.(3.5)

Given (3.4), it is now plausible that W has the same asymptotic order as U , since
its increase is “helped” by the existence of the leaf �. Soft arguments based on
comparison with a generalized urn yield

lim sup
t

φ(U(t))

W(t)
< ∞,(3.6)

but not more, and comparison with the VRRW on the pure triangle does not seem
to be useful either in proving the complement to (3.4). However, the drift increment
comparison argument of Lemma 3 is robust enough. Namely, denote by W̃ the
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process that starts as W̃ (t0) = W(t0), and that increases by amount 1 at time t + 1
if X(t) ∈ {1,2} and X(t + 1) = 3 (i.e., whenever the site 3 is visited from another
interior site), and that otherwise remains unchanged. Then

W(t) = W̃ (t) + Z(t, �) − Z(t0, �) = W̃ (t) + L(t) − L(t0)(3.7)

in particular, W̃ (t) ≤ W(t) for all t . Consider the process

�(k) := log
(
U
(
τ

(2)
k

)+ W̃
(
τ

(2)
k

))− log
(
W̃
(
τ

(2)
k

)− 1
)
, k ≥ 1,(3.8)

adapted to the σ -field Fτk
, k ≥ 1 where τk ≡ τ

(2)
k . Let u = U(τk), v = W(τk),

ṽ = W̃ (τk), a = V (τk), n = u + ṽ, and note that the drift of � at time k (provided
v < u/2) is still less or equal to expression (2.19); in particular it is negative, as we
reason next. It is necessary to interchange sites 2 and 3 in the definitions (2.8) and
(2.9) and the rest of this argument. While the conditional probabilities of Am, Ām,
m ≥ 1 and Bm, B̄m, m ≥ 2 are different in the current setting where � exists, the
estimates in (2.20) and (2.21) only concern the number of shuttles m between the
two sites. Therefore,

E
(
�(k + 1)|Fτk

)
≤ (P(B1|Fτk

) + P(B̄1|Fτk
)
)

log
n + 2

ṽ
(3.9)

+
∞∑

m=1

(
log

n + 1

ṽ − 1
P(Am|Fτk

) + log
n + 1

ṽ
P(Ām|Fτk

)

)

+
∞∑

m=2

(
log

n + 1

ṽ − 1
P(Bm|Fτk

) + log
n + 1

ṽ
P(B̄m|Fτk

)

)
.

Next observe that P(B1|Fτk
) does not change under the new law, since possible

shuttles between site 3 and its leaf � before the step from 3 to another interior site,
do not influence the conditional law of this step. Finally, observe that P(B̄1|Fτk

) is
smaller than (v/n)(u/(u + a))(a/(a + v + 1)) under the new law, since possible
shuttles between site 3 and its leaf � that happen before the step from 3 to 1, make
the probability of the move from 1 to 2 smaller than a/(a + v + 1). Thus the
estimates (2.22) and (2.23) can be carried out verbatim. Due to (3.9), and the fact
ṽ ≤ v, we obtain

E
(
�(k + 1)|Fτk

)≤ log
n + 1

ṽ − 1
· u

u + v
+ log

n + 1

ṽ
· v

u + v

≤ log
n + 1

ṽ − 1
· u

u + ṽ
+ log

n + 1

ṽ
· ṽ

u + ṽ
,

as claimed. In order to apply Lemma 1, it remains to estimate the quantities in
(1.10) and (1.11). Before doing so, we show that L is a smaller power of U + V ,
and therefore of W . So fix β ≥ 1 and consider again the times τ

(3)
k , k ≥ 1 of
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successive visits to site 3. Note that τ
(3)
k is different from σk above, and from

τk ≡ τ
(2)
k linked to the definition of �. Abbreviate

Lk := L
(
τ

(3)
k

)
, Uk := U

(
τ

(3)
k

)
, Vk := V

(
τ

(3)
k

)
, Wk := W

(
τ

(3)
k

)= k.

Then, if δ ∈ (0,1), on

P δ
k :=

{
Uk

Uk + Wk

∧ Vk

Vk + Wk

> δ

}
,

we have

E

(
L

β
k+1

Uk+1 + Vk+1

∣∣∣F
τ

(3)
k

)
≤ (Lk + 1)β

Uk + Vk

· Lk

Uk + Vk + Lk

+ (Lk)
β

Uk + Vk + 1
· (1 − δ)(Uk + Vk)

Uk + Vk + Lk

(3.10)

+ (Lk)
β

Uk + Vk + 2
· δ(Uk + Vk)

Uk + Vk + Lk

.

Namely, either the walk visits the leaf � at time τ
(3)
k + 1 and steps back to site 3 at

time τ
(3)
k + 2 = τ

(3)
k+1, or it visits {1,2} at time τ

(3)
k + 1, and given this, it revisits

the same set at time τ
(3)
k + 2 with probability larger than δ.

Using (3.2) and (3.4) one easily sees that

P

(
lim
δ↘0

lim inf
k

P δ
k

)
= 1.(3.11)

From now on we take δ small and think about the behavior of the process
(Lk)

β/(Uk + Vk) on
⋂

k≥n0
P δ

k , where n0 is a large finite integer.

REMARK 3. The part (a) of the next lemma will not be used in the sequel of
the current argument; however its argument will be needed in the next section.

LEMMA 4. (a) Estimate (3.3) and lim inft (U(t)∧V (t))/φ(t) > 0 are already
sufficient for

lim
t

L(t)

U(t) + V (t)
= 0 a.s.(3.12)

(b) On
⋂

k≥n0
P δ

k , for any β < 1 + δ we have that

lim
t

L(t)β

U(t) + V (t)
= 0 a.s.(3.13)
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PROOF. (a) We need a slightly more precise estimate than (3.10). Namely,
keeping track of which interior vertex (1 or 2) the walk visits first, one obtains
that

E

(
L

β
k+1

Uk+1 + Vk+1

∣∣∣F
τ

(3)
k

)
≤ (Lk + 1)β

Uk + Vk

· Lk

Uk + Vk + Lk

+ (Lk)
β

Uk + Vk + 1
· UkWk

(Uk + Vk + Lk)(Vk + Wk)

+ (Lk)
β

Uk + Vk + 2
· UkVk

(Uk + Vk + Lk)(Vk + Wk)
(3.14)

+ (Lk)
β

Uk + Vk + 1
· VkWk

(Uk + Vk + Lk)(Uk + Wk)

+ (Lk)
β

Uk + Vk + 2
· VkUk

(Uk + Vk + Lk)(Uk + Wk)
.

The right-hand side in (3.15) equals

L
β
k

(Uk + Vk)
(1 + Rk),(3.15)

with β = 1, and with

Rk = 1
/
(Uk + Vk + Lk)

×
{

1 −
(

UkWk

(Uk + Vk + 1)(Wk + Vk)
+ VkWk

(Uk + Vk + 1)(Wk + Uk)

)

− 2
(

UkVk

(Uk + Vk + 2)(Wk + Vk)
+ UkVk

(Uk + Vk + 2)(Wk + Uk)

)}
.

The last expression equals to

−
(

UkVk

(Uk + Vk + 2)(Wk + Vk)
+ UkVk

(Uk + Vk + 2)(Wk + Uk)

)
+ O

(
1

Uk + Vk

)
.

Now due to hypotheses of part (a) we conclude that Uk + Vk � k and Uk ∧ Vk ≥
ck/ log k for some positive random c. Hence the leading term above has absolute
value larger than a term of order 1/ log k. In particular, the process Lk/(Uk + Vk)

is a positive super-martingale, so it converges almost surely to a finite limit. How-
ever, the limit must be 0, since on the event limk Lk/(Uk + Vk) > 0 the drift in-
crement above is of the order at least 1/(k log k), so the drift would not be sum-
mable otherwise. In this way one can also see that the asymptotic order of Lk

may not be of the form k/ak , if ak converge to infinity sufficiently slowly so
that

∑
k 1/(k log k × ak) = ∞. The last observation will not be used in the se-

quel.
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(b) Note that on
⋂

k≥n0
P δ

k , for any β < 1+δ we have the same expression (3.15)
for the right-hand side in (3.15), except that now Rk is smaller than

1

Uk + Vk + Lk

(
β − (1 − δ) − 2δ + O

(
1

Lk

)
+ O

(
1

Uk + Vk

))
.

This can be seen already from (3.10), since (Lk + 1)β/L
β
k = 1 + β/Lk + O(L2

k).
Consequently, Rk is again negative for all sufficiently large k, and therefore
L

β
k /(Uk + Vk) converges to a finite random quantity. In particular, for any β ′ < β

the limit in (3.13) is 0 on the event
⋂

k≥n0
P δ

k , and due to (3.11), after letting δ → 0,
one obtains (3.13), hence part (ii) of Proposition 1 for the triangle ornamented with
a single leaf. �

In order to prove (1.10) and (1.11) for the process � from (3.8), we will derive
analogues to (2.13) and (2.14). The reader can check that in the special case where
the leaves are attached to 3 only (that is, no leaves are attached at 1 or 2), one does
not need (3.13) to obtain sufficiently good estimates. Nevertheless, we will soon
consider the general case, hence doing the calculations while accounting for (3.13)
will prove useful.

Due to Lemma 4(b) and (3.6) and (3.7), we have {⋂k≥n0
P δ

k } ⊂ {W̃ (t) � W(t)},
and therefore{ ⋂

k≥n0

P δ
k

}
⊂
{

lim sup
t

φ(U(t))

W̃ (t)
< ∞

}
almost surely.(3.16)

Suppose that β > 1 and that (pm
k )m≥1,k≥1 is a table of numbers in (0,1) such that

1 − pm
k ≤ c(m, k)

k1−1/β
, m, k ≥ 1,

where, for each finite integer s,

lim sup
k

max
m≤s

c(m, k) < ∞.(3.17)

Let (Gk, k ≥ 0) be a random process (adapted to a filtration (Hk, k ≥ 0)) tak-
ing values in the nonnegative integers, and assume that it satisfies conditional
“geometric-like” relations

P(Gk > m + 1|Gk > m, Hk−1) = 1 − pm+1
k , m ≥ 0.(3.18)

Then P(Gk > s|Hk−1) = ∏m≤s(1 − pm
k ) ≤ (maxm≤s c(m, k))s/ks(1−1/β), and

therefore, under the assumption (3.17), we have

lim
j→∞P

(⋂
k≥j

{Gk ≤ 2/(1 − 1/β)}
)

= 1.(3.19)

Consider the behavior of VRRW on
⋂

k≥n0
P δ

k and fix some β ∈ (1,1 + δ). Fol-

lowing each time τ
(3)
k = σk′ when VRRW visits site 3 from another interior site,
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the particle will make a nonnegative (possibly 0) number Ñk of shuttles to � be-
fore visiting the next (different) interior site at time σk′+1. Note that Ñk in fact
stands for W(σk′+1) − W(σk′) = W(σk′+1) − k. Let j be a large integer. Since
W(τ

(3)
k ) = Wk = k we have on

⋂
k≥n0

P δ
k that Uk + Vk ≥ 2δk/(1 − δ), and due to

(3.13) that Lk ≤ k1/β , for all k ≥ j (with an overwhelming probability as j → ∞).
As a consequence, one can construct a process G satisfying (3.17) and (3.18)
[where c(m, k) can be taken as 2δ/(1 − δ) for all k ≥ j and m ≤ s, so the lim sup
in (3.17) is bounded by 2δ/(1 − δ)] such that Ñk ≤ Gk (note that G is defined for
all k, but the coupling of Ñk and Gk is necessary only for k such that τ

(3)
k = σk′).

Due to (3.19), we conclude that

{Ñk ≤ 2/(1 − 1/β)} for all sufficiently large k,(3.20)

with an overwhelming probability on
⋂

k≥n0
P δ

k .
Therefore, one can redo the calculation (2.10), this time writing instead of the

third term an analogous

(1 + 0/v)(1 + s1/v) · · · (1 + sm−2/v)

(1 + 0/(a + v))(1 + s1/(a + v)) · · · (1 + sm−2/(a + v))
,(3.21)

where si+1 − si ≥ 1 and si+1 − si ≤ 2/(1 − 1/β) for all i, and for all large k. The
estimate (2.11) holds as before, with different constants comprised in O(m2/u) +
O(m2/v). Together with (3.5), this immediately implies (2.13) and (2.14), and
thus (1.10) and (1.11) for �, as at the end of the proof of Lemma 3. Note that in
this step we also make use of the preliminary estimate (3.16).

The above reasoning applied on the event
⋂

k≥n0
P δ

k only (see also Remark 2),
but due to (3.11) we conclude the following lemma.

LEMMA 5.

lim sup
t

�(t) < ∞ a.s.

As a consequence, lim inf W̃ (t)/(U(t) + W̃ (t)) > 0, almost surely, and since
W(t) ≥ W̃ (t),

lim infW(t)/
(
U(t) + W(t)

)
> 0 a.s.,

completing the proof of Proposition 1(i) in the special case of the graph with three
interior vertices and one leaf.

As the reader will quickly check, the proof above carries over to any G with
the same interior sites {1,2,3} and finitely many leaves {�1, . . . , �r}, all attached
to the interior site 3. Namely, for the purposes of the calculation in Lemmas 4
and 5 all the leaves can be combined into one “super-leaf” so that, in particular,
Proposition 1 holds via the same argument.
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Moreover, suppose that G has interior sites {1,2, . . . , d}, d ≥ 4, and finitely
many leaves {�1, . . . , �r}, all attached to the interior site d . Let the initial posi-
tion X(t0) take value in {1, . . . , d}, almost surely. Fix two different sites i, j ∈
{1, . . . , d − 1}, and define three classes

C1 := {i}, C2 := {j} and C3 := {1, . . . , d} \ {i, j}(3.22)

of interior vertices. Consider S(t) =∑3
h=1 h1{X(t)∈Ch}, and a sequence of stopping

times σ0 := t0,

σk := min{s > σk−1 :S(s) �= S(σk−1), S(s) �= 0}, k ≥ 1.

Note that the process

X′ ≡ (X′(k), k ≥ 0
)= (S(σk), k ≥ 0

)
(3.23)

is identical in law to the position process X of a MVRRW, with a special vertex 3.
Indeed, {S(t) = h} = {X(t) ∈ Ch}, for h = 1,2,3, and (σk)k≥0 are the successive
times when X jumps from one class of interior vertices to another. Therefore,
setting

Z′(k, h) := ∑
v∈Ch

Z(σk, v), h = 1,2,3,

it is simple to check that the transitions of X′ are driven by (1.1), with X′ (resp., Z′)
replacing X (resp., Z). Moreover, Z′(k + 1,1) − Z′(k,1) [resp., Z′(k + 1,2) −
Z′(k,2)] equals 1 if X′(k) = 1 (resp., =2), while Z′(k+1,3)−Z′(k,3) = H(k) ≥
1 if X′(k) = 3. A careful reader will note that the measurability requirement on H

(see the beginning of Section 2) necessitates considering X′ with respect to stopped
filtration (Fσk

)k≥0 generated by X. As before, these observations ensure that
Z′(k,1) � Z′(k,2) as k → ∞. Since Z(t, i) = Z′(k,1) and Z(t, j) = Z′(k,2),
where t ∈ [σk, σk+1), we conclude that Z(t, i) and Z(t, j) are asymptotically com-
parable, for all i, j ∈ {1, . . . , d − 1}, almost surely. It is again easy to verify that

lim sup
t

Z(t, d)∑d−1
i=1 Z(t, i)

< ∞ and lim sup
t

φ(
∑d−1

i=1 Z(t, i))

Z(t, d)
< ∞,

almost surely. Since the walk necessarily returns to d after each visit to a leaf, we
have L(t) ≤ Z(td) + L(t0), and therefore by the first estimate above we conclude

t = Z(t, d) +
d−1∑
i=1

Z(t, i) + L(t) = O

(
d−1∑
i=1

Z(t, i)

)
almost surely.

This implies readily that
∑d−1

i=1 Z(t, i) � t , and therefore that Z(t,1) � t (or equiv-
alently, Z(t, i) � t , ∀i = 1, . . . , d −1), almost surely. Again combine all the leaves
into a single super-leaf � ∼ d . The calculation of Lemma 4(b), for the process ob-
served at successive times τ

(d)
k of visit to site d , yields as before Proposition 1(ii).
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Finally, let U(t) = Z(t,1), V (t) =∑d−1
g=2 Z(t, g) and W(t) = Z(t, d), and con-

sider the process at the successive times

σ ′
k := min

{
j > σ ′

k−1 :Xj �= Xσ ′
k−1

,Xj ∈ {2, . . . , d − 1}}, k ≥ 1,(3.24)

of visit to the subset {2, . . . , d − 1}. Set W̃ (t0) = W̃ (t0) and let

W̃ (t) := W(t) − (Z(t, �) − Z(t0, �)
)
, t ≥ t0.

Then the process � defined as in (3.8) (with σ ′
k in place of τ

(2)
k ) again satisfies

(1.9)–(1.11) with a = log 4 and b = 0, so Lemma 5 follows, implying Proposi-
tion 1(i) as before.

3.2. General complete-like graphs with d ≥ 3. Assume that we are given a
general complete-like graph G = Gd from Introduction. Here the argument is some-
what more delicate, due to the fact that we cannot anymore use the MVRRW to
easily obtain Z(t, i) � t for most (all but one) sites, which was essential in apply-
ing Lemma 4.

We start again by making some soft observations. If � ∼ g, then Z(t, �) ≤
Z(t + 1, g) + Z(t0, �) implies that t = ∑v∈V (G) Z(t, v) ≤ ∑d

i=1(ri + 1)Z(t +
1, i) + O(1), and in particular that

lim inf
t

d∑
i=1

Z(t, i)/t > 0,(3.25)

almost surely. Moreover, Pólya’s urn comparisons, as in Section 2, imply that

sup
t

Z(t, v) = ∞, v ∈ V (G),

and, for each i,

lim sup
t

∑ri
j=1Z(t, �i

j )∑d
g=1,g �=i Z(t, g)

< ∞ almost surely.(3.26)

Here we recall that �i
j , j = 1, . . . , ri, are the leaves attached at the interior site i.

Soon we will see that the limit in (3.26) is 0. Since

Z(t, i) ≤
ri∑

j=1

Z(t + 1, �i
j ) +

d∑
g=1,g �=i

Z(t + 1, g) + Z(t0, i),(3.27)

after adding
∑d

g=1,g �=i Z(t, g) to both sides, (3.25) and (3.26) yield

lim inf
t

d∑
g=1,g �=i

Z(t, g)/t > 0 for each interior site i, almost surely.(3.28)
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Without loss of generality assume that X(t0) ∈ {1, . . . , d}. Moreover, as already
noted, each visit to a leaf of i is immediately followed by a visit to i. Therefore, if
Z(0, i) >

∑ri
j=1 Z(0, �i

j ), then

Z(t, i) >

ri∑
j=1

Z(t, �i
j ), t ≥ t0,(3.29)

and provided (3.29) holds at some time t , it will continue to hold at all later
times. We claim that, for each i = 1, . . . , d , (3.29) holds starting from some fi-
nite time. Indeed, due to (3.28) the walk will almost surely (eventually) make
at least (

∑ri
j=1 Z(0, �i

j ) − Z(0, i))+ + 1 steps from i to another interior vertex,
and this ensures (3.29) upon the next return to i. Starting from the finite (stop-
ping) time at which (3.29) holds for all i ∈ {1, . . . , d}, one can compare (as in
Section 2) the process (

∑d
g=1,g �=i Z(σk, g),Z(σk, i)), where σk is the time of kth

return to the subset of sites {1, . . . , d} \ {i}, with the generalized urn (X′
k, Y

′
k)

of Theorem 4 (again here a = c = d = 1, b = 0), so that Z(σk, i) ≥ Y ′
k and∑d

g=1,g �=i Z(σk, g) ≤ X′
k . In particular, for each i = 1, . . . , d ,

lim inf
t

Z(t, i)

φ(
∑d

g=1,g �=i Z(t, g))
> 0 hence lim inf

t

Z(t, i)

φ(t)
> 0

(3.30)
almost surely.

Due to (the argument of) Lemma 4(a), estimates (3.26) [namely, its consequence
(3.28)] and (3.30) are sufficient to conclude that almost surely, for each i =
1, . . . , d ,

lim
t

∑ri
j=1 Z(t, �i

j )∑d
g=1,g �=i Z(t, g)

= lim
t

∑ri
j=1 Z(t, �i

j )

t
= 0.(3.31)

Indeed, the reader can quickly check that
∑ri

j=1 Z(t, �i
j ) [resp.,

∑d
g=1,g �=i Z(t, g)],

observed at the times of return to i, corresponds to L(t) [resp., U(t) + V (t)],
observed at the times of return to 3. The possible presence of leaves at sites g �= i,
corroborates inequality (3.10).

However, we wish to strengthen (3.31) to an analogue of Lemma 4(b). In order
to be able to recycle its argument, it suffices to show that for any i �= g, i, g ∈
{1, . . . , d} we have

lim inf
t

∑d
l=1,l /∈{i,g} Z(t, l)

t
> 0,

or equivalently, that the third most frequently visited interior site has positive as-
ymptotic frequency. Let (Z(1)(t), . . . ,Z(d)(t)) be the vector of order statistics for
Z(t, g), g = 1, . . . , d , and set

S(t) = Z(d)(t), P (t) = Z(d−1)(t) and R(t) =
d−2∑
j=1

Z(j)(t).



2372 V. LIMIC AND S. VOLKOV

Clearly S(t) � t , and due to (3.28) also P(t) � t . Moreover, due to (3.31) it must
be

lim inf
t

P (t)

t
≥ 1

2(d − 1)
.(3.32)

Indeed, (3.31) implies that lim supt S(t)/t ≤ 1/2, and hence, the identity S(t) +
P(t) + R(t) +∑d

i=1
∑ri

j=1 Z(t, �i
j ) ≡ t and (3.31) together imply lim inft (P (t) +

R(t))/t ≥ 1/2, and (3.32) in turn.
It suffices to show that R is asymptotically comparable to S + P . Let a(t) =

min{i :Z(d)(t) = Z(t, i)} and b(t) = min{i �= a(t) :Z(d−1)(t) = Z(t, i)}. Consider
the process η̃(t) := (S(t) + P(t))/R(t) at successive times of visit to the set
{a(t), b(t)}. Without risk of confusion, let us denote by (η̃k, k ≥ 0) the process
η̃ viewed only on this restricted collection of times.

LEMMA 6. lim supk η̃k < ∞, almost surely.

PROOF. Let τ be the time of the kth visit to the set of vertices {a(·), b(·)}.
For concreteness suppose that the current position X(τ) = b(τ), the calculation
below is similar if X(τ) = a(τ). Let s,p, r denote the values of S(τ),P (τ),R(τ),
respectively, and let l denote the corresponding “total leaf weight” at b(τ). With-
out loss of generality we may assume that r ≥ 4(d − 1) ≥ 4. Assume in ad-
dition that s + p ≥ 2r , or equivalently, that η̃k = (s + p)/r ≥ 2. Then, on
{Z(d−1)(τ ) > Z(d−2)(τ )}, η̃k+1 will either take value (s + p + 1)/r with proba-
bility (s + l)/(s + l + r), or a value smaller than (s + p + 1)/(r + 1) (here we
use the fact that s + p ≥ 2r and r ≥ 4) with probability r/(s + l + r). A careful
reader will note that this includes transitions that change values of a or b. On the
opposite event {Z(d−1)(τ ) = Z(d−2)(τ )} it could be that the particle jumps from
b(t) to another site with the same frequency thus increasing s + p by 1 without
changing r . However, if

r ≤ 1/(3(d − 1))

1 − 1/(3(d − 1))
(p + s) �⇒ r ≤ 1

3(d − 1)
τ,(3.33)

then due to (3.32) we have Z(d−2)(τ ) < r  p, whenever τ is sufficiently large. In
particular, {Z(d−1)(τ ) = Z(d−2)(τ )} happens at most finitely often, almost surely.
Hence, provided η̃k ≥ 3(d − 1) ≥ 2, the drift increment of η̃ is bounded by

1

r
· s + l

s + r + l
− 1

r + 1

s + p − r

s + r + l
,

and since r ≥ 4(d − 1), it will be negative for all sufficiently large τ due to (3.31)–
(3.33). It is particularly easy to check the other two hypotheses of Lemma 1.
Namely, the absolute value of the increment η̃k+1 − η̃k is of the order 1/r =
1/
∑

g,g �=a(τ),b(τ ) Z(τ, g), so clearly diminishing at the time instances when η̃k
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traverses the threshold 3(d − 1). Furthermore, due to (3.30), the sum of square
increments is finite, a.s. The conclusion is now due to Lemma 1. �

It is easy to see that Lemma 6 implies lim inft R(t)/t > 0, and that this is equiv-
alent to having

lim inf
t

d

min
i,j=1

∑d
g=1,g /∈{i,j} Z(t, g)

t
> 0 almost surely.(3.34)

In analogy to the setting of the previous subsection, for each g = 1, . . . , d , define

P
δ,g
k :=

{
d

min
i=1

∑d
j=1,j /∈{i,g} Z(τ

(i)
k , j)∑d

j=1,j �=i Z(τ
(i)
k , j)

≥ δ

}
,

where, as usual, τ
(i)
k is the kth return time to i. The argument of Lemma 4(b) gives

⋂
k≥n0

P
δ,g
k ⊂

{
lim sup

t

(
∑r

j=1 Z(t, �
(g)
j ))β∑

i �=g Z(t, i)
= 0
}

(3.35)

for any β < 1 + δ, and this in turn yields Proposition 1(ii). Due to (3.34), we have,
moreover,

P

(
lim
δ→0

lim inf
k

d⋂
i=1

P
δ,i
k

)
= 1.(3.36)

Finally, consider two different interior sites i and j , the classes (3.22) and the
process X′ from (3.23). In analogy to (3.8) and (3.24), for g ∈ {i, j}, define

Z̃(t, g) := Z(t, g) −
rg∑

j=1

(
Z(t, �

g
j ) − Z(t0, �

g
j )
)
, t ≥ t0.

Then Z̃(t, g) ≤ Z(t, g), t ≥ t0, g ∈ {i, j}, and, moreover,{
lim inf

k

d⋂
i=1

P
δ,i
k

}
⊂ {Z̃(t, j) � Z(t, j), Z̃(t, i) � Z(t, i)}

(3.37)
almost surely.

Let σk be the time of kth visit to class C3 from i or from j (in particular, not
accounting for the steps from C3 to itself, and the steps from the leaves into C3).
Now consider

�̃(k) := log
(
Z̃(σk, i) + Z̃(σk, j)

)− log
(
Z̃(σk, j) − 1

)
, k ≥ 1.(3.38)

Fix δ ∈ (0,1) and β < 1 + δ. The asymptotics (3.35) ensures [see the discussion
comprising (3.17)–(3.19)] the existence of a finite n1 such that with an overwhelm-
ing probability there are at most 2/(1 − 1/β) repeated shuttles from i (resp., j ) to
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its leaves following any step into i (resp., j ) from another interior site that occurs
during the time interval (σk, σk+1), for all k ≥ n1.

We will show that a Doob–Meyer modification of the process �̃ still satisfies
the properties (1.9)–(1.11) so that again

lim sup
k

�̃(k) < ∞ a.s. on lim inf
k

d⋂
i=1

P
δ,i
k .(3.39)

This is equivalent to

lim inf
t

Z̃(t, j)

Z̃(t, i)
> 0 a.s. on lim inf

k

d⋂
i=1

P
δ,i
k .

Due to (3.36) and (3.37) we can conclude Proposition 1(i).
Denote u(k) ≡ u = Z(σk, i), ũ(k) ≡ ũ = Z̃(σk, i), v(k) ≡ v = Z(σk, j), ṽ(k) ≡

ṽ = Z̃(σk, j), n(k) ≡ n = ũ + ṽ and a(k) ≡ a =∑g∈C3
Z(σk, g). In fact, (1.10)

and (1.11) hold for �̃ as in the case of the graph with leaves at a single vertex only,
using (3.35) instead of Proposition 1(ii). For (1.9), note first that (cf. also the next
lemma)

P(B̄1|Fσk
) ≤ v

u + v
· u

a + u
· a

a + v + 1
almost surely,

since possible shuttles to leaves �
j
1, . . . , �

j
rj can only decrease the probability of

return to class C3 when stepping out of i into an interior site.

LEMMA 7. We have

P(B1|Fσk
) ∈
[

u

u + v
· v

a + v
· a(1 − ε(k))

a + u + 1
,

u

u + v
· v

a + v
· a

a + u + 1

]
(3.40)

almost surely,

where ε(k) is Fσk
-measurable nonnegative random variable, such that on⋂

k≥n0
P

δ,i
k ,

ε(k) = O

(
(a + v)1/β

a + u

)
almost surely.

PROOF. Recall that on B1 the particle steps from a site in the class C3 to i,
next does a certain number N(k;u) (possibly 0) of shuttles to the leaves �i

1, . . . , �
i
ri

before a step to j , and finally, does a number (possibly 0) of shuttles to the leaves
�
j
1, . . . , �

j
rj before stepping back to C3. It is now simple to check that

ε(k) = u + v

u
E

[
1{X(σk+1)=i}E

(
N(k;u)

a + u + N(k;u) + 1

∣∣∣Fσk
,X(σk + 1) = i

)∣∣∣Fσk

]
,
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so it suffices to show (recall that v < u/2)

E

(
N(k;u)

a + u + N(k;u)

∣∣∣Fσk
,X(σk + 1) = i

)
≤ C

(a + v)1/β

a + u
almost surely,

for some finite constant C. Let q ≡ q(k) :=∑ri
j=1 Z(σk, �

i
j ) ≡∑ri

j=1 Z(σk +1, �i
j )

be the total weight of the leaves attached to i at time σk (that is, σk + 1). Our
calculation is based on the same reasoning as the discussion comprising (3.17)–
(3.19); however, the expectation bound is simpler, since the random variable
N(k;u)/(a + u + N(k;u)) of interest is bounded by 1. Namely, P(N(k;u) ≥
2q|Fσk

,1{X(σk+1)=i}) ≤ P(N(k;u) ≥ q + 1|Fσk
,1{X(σk+1)=i}) = q

a+u+q
, and

therefore

E

(
N(k;u)

a + u + N(k;u)

∣∣∣Fσk
,X(σk + 1) = i

)
≤ 2q

a + u + 2q
+ q

a + u + q
≤ 3q

a + u
.

The very last term is bounded by C(v + a)1/β/(a +u), provided q ≤ C(v +a)1/β ,
which happens eventually on

⋂
k≥n0

P
δ,i
k , almost surely. �

Note that almost surely on {v < u/2}
(a + v)1/β

a + u
= O

(
1

(a + u)1−1/β

)
= O

(
1

(σk)1−1/β

)
,(3.41)

where we used (3.28) for the last estimate. Due to the fact P(B1|Fσk
) + ε(k) ≥

P(B̄1|Fσk
) the calculations (2.22) and (2.23) can be modified to yield

(
P(B1|Fσk

) + P(B̄1|Fσk
)
)

log
n + 2

ṽ

≤ P(B1|Fσk
) log

n + 1

ṽ − 1
+ P(B̄1|Fσk

) log
n + 1

ṽ

+ ε(k)

(
log

n + 1

n + 2
+ log

ṽ

ṽ − 1

)
.

Denote

r(k) := ε(k)

(
log

n + 1

n + 2
+ log

ṽ

ṽ − 1

)
1{v<u/2}.

We therefore obtain

E
(
�̃(k + 1) − �̃(k)|Fτk

)
≤ log

n + 1

ṽ − 1
· u

u + v
+ log

n + 1

ṽ
· v

u + v
− log

n

ṽ − 1
+ r(k)

≤ 1

u + v

[
u + v

ũ + ṽ
− v

ṽ

]
+ O

(
1

ṽ · n
)

+ r(k)(3.42)
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= 1

u + v
· ṽu − ũv

(ũ + ṽ)ṽ
+ O

(
1

ṽ · n
)

+ r(k)

≤ 1

u + v
· u(ṽ − v) + v(u − ũ)

(ũ + ṽ)ṽ
+ O

(
1

ṽ · n
)

+ r(k)(3.43)

=: r̃(k),

where for the second inequality we develop (recall n = ũ + ṽ)

log
(

ũ + ṽ + 1

u + v + 1

)
− log

(
ũ + ṽ

u + v

)
and log

(
v

ṽ

)
− log

(
v − 1

ṽ − 1

)
via Taylor’s expansion up to quadratic order terms. Lemma 7, jointly with
(3.30), (3.35) and (3.41), implies that, on

⋂
k≥n0

⋂d
i=1 P

δ,i
k , D∞ := ∑∞

l=1 r̃(l)

is a finite random variable, almost surely. Now observe that on {D∞ ≤ K} =⋂
k≥1{

∑k
l=1 r̃(l) ≤ K}, the process

�̃′ :=
(
�̃(k) − ∑

l≤k−1

r̃(l), k ≥ 0
)

satisfies (1.9)–(1.11) with a = log 4 + K and b = 0. Indeed, as in the previous
section, one can argue that (3.20) holds for both shuttles to the leaves attached
at i and at j on

⋂
k≥n0

⋂d
i=1 P

δ,i
k . Hence one can redo the calculation (2.10),

where this time the third term is replaced by (3.21), and the second one by an
analogous expression. Due to Lemma 1, lim supt �̃

′(t) < ∞, thus lim supt �̃(t) ≤
lim supt �̃

′(t) + K < ∞ on {D∞ ≤ K}, almost surely. By taking K arbitrarily
large we obtain (3.39).

3.3. Proof of Theorem 1. For a fixed ε > 0 define events

A(t) = Aε(t) =
{

min
i=1,...,d

Z(t, i)

t
≥ ε and max

i=1,...,d

∑ri
j=1 Z(t, �i

j )

t
≤ t−ε

}
.

Let

Cε =
{
∃T :

∞⋂
t=T

Aε(t) occurs

}
.

PROPOSITION 2. We have Cε ⊆ {π∞ = πunif}, almost surely.

PROOF. The argument is effectively a copy of that for Theorem 1 in [12]. The
only difference is that now the event Cε guarantees that the events E(k) defined on
page 73 of [12] occur for all large enough k ≥ K (see [12], formula (3.1)). Observe
that ε∗ in the definition of E′

2(k) might need to be chosen quite large, yet this does
not cause difficulties in applying the argument. Indeed, ε∗ does not need to satisfy
[12], formulas (3.23) and (3.24), since we can skip step 5 of [12]—in the current



VRRW ON COMPLETE-LIKE GRAPHS 2377

setting it is already covered by our estimates in previous sections, hence included
in the event Cε . Consequently (see [12], pages 73–74, for the definition of γ (k)

and k0), we have that, whenever k0 ≥ K ,

P(π∞ = πunif|Cε) ≥ P
(
π∞ = πunif|Cε,E(k0)

)
P(E(k0)|Cε)

= P
(
π∞ = πunif|Cε,E(k0)

)≥ ∞∏
k=k0+1

(
1 − γ (k)

)
,

which, since
∑

k γ (k) < ∞, can be made arbitrarily close to 1 by choosing suffi-
ciently large k0. �

PROOF OF THEOREM 1. Let

ξij := lim inf
t→∞

Z(t, i)

Z(t, j)

and C̃n = {mini,j :i �=j ξij > 1
n
}. Proposition 1(i) implies that P(

⋃∞
n=1 C̃n) = 1, or

equivalently,

lim
n→∞P(C̃n) = 1.(3.44)

On the other hand, by part (ii) of Proposition 1 and some easy algebra, we have
C̃n ⊂ C1/(nd). The claim now follows from Proposition 2 and (3.44). �

3.4. Case d = 2. In this section, we briefly discuss a somewhat singular case,
where the number of leaves attached to the two “interior” vertices 1 and 2 influ-
ences the qualitative asymptotic behavior of the corresponding VRRW.

Namely, if r1 = r2 = 0, we have trivially (deterministically) π∞ → πunif, in ac-
cordance with Theorem 1. However, if r1 > 0 and r2 = 0 then site 2 becomes qual-
itatively equal to any leaf of 1, and easy (multi-color Pólya urn) arguments show
that Z(t,1)/t → 1/2, while Z(t,2)/t → α/2, where α is a continuous random
variable taking values in [0,1]. In particular, here π∞ �→ πunif. Finally, the most
interesting case is when r1 · r2 > 0. By combining as usual all the leaves attached
to the same interior vertex into a single super-vertex, we can assume r1 = r2 = 1.
Then abbreviating

U(t) = Z(t,1), V (t) = Z(t,2), L(t) = Z(t, �1
1), R(t) = Z(t, �2

1),

one can easily check that U(t) � V (t) � t as t → ∞. Moreover, the process
L/(L + V ) is a supermartingale when observed at times of successive visits to
vertex 1. The symmetric statement holds for the process R/(R + U). Due to the
nonnegative supermartingale convergence, the limits

ξL := lim
t→∞

L(t)

L(t) + V (t)
, ξR := lim

t→∞
R(t)

R(t) + U(t)
,
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both exists, almost surely. Comparison with the Pólya urn implies P(ξL = 1) =
P(ξR = 1) = 0. Using comparison with urns featured in Theorem 3, one realizes
that {ξL > 0} ⊂ {ξR = 0}, almost surely, and moreover that R(t) = o(t1/a) for
any a ∈ (1,1/ξL). The same statement holds with L and R interchanged. Clearly,
π∞ �→ πunif on {ξL > 0} ∪ {ξR > 0}.

The results of [12], Theorem 1.1, indicate that each {ξL > 0} and {ξR > 0} hap-
pen with positive probability; however, we do not have an argument for P({ξL >

0} ∪ {ξR > 0}) = 1.
Using the process �̃ from (3.38), and the reasoning analogous (but simpler to

that) of Section 3.2 we obtain for β > 1

{L(t) = O(t1/β)} ⊂ {ξR > 0}.(3.45)

4. Consequences for d-partite graphs with leaves. Assume d ≥ 3. The fol-
lowing graph G̃ ≡ G̃d = (Ṽd, Ẽd), featured in [12] as an example of a trapping
subgraph for VRRW. It is a generalization of Gd from the Introduction, where Ṽ

is partitioned into d + 1 equivalence classes V1,V2, . . . , Vd,B . The classes Vi ,
i = 1, . . . , d are called the generalized vertices, and satisfy the following two (d-
partite structure) properties:

(i) if x, y ∈ Vi , for some i ∈ {1, . . . , d}, then x �∼ y;
(ii) if x ∈ Vi and y ∈ Vj for two different i, j ∈ {1, . . . , d}, then x ∼ y.

Moreover, B =⋃d
i=1 Bi , where Bi contains the “leaves” of Vi , i ∈ {1, . . . , d},

(iii) if x ∈ B then there exists a unique i ∈ {1, . . . , d} such that x ∼ y for at
least one y ∈ Vi .

Let X be a VRRW on G̃d . Then X′ defined by

X′(t) =
{

i, X(t) ∈ Vi, i = 1, . . . , d,
�i, X(t) ∈ Bi, i = 1, . . . , d,

Z′(t, i) := ∑
x∈Vi

Z(t, x), Z′(t, �i) := ∑
y∈Bi

Z(t, y), t ≥ t0,

is very closely related to VRRW on graph Gd with r1 = · · · = rd = 1. Namely, the
only difference is that on {X′(t) = i} (that is, on {X(t) ∈ Vi}) some of the weight
Z′(t, �i) may not be accounted for when computing the probability of the step to
X′(t + 1), since X(t) may equal x ∈ Vi that is not connected to all the leaves in
Bi .

Our methodology of Sections 2 and 3 carries over to the current setting and we
obtain the almost sure convergence of local time frequencies for X′ to πunif defined
for Gd . Moreover, as in Proposition 1, the leaves �1

1, . . . , �
1
d are asymptotically

visited a lower power order of times compared to the interior vertices.
This translates to the following almost sure behavior of the VRRW on G̃d : the

asymptotic proportion of time spent in Vi is 1/d for each i ∈ {1, . . . , d}, while the



VRRW ON COMPLETE-LIKE GRAPHS 2379

number of visits to B up to time t is of the order tα , for some random α such that
P(α ∈ (0,1)) = 1.

We end this discussion with the following observation. If x, y ∈ Vi , for some
i ∈ {1, . . . , d}, then

lim
t→∞

Z(t, x)

Z(t, y)
∈ (0,1) almost surely.(4.1)

Note that if Bi = ∅, (4.1) is a trivial consequence of the Pólya urn convergence
(see Section 1.1). Namely, in this case the returns to class Vi can happen only
from

⋃
j �=i Vj and they clearly have the (multi-color) Pólya urn distribution. To

see (4.1) if Bi �= ∅, first note that as before one can use simple coupling with the
urn of Theorem 4 to obtain preliminary estimates

lim inf
t→∞

Z(t, x)

φ(Z(t, y))
≥ 1 ∀x, y ∈ Vi.(4.2)

Let L(t) =∑d
i=1 Z′(t, �i) count the visits to all the leaves combined. Due to the

observations made two paragraphs above, we have that P(
⋃

β>1 Gβ) = 1, where
Gβ := {Z′(t, i) → 1/d,L(t) = O(t1/β)}. The asymptotics of Z′(·, i), combined
with (4.2), now imply that⋂

x∈Vi

{Z(t, x) ≥ φ(t)/(2|Vi |)} for all sufficiently large t , almost surely.(4.3)

Assume WLOG that X(t0) ∈⋃j �=i Vj , let τ0 = t0 and for k ≥ 1 let σk := inf{t >

σk−1 :X(t − 1) ∈ Vi,X(t) ∈⋃j �=i Vj } be the kth time of return to
⋃

j �=i Vj from
the class Vi . Let

Z̃(t, x) := Z̃(t − 1, x) + 1{X(t−1)∈⋃j �=i Vj ,X(t)=x},

Z̃(t, y) := Z̃(t − 1, y) + 1{X(t−1)∈⋃j �=i Vj ,X(t)=y}, t ≥ t0,

counts the visits to x and y, respectively, made from interior points exclusively (due
to definition of G̃ , these points are necessarily contained in generalized vertices
different from Vi ). Note that 0 ≤ Z(t, x) − Z̃(t, x) ≤ L(t), so that

⋂
t≥t0

⋂
x∈Vi

{∣∣∣∣ Z̃(t, x)

Z(t, x)
− 1
∣∣∣∣≤ L(t)

Z(t, x)

}
almost surely.(4.4)

Due to (4.3), we conclude that Z(t, x)/Z̃(t, x) → 1 on Gβ , and by letting β ↘
1 that Z(t, x)/Z̃(t, x) → 1, almost surely. Therefore, in order to show (4.1) it
suffices to prove

lim inf
t→∞

Z̃(t, x)∑
y∈Vi

Z̃(t, y)
= lim sup

t→∞
Z̃(t, x)∑

y∈Vi
Z̃(t, y)

> 0 ∀x ∈ Vi.(4.5)
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Define an “analogue” of (3.38)

�̃(k) := log
(
Z̃(σk, x) + ∑

y∈Vi\{x}
Z̃(σk, y)

)
− log

(
Z̃(σk, x) − 1

)
, k ≥ 1,

and note that estimates (4.2)–(4.4) ensure that (on each Gβ ) �̃ is a supermartin-
gale up to a summable drift. In particular, it is converging to a finite (random)
limit. This setting is quite similar to that mentioned at the very end of Section 3.4,
as the estimates are simpler than those of (3.42) and (3.43) due to the following
fact: there is no extra term r(k) in (3.42) in the current setting, since there are no
direct “shuttles” from x to y on the interval (σk, σk+1], indirect “communication”
of x and y via a common leaf is atypical—its occurrence is accounted for by the
differences Z(t, x) − Z̃(t, x), Z(t, y) − Z̃(t, y), that are both bounded by L(t).
Letting β ↘ 1 establishes (4.5). Let Zm(t) count the number of visits to site m

up to time t for VRRW on five (or fewer, at least three) points {−2,−1,0,1,2}.
Then the process (Z(t, x),Z(t, y)) can be closely matched (coupled) to the process
(Z−1(t),Z1(t)) on the event {Z−2(t) = O(t1/β1),Z2(t) = O(t1/β2)}, where β1, β2
are two random quantities strictly greater than 1. The “middle point” 0 corre-
sponds to

⋃
j �=i (Vj ∪ Bj), while the “boundary” −2 (resp., 2) corresponds to the

set of leaves in Bi connected to x (resp., y). Recall once again the process �̃ from
(3.38) and note that we are in the situation of type (3.45) where �̃ will be a super-
martingale up to a summable drift, and, moreover, where Z̃−1(t)/Z−1(t) → 1 and
Z̃1(t)/Z1(t) → 1. This implies that limt→∞ Z−1(t)

Z1(t)
∈ (0,1), almost surely, hence

(4.1).

5. Speed of convergence. We first show a preliminary statement, which can
be viewed as a refinement of Proposition 3.2, page 80 in [12].

LEMMA 8. Suppose that we are given a sequence (ηk)k≥1 such that for some
ε > 0 we have

0 ≤ ηk ≤ 1 − ε and ηk+1 ≤ ηk

[
1 − C(1 − ηk)

k

]
+ D

k1+β̃
∀k ≥ k0,(5.1)

where C > 0, D > 0, and β̃ ∈ [0,1]. Then lim supk→∞ ηkh(k) < ∞, where

h(k) =
⎧⎪⎨⎪⎩

kβ̃, if β̃ < C,
kβ̃/ log k, if β̃ = C,
kC, if β̃ > C.

PROOF. First of all, let us show that ηk → 0. Indeed, fix a positive ε̃ <

min{Cε, β̃}, and suppose that

ηk ≤ A

kε̃
(5.2)
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for some A > 0. Then

ηk+1 ≤ A

kε̃

(
1 − Cε

k

)
+ D

k1+β̃

= A

(k + 1)ε̃
− A(Cε − ε̃) − Dkε̃−β̃ − �(k−1)

k1+ε̃
≤ A

(k + 1)ε̃
,

provided A and k are sufficiently large. We obtain by induction that (5.2) holds for
all large k. Therefore, one can, in fact, assume that ε in (5.1) is arbitrarily close to 1.
Hence, if β̃ < C, we can set ε̃ = β̃ and, assuming that ε ∈ (0,1) is sufficiently large
so that Cε > ε̃, we obtain (5.2) for any A larger than D/(Cε − ε̃) = D/(Cε − β̃).
This implies the claim of the lemma in the case β̃ < C.

From now on assume β̃ ≥ C. The above arguments imply that for ε̃ = 2C/3, we
have ηk ≤ Ak−ε̃ , for all large k and some A < ∞, hence

ηk+1 ≤ ηk

[
1 − C

k

]
+ Cη2

k

k
+ D

k1+β̃
≤ ηk

[
1 − C

k

]
+ D̄

k1+β̄
,

where β̄ = min{β̃,4C/3} and D̄ = D + A2C. If

μk = ηkk
C,

then the last estimate together with Taylor’s expansion of (k + 1)C about k yields

μk+1 ≤ μk(k + 1)C

kC

[
1 − C

k

]
+ D̄(1 + �(1/k))

k1+β̄−C

≤ μk

[
1 − C(1 + C)

2k2 + �(k−3)

]
+ 2D̄

k1+β̄−C
.

By summing over k, this immediately implies lim supk μk < ∞ if β̃ > C (that is,
1 + β̄ − C > 1) and and lim supk μk/ log k < ∞ if β̃ = C, finishing the proof of
the lemma. �

PROOF OF THEOREM 2. Denote by

η(t) := 1 − d min
j=1,...,d

Z(t, j)

t
∈ [0,1]

another measure of distance between the empirical occupation measure π(t) =
(Z(t,1)/t, . . . ,Z(t, d)/t) and πunif = (1/d, . . . ,1/d). Due to Theorem 1, we have∑

j πj (t) = 1−o(1), so η(t)/d ≤ ‖π(t)−πunif‖(1+o(1)) ≤ η(t). Thus it suffices
to study the asymptotic behavior of η(t).

Fix some constants m > 1 and β ∈ (0, (m − 1)/2), and let ν = m−1
2 − β > 0.

Now consider VRRW at times tk = km, set Nk = tk+1 − tk and α
(k)
j = Z(tk, j)/tk,
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j ∈ {1, . . . , d}, k ∈ N (here we use notations similar to those in the proof of Theo-
rem 1 in [12]; also in order to simplify expressions we will often omit the super-
script (k) on α’s). Define events

Dt(ε) :=
d⋂

i=1

{
Z(t, i)

t
∈
(

1

d
− ε,

1

d
+ ε

)}
, t ≥ t0,

and note that Theorem 1 can be rephrased as

P

(
∀ε ∈ (0,1/d) there is K = K(ε) < ∞ s.t.

⋂
k≥K

Dk(ε) occurs
)

= 1.(5.3)

Fix some small positive ε < 1/d . Due to (5.3) we can assume from now on that
minj α

(k)
j ≥ ε.

It is simple to check that if we were to “freeze” the configuration at time tk ,
ignore the visits to the leaves and let the VRRW evolve as a Markov chain on state
space {1, . . . , d} with transition probabilities specified by the weights (α

(k)
j )dj=1 [or

equivalently, by (Z(tk, j))dj=1], then this Markov chain would have its reversible

measure proportional to (α
(k)
1 (1 − α

(k)
1 ), . . . , α

(k)
d (1 − α

(k)
d )). As in the proof of

[12], Theorem 1, one uses the large deviation estimates (1.6) and (1.7) to see that
the number Nk:i of visits to vertex i during [tk, tk+1) concentrates about its “al-
most” expected value (i.e., the expectation according to the above frozen measure)

αi(1 − αi)∑d
j=1 αj (1 − αj )

× Nk = αi(1 − αi)

1 −∑d
j=1 α2

j

× Nk.(5.4)

More precisely, let

Ek = {simultaneously for all i ∈ {1, . . . , d}, the quantity Nk:i
(5.5)

does not differ from (5.4) by more than k(m−1)/2+ν � kν
√

Nk

}
.

Then (see [12], display (3.16), page 76),

P(Ec
k) ≤ γ ′

k := Const1(d) exp(−Const2(ε, d)k2ν),

so we have
∑

k γ ′
k < ∞. Therefore only finitely many Ec

k occur. Consequently, a.s.
there is a k0 = k0(ω) such that

⋂
k≥k0

Ek occurs. From now on, we will implicitly
assume that k ≥ k0.

We next recall that VRRW may also visit the leaves between times tk and tk+1.
We already know from Proposition 1 that maxi

∑ri
j=1 Z(t, �i

j ) ≤ t1−ε′
for some

ε′ > 0. Let us now strengthen this statement.

LEMMA 9. Let L(t, i) :=∑ri
j=1 Z(t, �i

j ) be the total cumulative weight of all
the leaves attached to i at time t , where i ∈ {1, . . . , d}. Then, if ri > 0, for any
δ > 0 we have

P

(
lim inf
t→∞

L(t, i)

t1/(d−1)−δ
= ∞

)
= 1(5.6)
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and (trivially if ri = 0)

P

(
lim sup
t→∞

L(t, i)

t1/(d−1)+δ
= 0
)

= 1.(5.7)

PROOF. We will prove only the first part of the statement, since the second
one follows by an analogous argument.

As usual, let τ
(i)
k be the kth return time to the interior vertex i. Define X′

k :=∑
g �=i Z(τ

(i)
k , g) and Y ′

k := L(τ
(i)
k , i). Due to Theorem 1 and some simple algebra,

the statement of the lemma is equivalent to the following claim: for any δ > 0 we
have

lim sup
k→∞

X′
k

(Y ′
k)

d−1+δ
= 0 almost surely.

Recall (5.3). Without loss of generality we observe the process (X′, Y ′) :=
((X′

k, Y
′
k), k ≥ k1), where τ

(i)
k1

≥ K for some large finite K . In the spirit of Re-
mark 2, we will modify the VRRW and in this way the process (X′, Y ′) (note,
however, that here the construction is slightly more complicated since we cannot
simply “truncate” the process upon exiting the event of “good behavior”). Fix some
small ε > 0, and define

D′
t (ε) :=

d⋂
i=1

{
Z(t, i)∑d

j=1 Z(t, j)
∈
(

1

d
− ε,

1

d
+ ε

)}
, t ≥ t0.

Due to (5.3) and Proposition 1(ii) we have that

P

(⋂
k≥K

D′
k(ε)

)
→ 1 as K → ∞.(5.8)

Define

Tε(K) ≡ Tε := inf{l > K :D′
l(ε) does not occur}.

If K > 2/ε, it is easy to see that D′
l−1(ε) ⊂ D′

l(3ε/2) for l ≥ K , so

{Tε < ∞} ⊂ ⋂
K≤l≤Tε

D′
l(3ε/2) almost surely.(5.9)

Change the dynamics of the VRRW in the following way [recall (1.1)]:

P
(
X(t + 1) = w|Ft

)
(5.10)

= Z(Tε ∧ t,w)∑
y∈{1,...,d,�i

1,...,�
i
ri

}:y∼v Z(Tε ∧ t, y)
1{w∈{1,...,d,�i

1,...,�
i
ri

}}.

In words, after time Tε the step distribution does not anymore change dynamically
with the evolution of the walk; instead it is “frozen” to the configuration

(Z(Tε,1), . . . ,Z(Tε, d),Z(Tε, �
1
1), . . . ,Z(Tε, �

d
rd

)),
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and additional visits to the leaves attached at g where g �= i become impossible.
Let

σε := inf
{
k ≥ k1 :Tε ≤ τ

(i)
k

}
,

and assume that we are given a family {Uk, k ≥ k1} of independent uniform [0,1]
random variables, and independent of the evolution of the VRRW above. Then
define a modification (X̃′

k, Ỹ
′
k) of (X′, Y ′) by (X̃′

k1
, Ỹ ′

k1
) = (X′

k1
, Y ′

k1
) and

(	X̃′
k,	Ỹ ′

k) :=
⎧⎪⎨⎪⎩

(	X′
k,	Y ′

k), k < σε,
(d − 1,0), Uk ≤ X̃′

k/(X̃
′
k + Ỹ ′

k), k ≥ σε,
(0,1), Uk > X̃′

k/(X̃
′
k + Ỹ ′

k), k ≥ σε.
(5.11)

In words, the evolution of (X̃′, Ỹ ′) is identical to that of (X′, Y ′) up to time
σε , while (X̃′, Ỹ ′) evolves as the urn from Theorem 3 from time σε onwards.
In particular, the asymptotic behavior of (X′, Y ′) and (X̃′, Ỹ ′) is the same on
{Tε = ∞} =⋂l≥K D′

l(ε) ⊂ {σε = ∞}.
The point of the above construction is that (X̃′, Ỹ ′) satisfies the hypotheses of

[8], Lemma 3.5, with

a = 1, b = b(ε) = d − 1 + 3εd(d − 3)/2

1 − 3εd/2
and

K = K(ε) = 2
(

d − 1 + 3εd(d − 3)/2

1 − 3εd/2

)2

.

Indeed, suppose k < σε (otherwise the argument is trivial) and note that then with
probability Y ′

k/(X
′
k + Y ′

k) = Ỹ ′
k/(X̃

′
k + Ỹ ′

k) we have X(τ
(i)
k + 1) ∈ {�i

1, . . . , �
i
ri
},

so that (	X̃′
k,	Ỹ ′

k) = (0,1), while with the remaining probability (	X̃′
k,	Ỹ ′

k) =
(Wk,0) where P(Wk ≥ 1) = 1 and conditionally on F

τ
(i)
k

, Wk is stochastically

bounded from above by a Geometric random variable with success probability
(1 − 3εd/2)/(d − 1 + 3εd(d − 3)/2). Here we use the definition of the modified
dynamics (5.10) and (5.11) together with the fact (5.9).

Due to [8], Lemma 3.5, (X̃′
k/(Ỹ

′
k)

b′
, k ≥ k1) is a positive supermartingale for

any b′ > b(ε), hence converging, and its limit must be 0, almost surely (strictly
speaking, the supermartingale property holds once Ỹ ′

k1
is larger than some fixed

constant, but this we can assume WLOG). Note that for any δ one can choose
ε > 0 sufficiently small so that d − 1 + δ > b(ε). Since X′·/(Y ′· )b

′
and X̃′·/(Ỹ ′· )b

′

behave identically on {Tε = ∞} = ⋂l≥K D′
l(ε), the statement of the lemma fol-

lows immediately from (5.8). �

Now suppose that
∑d

i=1 ri > 0, and denote by θk :=∑d
i=1 L(tk, i)/tk > 0 the

total (rescaled) weight of the leaves. Due to Lemma 9, we have
∑d

i=1 L(tk, i) =
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o(t
1/(d−1)+δ
k ), hence

d∑
j=1

α
(k)
j = 1 − θk where θk = o

(
k−m[(d−2)/(d−1)−δ]).(5.12)

Moreover, due to Lemma 9, we have t
1/(d−1)−δ
k = o(

∑d
i=1 L(tk, i)), therefore

t
−(d−2)/(d−1)−δ
k = o(θk)

‖π(t) − πunif‖ ≥
d∑

i=1

∣∣∣∣Z(tk, i)

tk
− 1

d

∣∣∣∣≥ ∣∣∣∣ d∑
i=1

Z(tk, i)

tk
− 1
∣∣∣∣

=
d∑

i=1

L(tk, i)

tk
� t

−(d−2)/(d−1)−δ
k , as k → ∞,

yielding the lower bound claim (1.4) in Theorem 2.
We continue toward the proof of (1.2) and (1.3). Set

ηk := η(tk) = 1 − d min
j=1,...,d

α
(k)
j ≥ 0,

and let

β̃ = min
{
β,1,m

(
d − 2

d − 1
− δ

)}
,(5.13)

where δ > 0 is very small.
The following statement is a refinement of (3.28) in [12].

LEMMA 10. On the event Ek defined by (5.5) we have

ηk+1 = ηk

(
1 − mr(1 − ηk)

k

)
+ �

(
1

k1+β̃

)
,(5.14)

where r = r(k,α(k)) ∈ [1/(d − 1),1/(1 − ηk)].
PROOF. Due to (5.12) we have

1 −
d∑

j=1

α2
j ≤ 1 − (

∑d
j=1 αj )

2

d
≤
(

1 − 1

d

)
+ 2θk

d
.

Moreover, Theorem 1 implies in particular that P(
⋂

k≥k0
{maxd

i=1 α
(k)
i < 1/2}) → 1

as k0 → ∞ (recall that d ≥ 3). Since x �→ x(1 − x) is an increasing function on
[0,1/2], we conclude that asymptotically

1 −
d∑

j=1

α2
j =

d∑
j=1

αj (1 − αj ) + θk ≥ d × 1 − ηk

d

(
1 − 1 − ηk

d

)
+ θk

=
(

1 − 1

d

)
−
(

1 − 2 − ηk

d

)
ηk + θk.
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Thus we have shown

1 −
d∑

j=1

α2
j =
(

1 − 1

d

)
− d − 2

d
γ ηk + o

(
1

km((d−2)/(d−1)−δ)

)
(5.15)

where γ ∈ [0,1 + ηk/(d − 2)].
Note that

α
(k+1)
i = αik

m + Nkαi(1 − αi)/(1 −∑j α2
j ) + O(k(m−1)/2+ν)

(k + 1)m
,

where the O(·) term comes from the estimation of the event (5.5). Thus

α
(k+1)
i = αi

[
1 − m

k
+ m

k

1 − αi

1 −∑α2
j

]
+ O

(
1

k1+β

)
+ �

(
1

k2

)

= αi

[
1 + m

k

(
1 − αi

1 −∑α2
j

− 1
)]

+ �

(
1

k1+β̃

)
.

Since the last expression (without the � part) is increasing in αi for all suffi-
ciently large k, it implies that if α

(k)
i = mind

j=1 α
(k)
j , then α

(k+1)
i will again equal

mind
j=1 α

(k+1)
j , unless it is “overtaken” by α

(k+1)
j for some other index j . The latter

case can happen only if the difference |α(k)
j − α

(k)
i | is itself O( 1

k1+β̃
). Hence it is

always true that

d

min
j=1

α
(k+1)
j = d

min
i=1

α
(k)
i

[
1 + m

k

(
1 − (mind

i=1 α
(k)
i )

1 −∑α2
j

− 1
)]

+ O

(
1

k1+β̃

)
.

This yields in turn

ηk+1 = 1 − d

(
1 − ηk

d

[
1 + m

k

(
1 − (1 − ηk)/d

1 −∑α2
j

− 1
)]

+ O

(
1

k1+β̃

))

= 1 − (1 − ηk)

[
1 + m

k

(
d − 1 + ηk

d − 1 − (d − 2)γ ηk

− 1
)]

+ O

(
1

k1+β̃

)

= ηk

(
1 − m(1 − ηk)

k
× 1 + γ (d − 2)

d − 1 − (d − 2)γ ηk

)
+ O

(
1

k1+β̃

)
,

where for the second equality we used (5.15). Since

d − 1 + ηk

d − 1 − (d − 2)ηk − η2
k

<
1

1 − ηk

,

we get

ηk+1 = ηk

(
1 − m(1 − ηk)r

k

)
+ O

(
1

k1+β̃

)
,
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where 1/(d − 1) ≤ r ≤ (1 − ηk)
−1. �

Recalling once again fact (5.3) we can assume that for ε = 1−2/d > 0 we have
ηk ≤ 1−ε, for all large k. This enables us applying Lemma 8 with C = m/(d −1).
Note that to get the best estimate of the speed of convergence we need to make
p(d,m) := min{C, β̃}/m as large as possible, since

lim sup
k→∞

ηkh(k) = lim sup
k→∞

η(km)h(k) < ∞

for an increasing function h(·) a.s. implies

lim sup
t→∞

η(t)h(t1/m) < ∞.

On the other hand, recalling the definition of β̃ from (5.13), we have

p(d,m) = min
{

1

d − 1
,

1

m
,
β

m
,
d − 2

d − 1
− δ

}
= min

{
1

d − 1
,

1

m
,

1

2
− δ1 + 1/2

m
,
d − 2

d − 1
− δ

}
.

We can make β as close as possible to (m− 1)/2 by recalling β = (m− 1)/2 − δ1,
and taking δ1 > 0 arbitrarily small. Similarly, δ > 0 can be made very small. Given
a particular choice of δ, δ1, observe that maxm>1 p(d,m) is achieved at 3 + 2δ1,
so by setting m = 3 + 2δ1 we obtain

p(d) := p(d,3 + 2δ1) = min
{

1

d − 1
,

1

3 + 2δ1
,
d − 2

d − 1
− δ

}
= min

{
1

d − 1
,

1

3 + 2δ1
,

1

d − 1
+
[
d − 3

d − 1
− δ

]}
= min

{
1

d − 1
,

1

3 + 2δ1

}
.

Consequently, p(d) can be taken arbitrarily close to 1/3 if d ∈ {3,4}, while p(d) =
1/(d − 1) for d ≥ 5. Setting C = 3/(d − 1) yields β̃ = min{1 − δ1,1} < C if d ∈
{3,4} and β̃ > C if d ≥ 5. As already argued, this implies lim supη(t)tp(d) < ∞
due to Lemma 8, and completes the proof of Theorem 2. �

REMARK 4. There is a gap in the power between the upper and lower bounds
on speed of convergence in Theorem 2. One might wish to obtain further infor-
mation on the lower bound using (5.14). In fact, we would be able to conclude
something provided

ηk+1 ≥ ηk

(
1 − C(1 − ηk)

k

)
+ D

k1+β̃
,
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where both C and D are positive (or for D negative, under more complicated
constraints on C > 0 and β̃ that seem difficult to verify). Therefore, it is the lack
of knowledge of the sign (and magnitude) of the error term in (5.14) that obstructs
generalizing the above argument to obtaining lower bound estimate.
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