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FLUID LIMITS OF MANY-SERVER QUEUES WITH RENEGING

BY WEINING KANG AND KAVITA RAMANAN1

University of Maryland, Baltimore County and Brown University

This work considers a many-server queueing system in which impatient
customers with i.i.d., generally distributed service times and i.i.d., generally
distributed patience times enter service in the order of arrival and abandon
the queue if the time before possible entry into service exceeds the patience
time. The dynamics of the system is represented in terms of a pair of measure-
valued processes, one that keeps track of the waiting times of the customers
in queue and the other that keeps track of the amounts of time each customer
being served has been in service. Under mild assumptions, essentially only
requiring that the service and reneging distributions have densities, as both
the arrival rate and the number of servers go to infinity, a law of large num-
bers (or fluid) limit is established for this pair of processes. The limit is shown
to be the unique solution of a coupled pair of deterministic integral equations
that admits an explicit representation. In addition, a fluid limit for the virtual
waiting time process is also established. This paper extends previous work
by Kaspi and Ramanan, which analyzed the model in the absence of reneg-
ing. A strong motivation for understanding performance in the presence of
reneging arises from models of call centers.
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1. Introduction.

1.1. Background and motivation. We consider a many-server queueing system
in which customers with independent, identically distributed (henceforth, i.i.d.)
service requirements chosen from a general distribution are processed in the order
of arrival. In addition, a customer is assumed to abandon the queue if his/her time
spent waiting in queue reaches his/her patience time. The patience times of cus-
tomers are also assumed to be i.i.d. and drawn from a general distribution. When
there are N servers and the cumulative customer arrival process is assumed to be
a renewal process, this reduces to the so-called G/GI/N + GI model.

Over the last couple of decades, several applications have spurred the study of
many-server models with abandonment [1, 3, 7]. Specifically, in applications to
telephone contact centers and (more generally) customer contact centers, the ef-
fect of customers’ impatience has been shown to have a substantial impact on the
performance of the system [7]. For example, customer abandonment can stabilize a
system that was formerly unstable. Under the assumption that the interarrival, ser-
vice and abandonment time distributions are (possibly time-varying) exponential,
process-level fluid and diffusion approximations were obtained by Mandelbaum,
Massey and Reiman [16] for the total number in system in networks of multiserver
queues with abandonments and retrials.

On the other hand, for the case of Poisson arrivals, exponential service times and
general abandonment distributions (the M/M/N + GI queue), explicit formulae for
the steady state distributions of the queue length and virtual waiting time were ob-
tained by Baccelli and Hebuterne [1] (see Sections IV and V.2 therein), whereas
several other steady state performance measures and their asymptotic approxima-
tions, in the limit as the arrival rates and servers go to infinity, were derived by
Mandelbaum and Zeltyn [18]. In addition, approximations for performance mea-
sures suggested by these limit theorems were used by Garnett et al. [8] and Man-
delbaum and Zeltyn [19] for the case of exponential and general abandonment
distributions, respectively, to provide insight into the design of large call centers.

In all the previously mentioned works, the service times were assumed to be
exponential. However, statistical analysis of real call centers has shown that both
service times and abandon times are typically not exponentially distributed [4, 18],
thus providing strong motivation for considering many-server systems with general
service and abandonment distributions. A step toward incorporating more realistic
general service distributions was taken in the insightful paper by Whitt [22], where
a deterministic fluid approximation for a G/GI/N + GI queue with general service
and abandonment distributions was proposed. However, the convergence of the
discrete system starting empty to this fluid approximation was left as a conjecture
(see Conjecture 2.1 in [22]). In this work, we rigorously identify the functional
law of large numbers or mean-field limit, as the number of servers goes to infinity,
of a many-server queueing system with general service and abandonment distrib-
utions starting from general initial conditions. In a recent work, Mandelbaum and
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Momcilovic [17] have established diffusion approximations for the queue-length
and virtual waiting time processes in a G/GI/N + GI queue.

With a view to providing a Markovian representation of the dynamics with a
state space that is independent of the number of servers, we introduce a pair of
measure-valued processes to describe the evolution of the system. One measure-
valued process keeps track of the waiting times of customers in queue and the other
keeps track of the amounts of time each customer present in the system has been
in service. Under rather general assumptions (specified in Sections 2.1 and 3.1),
we establish an asymptotic limit theorem for the scaled (divided by N ) pair of
measure-valued processes, as the number of servers N and the mean arrival rate
into the system simultaneously go to infinity. In a recent independent study, Zhang
[24] also considered the fluid limit for the same G/GI/N + GI system by using a
measure-valued representation. His approach is based on tracking the “residual”
service and patience times rather than tracking the “ages” in system and service
as considered in this work. As in [14] and [15], an advantage of the particular
measure-valued representation used here, in terms of ages in system and service,
rather than residual service and residual patience times, is that it facilitates the
application of martingale techniques, which streamlines the analysis and also al-
lows for a more intuitive representation of the dynamics of the limiting process. In
addition, the measure-valued approach also simultaneously allows for the charac-
terization of asymptotic limits of several other functionals of interest. In order to
illustrate this point, we also derive a limit theorem for the virtual waiting time of
a customer, defined to be the time before entry to service of a (virtual) customer
with infinite patience.

This work generalizes the framework of Kaspi and Ramanan [14], in which
the corresponding model without abandonments was considered. The presence of
two coupled measure-valued processes, rather than just one as in [14], makes the
analysis here significantly more involved. In addition, an important step is the iden-
tification of an explicit expression for the cumulative reneging process. This paper
also forms the basis of subsequent work in which we establish, under suitable con-
ditions, the convergence of the stationary distributions of the fluid-scaled N -server
systems to the invariant state of the fluid limit, as N tends to infinity [13].

It is worthwhile to mention that the models discussed above are relevant when
the mean demand of customers is known (or can be accurately learned from an
initial period of measurements), which is a realistic assumption in many applica-
tions. In other scenarios, it may be more natural to model the demand as being
doubly stochastic. This approach was adopted by Harrison and Zeevi [9] (see also
[2]), who proposed optimal staffing and design of multi-class call centers with
several agent pools in the presence of abandonment under the assumption that the
dominant variability arises from the randomness in the mean demand, rather than
fluctuations around the mean demand.
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1.2. Outline of the paper. The outline of the paper is as follows. We provide
a more precise description of the model and the measure-valued representation
of the state, and describe the dynamical equations governing the evolution of the
system in Section 2 (the explicit construction of the state process is relegated to
Appendix A and the strong Markov property of the state process is established in
Appendix B). A key result here is Theorem 2.1, which provides a succinct charac-
terization of the state dynamics. An analog of this characterization for continuous
state processes leads to the fluid equations, which are introduced in Section 3.2 (see
Definition 3.3). Next, the main results of the paper are summarized in Section 3.3.
The first (Theorem 3.5) is a uniqueness result that states that (under the assump-
tion that the service and abandonment distributions have densities and finite first
moments) there exists at most one solution to the fluid equations. The proof of this
result, which is considerably more involved than in the case without abandonment,
is the subject of Section 4. The second and main result of the paper (Theorem 3.6)
states that under mild additional assumptions (namely, Assumptions 3.1–3.3 intro-
duced in Section 3.1), the scaled sequence of state processes converges weakly to
the (unique) solution of the fluid equations, and provides a fairly explicit represen-
tation for the solution. The proof of this result consists of two main steps. First,
in Section 6, the sequence of scaled state processes is shown to be tight and then,
in Section 7, it is shown that every subsequential limit is a solution to the fluid
equations. Both of these results make use of properties of a family of martingales
that are established in Section 5. Finally, the last result (Theorem 3.8) formulates
the asymptotic limit theorem for the virtual waiting time process, which is proved
in Section 7.2. To start with, in Section 1.3, we first collect some basic notation
and terminology used throughout the paper.

1.3. Notation and terminology. The following notation will be used through-
out the paper. Z is the set of integers, N is the set of strictly positive integers, R is
set of real numbers, R+ the set of nonnegative real numbers and Z+ is the set of
nonnegative integers. For a, b ∈ R, a ∨ b denotes the maximum of a and b, a ∧ b

the minimum of a and b and the short-hand a+ is used for a ∨ 0. Given A ⊂ R

and a ∈ R, A − a equals the set {x ∈ R :x + a ∈ A} and 1B denotes the indicator
function of the set B [i.e., 1B(x) = 1 if x ∈ B and 1B(x) = 0 otherwise].

1.3.1. Function and measure spaces. Given any metric space E, Cb(E) and
Cc(E) are, respectively, the space of bounded, continuous functions and the space
of continuous real-valued functions with compact support defined on E, while
C 1(E) is the space of real-valued, once continuously differentiable functions
on E, and C 1

c (E) is the subspace of functions in C 1(E) that have compact sup-
port. The subspace of functions in C 1(E) that, together with their first deriv-
atives, are bounded, will be denoted by C 1

b(E). For H ≤ ∞, let L1[0,H) and
L1

loc[0,H), respectively, represent the spaces of integrable and locally integrable
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functions on [0,H), where a locally integrable function f on [0,H) is a mea-
surable function on [0,H) that satisfies

∫
[0,a] f (x) dx < ∞ for all a < H . The

constant functions f ≡ 1 and f ≡ 0 will be represented by the symbols 1 and 0,
respectively. Given any càdlàg, real-valued function ϕ defined on [0,∞), we de-
fine ‖ϕ‖T

.= sups∈[0,T ] |ϕ(s)| for every T < ∞, and let ‖ϕ‖∞ .= sups∈[0,∞) |ϕ(s)|,
which could possibly take the value ∞. In addition, the support of a function ϕ

is denoted by supp(ϕ). Given a nondecreasing function f on [0,∞), f −1 denotes
the inverse function of f in the sense that

f −1(y) = inf{x ≥ 0 :f (x) ≥ y}.(1.1)

For each differentiable function f defined on R, f ′ denotes the first derivative
of f . For each function f (t, x) defined on R×R

n, ft denotes the partial derivative
of f with respect to t , and fx denotes the partial derivative of f with respect to x.

The space of Radon measures on a metric space E, endowed with the Borel
σ -algebra, is denoted by M(E), while MF (E), M1(E) and M≤1(E) are, re-
spectively, the subspaces of finite, probability and sub-probability measures in
M(E). Also, given B < ∞, M≤B(E) ⊂ MF (E) denotes the space of measures
μ in MF (E) such that |μ(E)| ≤ B . Recall that a Radon measure is one that as-
signs finite measure to every relatively compact subset of R+. The space M(E) is
equipped with the vague topology, that is, a sequence of measures {μn} in M(E)

is said to converge to μ in the vague topology (denoted μn
v→ μ) if and only if for

every ϕ ∈ Cc(E),∫
E

ϕ(x)μn(dx) →
∫
E

ϕ(x)μ(dx) as n → ∞.(1.2)

By identifying a Radon measure μ ∈ M(E) with the mapping on Cc(E) defined
by

ϕ 
→
∫
E

ϕ(x)μ(dx),

one can equivalently define a Radon measure on E as a linear mapping from Cc(E)

into R such that for every compact set K ⊂ E, there exists LK < ∞ such that∣∣∣∣
∫
E

ϕ(x)μ(dx)

∣∣∣∣ ≤ LK‖ϕ‖∞ ∀ϕ ∈ Cc(E) with supp(ϕ) ⊂ K.

On MF (E), we will also consider the weak topology, that is, a sequence {μn} in
MF (E) is said to converge weakly to μ (denoted μn

w→ μ) if and only if (1.2)
holds for every ϕ ∈ Cb(E). As is well known, M(E) and MF (E), endowed with
the vague and weak topologies, respectively, are Polish spaces. The symbol δx will
be used to denote the measure with unit mass at the point x, and, by some abuse
of notation, we will use 0 to denote the identically zero Radon measure on E.
When E is an interval, say [0,H), for notational conciseness, we will often write
M[0,H) instead of M([0,H)). For any finite measure μ on [0,H), we define

Fμ(x)
.= μ[0, x], x ∈ [0,H).(1.3)
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We say a measure μ is continuous at x if and only if μ({x}) = 0.
We will mostly be interested in the case when E = [0,H) and E = [0,H) ×

R+, for some H ∈ (0,∞]. To distinguish these cases, we will usually use f to
denote generic functions on [0,H) and ϕ to denote generic functions on [0,H) ×
R+. By some abuse of notation, given f on [0,H), we will sometimes also treat
it as a function on [0,H) × R+ that is constant in the second variable. For any
Borel measurable function f : [0,H) → R that is integrable with respect to ξ ∈
M[0,H), we often use the short-hand notation

〈f, ξ〉 .=
∫
[0,H)

f (x)ξ(dx).

Also, for ease of notation, given ξ ∈ M[0,H) and an interval (a, b) ⊂ [0,H), we
will use ξ(a, b) and ξ(a) to denote ξ((a, b)) and ξ({a}), respectively.

1.3.2. Measure-valued stochastic processes. Given a Polish space H, we de-
note by D H[0, T ] (resp., D H[0,∞)) the space of H-valued, càdlàg functions on
[0, T ] (resp., [0,∞)), and we endow this space with the usual Skorokhod J1-
topology [20]. Then D H[0, T ] and D H[0,∞) are also Polish spaces (see [20]).
In this work, we will be interested in H-valued stochastic processes, where
H = MF [0,H) for some H ≤ ∞. These are random elements that are defined
on a probability space (�, F ,P) and take values in D H[0,∞), equipped with
the Borel σ -algebra (generated by open sets under the Skorokhod J1-topology).
A sequence {Xn} of càdlàg, H-valued processes, with Xn defined on the prob-
ability space (�n, Fn,Pn), is said to converge in distribution to a càdlàg H-
valued process X defined on (�, F ,P) if, for every bounded, continuous func-
tional F : D H[0,∞) → R, we have

lim
n→∞En[F(Xn)] = E[F(X)],

where En and E are the expectation operators with respect to the probability mea-
sures Pn and P, respectively. Convergence in distribution of Xn to X will be
denoted by Xn ⇒ X. Let IR+[0,∞) be the subset of nondecreasing functions
f ∈ DR+[0,∞) with f (0) = 0.

2. Description of model and state dynamics. In Section 2.1 we describe
the basic model and the model primitives. In Section 2.2 we introduce the state
descriptor and some auxiliary processes, and derive some equations that describe
the dynamics of the state. Finally, in Section 2.3 (see Theorem 2.1), we provide
a succinct characterization of the state dynamics. This characterization motivates
the form of the fluid equations, which are introduced in Section 3.2.
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2.1. Model description and primitive data. Consider a system with N servers,
in which arriving customers are served in a nonidling, First-Come-First-Serve
(FCFS) manner, that is, a newly arriving customer immediately enters service if
there are any idle servers or, if all servers are busy, then the customer joins the
back of the queue, and the customer at the head of the queue (if one is present)
enters service as soon as a server becomes free. Our results are not sensitive to the
exact mechanism used to assign an arriving customer to an idle server, as long as
the nonidling condition, that there cannot simultaneously be a positive queue and
an idle server, is satisfied. It is assumed that customers are impatient, and that a
customer reneges from the queue as soon as the amount of time he/she has spent
in queue reaches his/her patience time. Customers do not renege once they have
entered service. The patience times of customers are given by an i.i.d. sequence,
{ri, i ∈ Z}, with common cumulative distribution function Gr on [0,∞], while the
service requirements of customers are given by another i.i.d. sequence, {vi, i ∈ Z},
with common cumulative distribution function Gs on [0,∞). For i ∈ N, ri and
vi represent, respectively, the patience time and the service requirement of the
ith customer to enter the system after time zero, while {ri, i ∈ −N ∪ {0}} and
{vi, i ∈ −N ∪ {0}} represent, respectively, the patience times and the service re-
quirements of customers that arrived prior to time zero (if such customers exist),
ordered according to their arrival times (prior to time zero). We assume that Gs has
density gs and Gr , restricted on [0,∞), has density gr . This implies, in particular,
that Gr(0+) = Gs(0+) = 0. Let

Hr .= sup{x ∈ [0,∞) :gr(x) > 0},
H s .= sup{x ∈ [0,∞) :gs(x) > 0}

denote the right ends of the supports of gr and gs , respectively. The superscript
(N) will be used to refer to quantities associated with the system with N servers.

Let E(N) denote the cumulative arrival process, with E(N)(t) representing the
total number of customers that arrive into the system with N servers in the time
interval [0, t]. Also, consider the càdlàg, real-valued process α

(N)
E defined by

α
(N)
E (s) = s if E(N)(s) = 0 and, if E(N)(s) > 0, then

α
(N)
E (s)

.= s − sup
{
u < s :E(N)(u) < E(N)(s)

}
,(2.1)

which denotes the time elapsed since the last arrival. If E(N) is a renewal process,
then α

(N)
E is simply the backward recurrence time process. Also, let E (N)

0 be an a.s.
Z+-valued random variable that represents the number of customers that entered
the system prior to time zero. This random variable does not play an important role
in the analysis, but is used for bookkeeping purposes to keep track of the indices
of customers.

The following mild assumptions on E(N) will be imposed throughout, without
explicit mention:
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• E(N) is a nondecreasing, pure jump process with E(N)(0) = 0 and a.s., for t ∈
[0,∞),E(N)(t) < ∞ and E(N)(t) − E(N)(t−) ∈ {0,1};

• the process α
(N)
E is Markovian with respect to its own natural filtration (this

holds, e.g., when E(N) is a renewal process);
• the cumulative arrival process E(N), the sequence of service requirements

{vj , j ∈ Z} and the sequence of patience times {rj , j ∈ Z} are independent.

The assumption on the jump size of E(N) is not crucial and is imposed mainly
for convenience. On the other hand, the assumed independence of the service and
patience times is a genuine restriction. It would be of interest to consider the case
of correlated service and patience times.

2.2. State descriptor and dynamical equations. As mentioned in Section 1.1,
our representation of the state of the system with N servers involves a pair of
measure-valued processes, the “potential queue measure” process, η(N), which
keeps track of the waiting times of customers in queue and the “age measure”
process, ν(N), which encodes the amounts of time that customers currently receiv-
ing service have been in service. In fact, the potential queue measure process keeps
track not only of the waiting times of customers in queue, but also of the poten-
tial waiting times (equivalently, times since entry into system) of those customers
who may have already entered service (and possibly departed the system), but for
whom the time since entry into the system has not yet exceeded the patience time.
In order to determine which subset of these customers is actually in queue, the
process X(N), which represents the total number of customers in system with N

servers (including those in service and those in queue), is also incorporated into
the state descriptor. Thus the state of the system is represented by the vector of
processes (α

(N)
E ,X(N), ν(N), η(N)), where α

(N)
E determines the cumulative arrival

process via (2.1). The reason for introducing the process η(N) into the state (rather
than working directly with a restricted measure that only encodes the waiting times
of customers in queue) is that its dynamics is decoupled from the service dynamics.
It is governed purely by the primitive data E(N) and Gr , and is thus more amenable
to analysis (see Remark 2.2 for further elaboration of this point). Indeed, the queue
measure process η(N) can also be viewed as describing the ages of customers in
an infinite server queue that has cumulative arrivals E(N) and i.i.d. service require-
ments distributed according to Gr . Thus the dynamics of the process η(N) is also
of independent interest.

Precise mathematical descriptions of η(N) and ν(N) are given in Sections 2.2.1
and 2.2.2, respectively. Some auxiliary processes that are useful for describing the
evolution of the state are introduced in Section 2.2.3. Finally, in Section 2.2.4, a fil-
tration {F (N)

t } corresponding to the system with N servers is introduced, and it is
shown that the state processes and auxiliary processes are all adapted to this filtra-
tion. In fact, it is shown in Appendix B that the state process is a strong Markov
process with respect to this filtration.
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2.2.1. Description of queue dynamics. The potential waiting time process
w

(N)
j of customer j is (for every realization) defined to be the piecewise linear

function on [0,∞) that is identically zero till the customer enters the system,
then increases linearly, representing the amount of time elapsed since entering
the system, and then remains constant (equal to the patience time) once the time
elapsed exceeds the patience time. More precisely, for j ∈ N, if ζ

(N)
j is the time

at which the j th customer arrives into the system after time 0, then for j ∈ N

ζ
(N)
j = (E(N))−1(j)

.= inf{t > 0 :E(N)(t) = j} and

w
(N)
j (t) =

{[
t − ζ

(N)
j

] ∨ 0, if t − ζ
(N)
j < rj ,

rj , otherwise.
(2.2)

For j ∈ −N ∪ {0}, w
(N)
j represents the potential waiting time process of the j th

customer who entered the system before time zero (if such a customer exists).
Observe that the potential waiting time w

(N)
j (t) of a customer at time t equals its

actual waiting time (equivalently, time spent in queue) if and only if the customer
has neither entered service nor reneged by time t . For t ∈ [0,∞), let η

(N)
t be the

nonnegative Borel measure on [0,H r) that has a unit mass at the potential waiting
time of each customer that has entered the system by time t and whose potential
waiting time has not yet reached its patience time. Recall that δx represents the
Dirac mass at x. The potential queue measure η

(N)
t can be written in the form

η
(N)
t =

E(N)(t)∑
j=−E (N)

0 +1

δ
w

(N)
j (t)

1{w(N)
j (t)<rj }

(2.3)

=
E(N)(t)∑

j=−E (N)
0 +1

δ
w

(N)
j (t)

1{dw
(N)
j /dt(t+)>0},

where the last equality holds because at any time t , the potential waiting time
process of any customer has a right derivative that is positive if and only if the
customer has entered the system and the customer’s potential waiting time has not
yet reached its patience time.

For t ∈ [0,∞), let Q(N)(t) be the number of customers waiting in queue at
time t . Due to the nonidling condition, the queue length process is then given by

Q(N)(t) = [
X(N)(t) − N

]+
.(2.4)

Moreover, since the head-of-the-line customer is the customer in queue with the
longest waiting time, the quantity

χ(N)(t)
.= inf

{
x > 0 :η(N)

t [0, x] ≥ Q(N)(t)
} = (

Fη
(N)
t

)−1(
Q(N)(t)

)
(2.5)
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represents the waiting time of the head-of-the-line customer in the queue at time t .

Here, recall from (1.3) that Fη
(N)
t is the c.d.f. of the measure η

(N)
t and (F η

(N)
t )−1

represents its inverse, as defined in (1.1). Since this is an FCFS system, any mass in
η

(N)
t that lies to the right of χ(N)(t) represents a customer that has already entered

service by time t . Therefore, the queue length process Q(N) admits the following
alternative representation in terms of χ(N) and η(N):

Q(N)(t) =
E(N)(t)∑

j=−E (N)
0 +1

1{w(N)
j (t)≤χ(N)(t),w

(N)
j (t)<rj }

(2.6)
= η

(N)
t

[
0, χ(N)(t)

]
.

2.2.2. Description of service dynamics. Analogous to the potential waiting
process w

(N)
j , the age process a

(N)
j associated with customer j is (for every real-

ization) defined to be the piecewise linear function on [0,∞) that equals 0 till the
customer enters service, then increases linearly while the customer is in service
(representing the amount of time elapsed since entering service) and is then con-
stant (equal to the total service requirement) after the customer completes service
and departs the system. For j = −E (N)

0 + 1, . . . ,0, let a
(N)
j (0) represent the age

of the j th customer in service at time 0 and for j ∈ N, we set a
(N)
j (0) = 0. Due

to the First-Come-First-Serve (FCFS) nature of the system, customers in service
at time t are those that did not renege, that have been in the system longer than
the head-of-the-line customer at time t , but have not yet completed service and
departed. Therefore, a.s., for j = −E (N)

0 + 1, . . . ,0, . . . ,E(N)(t), t ≥ 0,

da
(N)
j (t+)

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if a
(N)
j (t) = 0,w

(N)
j (t) = rj ,

or a
(N)
j (t) = 0,w

(N)
j (t) ≤ χ(N)(t),

or a
(N)
j (t) = vj ,

1, if a
(N)
j (t) = 0, χ(N)(t) < w

(N)
j (t) < rj ,

or 0 < a
(N)
j (t) < vj .

(2.7)

Note that the condition in the penultimate line of the right-hand side above rep-
resents the scenario in which a customer enters service precisely at time t , which
causes χ(N) to have a downward jump at time t since the condition that the arrival
process increases only in unit jumps ensures that there is at most one customer
with a given potential waiting time.

Now, for t ∈ [0,∞), let ν
(N)
t be the discrete nonnegative Borel measure on

[0,H s) that has a unit mass at the age of each of the customers in service at time t .
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Then, in a fashion analogous to (2.3), the age measure ν
(N)
t can be explicitly rep-

resented as

ν
(N)
t =

E(N)(t)∑
j=−E (N)

0 +1

δ
a

(N)
j (t)

1{da
(N)
j /dt(t+)>0}.(2.8)

2.2.3. Auxiliary processes. We now introduce certain auxiliary processes that
will be useful for the study of the evolution of the system.

• The cumulative reneging process R(N), where R(N)(t) is the cumulative number
of customers that have reneged from the system in the time interval [0, t];

• the cumulative potential reneging process S(N), where S(N)(t) represents the
cumulative number of customers whose potential waiting times have reached
their patience times in the interval [0, t];

• the cumulative departure process D(N), where D(N)(t) is the cumulative number
of customers that have departed the system after completion of service in the
interval [0, t];

• the process K(N), where K(N)(t) represents the cumulative number of cus-
tomers that have entered service in the interval [0, t].

Now, a customer j completes service (and therefore departs the system) at time s if
and only if, at time s, the left derivative of a

(N)
j is positive and the right derivative

of a
(N)
j is zero. Therefore, we can write

D(N)(t) =
E(N)(t)∑

j=−E (N)
0 +1

∑
s∈[0,t]

1{da
(N)
j /dt(s−)>0,da

(N)
j /dt(s+)=0}.(2.9)

Note that the second sum in (2.9) is well defined since for each t ≥ 0 and each
j between −E (N)

0 + 1 and E(N)(t), the piecewise linear structure of a
(N)
j ensures

that the indicator function in the sum is nonzero for at most one s ∈ [0, t], that is,
there exists at most one s ∈ [0, t] such that the customer j completes service at
time s. A similar logic shows that the cumulative potential reneging process S(N)

admits the representation

S(N)(t) =
E(N)(t)∑

j=−E (N)
0 +1

∑
s∈[0,t]

1{dw
(N)
j /dt(s−)>0,dw

(N)
j /dt(s+)=0},(2.10)

and the cumulative reneging process R(N) admits the representation

R(N)(t)
(2.11)

=
E(N)(t)∑

j=−E (N)
0 +1

∑
s∈[0,t]

1{w(N)
j (s)≤χ(N)(s−),dw

(N)
j /dt(s−)>0,dw

(N)
j /dt(s+)=0},
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where the additional restriction w
(N)
j (s) ≤ χ(N)(s−) is imposed so as to only count

the reneging of customers actually in queue (and not the reneging of all customers
in the potential queue, which is captured by S(N)). Here, one considers the left
limit χ(N)(s−) of χ(N) at time s to capture the situation in which χ(N) jumps
down at time s due to the head-of-the-line customer reneging from the queue or
entering service.

Now, 〈1, ν
(N)
t 〉 = ν

(N)
t [0,∞) represents the total number of customers in ser-

vice at time t . Therefore, mass balances on the total number of customers in the
system, the number of customers waiting in the “potential queue” and the number
of customers in service show that

X(N)(0) + E(N) = X(N) + D(N) + R(N),(2.12) 〈
1, η

(N)
0

〉 + E(N) = 〈
1, η(N)〉 + S(N)(2.13)

and 〈
1, ν

(N)
0

〉 + K(N) = 〈
1, ν(N)〉 + D(N).(2.14)

In addition, it is also clear that

X(N) = 〈
1, ν(N)〉 + Q(N).(2.15)

Combining (2.12), (2.14) and (2.15), we obtain the following mass balance for the
number of customers in queue:

Q(N)(0) + E(N) = Q(N) + R(N) + K(N).(2.16)

Furthermore, the nonidling condition takes the form

N − 〈
1, ν(N)〉 = [

N − X(N)]+.

Indeed, note that this ensures that when X(N)(t) < N , the number in the system
is equal to the number in service, and so there is no queue, while if X(N)(t) > N ,
there is a positive queue and 〈1, ν

(N)
t 〉 = N , indicating that there are no idle servers.

An advantage of the measure-valued state representation that we adopt is that
it allows us to simultaneously study several other functionals of interest. As an
example, we consider the so-called virtual waiting time process, which is important
for applications. For each t ≥ 0, the virtual waiting time W(N)(t) is defined to be
the amount of time a (virtual) customer with infinite patience would have to wait
before entering service if he were to arrive at time t . For a more precise definition
of W(N), let t ∈ [0,∞) and for each s ∈ [0,∞), define

T (N)
t (s)

.= ∑
u∈[t,t+s]

E(N)(t)∑
j=−E (N)

0 +1

1{dw
(N)
j /dt(u−)>0,dw

(N)
j /dt(u+)=0}

(2.17)
× 1{w(N)

j (u)≤χ(N)(u−)}.
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Observe that T (N)
t (s) equals the cumulative number of customers who arrived

before time t and reneged from the queue (before entering service) in the time
interval [t, t + s]. Once again, for each j there is at most one u ∈ [t, t + s] for
which both indicator functions in the summation are nonzero, and so the sum is
well defined. The virtual waiting time W(N)(t) of a customer at time t is the least
amount of time s that elapses after time t such that the cumulative departure from
the system of customers that arrived prior to time t strictly exceeds the queue
length at time t . Observing that this cumulative departure in the interval [t, t + s]
can be due to either departure from service or reneging of customers that arrived
prior to time t , we can express the virtual waiting time as

W(N)(t)
.= inf

{
s ≥ 0 :D(N)(t + s) − D(N)(t) + T (N)

t (s) > Q(N)(t)
}
.(2.18)

Here, we have used the fact that for all s such that D(N)(t + s) − D(N)(t) +
T (N)

t (s) ≤ Q(N)(t), every customer that departed in the time interval [t, t + s]
must have arrived prior to time t .

2.2.4. Filtration. The total number of customers in service at time t is given
by 〈1, ν

(N)
t 〉 = ν

(N)
t [0,H s) and is bounded above by N . In addition, from (2.13) it

follows that〈
1, η

(N)
t

〉 = η
(N)
t [0,H r) ≤ E(N)(t) + 〈

1, η
(N)
0

〉 ≤ E(N)(t) + E (N)
0 ,

which is a.s. finite by assumption. Therefore, for every t ∈ [0,∞), a.s., ν
(N)
t ∈

MF [0,H s) and η
(N)
t ∈ MF [0,H r). Hence, the state descriptor (α

(N)
E ,X(N), ν(N),

η(N)) takes values in R+ × Z+ × MF [0,H s) × MF [0,H r). For purely techni-
cal purposes we will find it convenient to also introduce the additional “station
process” s(N) .= (s

(N)
j , j ∈ Z), defined on the same probability space (�, F ,P).

For each t ∈ [0,∞), if customer j has already entered service by time t , then
s
(N)
j (t) is equal to the index i ∈ {1, . . . ,N} of the station at which customer j re-

ceives/received service and s
(N)
j (t)

.= 0 otherwise. For t ∈ [0,∞), let F̃ (N)
t be the

σ -algebra generated by{
E (N)

0 ,X(N)(0), α
(N)
E (s),w

(N)
j (s), a

(N)
j (s), s

(N)
j ,

j ∈ {−E (N)
0 + 1, . . . ,0} ∪ N, s ∈ [0, t]},

and let {F (N)
t } denote the associated right-continuous filtration, completed with

respect to P. In Appendix A, an explicit construction of the state descriptor
and auxiliary processes is provided, which shows in particular that the state de-
scriptor (α

(N)
E ,X(N), ν(N), η(N)) and auxiliary processes are càdlàg. Moreover, in

Lemma A.1, it is proved that the state process V (N) .= (α
(N)
E ,X(N), ν(N), η(N)) and

the processes E(N), Q(N), S(N), R(N), D(N) and K(N) are all F (N)
t -adapted, and

in Lemma B.1, it is shown that (V (N), F (N)
t ) is a strong Markov process.
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2.3. A succinct characterization of the dynamics. The main result of this sec-
tion is Theorem 2.1, which provides equations that more succinctly characterize
the dynamics of the state (α

(N)
E ,X(N), ν(N), η(N)) described in Section 2.2. First,

we introduce some notation that is required to state the result.
For any measurable function ϕ on [0,H s)×R+, consider the process D

(N)
ϕ that

takes values in R, and is given by

D(N)
ϕ (t)

.= ∑
s∈[0,t]

E(N)(t)∑
j=−E (N)

0 +1

1{da
(N)
j /dt(s−)>0,da

(N)
j /dt(s+)=0}ϕ

(
a

(N)
j (s), s

)
(2.19)

for t ∈ [0,∞). It follows immediately from (2.19) and the right continuity of the
filtration {F (N)

t } that D
(N)
ϕ is {F (N)

t }-adapted. Also, comparing (2.19) with (2.9),
it is clear that when ϕ is the constant function 1, D

(N)
1 is exactly the cumulative

departure process D(N), that is,

D
(N)
1 = D(N).(2.20)

In an exactly analogous fashion, for any measurable function ψ on [0,H r) × R+,
consider the process S

(N)
ψ that takes values in R, and is given by

S
(N)
ψ (t)

.= ∑
s∈[0,t]

E(N)(t)∑
j=−E (N)

0 +1

1{dw
(N)
j /dt(s−)>0,dw

(N)
j /dt(s+)=0}ψ

(
w

(N)
j (s), s

)
.(2.21)

It follows immediately from (2.21) and the right continuity of the filtration {F (N)
t }

that for t ∈ [0,∞), S
(N)
ψ is {F (N)

t }-adapted. Moreover, S
(N)
1 is clearly equal to the

cumulative potential reneging process S(N), that is,

S
(N)
1 = S(N).(2.22)

In addition, using (2.12), (2.15) and the nonnegativity of Q(N), R(N) and 〈1, ν(N)〉,
it follows that for any t ∈ [0,∞) and bounded, measurable ϕ,

E
[∣∣D(N)

ϕ (t)
∣∣] ≤ ‖ϕ‖∞E

[
X(N)(0) + E(N)(t)

]
< ∞(2.23)

and likewise, for each t ∈ [0,∞) and bounded measurable ψ , (2.13) shows that

E
[∣∣S(N)

ψ (t)
∣∣] ≤ ‖ψ‖∞E

[〈
1, η

(N)
0

〉 + E(N)(t)
]
< ∞.(2.24)

Next, comparing (2.11) with (2.21), it is clear that the cumulative reneging
process R(N) satisfies

R(N)(t) = S
(N)

θ(N)(t), t ≥ 0,(2.25)

where θ(N) is given by

θ(N)(x, s) = 1[x,∞)

(
χ(N)(s−)

)
, x ∈ R, s ≥ 0.(2.26)
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We now state the main result of this section. For s, r ∈ [0,∞), recall that 〈ϕ(·+
r, s), ν

(N)
s 〉 is used as a short form for

∫
[0,H s) ϕ(x + r, s)ν

(N)
s (dx), and likewise

for η(N).

THEOREM 2.1. The processes (E(N),X(N), ν(N), η(N)) a.s. satisfy the follow-
ing coupled set of equations: for ϕ ∈ C 1

c ([0,H s) × R+) and t ∈ [0,∞),

〈
ϕ(·, t), ν(N)

t

〉 = 〈
ϕ(·,0), ν

(N)
0

〉 + ∫ t

0

〈
ϕx(·, s) + ϕs(·, s), ν(N)

s

〉
ds

(2.27)
− D(N)

ϕ (t) +
∫
[0,t]

ϕ(0, s) dK(N)(s),

for ψ ∈ C 1
c ([0,H r) × R+) and t ∈ [0,∞),

〈
ψ(·, t), η(N)

t

〉 = 〈
ψ(·,0), η

(N)
0

〉 + ∫ t

0

〈
ψx(·, s) + ψs(·, s), η(N)

s

〉
ds

(2.28)
− S

(N)
ψ (t) +

∫
[0,t]

ψ(0, s) dE(N)(s),

X(N)(t) = X(N)(0) + E(N)(t) − D
(N)
1 (t) − R(N)(t),(2.29)

N − 〈
1, ν

(N)
t

〉 = [
N − X(N)(t)

]+
,(2.30)

where K(N) satisfies (2.14), R(N) satisfies (2.25) and D
(N)
ϕ and S

(N)
ψ are the

processes defined in (2.19) and (2.21), respectively.

REMARK 2.2. In the service dynamics, customer arrivals into service are gov-
erned by the process K(N), the random duration in service is determined by the
distribution Gs and departures are represented by D(N). As captured by (2.27) and
(2.28), the dynamics of the potential queue is exactly analogous, with the cus-
tomer arrivals now governed by the process E(N), the random duration of stay
in the potential queue determined by Gr and potential departures due to reneg-
ing represented by S(N). Moreover, given K(N), the dynamics of ν(N) are exactly
the same as in the case without abandonment, which was well studied in [14].
However, in the presence of reneging, there is a significantly more complicated
coupling between ν(N) and K(N), as captured by (2.29) and (2.30). In particular,
this involves the cumulative reneging process R(N), which has no analogy with any
quantity in the system without abandonments. Instead, as shown in the sequel [see
Lemma 5.4, (5.17) and Proposition 7.2], we will exploit the representation (2.25)
of R(N) in terms of the “known” quantity S(N) in order to characterize the limit of
the scaled sequence of reneging processes.

PROOF OF THEOREM 2.1. The proof of (2.27) can be carried out in exactly the
same way as the proof of (5.2) in Theorem 5.1 of [14], since the definition of ν(N)



FLUID LIMITS OF MANY-SERVERS QUEUES WITH RENEGING 2219

in [14] is equivalent to the definition given in (2.8) here since da
(N)
j (t+)/dt = 0

for all j > K(N)(t) in [14]. For the reasons mentioned in Remark 2.2, the proof of
(2.28) is also analogous except that the condition that each ν

(N)
t has total mass no

greater than N is replaced by the argument below, which shows that each η
(N)
t has

finite mass. We know that for k = 0, . . . , �nt�,

〈
1, η

(N)
(k+1)/n

〉 ≤ E(N)

(
k + 1

n

)
+ 〈

1, η
(N)
0

〉 ≤ E(N)(t + 1) + 〈
1, η

(N)
0

〉
.

Thus, by taking the supremum over k = 0, . . . , �nt�, we have a.s.

sup
k=0,...,�nt�

〈
1, η

(N)
(k+1)/n

〉 ≤ E(N)(t + 1) + E (N)
0 < ∞.(2.31)

Equation (2.29) follows from (2.12), (2.20) and (2.25), while (2.30) is just the
nonidling condition formulated in Section 2.2.3. �

3. Main results. In this section we summarize our main results. First, in Sec-
tion 3.1, we introduce the fluid-scaled quantities and state our basic assumptions.
Then, in Section 3.2, we introduce the so-called fluid equations, which provide
a continuous analog of the characterization of the discrete model given in Theo-
rem 2.1. In Section 3.3 we present our main theorems. In particular, we show that
the fluid equations uniquely characterize the strong law of large numbers or “fluid”
limit of the many-server system, as the number of servers goes to infinity.

3.1. Fluid scaling and basic assumptions. Consider the following scaled ver-
sions of the basic processes described in Section 2. For each N ∈ N, the scaled
version of the state descriptor (α

(N)
E ,X(N), ν(N), η(N)) is given by

α
(N)
E (t)

.= α
(N)
E (t), X(N)(t)

.= X(N)(t)

N
,(3.1)

ν
(N)
t (B)

.= ν
(N)
t (B)

N
, η

(N)
t (B)

.= η
(N)
t (B)

N
,(3.2)

for t ∈ [0,∞) and any Borel subset B of R+. Analogously, define

I
(N) .= I (N)

N
for I = E,D,K,Q,R,S, Tt .(3.3)

Recall that IR+[0,∞) is the subset of nondecreasing functions f ∈ DR+[0,∞)

with f (0) = 0, Hs = sup{x ∈ [0,∞) :gs(x) > 0} and Hr = sup{x ∈ [0,∞) :
gr(x) > 0}. Define

S0
.=

{
(e, x, ν, η) ∈ IR+[0,∞) × R+ × MF [0,H s) × MF [0,H r):

1 − 〈1, ν〉 = [1 − x]+
}

.(3.4)

S0 serves as the space of possible input data for the fluid equations. Our goal is to
identify the limit in distribution of the quantities (X(N), ν(N), η(N)), as N → ∞.
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To this end, we impose some natural assumptions on the sequence of initial condi-
tions (E(N),X(N)(0), ν

(N)
0 , η

(N)
0 ).

ASSUMPTION 3.1 (Initial conditions). There exists an S0-valued random vari-
able (E,X(0), ν0, η0) such that, as N → ∞, the following limits hold:

1. E(N) → E in DR+[0,∞) P-a.s., and E[E(N)(t)] → E[E(t)] < ∞ for every
t ∈ [0,∞);

2. X(N)(0) → X(0) in R+ P-a.s.;
3. ν

(N)
0

w→ ν0 in MF [0,H s);

4. η
(N)
0

w→ η0 in MF [0,H r), and E[〈1, η
(N)
0 〉] → E[〈1, η0〉] < ∞.

REMARK 3.1. If the limits in (1) and (2) of Assumption 3.1 hold only in distri-
bution rather than almost surely, then using the Skorokhod representation theorem
in the standard way, it can be shown that all the stochastic process convergence re-
sults in the paper continue to hold. Also, (1) and (4) of Assumption 3.1 and (2.30)
imply that, for every T ∈ [0,∞),

sup
t∈[0,T ]

sup
N

E
[
X(N)(0) + E(N)(t)

] ≤ E
[
1 + 〈

1, η
(N)
0

〉 + E(N)(T )
]
< ∞.(3.5)

The next assumption imposes some regularity conditions on η0 and E.

ASSUMPTION 3.2. For each t ≥ 0, if η0({t}) > 0, then η0(t, t + ε) > 0 for
every ε > 0 and if E(t) − E(t−) > 0, then E(t−) − E(t − ε) > 0 for every ε > 0.

REMARK 3.2. Assumption 3.2 is trivially satisfied if η0 and E are continuous,
that is, η0({t}) = 0 for all t ≥ 0 and the function E is continuous.

In order to state our last assumption, define the hazard rate functions of Gr and
Gs in the usual manner

hr(x)
.= gr(x)

1 − Gr(x)
, x ∈ [0,H r),(3.6)

hs(x)
.= gs(x)

1 − Gs(x)
, x ∈ [0,H s).(3.7)

It is easy to verify that hr and hs are locally integrable on [0,H r) and [0,H s),
respectively.

ASSUMPTION 3.3. There exists Ls < Hs such that hs is either bounded or
lower-semicontinuous on (Ls,Hs), and, likewise, there exists Lr < Hr such that
hr is either bounded or lower-semicontinuous on (Lr,Hr).
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3.2. Fluid equations. We now introduce the so-called fluid equations and pro-
vide some intuition as to why the limit of any sequence (X(N), ν(N), η(N)) should
be expected to be a solution to these equations. In Section 7, we provide a rigorous
proof of this fact.

DEFINITION 3.3 (Fluid equations). The càdlàg function (X, ν, η) defined on
[0,∞) and taking values in R+ × MF [0,H s) × MF [0,H r) is said to solve the
fluid equations associated with (E,X(0), ν0, η0) ∈ S0 and the hazard rate func-
tions hr and hs if and only if for every t ∈ [0,∞),∫ t

0
〈hr, ηs〉ds < ∞,

∫ t

0
〈hs, νs〉ds < ∞,(3.8)

and the following relations are satisfied: for every ϕ ∈ C 1
c ([0,H s) × R+),

〈ϕ(·, t), νt 〉 = 〈ϕ(·,0), ν0〉 +
∫ t

0
〈ϕs(·, s), νs〉ds +

∫ t

0
〈ϕx(·, s), νs〉ds

(3.9)

−
∫ t

0
〈hs(·)ϕ(·, s), νs〉ds +

∫ t

0
ϕ(0, s) dK(s),

where

K(t) = 〈1, νt 〉 − 〈1, ν0〉 +
∫ t

0
〈hs, νs〉ds;(3.10)

for every ψ ∈ C 1
c ([0,H r) × R+)

〈ψ(·, t), ηt 〉 = 〈ψ(·,0), η0〉 +
∫ t

0
〈ψs(·, s), ηs〉ds +

∫ t

0
〈ψx(·, s), ηs〉ds

(3.11)

−
∫ t

0
〈hr(·)ψ(·, s), ηs〉ds +

∫ t

0
ψ(0, s) dE(s);

Q(t) = X(t) − 〈1, νt 〉;(3.12)

Q(t) ≤ 〈1, ηt 〉;(3.13)

R(t) =
∫ t

0

(∫ Q(s)

0
hr((F ηs )−1(y)) dy

)
ds,(3.14)

where we recall that Fηt (x) = ηt [0, x];

X(t) = X(0) + E(t) −
∫ t

0
〈hs, νs〉ds − R(t)(3.15)

and

1 − 〈1, νt 〉 = [1 − X(t)]+.(3.16)
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It immediately follows from (3.12) and (3.16) that for each t ∈ [0,∞),

Q(t) = [X(t) − 1]+.(3.17)

For future use, we also observe that (3.10), (3.12) and (3.15), when combined,
show that for every t ∈ [0,∞),

Q(0) + E(t) = Q(t) + K(t) + R(t).(3.18)

We now provide an informal, intuitive explanation for the form of the fluid
equations. Equations (3.10), (3.12) and (3.15) are simply mass conservation equa-
tions, that are fluid analogs of (2.14), (2.15) and (2.29), respectively, while (3.13)
expresses a bound, whose analog clearly holds in the pre-limit, as can be seen
from (2.6). The relation (3.16) is simply the fluid analog of the nonidling con-
dition (2.30). Equations (3.9) and (3.11), which govern the evolution of the fluid
age measure ν and queue measure η, respectively, are natural analogs of the pre-
limit equations (2.27) and (2.28), respectively. It is worthwhile to comment further
on the fourth terms on the right-hand sides of (3.9) and (3.11), which character-
ize the fluid departure rate and potential reneging rate, respectively, as integrals of
the corresponding hazard rate with respect to the age and queue measures. Note
that νs(dx) represents the amount of mass (limiting fraction of customers) whose
age lies in the range [x, x + dx) at time s, and hs(x) represents the fraction of
mass with age x (i.e., with service time no less than x) that would depart from
the system while having age in [x, x + dx). Hence, it is natural to expect 〈hs, νs〉
to represent the departure rate of mass from the fluid system at time s. This was
rigorously proved in the case without abandonments in [14] (see Proposition 5.17
therein). By exploiting the exact analogy between (ν,K,D) and (η,E,S) (see
Remark 2.2), it is clear that the potential reneging rate at time s can be similarly
represented as 〈hr, ηs〉. Thus the fluid potential reneging process S, defined by

S(t)
.=

∫ t

0
〈hr, ηs〉ds, t ∈ [0,∞),(3.19)

represents the cumulative amount of potential reneging from the fluid system in
the interval [0, t]. Due to the FCFS nature of the system, the fluid queue at time
s contains all the mass in η that is to the left of (F ηs )−1(Q(s)), where recall Fηs

is the c.d.f. of ηs . Moreover, roughly speaking, given any y ∈ [0,Q(s)], there is a
mass of dy customers in the queue whose waiting time at s is (F ηs )−1(y) and the
mean reneging rate of customers with this waiting time is hr((F ηs )−1(y)). Thus
the total actual reneging that has occurred in the interval [0, t], is represented by
the integral, as specified in (3.14).

We close the section with a simple result on the action of time-shifts on solutions
to the fluid equations. For this, we need the following notation: for any t ∈ [0,∞),

E
[t] .= E(t + ·) − E(t), K [t] .= K(t + ·) − K(t),

X[t] .= X(t + ·), ν[t] .= νt+·,
R[t] .= R(t + ·) − R(t), η[t] .= ηt+·, Q[t] .= Q(t + ·).
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LEMMA 3.4. Suppose the càdlàg function (X, ν, η) defined on [0,∞) and
taking values in R+ × MF [0,H s) × MF [0,H r) solves the fluid equations asso-
ciated with (E,X(0), ν0, η0) ∈ S0, then (X[t], ν[t], η[t]) solves the fluid equations

associated with (E
[t]

,X(t), νt , ηt ) ∈ S0, where K [t],R[t],Q[t] are the correspond-
ing processes that satisfy (3.10), (3.14), (3.12) with ν[t], η[t] and X[t] in place of
ν, η and X.

The proof of the lemma just involves a rewriting of the fluid equations, and is
thus omitted.

3.3. Summary of main results. Our first result establishes uniqueness of solu-
tions to the fluid equations.

THEOREM 3.5. Given any (E,X(0), ν0, η0) ∈ S0, there exists at most one
solution (X, ν, η) to the associated fluid equations (3.8)–(3.16). Moreover, if ν

and η satisfy (3.8), then (X, ν, η) is a solution to the fluid equations if and only if
for every f ∈ Cb(R+),

∫
[0,H r )

f (x)ηt (dx) =
∫
[0,H r )

f (x + t)
1 − Gr(x + t)

1 − Gr(x)
η0(dx)

(3.20)
+

∫
[0,t]

f (t − s)
(
1 − Gr(t − s)

)
dE(s),

∫
[0,H s)

f (x)νt (dx) =
∫
[0,H s)

f (x + t)
1 − Gs(x + t)

1 − Gs(x)
ν0(dx)

(3.21)
+

∫
[0,t]

f (t − s)
(
1 − Gs(t − s)

)
dK(s),

where

K(t) = [X(0) − 1]+ − [X(t) − 1]+ + E(t)
(3.22)

−
∫ t

0

(∫ [X(s)−1]+

0
hr((F ηs )−1(y)) dy

)
ds

and for all t ∈ [0,∞), X satisfies [X(t) − 1]+ ≤ 〈1, ηt 〉, the nonidling condition
(3.16) and

X(t) = X(0) + E(t) −
∫ t

0
〈hs, νs〉ds

(3.23)

−
∫ t

0

(∫ [X(s)−1]+

0
hr((F ηs )−1(y)) dy

)
ds.
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Moreover, K also satisfies

K(t) = 〈1, νt−s〉 − 〈1, ν0〉 +
∫
[0,H s)

Gs(x + t − s) − Gs(x)

1 − Gs(x)
ν0(dx)

+
∫ t

0

(
〈1, νt−s〉 − 〈1, ν0〉(3.24)

+
∫
[0,H s)

Gs(x + t − s) − Gs(x)

1 − Gs(x)
ν0(dx)

)
us(s) ds,

where us is the density of the renewal function Us associated with Gs (us exists
since Gs is assumed to have a density).

Next, we state the main result of the paper, which shows that, under fairly gen-
eral conditions, a solution to the fluid equations exists and is the functional law of
large numbers limit, as N → ∞, of the N -server system with abandonment.

THEOREM 3.6. Suppose that Assumptions 3.1–3.3 hold, and let (E,X(0),
ν0, η0) ∈ S0 be the limiting initial condition. Then there exists a unique solution
(X, ν, η) to the associated fluid equations, and the sequence (X(N), ν(N), η(N))

converges weakly, as N → ∞, to (X, ν, η).

Theorem 3.6 follows from Theorem 6.1, which establishes tightness of the se-
quence {X(N), ν(N), η(N)}, Theorem 7.1, which shows that any subsequential limit
of the sequence {X(N), ν(N), η(N)} satisfies the fluid equations, and the uniqueness
of solutions to the fluid equations stated in Theorem 3.5.

COROLLARY 3.7. Suppose that Assumptions 3.1–3.3 hold. Given any (E,
X(0), ν0, η0) ∈ S0, let (X, ν, η) be the unique solution to the associated fluid
equations (3.8)–(3.16) specified in Theorem 3.5. If the function E is absolutely
continuous and ν0 and η0 are absolutely continuous measures, then the function
X is also absolutely continuous and for every t ∈ [0,∞), the measures νt and ηt

are also absolutely continuous.

PROOF. Since E is absolutely continuous, (3.23) allows us to deduce that X is
absolutely continuous. In turn, (3.22) shows that K is also absolutely continuous.
Then the argument used in proving Lemma 5.18 of [14] can be adapted, together
with (3.20) and (3.21), to show that νt and ηt are absolutely continuous for every
t ∈ [0,∞). This proves the corollary. �

We now state the fluid limit result for the virtual waiting time process W(N).
This result is of particular interest in the context of call centers. Note that in the
fluid system, for any u > t the total mass of customers in queue at time u that
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arrived before time t equals Q(u) − ηu[0, u − t], and the ages of these (fluid)
customers lie in the interval (u − t, χ(u)], where

χ(u)
.= (F ηu)−1(Q(u)).(3.25)

Observe that this definition is analogous to the definition of χ(N) given in (2.5).
Therefore, by the same logic that was used to justify the expression (3.14) for R

in Definition 3.3, it is natural to conjecture that, for each t ∈ [0,∞), the fluid limit
of the sequence {T (N)

t } equals T t , where for s ∈ [0,∞),

T t (s)
.=

∫ t+s

t

(∫ Q(u)

ηu[0,u−t]
hr((F ηu)−1(y)) dy

)
du

(3.26)

=
∫ s

0

(∫ Q(t+u)

ηt+u[0,u]
hr((F ηt+u)−1(y)) dy

)
du.

Also, define

W(t)
.= inf

{
s ≥ 0 :

∫ t+s

t
〈hs, νu〉du + T t (s) ≥ Q(t)

}
.(3.27)

We will say a function f ∈ D[0,∞) is uniformly strictly increasing if it is ab-
solutely continuous and there exists a > 0 such that the derivative of f is big-
ger than and equal to a for a.e. t ∈ [0,∞). Note that for any such function,
f −1(f (t)) = t and f −1 is continuous and strictly increasing on [0,∞). We now
characterize the fluid limit of the (scaled) virtual waiting time in the system.

THEOREM 3.8. Suppose that the conditions of Theorem 3.6 hold and that
the function

∫ ·
0〈hs, νu〉du is uniformly strictly increasing. For each t ≥ 0, if Q is

continuous at t , then T (N)
t ⇒ T t and W(N)(t) ⇒ W(t), as N → ∞.

4. Uniqueness of solutions to the fluid equations. In Section 4.1, we show
that if (X, ν, η) solve the fluid equations associated with a given initial condition
(E,X(0), ν0, η0) ∈ S0, then ν (resp., η) can be written explicitly in terms of the
auxiliary fluid process K (resp., cumulative arrival process E). In Section 4.2,
these representations are used, along with the nonidling condition and the remain-
ing fluid equations, to show that there is at most one solution to the fluid equations
for a given initial condition.

4.1. Integral equations for (ν,K) and (η,E). We begin by recalling Theo-
rem 4.1 and Remark 4.3 of [14], which we state here as Proposition 4.1. This
proposition identifies an implicit relation that must be satisfied by the processes
(ν,K) and (η,E) that solve (3.9) and (3.11), respectively.
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PROPOSITION 4.1 [14]. Let G be the cumulative distribution function of a
probability distribution with density g and hazard rate function h = g/(1 −G), let
H

.= sup{x ∈ [0,∞) :g(x) > 0}. Suppose π ∈ D MF [0,H)[0,∞) has the property
that for every m ∈ [0,H) and T ∈ [0,∞), there exists C(m,T ) < ∞ such that∫ ∞

0
〈ϕ(·, s)h(·),πs〉ds < C(m,T )‖ϕ‖∞(4.1)

for every ϕ ∈ Cc(R
2) with supp(ϕ) ⊂ [0,m] × [0, T ]. Then given any π0 ∈

MF [0,H) and Z ∈ IR+[0,∞), π satisfies the integral equation

〈ϕ(·, t), πt 〉 = 〈ϕ(·,0),π0〉 +
∫ t

0
〈ϕs(·, s),πs〉ds +

∫ t

0
〈ϕx(·, s),πs〉ds

(4.2)

−
∫ t

0
〈ϕ(·, s)h(·),πs〉ds +

∫
[0,t]

ϕ(0, s) dZ(s)

for every ϕ ∈ Cc((−∞,H) × R) and t ∈ [0,∞), if and only if π satisfies∫
[0,M)

f (x)πt (dx) =
∫
[0,M)

f (x + t)
1 − G(x + t)

1 − G(x)
π0(dx)

(4.3)
+

∫
[0,t]

f (t − s)
(
1 − G(t − s)

)
dZ(s),

for every f ∈ Cb(R+) and t ∈ (0,∞). Moreover, for every f ∈ C 1
b(R+) and t ∈

(0,∞), ∫ t

0
f (t − s)

(
1 − G(t − s)

)
dZ(s)

= f (0)Z(t) +
∫
[0,t]

f ′(t − s)
(
1 − G(t − s)

)
Z(s) ds(4.4)

−
∫
[0,t]

f (t − s)g(t − s)Z(s) ds.

Fluid equations (3.8)–(3.11) show that (4.1) and (4.2) are satisfied with
(h,π,Z) replaced by (hs, ν,K) and (hr , η,E), respectively. Therefore, the next
result follows from Proposition 4.1.

COROLLARY 4.2. Processes (η,E) and (ν,K) satisfy (3.20) and (3.21) for
every bounded Borel measurable function f and t ∈ [0,∞). Moreover, K satisfies
the renewal equation

K(t) = 〈1, νt 〉 − 〈1, ν0〉 +
∫
[0,H s)

Gs(x + t) − Gs(x)

1 − Gs(x)
ν0(dx)

(4.5)

+
∫ t

0
gs(t − s)K(s) ds
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for each t ≥ 0 and admits the representation

K(t) =
∫
[0,t]

(〈1, νt−s〉 − 〈1, ν0〉) dUs(s)

+
∫
[0,t]

(∫
[0,H s)

Gs(x + t − s) − Gs(x)

1 − Gs(x)
ν0(dx)

)
dUs(s),

where dUs is the renewal measure associated with the distribution Gs .

REMARK 4.3. Strictly speaking, in [14] the cumulative distribution function
G was assumed to be absolutely continuous and supported on [0,∞). However,
the proofs given there only use the local integrability of the hazard rate function h

on [0,H) and so continue to hold for Gr here, which may possibly have a positive
mass at ∞. In fact, in the case that Gr has a positive mass at ∞ the hazard rate
function hr is globally integrable on [0,H r).

4.2. Uniqueness of solutions. Let (X, ν, η) be a solution to the fluid equations
associated with (E,X(0), ν0, η0). Recall the definitions of Q and R that are given
in (3.12) and (3.14). As an immediate consequence of (3.14), we have the follow-
ing elementary property.

LEMMA 4.4. For any 0 ≤ a ≤ b < ∞, if Q(t) = 0 for all t ∈ [a, b], then
R(b) − R(a) = 0.

Next, we establish the intuitive result that the process K that represents the
cumulative entry of “fluid” into service is nondecreasing.

LEMMA 4.5. The function K is nondecreasing.

PROOF. Fix t ∈ [0,∞) and 0 ≤ s < t . If X(t) ≥ 1, then 〈1, νt 〉 = 1 ≥ 〈1, νs〉
by (3.16). Hence, by (3.10), it follows that

K(t) − K(s) = 〈1, νt 〉 − 〈1, νs〉 +
∫ t

s
〈hs, νl〉dl ≥ 0.(4.6)

If X(t) < 1, we consider two cases.
Case 1. X(v) < 1 for all v ∈ (s, t]. In this case, by (3.12) and (3.16), Q(v) = 0

for all v ∈ (s, t]. Hence, by Lemma 4.4 and the right continuity of R, R(t) −
R(s) = 0. By (3.18), it then follows that

K(t) − K(s) = K(t) − K(s) + R(t) − R(s) + Q(t) − Q(s)

= E(t) − E(s)

≥ 0.
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Case 2. There exists v ∈ (s, t] such that X(v) ≥ 1. Define l
.= sup{v ≤ t :X(v) ≥

1}. Then, clearly l ∈ (s, t] and X(l−) ≥ 1. Now, (3.14) implies that R is continuous
and hence, by (3.15), X(v) − X(v−) ≥ 0 for every v ∈ (0,∞). Therefore, X(l) ≥
1 = 〈1, νl〉, with the latter equality being a consequence of the nonidling condition
(3.16). Due to the case assumption X(t) < 1, we must have l < t . Then (4.6), with
t replaced by l, shows that K(l) − K(s) ≥ 0. On the other hand, since X(v) < 1
for all v ∈ (l, t], the argument in case 1 above shows that K(t) − K(l) ≥ 0. Thus,
in this case too, we have K(t) − K(s) ≥ 0. �

We now state the main result of this section.

THEOREM 4.6. For i = 1,2, let (Xi, νi, ηi) be a solution to the fluid equa-
tions associated with (E,X(0), ν0, η0) ∈ S0. Then X1 = X2, ν1 = ν2 and η1 = η2.

PROOF. For each i = 1,2, let Qi,Ki,Di,Ri be the processes associated
with the solution (Xi, νi, ηi) to the fluid equations for (E,X(0), ν0, η0) ∈ S0. It
follows directly from Corollary 4.2 that η1 = η2. Let �A denote A2 − A1 for
A = Q,K,D,R and ν. For each t ≥ 0, let �νt be the measure that satisfies
�νt (�) = ν2

t (�) − ν1
t (�) for every measurable set � ⊂ [0,∞). Choose δ > 0

and define

τ = τδ
.= inf{t ≥ 0 :�K(t) ∨ �K(t−) ≥ δ}.

We shall argue by contradiction to show that τ = ∞. Suppose that τ < ∞.
We first claim that for each t ∈ [0, τ ],

�K(t) < δ if 〈1, ν1
t 〉 = 1.(4.7)

To see why this is true, suppose that 〈1, ν1
t 〉 = 1 for some t ∈ [0, τ ]. Since 〈1, ν2

t 〉 ≤
1, we have 〈1,�νt 〉 ≤ 0. When combined with (4.5) and the identity �ν0 = 0, this
shows that

�K(t) = 〈1,�νt 〉 +
∫ t

0
gs(t − s)�K(s)ds ≤

∫ t

0
gs(t − s)�K(s) ds.(4.8)

If Gs(t) > 0 then, along with the fact that �K(s) < δ for all s ∈ [0, t), this implies
�K(t) < δGs(t) ≤ δ. On the other hand, if Gs(t) = 0, it must be that gs(s) = 0
for a.e. s ∈ [0, t] and so (4.8) implies that �K(t) = 0 ≤ δ. Thus (4.7) follows in
either case. In addition, the right-continuity of K1 and K2 implies that �K(τ) ≥ δ.
When combined with (4.7), (3.12) and (3.16), this shows that

X1(τ ) = 〈1, ν1
τ 〉 < 1 and Q1(τ ) = 0.(4.9)

Now, define

r
.= sup{t < τ :Q2(t) < Q1(t)} ∨ 0.
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Then for every t ∈ [r, τ ], Q2(t) ≥ Q1(t). If r = 0, then �K(r) = �K(0) = 0 < δ.
On the other hand, if r > 0, there exists a sequence of {tn}∞n=1 such that tn < r and
tn → r as n → ∞ and 0 ≤ Q2(tn) < Q1(tn) for each n ∈ N. Since Q1 and Q2 are
càdlàg, this implies that

Q2(r−) ≤ Q1(r−),(4.10)

and, due to (3.12) and (3.16), it also follows that X1(tn) > 〈1, ν1
tn
〉 = 1 for every

n ∈ N. When combined with (4.8), this shows that for n ∈ N,

�K(tn) ≤
∫ tn

0
gs(tn − s)�K(s)ds =

∫ tn

0
gs(s)�K(tn − s) ds.

Since K1 and K2 are càdlàg, this implies that

�K(r−) ≤
∫ r

0
gs(s)�K

(
(r − s)−)

ds.

Using the fact that �K((r − s)−) < δ for all s ∈ (0, r), it is easy to see [once
again, as in the analysis of (4.8), by considering the cases Gs(r) > 0 and Gs(r) = 0
separately] that this implies

�K(r−) < δ.(4.11)

On the other hand, since (3.18) is satisfied with (K,R,Q) replaced by (Ki,Ri ,
Qi) for i = 1,2, and �Q(0) + �E(t) = 0 for each t ≥ 0, it follows that

�K(τ) + �R(τ) + �Q(τ) = �K(r−) + �R(r−) + �Q(r−) = 0.

Hence,

�K(τ) − �K(r−) = −(�R(τ) − �R(r−)
) − �Q(τ) + �Q(r−).

Since −�Q(τ) = Q1(τ ) − Q
2
(τ ) = −Q2(τ ) ≤ 0 due to (4.9) and �Q(r−) ≤ 0

by (4.10), we obtain

�K(τ) − �K(r−) ≤ −(�R(τ) − �R(r−)
)
.(4.12)

We now show that the right-hand side of the above display is nonpositive. For each
t ≥ 0, by (3.14), we see that

�R(t) = R2(t) − R1(t)

=
∫ t

0

(∫ Q2(s)

0
hr((F

η2
s )−1(y)) dy

)
ds

−
∫ t

0

(∫ Q1(s)

0
hr((F

η1
s )−1(y)) dy

)
ds.
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Since η1 = η2, it follows that F
η1· = F

η2· . Together with the continuity of R1

and R2, this yields the equation

�R(τ) − �R(r−)

= �R(τ) − �R(r)
(4.13)

=
∫ τ

r

(∫ Q2(s)

0
hr((F

η1
s )−1(y)) dy

)
ds

−
∫ τ

r

(∫ Q
1
(s)

0
hr((F

η1
s )−1(y)) dy

)
ds.

However, by the definition of r , for each t ∈ [r, τ ], Q2
(t) ≥ Q1(t), and so �R(τ)−

�R(r−) ≥ 0. Together with (4.12) and (4.11), this implies

�K(τ) ≤ �K(r−) < δ.

Essentially the same argument can be used to also show that �K(τ−) ≤
�K(r−) < δ. Hence �K(τ) ∨ �K(τ−) < δ, which contradicts the definition
of τ .

Thus we have proved that τ = ∞ and K
2
(t) − K1(t) ≤ δ for each δ > 0 and

t ≥ 0. By letting δ → 0, we have K2(t) ≤ K1(t) for all t ≥ 0. An exactly analogous

argument yields the reverse inequality K
1
(t) ≤ K2(t) for each t ≥ 0, and so it must

be that K2 = K1. By Corollary 4.2, it follows that ν1 = ν2. Also, by (3.18), we
obtain

R1 + Q
1 = R2 + Q2.(4.14)

We now show that, in fact Q1 = Q2 and R1 = R2. If there exists t ∈ (0,∞) such
that Q

1
(t) > Q2(t), let

s
.= sup{v < t :Q1(v) ≤ Q2(v)} ∨ 0.

Then Q1(s−) ≤ Q2(s−) and Q
1
(v) > Q2(v) for each v ∈ (s, t]. Due to the fact

that η1 = η2, we have

R1(t) − R1(s) =
∫ t

s

(∫ Q1(v)

0
hr((F

η1
v )−1(y)) dy

)
dv

≥
∫ t

s

(∫ Q2(v)

0
hr((F

η2
v )−1(y)) dy

)
dv

= R2(t) − R2(s).

From (4.14) and the continuity of Ri, i = 1,2, we deduce that Q1(t) − Q1(s−) ≤
Q2(t) − Q2(s−). Combining this with the inequality Q1(s−) ≤ Q2(s−) proved

above, we obtain Q1(t) ≤ Q2(t), which leads to a contradiction. Hence Q
1
(v) ≤
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Q2(v) for all v ∈ (0,∞). By symmetry, we can also argue that Q1(v) ≥ Q2(v) for
all v ∈ (0,∞). This shows Q1 = Q2 and, hence, R1 = R2. Finally, by (3.12), we
have X1 = X2. �

PROOF OF THEOREM 3.5. The first statement in Theorem 3.5 follows from
Theorem 4.6. The second statement follows directly from Corollary 4.2 and the
fluid equations (3.12), (3.14), (3.15) and (3.17). The alternative representation
(3.24) for K is a direct consequence of the renewal equation (4.5) and the fact
that the first three terms on the right-hand side of (4.5) are bounded by one. �

REMARK 4.7. For future use, we observe here that the result of Lemma 5.16
in [14] (and the analog with ν replaced by η), which was obtained for the model
without abandonments, is also valid in the present context. This is because equa-
tions (3.20) and (3.21) of Theorem 3.5 and Corollary 4.14 of [14] show that, in
the terminology of [14], {ηs} (resp., {νs}) satisfies the simplified age equation as-
sociated with a certain Radon measure ξ(η0, E) and hr [resp., ξ(ν0, K) and hs ].
Therefore, by Proposition 4.15 of [14], it follows that the result of Lemma 5.16 of
[14] is also valid in the present context.

5. A family of martingales. In Section 5.1, we identify the compensators
(with respect to the filtration F (N)

t ) of the cumulative departure, potential reneging
and (actual) reneging processes. Then, in Section 5.2, we establish a more conve-
nient representation for the compensator of the reneging process.

5.1. Compensators. For any bounded measurable function ϕ on [0,H s)×R+,
consider the sequence {A(N)

ϕ,ν } of processes given by

A(N)
ϕ,ν (t)

.=
∫ t

0

(∫
[0,H s)

ϕ(x, s)hs(x)ν(N)
s (dx)

)
ds, t ∈ [0,∞).(5.1)

Likewise, for any bounded measurable function ϕ on [0,H r)×R+ and N ∈ N, let

A(N)
ϕ,η (t)

.=
∫ t

0

(∫
[0,H r )

ϕ(x, s)hr(x)η(N)
s (dx)

)
ds, t ∈ [0,∞).(5.2)

In Proposition 5.1, we show that A
(N)
ϕ,ν (resp., A(N)

ϕ,η ) is the F (N)
t -compensator of the

associated “ϕ-weighted” cumulative departure process D
(N)
ϕ (resp., S

(N)
ϕ ). A sim-

ilar result was established in [14] for the model without abandonments. However,
the filtration {F (N)

t } considered here is larger than the one considered in [14], and
so Proposition 5.1 does not directly follow from the results in [14].

PROPOSITION 5.1. The following properties hold:
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1. For every bounded measurable function ϕ on [0,H s) × R+ such that the func-
tion s 
→ ϕ(a

(N)
j (s), s) is left continuous on [0,∞) for each j , the process

M
(N)
ϕ,ν defined by

M(N)
ϕ,ν

.= D(N)
ϕ − A(N)

ϕ,ν(5.3)

is a local F (N)
t -martingale. Moreover, for every N ∈ N, t ∈ [0,∞) and m ∈

[0,H s),

∣∣A(N)
ϕ,ν (t)

∣∣ ≤ ‖ϕ‖∞
(
X(N)(0) + E(N)(t)

)(∫ m

0
hs(x) dx

)
< ∞(5.4)

for every ϕ ∈ Cc([0,H s) × R+) with supp(ϕ) ⊂ [0,m] × R+. In addition, the
quadratic variation process 〈M(N)

ϕ,ν 〉 of the scaled process M
(N)
ϕ,ν

.= M
(N)
ϕ,ν /N sat-

isfies

lim
N→∞ E

[〈
M(N)

ϕ,ν

〉
(t)

] = 0; M(N)
ϕ,ν ⇒ 0 as N → ∞.(5.5)

2. Furthermore, properties (5.3)–(5.5) also hold with D,aj , ν,Hs and hs , respec-
tively, replaced by S,wj , η,Hr and hr .

PROOF. In Lemma 5.4 and Corollary 5.5 of [14], it was shown that A
(N)
ϕ,ν is the

compensator of D
(N)
ϕ with respect to a certain filtration. The filtration {F (N)

t } that
we consider here is larger than the filtration used in [14] since it also includes the
σ -algebra generated by the potential waiting times {η(N)

j (s), s ≤ t, j = −E (N)
0 +

1, . . . ,E(N)(t)}. Thus the results of [14] do not directly apply here. Nevertheless,
as we prove below, the result continues to hold due to the assumed independence
of the patience and service times.

We first claim that for every F (N)
t -stopping time ϒ ,

E
[
1{θk

n≤j/2m<ϒ,ζ k
n >j/2m}1{ζ k

n ≤(j+1)/2m}|F (N)
j/2m

]
(5.6)

= 1{θk
n≤j/2m<ϒ,ζ k

n >j/2m}
∫ (j+1)/2m

j/2m

gs(u − θk
n)

1 − Gs(j/2m − θk
n)

du,

where θk
n (resp., ζ k

n ) is the time at which the nth customer to be served at station
k starts (resp., completes) service. Then ζ k

n − θk
n is the service time of the nth

customer to be served at station k, which has cumulative distribution function Gs .
In order to show the equality in (5.6), it suffices to show that for every bounded
F (N)

j/2m-adapted random variable H ,

E
[
H1{θk

n≤j/2m<ϒ,ζ k
n >j/2m}1{ζ k

n ≤(j+1)/2m}
]

(5.7)

= E

[
H1{θk

n≤j/2m<ϒ,ζ k
n >j/2m}

∫ (j+1)/2m

j/2m

gs(u − θk
n)

1 − Gs(j/2m − θk
n)

du

]
.
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For j ∈ N, m ∈ N, define G(N)
j/2m be the σ -algebra to be generated by the events

{(θk
n ≤ x) ∩ (θk

n ≤ j
2m , ζ k

n >
j

2m ), x ≥ 0}. In particular, G(N)
j/2m contains the infor-

mation of the ages of all customers in service at time j
2m . Recall that the patience

times and the service times of customers are assumed to be independent. Therefore,
given G(N)

j/2m , ζ k
n − θk

n and F (N)
j/2m are conditionally independent. Hence, it follows

from the left-hand side of (5.7) that

E
[
H1{θk

n≤j/2m<ϒ,ζ k
n >j/2m}1{ζ k

n ≤(j+1)/2m}
]

= E
[
E

[
H1{j/2m<ϒ}1{θk

n≤j/2m,ζ k
n >j/2m}1{ζ k

n −θk
n≤(j+1)/2m−θk

n }|G(N)
j/2m

]]
= E

[
E

[
H1{j/2m<ϒ}|G(N)

j/2m

]
× E

[
1{θk

n≤j/2m,ζ k
n >j/2m}1{ζ k

n −θk
n≤(j+1)/2m−θk

n }|G(N)
j/2m

]]
and

E
[
1{θk

n≤j/2m,ζ k
n >j/2m}1{ζ k

n −θk
n≤(j+1)/2m−θk

n }|G(N)
j/2m

]

= 1{θk
n≤j/2m,ζ k

n >j/2m}
∫ (j+1)/2m

j/2m

gs(u − θk
n)

1 − Gs(j/2m − θk
n)

du.

Therefore,

E
[
E

[
H1{j/2m<ϒ}|G(N)

j/2m

]
E

[
1{θk

n≤j/2m,ζ k
n >j/2m}1{ζ k

n −θk
n≤(j+1)/2m−θk

n }|G(N)
j/2m

]]
= E

[
E

[
H1{j/2m<ϒ}|G(N)

j/2m

]
1{θk

n≤j/2m,ζ k
n >j/2m}

×
∫ (j+1)/2m

j/2m

gs(u − θk
n)

1 − Gs(j/2m − θk
n)

du

]

= E

[
E

[
H1{j/2m<ϒ}1{θk

n≤j/2m,ζ k
n >j/2m}

×
∫ (j+1)/2m

j/2m

gs(u − θk
n)

1 − Gs(j/2m − θk
n)

du
∣∣∣G(N)

j/2m

]]

= E

[
H1{j/2m<ϒ}1{θk

n≤j/2m,ζ k
n >j/2m}

∫ (j+1)/2m

j/2m

gs(u − θk
n)

1 − Gs(j/2m − θk
n)

du

]
.

This shows that (5.7), and therefore (5.6), holds.
If ϕ is bounded, measurable and such that the function s 
→ ϕ(a

(N)
j (s), s) is left

continuous for each j , then the process {ϕ(a
(N)
j (s), s), s ≥ 0} is F (N)

t -predictable.

Therefore, it follows from the standard theory (cf. Theorem 3.18 of [10]) that M
(N)
ϕ,ν

is a local F (N)
t -martingale. Inequality (5.4) can be established exactly as in Propo-

sition 5.7 of [14] and assertions (5.5) can be proved using the same argument as in
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Lemma 5.9 of [14], thus establishing property (1). Due to the analogy between the
service dynamics and the potential queue dynamics (see Remark 2.2), property (2)
is a direct consequence of property (1). �

REMARK 5.2. It is easy to see that Lemmas 5.6 and 5.8 of [14] continue
to be valid in the presence of abandonments. Indeed, the proofs of Lemmas 5.6
and 5.8 of [14] only depend on Assumption 1 and Corollary 5.5 therein (since,
as shown in Lemma 5.12 of [14], the additional conditions (5.32) and (5.33) of
Lemma 5.8 of [14] can be derived from Assumption 1), which correspond to As-
sumption 3.1 and Proposition 5.1 of this paper. In addition, due to the parallels
between the dynamics of ν(N) and η(N) (see Remark 2.2), the analogs of the re-
sults in Lemmas 5.6 and 5.8, with D(N), ν(N),Gs and Hs , respectively, replaced
by S(N), η(N),Gr and Hr , also hold. In this case, even though η

(N)
0 is (unlike ν

(N)
0 )

not necessarily a sub-probability measure, the verification of the conditions anal-
ogous to (5.32) and (5.33) of Lemma 5.8 in [14] can still be carried out in the
same manner since Assumption 3.1 implies that the sequence {〈1, η

(N)
0 〉} is tight.

Moreover, even though Gr is allowed to have a mass at ∞, the proofs of Lemmas
5.6 and 5.8 are still valid, with the renewal function Us now replaced by the func-
tion Ur(·) = ∫ ·

0
∑∞

n=1(g
r)∗n(s) ds, where (gr)∗n is the nth convolution of gr on

[0,∞).

Now, note from (2.25) that R(N) = S
(N)

θ(N) , where θ(N) is defined by (2.26). In

view of the fact that A
(N)
ϕ,η is the compensator for S

(N)
ϕ , it is natural to conjecture

that the compensator of R(N) is equal to A
(N)

θ(N),η
, where

A
(N)

θ(N),η
(t)

.=
∫ t

0

(∫
[0,H r )

1[0,χ(N)(s−)](x)hr(x)η(N)
s (dx)

)
ds,

(5.8)
t ∈ [0,∞).

However, this is not immediate from Proposition 5.1(2) since θ(N)(w
(N)
j (·), ·)

is not left continuous for any j . Instead, we approximate θ(N) by a sequence
{θ(N)

m }N∈N defined by

θ(N)
m (x, s)

.= 1(x−1/m,∞)

(
χ(N)(s−)

)
,(5.9)

which is shown to be left continuous in Lemma 5.3. Then in Lemma 5.4, we use an
approximation argument to show that A

(N)

θ(N),η
is indeed the compensator of R(N).

LEMMA 5.3. For each m ≥ 1, x ∈ R and s ∈ R+, the sequence {θ(N)
m }N∈N

defined by (5.9) satisfies the following two properties:

1. For every N ∈ N, x ∈ R, s ∈ R, θ(N)
m (x, s) is nonincreasing in m and converges,

as m → ∞, to θ(N)(x, s) for every sample point in �.
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2. For each N,m ∈ R, j ∈ Z, the process θ
(N)
m (w

(N)
j (·), ·) has left continuous

paths on (0,∞).

PROOF. The first property is immediate from the definition of θ
(N)
m . For the

second property, fix N,m ∈ N, s > 0, j ∈ Z and ω ∈ �. To ease the notation, we
shall suppress ω from the notation. Let {sn} be a sequence in (0,∞) such that
sn ↑ s as n → ∞. We now consider two mutually exclusive cases.

Case 1. θ
(N)
m (w

(N)
j (s), s) = 1. Then w

(N)
j (s) < χ(N)(s−) + 1/m. Since w

(N)
j

is nondecreasing, w
(N)
j (sn) ≤ w

(N)
j (s) and since the process {χ(N)(s−), s ≥ 0} is

left continuous, we have, for all n large enough, w
(N)
j (sn) < χ(N)(sn−) + 1/m.

Hence, θ
(N)
m (w

(N)
j (sn), sn) = 1 for all n ∈ N. Thus, in this case, θ

(N)
m (w

(N)
j (·), ·) is

left continuous at s.
Case 2. θ

(N)
m (w

(N)
j (s), s) = 0. Then w

(N)
j (s) ≥ χ(N)(s−) + 1/m. It follows

from Lemma A.2 that for all sufficiently large n, χ(N)(s−) − χ(N)(sn−) = s −
sn > 0. Since (2.2) implies w

(N)
j (s) − w

(N)
j (sn) ≤ s − sn for all n ∈ N, this implies

w
(N)
j (sn) ≥ χ(N)(sn−)+1/m for all n large enough. Hence, θ

(N)
m (w

(N)
j (sn), sn) =

0 and θ
(N)
m (w

(N)
j (·), ·) is again left continuous at s. �

LEMMA 5.4. For every N ∈ N, the process M
(N)

θ(N),η
defined by

M
(N)

θ(N),η

.= R(N) − A
(N)

θ(N),η
(5.10)

is a local F (N)
t -martingale. In addition, as N → ∞,

E
[〈
M

(N)

θ(N),η

〉
(t)

] → 0, M
(N)
ψ,η ⇒ 0 and M

(N)

θ(N),η
⇒ 0.(5.11)

PROOF. Fix N ∈ N, and let A
(N)

θ
(N)
m ,η

, m ∈ N, be defined in the obvious way

A
(N)

θ
(N)
m ,η

(t)
.=

∫ t

0

(∫
[0,H r )

θ (N)
m (x, s)hr(x)η(N)

s (dx)

)
ds.(5.12)

By Proposition 5.1(2) and Lemma 5.3(2), the process A
(N)

θ
(N)
m ,η

is the F (N)
t -compen-

sator of the process S
(N)

θ
(N)
m

, and the process M
(N)

θ
(N)
m ,η

defined by

M
(N)

θ
(N)
m ,η

.= S
(N)

θ
(N)
m

− A
(N)

θ
(N)
m ,η

(5.13)

is a local F (N)
t -martingale. Now, by Lemma 5.3(1), θ

(N)
m → θ(N) pointwise

on R
2+, |θ(N)

m (x, s) − θ(N)(x, s)| ≤ 1 for all (x, s) ∈ R
2+, and E[S(N)

1 (t)] < ∞,
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E[A(N)
1,η (t)] < ∞ for all t ∈ (0,∞). Hence, an application of the dominated con-

vergence theorem shows that for all t ∈ (0,∞), as m → ∞,

E

[
sup

0≤s≤t

∣∣A(N)

θ
(N)
m ,η

(s) − A
(N)

θ(N),η
(s)

∣∣] → 0

and

E

[
sup

0≤s≤t

∣∣S(N)

θ
(N)
m

(s) − S
(N)

θ(N)(s)
∣∣] → 0,

and hence M
(N)

θ
(N)
m ,η

converges in distribution to M
(N)

θ(N),η
. Since |S(N)

θ
(N)
m

(t) −
S

(N)

θ
(N)
m

(t−)| ≤ 1 for all t ∈ [0,∞) and m ∈ N, we conclude that M
(N)

θ(N),η
is a lo-

cal F (N)
t -martingale by Corollary 1.19 of Chapter IX of [10]. Given that M

(N)

θ(N),η

is a martingale, the proof of the limits (5.11) is exactly analogous to the proof
of (5.5), as carried out in Lemma 5.9 of [14]. �

5.2. An alternative representation for the compensator of R(N). We now de-
rive an alternative, more convenient representation for A

(N)

θ(N),η
, or more generally,

for processes of the form A
(N)

θ(N),η
, but with hr replaced by an arbitrary measur-

able function h. In what follows, recall that Fη
(N)
t (x) = η

(N)
t [0, x] and its inverse

(F η
(N)
t )−1 is as defined in (1.1).

PROPOSITION 5.5. For each N ∈ N, t ≥ 0 and measurable function h on
[0,H r), ∫

[0,H r )
1[0,χ(N)(t−)](x)h(x)η

(N)
t (dx)

(5.14)

=
∫ Q(N)(t)+ι(N)(t)

0
h((F η

(N)
t )−1(y)) dy,

where

ι(N)(t)
.=

{
0, if

(
χ(N)(t−) − χ(N)(t)

)(
K(N)(t) − K(N)(t−)

) = 0,
1, if

(
χ(N)(t−) − χ(N)(t)

)(
K(N)(t) − K(N)(t−)

)
> 0.

(5.15)

PROOF. Fix N ∈ N, t ≥ 0 and a measurable function h on [0,H r). By the
representation (2.3) for η

(N)
t , we have∫

[0,H r )
1[0,χ(N)(t−)](x)h(x)η

(N)
t (dx)

(5.16)

=
E(N)(t)∑

j=−E (N)
0 +1

h
(
w

(N)
j (t)

)
1{w(N)

j (t)≤χ(N)(t−)}1{w(N)
j (t)<rj }.
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Moreover, by (2.6),

Q(N)(t) = η
(N)
t

[
0, χ(N)(t)

] =
E(N)(t)∑

j=−E (N)
0 +1

1{w(N)
j (t)≤χ(N)(t)}1{w(N)

j (t)<rj }.

Thus Q(N)(t) is the total number of customers who have arrived to the system
and have not reneged by t and whose potential waiting times at t are less than
or equal to χ(N)(t). If we arrange those customers in increasing order of their

potential waiting times at t , then for i = 1,2, . . . ,Q(N)(t), (F η
(N)
t )−1(i) is exactly

the potential waiting time at t of the ith customer from the back of the queue.
Suppose that (χ(N)(t−) − χ(N)(t))(K(N)(t) − K(N)(t−)) = 0. This implies

that either χ(N)(t−) = χ(N)(t) holds or both χ(N)(t−) > χ(N)(t) and K(N)(t) =
K(N)(t−) hold. The latter condition indicates that the head-of-the-line customer
right before time t reneged at time t . In this case, the right-hand side of (5.16)
admits the alternative representation

∫ Q(N)(t)

0
h((F η

(N)
t )−1(y)) dy.

On the other hand, suppose that (χ(N)(t−)−χ(N)(t))(K(N)(t)−K(N)(t−)) >

0. In this case, the head-of-the-line customer right before time t departs for service
at time t and this customer is counted in the right-hand side of (5.16) but not in
Q(N)(t). Since E(N)(t) − E(N)(t−) ≤ 1, there is exactly one such customer, that
is, K(N)(t) − K(N)(t−) = 1. Hence the right-hand side of (5.16) can be rewritten
as ∫ Q(N)(t)+1

0
h((F η

(N)
t )−1(y)) dy. �

As an immediate consequence of (5.8), Lemma 5.4, and Proposition 5.5, we ob-
tain the following alternative representation for the compensator A

(N)

θ(N),η
of R(N):

A
(N)

θ(N),η
(t)

.=
∫ t

0

(∫ Q(N)(t)+ι(N)(t)

0
hr((F η

(N)
s )−1(y)) dy

)
ds,

t ∈ [0,∞),

where ι(N) is given by (5.15).

6. Tightness of pre-limit sequence. The main objective of this section is
to show that, under suitable assumptions, the sequence of scaled state processes
{(X(N), ν(N), η(N))} and the sequences of auxiliary processes are tight. Specif-
ically, from (2.23) and (5.4) it is clear that for every t , the linear functionals

D
(N)· (t) :ϕ 
→ D

(N)
ϕ (t) and A

(N)·,ν (t) :ϕ 
→ A
(N)

ϕ,ν (t) are finite Radon measures on
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[0,H s)×R+. Likewise, from (2.24) and the fact that (5.4) holds with ν,hs , respec-
tively, replaced by η,hr by property (2) of Proposition 5.1, it follows that the linear

functionals S
(N)· (t) :ψ 
→ S

(N)
ψ (t) and A

(N)·,η (t) :ψ 
→ A
(N)

ψ,η(t) define finite Radon

measures on [0,H r) × R+. Thus {D(N)· (t) : t ∈ [0,∞)} and {A(N)·,ν (t) : t ∈ [0,∞)}
can be viewed as MF ([0,H s) × R+)-valued càdlàg processes, and {S(N)· (t) : t ∈
[0,∞)} and {A(N)·,η (t) : t ∈ [0,∞)} can be viewed as MF ([0,H r) × R+)-valued
càdlàg processes. Now, for N ∈ N, let

Y (N) .= (
X(N)(0),E(N),X(N),R(N), ν

(N)
0 ,

(6.1)
ν(N), η

(N)
0 , η(N),A(N)·,ν ,D(N)· ,A(N)·,η , S(N)·

)
.

Then each Y (N) is a Y -valued process, where Y is the space

Y .= R+ × (DR+[0,∞))3 × MF [0,H s) × D MF [0,H s)[0,∞) × MF [0,H r)

× D MF [0,H r )[0,∞) × (
D MF ([0,H s)×R+)[0,∞)

)2

× (
D MF ([0,H r )R+)[0,∞)

)2

equipped with the product metric. Clearly, Y is a Polish space. Now we state the
main result of this section.

THEOREM 6.1. Suppose Assumption 3.1 is satisfied. Then the sequence
{Y (N)} defined in (6.1) is relatively compact in the Polish space Y , and is therefore
tight.

The relative compactness of {Y (N)} follows from Assumption 3.1 and Lemmas
6.3, 6.4, 6.6 and 6.7 below. Since Y is a Polish space, tightness is then a direct
consequence of Prohorov’s theorem.

We start by recalling Kurtz’s criteria (see Theorem 3.8.6 of [6] for details) for
the relative compactness of a sequence {F (N)} of processes in DR+[0,∞).

PROPOSITION 6.2 (Kurtz’s criteria). The sequence of processes {Z (N)} is rel-
atively compact if and only if the following two properties hold:

K1. For every rational t ≥ 0,

lim
R→∞ sup

N

P
(

Z (N)(t) > R
) = 0.

K2. For each t > 0, there exists β > 0 such that

lim
δ→0

sup
N

E
[∣∣Z (N)(t + δ) − Z (N)(t)

∣∣β] = 0.(6.2)
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LEMMA 6.3. Suppose Assumption 3.1 holds. Then the sequences {X(N)},
{K(N)}, {R(N)}, {〈1, ν(N)〉}, {〈1, η(N)〉}, the sequences {D(N)

ϕ }, {A(N)
ϕ,ν }, for every

ϕ ∈ Cb([0,H s) × R+) and the sequences {S(N)
ψ }, {A(N)

ψ,η}, for every ψ ∈ Cb([0,

H r) × R+), are relatively compact.

PROOF. Fix T ∈ (0,∞). It follows from Proposition 5.1(1), (2.23) and (3.5)
that for ϕ ∈ Cb([0,H s) × R+),

sup
N

E
[
A(N)

ϕ,ν (T )
] = sup

N

E
[
D(N)

ϕ (T )
] ≤ ‖ϕ‖∞ sup

N

E
[
X(N)(0) + E(N)(T )

]
< ∞.

Similarly, by Proposition 5.1(2), (2.24) and (3.5), we have for every ψ ∈ Cb([0,

H r) × R+),

sup
N

E
[
A

(N)
ψ,η(T )

] = sup
N

E
[
S

(N)

ψ (T )
] ≤ ‖ψ‖∞ sup

N

E
[
X

(N)
(0) + E(N)(T )

]
< ∞,

which verifies condition K1 for Z = A
(N)
ϕ,ν ,D

(N)
ϕ , ϕ ∈ Cb([0,H s) × R+) and Z =

A
(N)
ψ,η, S

(N)
ψ ,ψ ∈ Cb([0,H r) × R+). The same argument that was used to prove

Lemma 5.8(2) in [14] can then be used to show that (6.2) is also satisfied by the
same collection of Z (see Remark 5.2). The fact that R(N) and its increments
are dominated, respectively, by S(N) and its increments shows that the sequence
{R(N)} also satisfies conditions K1 and K2, and is thus relatively compact. Since
D(N) = D

(N)
1 and S(N) = S

(N)
1 , it follows that the sequences {D(N)} and {S(N)} are

also relatively compact. By Assumption 3.1, the sequences {E(N)} and {X(N)(0)}
are relatively compact.

Since for every t ≥ 0, 〈1, ν
(N)
t 〉 ≤ X(N)(t) ≤ X(N)(0) + E(N)(t) by (2.30) and

(2.12), it follows from Markov’s inequality that 〈1, ν
(N)
t 〉 and X(N) satisfy K1 of

Proposition 6.2. In addition, (2.12) also shows that∣∣X(N)(t) − X(N)(s)
∣∣ ≤ ∣∣E(N)(t) − E(N)(s)

∣∣ + ∣∣D(N)(t) − D(N)(s)
∣∣

+ ∣∣R(N)(t) − R(N)(s)
∣∣,

and by (2.30) and the Lipschitz continuity of the function x 
→ [1 − x]+ with
Lipschitz constant 1, we have∣∣〈1, ν

(N)
t

〉− 〈
1, ν(N)

s

〉∣∣ = ∣∣[1−X(N)(t)
]+ − [

1−X(N)(s)
]+∣∣ ≤ ∣∣X(N)(t)−X(N)(s)

∣∣.
When combined with the properties of E(N), D(N) and R(N) established above,
this shows that {X(N)} and {〈1, ν(N)〉} satisfy K2 of Proposition 6.2 and, are
relatively compact. In turn, by (2.16), the relative compactness of {D(N)} and
{〈1, ν(N)〉} implies that of {K(N)}. Moreover, due to (2.13), for every s, t ∈ [0,∞),
we have that∣∣〈1, η

(N)
t

〉 − 〈
1, η(N)

s

〉∣∣ ≤ ∣∣E(N)(t) − E(N)(s)
∣∣ + ∣∣S(N)(t) − S(N)(s)

∣∣,(6.3) 〈
1, η

(N)
t

〉 ≤ 〈
1, η

(N)
0

〉 + E(N)(t).(6.4)
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Thus 〈1, η(N)〉 is also relatively compact, and the proof is complete. �

LEMMA 6.4. Suppose Assumption 3.1 holds. For every f ∈ C 1
c (R+), the se-

quences {〈f, ν(N)〉} and {〈f,η(N)〉} of DR[0,∞)-valued random variables are rel-
atively compact.

PROOF. Fix t ∈ [0,∞). By (2.27) and (2.28), for every f ∈ C 1
c (R+), we have

〈
f, ν

(N)
t

〉 − 〈
f, ν

(N)
0

〉 = ∫ t

0

〈
f ′, ν(N)

s

〉
ds − D

(N)
f (t) + f (0)K(N)(t)

and 〈
f,η

(N)
t

〉 − 〈
f,η

(N)
0

〉 = ∫ t

0

〈
f ′, η(N)

s

〉
ds − S

(N)
f (t) + f (0)E(N)(t).

Since {D(N)

f }, {K(N)}, {S(N)

f } and {E(N)} are relatively compact due to Lem-
ma 6.3 and property 1 of Assumption 3.1, it suffices to show that the sequences
{∫ ·

0〈f ′, ν(N)
s 〉ds} and {∫ ·

0〈f ′, ηs〉ds} are tight. It follows from (6.4) that for δ ∈
(0,1), ∣∣∣∣

∫ t+δ

t

〈
f ′, η(N)

s

〉
ds

∣∣∣∣ ≤ ‖f ′‖∞
∫ t+δ

t

∣∣〈1, η(N)
s

〉∣∣ds

≤ ‖f ′‖∞δ
(〈

1, η
(N)
0

〉 + E(N)(t + 1)
)
.

Hence, we have

E

[∣∣∣∣
∫ t+δ

t

〈
f ′, η(N)

s

〉
ds

∣∣∣∣
]

≤ ‖f ′‖∞δ sup
N

E
[〈

1, η
(N)
0

〉 + E(N)(t + 1)
]
.(6.5)

For each t ∈ [0,∞), by (2.3) and Assumption 3.1, it follows that

sup
N

E
[〈

1, η
(N)
t

〉] ≤ sup
N

E
[〈

1, η
(N)
0

〉 + E(N)(t)
]
< ∞.(6.6)

Therefore, taking the limit, as δ → 0, in (6.5) and using the last inequality in (6.6),
we have

lim
δ→0

sup
N

E

[∣∣∣∣
∫ t+δ

t

〈
f ′, η(N)

s

〉
ds

∣∣∣∣
]

= 0.

Similarly, since 〈1, ν
(N)
s 〉 ≤ 1 for every s ∈ [0,∞) and N ∈ N,

lim
δ→0

sup
N

E

[∣∣∣∣
∫ t+δ

t

〈
f ′, ν(N)

s

〉
ds

∣∣∣∣
]

≤ lim
δ→0

‖f ′‖∞δ = 0.

Moreover, by (6.6), we also have, for every t ∈ [0,∞),

sup
N

E

[∣∣∣∣
∫ t

0

〈
f ′, η(N)

s

〉
ds

∣∣∣∣
]

≤ ‖f ′‖∞t sup
N

E
[〈

1, η
(N)
0

〉 + E(N)(t)
]
< ∞.
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Similarly, we have

sup
N

E

[∣∣∣∣
∫ t

0

〈
f ′, ν(N)

s

〉
ds

∣∣∣∣
]

≤ sup
N

E

[∫ t

0

∣∣〈f ′, ν(N)
s

〉∣∣ds

]
≤ ‖f ′‖∞t < ∞.

This implies that {∫ ·
0〈f ′, η(N)

s 〉ds} and {∫ ·
0〈f ′, ν(N)

s 〉ds} both satisfy criteria K1
and K2 of Proposition 6.2 and hence are relatively compact. This completes the
proof of the lemma. �

Next, we show that {ν(N)} and {η(N)} are tight, and hence are relatively com-
pact with respect to the topology on D MF [0,H s)[0,∞) and D MF [0,H r )[0,∞), re-
spectively. Since, as mentioned in Section 1.3.1, MF [0,H s) and MF [0,H r),
equipped with the topology of weak convergence, are Polish spaces, we can apply
Jakubowski’s criteria to establish the tightness of {ν(N)} and {η(N)}. For conve-
nience, we recall Jakubowski’s criteria.

PROPOSITION 6.5 (Jakubowski). A sequence {π(N)} of D MF [0,H)[0,∞)-
valued random elements defined on (�, F ,P) is tight if and only if the following
two conditions hold:

J1. For each T > 0 and 0 < δ < 1, there are compact subsets C̃T ,δ of MF [0,H)

such that

lim inf
N→∞ P

(
ν

(N)
t ∈ C̃T ,δ for all t ∈ [0, T ]) > 1 − δ.

J2. There exists a family F of real continuous functions F on MF [0,H) that
separates points in MF [0,H) and is closed under addition, and {π(N)} is F-
weakly tight, that is, for every F ∈ F, the sequence {F(π(N)), s ∈ [0,∞)} is
tight in DR[0,∞).

LEMMA 6.6. Suppose Assumption 3.1 holds. The sequences {ν(N)} and {η(N)}
are relatively compact.

PROOF. By Remark 5.11 of [14] and Lemma 6.4, it follows that {ν(N)} and
{η(N)} satisfy Jakubowski’s J2 criterion. Therefore, it suffices to show that they
also satisfy Jakubowski’s J1 criterion. By (2) and (3) of Assumption 3.1, for almost
every ω ∈ �, supN ν

(N)
0 (ω)[0,H s) < ∞. By Lemma A 7.5 of [12], for every ε > 0,

there exists k(ω, ε) < ∞ such that supN ν
(N)
0 (ω)(k(ω, ε),Hs) < ε. The argument

for tightness of {ν(N)} (in the absence of reneging) presented in Lemma 5.12 of
[14] can be directly applied to show that {ν(N)} satisfies Jakubowski’s J1 criterion,
and hence {ν(N)} is tight in the presence of reneging as well. Similarly, due to (2)
and (4) of Assumption 3.1, for almost every ω ∈ �, supN η

(N)
0 (ω)[0,H r) < ∞.

Once again, by Lemma A 7.5 of [12], we infer that for every ε > 0, there exists
l(ω, ε) < ∞ such that supN η

(N)
0 (ω)(l(ω, ε),Hr) < ε. Since {〈1, η(N)〉} is tight
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by Lemma 6.4, the argument for tightness of {ν(N)} presented in Lemma 5.12 of
[14] can also be adapted to show that the sequence {η(N)} satisfies Jakubowski’s
J1 criterion, and is therefore tight. We omit the details. �

We end this section by establishing the relative compactness of the measure-
valued processes associated with the cumulative departure and reneging function-
als and their compensators.

LEMMA 6.7. Suppose Assumption 3.1 holds. Then the sequences {D(N)· } and
{A(N)·,ν } are relatively compact in D MF ([0,H s)×R+)[0,∞). Similarly, the sequences

{S(N)· } and {A(N)·,η } are relatively compact in D MF ([0,H r )×R+)[0,∞).

PROOF. This can be proved by combining Lemma 6.3 and Proposition 5.1
with the argument that was used in Lemma 5.13 of [14] to establish the tightness
of the sequences {Q(N)} and {A(N)} therein. Since the adaptation of the argument
in [14] is straightforward, we omit the details. �

7. Strong law of large numbers limits.

7.1. Characterization of subsequential limits. The focus of this section is the
following theorem which, in particular, establishes existence of a solution to the
fluid equations.

THEOREM 7.1. Suppose that Assumptions 3.1–3.3 hold. Let (X, ν, η) be the
limit of any subsequence of {X(N), ν(N), η(N)}. Then (X, ν, η) solves the fluid
equations.

The rest of the section is devoted to the proof of this theorem. Let (E,X(0),
ν0, η0) be the S0-valued random variable that satisfies Assumption 3.1, and let
{Y (N)}N∈N be the sequence of processes defined in (6.1). Then, by Assump-
tion 3.1, Theorem 6.1 and the limits M

(N)·,ν = D
(N)· − A

(N)·,ν ⇒ 0 and M
(N)·,η =

S
(N)· − A

(N)·,η ⇒ 0 established in Proposition 5.1, there exist processes X ∈
DR+[0,∞),R ∈ DR+[0,∞), ν ∈ D MF [0,H s)[0,∞), η ∈ D MF [0,H r )[0,∞),A·,ν ∈
D MF ([0,H s)×R+)[0,∞), D· ∈ D MF ([0,H s)×R+)[0,∞), A·,η ∈ D MF ([0,H r )×R+)[0,

∞), S· ∈ D MF ([0,H r )×R+)[0,∞) such that Y (N) converges weakly (along a suit-
able subsequence) to

Y
.= (X(0),E,X,R, ν0, ν, η0, η,A·,ν,A·,ν,A·,η,A·,η) ∈ Y.

Denoting this subsequence again by Y (N) and invoking the Skorokhod representa-
tion theorem, with a slight abuse of notation, we can assume that, P a.s., Y (N) → Y

as N → ∞. Without loss of generality, we may further assume that the above con-
vergence holds everywhere.
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We now identify some properties of the limit that will be used to prove The-
orem 7.1. From Proposition 5.1(1), it follows that, as N → ∞, (Y (N),D

(N)· ) →
(Y ,A·,ν). Together with (2.12), this implies that

X = X(0) + E − A1,ν − R.(7.1)

Moreover, we claim that

Aϕ,ν =
∫ ·

0
〈ϕhs, νs〉ds.(7.2)

This corresponds to relation (5.48) established in Proposition 5.17 of [14] for the
model without abandonments. However, essentially the same argument can be used
here as well. Specifically, the proof of (5.48) in [14] relies on Lemmas 5.8(1)
and 5.16 of [14], which continue to be valid in the presence of abandonments
due to Remarks 5.2 and 4.7. On substituting (7.2) into (7.1), we see that the fluid
equation (3.15) is satisfied.

Next, in Proposition 7.2, we establish representation (3.14) for R given in the
fluid equations. The proof of this result relies on the alternative representation for
the compensator A

(N)

θ(N),η
of R(N) given in (5.17).

PROPOSITION 7.2. For every T ∈ [0,∞), as N → ∞,

E

[
sup

t∈[0,T ]

∣∣∣∣A(N)

θ(N),η
(t) −

∫ t

0

(∫ Q(s)

0
hr((F ηs )−1(y)) dy

)
ds

∣∣∣∣
]

→ 0.(7.3)

Moreover, almost surely,

R(t) =
∫ t

0

(∫ Q(s)

0
hr((F ηs )−1(y)) dy

)
ds, t ∈ [0,∞).(7.4)

The proof of Proposition 7.2 is given near the end of this section and relies
on the following preliminary observations. Let R̃(t) be defined by the right-hand
side of (7.4) for t ∈ [0,∞). We first show how (7.4) can be deduced from (7.3).
From (7.3), it follows that A

(N)

θ(N),η
⇒ R̃ as N → ∞. Since R̃ is continuous, R(N) =

M
(N)

θ(N),η
+A

(N)

θ(N),η
and M

(N)

θ(N),η
⇒ 0 by Lemma 5.4, it follows that R(N) ⇒ R̃. This

implies, a.s., R̃ = R, and thus the second statement of Proposition 7.2 follows from
the first statement.

The proof of (7.3) relies on Lemmas 7.3–7.6 below and the following obser-

vations. Using (5.17) and the elementary relation (F η
(N)
s )−1(N ·) = (F η

(N)
s )−1(·),

simple algebraic manipulations show that

A
(N)

θ(N),η
(t)

.=
∫ t

0

(∫ Q(N)(t)+ι(N)(t)

0
hr((F η

(N)
s )−1(y)) dy

)
ds,

(7.5)
t ∈ [0,∞),
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where, as usual, ι(N) .= ι(N)/N and ι(N) is given by (5.15). Next, observe that for
all t ∈ [0, T ] and L ∈ [0,H r),∣∣A(N)

θ(N),η
(t) − R̃(t)

∣∣ ≤ C
(N)
1 (t,L) + C

(N)
2 (t,L) + C3(t,L),(7.6)

where C
(N)
i (t,L), i = 1,2, and C3(t,L) are defined, for t ∈ [0,∞), by

C
(N)
1 (t,L)

.=
∣∣∣∣
∫ t

0

(∫ (Q(N)(s)+ι(N)(s))∧Fη
(N)
s (L)

0
hr((F η

(N)
s )−1(y)) dy

)
ds(7.7)

−
∫ t

0

(∫ Q(s)∧Fηs (L)

0
hr((F ηs )−1(y)) dy

)
ds

∣∣∣∣,
C

(N)
2 (t,L)

.=
∣∣∣∣
∫ t

0

(∫ Q(N)(s)+ι(N)(s)

(Q(N)(s)+ι(N)(s))∧Fη
(N)
s (L)

hr((F η
(N)
s )−1(y)) dy

)
ds

∣∣∣∣(7.8)

and

C3(t,L)
.=

∫ t

0

(∫ Q(s)

Q(s)∧Fηs (L)
hr((F ηs )−1(y)) dy

)
ds.(7.9)

As a precursor to the proof of (7.3) of Proposition 7.2, we first establish some
path properties of the limiting queue measure η in Lemma7.3 and some estimates
in Lemma 7.4. These two preliminary results will be used in Lemma 7.5 to show
that for any L ∈ [0,H r), limN→∞ supt∈[0,T ] |C(N)

1 (t,L)| = 0 in the case when hr

is continuous. Next, Lemma 7.6 extends this to include general hr that is locally
integrable in [0,H r). All these results are then combined to prove Proposition 7.2.

LEMMA 7.3. For every L ∈ [0,H r), ηt is continuous at L for almost every
t ≥ 0. Moreover, for t ∈ (0,∞) and L ∈ [0,H r), if ηt ({L}) > 0, then ηt (L,L +
ε) > 0 for all sufficiently small ε.

PROOF. It was shown in Corollary 4.2 that (η,E) satisfies (3.20) for every
bounded Borel measurable function f . For every L ∈ [0,H r), substituting f = 1L

in (4.2), we obtain

ηt ({L}) =
∫
[0,H r )

1{L}(x + t)
1 − Gr(x + t)

1 − Gr(x)
η0(dx)

(7.10)
+

∫
[0,t]

1{L}(t − s)
(
1 − Gr(t − s)

)
dE(s).

It is easy to see that the right-hand side of the above display is zero except when
η0({L − t}) > 0 if t ≤ L or when E(t − L) − E((t − L)−) > 0 if t > L. Since
the jump times of both η0 and E are at most countable, (7.10) shows that ηt is
continuous at L for almost every t ≥ 0.
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Next, suppose ηt ({L}) > 0. Then by (7.10), at least one of the following two
inequalities must hold:∫

[0,H r )
1{L}(x + t)

1 − Gr(x + t)

1 − Gr(x)
η0(dx) > 0(7.11)

or ∫
[0,t]

1{L}(t − s)
(
1 − Gr(t − s)

)
dE(s) > 0.(7.12)

If (7.11) holds, then it must be that L− t ∈ [0,H r), (1−Gr(L))/(1−Gr(L− t)) >

0 and η0({L − t}) > 0. By Assumption 3.2 and the continuity of (1 − Gr(· +
t))/(1 − Gr(·)), it then follows that for all sufficient small ε > 0,∫

[0,H r )
1(L,L+ε)(x + t)

1 − Gr(x + t)

1 − Gr(x)
η0(dx) > 0.(7.13)

Substituting f = 1(L,L+ε) into (3.20) in Corollary 4.2 shows that ηt (L,L + ε) is
greater than or equal to the left-hand side of (7.13), and so the lemma is established
in this case. On the other hand, suppose (7.12) holds. In this case, t − L > 0,
1 − Gr(t − L) > 0 and E(t − L) − E((t − L)−) > 0. By Assumption 3.2 and the
continuity of 1 −Gr(t −·), for all sufficiently small ε > 0, 1 −Gr(t −·) is strictly
positive on (L,L + ε) and E((t − L)−) − E(t − L − ε) > 0. Another application
of (3.20) of Corollary 4.2, with f = 1(L,L+ε), shows that

ηt (L,L + ε) ≥
∫ t

0
1(L,L+ε)(t − s)

(
1 − Gr(t − s)

)
dE(s) > 0,

and the proof of the lemma is complete. �

LEMMA 7.4. Let T ∈ [0,∞) and L ∈ [0,H r). The following estimates hold:

1. For m ∈ [0,H r) and every � ∈ L1
loc[0,H r) with support in [0,m], there exists

L̃(m,T ) < ∞ such that∣∣∣∣
∫ T

0
〈�, ηs〉ds

∣∣∣∣ ≤ L̃(m,T )

∫
[0,H r )

|�(x)|dx.(7.14)

2. Suppose h is a measurable function such that C̃h
L

.= supx∈[0,L] |h(x)| < ∞.
Then, P-a.s.,

sup
N

sup
s∈[0,T ]

∫ L

0
h(x)η(N)

s (dx) ≤ C̃h
L sup

N

(〈
1, η

(N)
0

〉 + E(N)(T )
)
< ∞.(7.15)

PROOF. It was established in Lemma 5.16 of [14] that inequality (7.14) holds
with η replaced by the fluid age measure ν associated with a many-server queue
without abandonments. The proof follows directly from Proposition 4.15 and the
estimate (5.46) of [14]. Since the dynamic equations (2.28) and (3.20) for η(N)
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and η, respectively, are exactly analogous to the dynamic equations for ν(N) and ν.
Estimate (5.46) of [14] can be shown to hold for η using the same argument as
in [14]. When combined with Proposition 4.15 of [14], this shows that (7.14) holds.
Estimate (7.15) follows directly from (2.13) and Assumption 3.1. �

LEMMA 7.5. For T ≥ 0 and all but countably many L ∈ [0,H r), given any
continuous function h on [0,∞), as N → ∞, for every realization,

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(∫ (Q(N)(s)+ι(N)(s))∧Fη
(N)
s (L)

0
h((F η

(N)
s )−1(y)) dy

)
ds

(7.16)

−
∫ t

0

(∫ Q(s)∧Fηs (L)

0
h((F ηs )−1(y)) dy

)
ds

∣∣∣∣ → 0.

PROOF. Fix ω ∈ �. To ease the notation, we shall suppress ω from the no-
tation. From the convergence of η(N) to η and Q(N) to Q, it follows that, as
N → ∞, η

(N)
s

w→ ηs and Q(N)(s) → Q(s) for almost every s ≥ 0. Also, by Lem-
ma 7.3, ηs is continuous at L for almost every s ≥ 0. Let s ≥ 0 be a time at which

η
(N)
s

w→ ηs and Q
(N)

(s) → Q(s) as N → ∞ and ηs is continuous at L. Then,

as N → ∞, Fη
(N)
s (x) → Fηs (x) for x = L and all but a countable number of

x ∈ [0,H r). Therefore, by Theorem 13.6.3 of [23], we have (F η
(N)
s )−1 → (F ηs )−1

on [0,F ηs (H r−)) in the M1 topology. For s ∈ [0, T ], we now show that, as
N → ∞,

∫ (Q(N)(s)+ι(N)(s))∧Fη
(N)
s (L)

0
h((F η

(N)
s )−1(y)) dy

(7.17)

→
∫ Q(s)∧Fηs (L)

0
h((F ηs )−1(y)) dy.

From the inequality |ι(N)| ≤ 1/N , we immediately see that(
Q(N)(s) + ι(N)(s)

) ∧ Fη
(N)
s (L) → Q(s) ∧ Fηs (L) as N → ∞.(7.18)

We now consider the following two cases:
Case 1. Q(s) ∧ Fηs (L) < Fηs (Hr−). In this case, due to (7.18), for all suffi-

ciently large N , (Q(N)(s) + ι(N)(s)) ∧ Fη
(N)
s (L) < Fηs (Hr−). For each n ∈ N, by

Theorem 11.5.1 of [23] and the continuity of h, we obtain for each t < Fηs (Hr−),

lim
N→∞ sup

u∈[0,t]

∣∣∣∣
∫ u

0
h((F η

(N)
s )−1(y)) dy −

∫ u

0
h((F ηs )−1(y)) dy

∣∣∣∣ = 0.

By the case assumption, this implies, in particular, that

lim
N→∞

∣∣∣∣
∫ Q(s)∧Fηs (L)

0
h((F η

(N)
s )−1(y)) dy −

∫ Q(s)∧Fηs (L)

0
h((F ηs )−1(y)) dy

∣∣∣∣ = 0.
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On the other hand, (7.18) and the continuity of h show that

lim
N→∞

∫ Q(s)∧Fηs (L)

(Q(N)(s)+ι(N)(s))∧Fη
(N)
s (L)

h((F η
(N)
s )−1(y)) dy = 0.

Together, the last two assertions imply (7.17).
Case 2. Q(s) ∧ Fηs (L) = Fηs (Hr−). We first claim that in this case

Q(s) = Fηs (L) = Fηs (Hr−).(7.19)

Indeed, Fηs (L) ≤ Fηs (Hr−) because Fηs is nondecreasing and L < Hr , while
Q(s) ≤ ηs[0,H r) = Fηs (Hr−) by (3.13). On the other hand, the reverse in-
equalities Q(s) ≥ Fηs (Hr−) and Fηs (L) ≥ Fηs (Hr−) hold by the case as-
sumption, and so the claim follows. Now, define L

.= (F ηs )−1(F ηs (H r−)). Then
L = (F ηs )−1(F ηs (L)) by (7.19). Hence, L ≤ L and

Fηs (L) = Fηs (L) = Fηs (Hr−).(7.20)

This implies ηs(L,Hr) = 0, and from the second assertion of Lemma 7.3, it fol-
lows that

ηs({L}) = 0.(7.21)

The change of variables formula and (7.20) then yield∫ Q(s)∧Fηs (L)

0
h((F ηs )−1(y)) dy =

∫
[0,H r )

h(x)ηs(dx)

(7.22)
=

∫
[0,L]

h(x)ηs(dx).

Also, by Proposition 5.5 and another application of the change of variables for-
mula, we have

∫ (Q(N)(s)+ι(N)(s))∧Fη
(N)
s (L)

0
h((F η

(N)
s )−1(y)) dy

(7.23)
=

∫
[0,χ(N)(s−)]

1[0,L](x)h(x)η(N)
s (dx).

Expanding the term on the right-hand side of (7.23) and using the inequality
L ≤ L, we obtain∫

[0,χ(N)(s−)]
1[0,L](x)h(x)η(N)

s (dx)

=
∫
[0,L]

1[0,L](x)h(x)η(N)
s (dx)

(7.24)
+

∫
(χ(N)(s−)∧L,χ(N)(s−)]

1[0,L](x)h(x)η(N)
s (dx)

−
∫
(χ(N)(s−)∧L,L]

1[0,L](x)h(x)η(N)
s (dx).
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By (7.22) and (7.23), the left-hand side and the first term on the right-hand side of
(7.24), respectively, equal the left-hand side and right-hand side of (7.17). There-
fore, to prove (7.17) it suffices to show that the second and the third terms on
the right-hand side of (7.24) converge to zero, as N → ∞. Recall the constant
C̃h

L defined in Lemma 7.4. Note that C̃h
L < ∞ since h is continuous. There-

fore, the second term on the right-hand side of (7.24) is bounded above by
C̃h

Lη
(N)
s (χ(N)(s−) ∧ L,χ(N)(s−)]. By (7.21), Portmanteau’s theorem and (7.20),

it follows that

lim
N→∞η(N)

s

(
χ(N)(s−) ∧ L,χ(N)(s−)

] ≤ lim
N→∞η(N)

s (L,Hr) = η[L,Hr) = 0.

On the other hand, the absolute value of the third term on the right-hand
side of (7.24) is bounded above by C̃h

Lη
(N)
s (χ(N)(s−) ∧ L,L]. We now ar-

gue by contradiction to show that lim infN→∞ χ(N)(s−) ≥ L and, consequently,
that η

(N)
s (χ(N)(s−) ∧ L,L] converges to zero as N → ∞. Indeed, suppose

this assertion were false. Then there must exist a subsequence {Nk}k∈N such
that limk→∞ χ(Nk)(s−) = L − δ for some δ > 0. Hence, for k large enough,
χ(Nk)(s−) < L − δ/2. By Lemma A.2, we have χ(Nk)(s−) ≥ χ(Nk)(s). Hence
η

(Nk)
s [0,L − δ/2] ≥ Q(Nk)(s) by (2.6). Sending k → ∞ and using the conver-

gence η
(Nk)
s ⇒ ηs , the fact that [0,L − δ/2] is closed and Portmanteau’s theorem,

we obtain ηs[0,L − δ/2] ≥ Q(s). This contradicts the definition of L, and hence
completes the proof of (7.17).

Finally, we deduce (7.16) from (7.17) using the bounded convergence theorem,
whose application is justified by the bounds (7.22), (7.23) and the estimate (7.15).

�

We now generalize Lemma 7.5 to allow for a general locally integrable (not
necessarily continuous) function hr on [0,H r).

LEMMA 7.6. Let L < Hr , and let C
(N)
1 (t,L), t ∈ [0,∞),N ∈ N be defined

as in (7.7). Then for every T ∈ [0,∞), almost surely for L < Hr ,

lim
N→∞ sup

t∈[0,T ]
C

(N)
1 (t,L) = 0.(7.25)

PROOF. Fix L < Hr . Since hr lies in L1
loc[0,H r) and is nonnegative, there

exists a sequence of nonnegative continuous functions {hr
n}n≥1 on [0,H r) such

that
∫ L

0 |hr(x) − hr
n(x)|dx → 0 as n → ∞ and hr

n has common compact support
in [0,H r). For each n ∈ N, (7.25) holds with hr

n in place of hr due to Lemma 7.5.
Let lrn = |hr

n − hr | for each n ≥ 1. Then, in order to prove (7.25), it clearly suffices
to show that the following two limits hold: almost everywhere,

lim
N→∞ sup

N

∫ T

0

(∫ (Q(N)(s)+ι(N)(s))∧Fη
(N)
s (L)

0
lrn((F

η
(N)
s )−1(y)) dy

)
ds = 0(7.26)
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and

lim
N→∞

∫ T

0

(∫ Q(s)∧Fηs (L)

0
lrn((F

ηs )−1(y)) dy

)
ds = 0.(7.27)

We first consider (7.26). By Proposition 5.5, applied to h = lrn, and the same
scaling argument that was used to obtain (7.5), for every N,n ∈ N,

∫ T

0

(∫ (Q(N)(s)+ι(N)(s))∧Fη
(N)
s (L)

0
lrn((F

η
(N)
s )−1(y)) dy

)
ds

=
∫ T

0

(∫
[0,χ(N)(s−)∧L]

lrn(x)η(N)
s (dx)

)
ds ≤

∫ T

0

(∫
[0,L]

lrn(x)η(N)
s (dx)

)
ds.

By (2.2) and the representation of η(N) in (2.3), we have∫ T

0

(∫
[0,L]

lrn(x)η(N)
s (dx)

)
ds

≤ 1

N

0∑
j=−E (N)

0 +1

∫ T

0
lrn

(
w

(N)
j (0) + s

)
1{w(N)

j (0)+s<L∧rj } ds

+ 1

N

E(N)(T )∑
j=1

∫ T

ζ
(N)
j

lrn
(
s − ζ

(N)
j

)
1{s−ζ

(N)
j <L} ds

≤ sup
N

(〈
1, η

(N)
0

〉 + E(N)(T )
) ∫ L

0
lrn(x) dx.

Since supN(〈1, η
(N)
0 〉 + E(N)(t)) < ∞ almost surely, due to Assumption 3.1, and

hr
n converges in L1

loc[0,H r) to hr , we obtain (7.26). On the other hand, observe
that, by (7.14) of Lemma 7.4 applied to l = lrn,∫ T

0

(∫ Q(s)∧Fηs (L)

0
lrn((F

ηs )−1(y)) dy

)
ds ≤

∫ T

0

(∫
[0,L]

lrn(x)ηs(dx)

)
ds

≤ L̃(L,T )

∫ L

0
lrn(x) dx.

By the convergence of hr
n to hr in L1

loc[0,H r), the last term on the right-hand side
of the above display converges to 0, as n → ∞, and (7.27) follows. �

PROOF OF PROPOSITION 7.2. Given the discussion prior to Lemma 7.3 and,
in particular, (7.6), to complete the proof of the proposition, it only remains to
show that

lim
L→Hr

lim sup
N→∞

E

[
sup

t∈[0,T ]
C

(N)
i (t,L)

]
= 0, i = 1,2,(7.28)
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and

lim
L→Hr

E[C3(T ,L)] = 0.(7.29)

For the case i = 1 in (7.28), this follows from Lemma 7.6 and the dominated
convergence theorem, whose application is justified because, by (7.22), (7.23) and
the fact that L ≤ L,

E

[
sup

t∈[0,T ]
C

(N)

1 (t,L)
]
≤ E

[∫ T

0

(∫
[0,L]

hr(x)η(N)
s (dx)

)
ds

]

+ E

[∫ T

0

(∫
[0,L]

hr(x)ηs(dx)

)
ds

]
,

which is bounded uniformly in N by (7.15) and Assumption 3.1.
Now, by Remark 5.2, an application of Lemma 5.8(1) of [14] (with ν, hs and

Hs , resp., replaced by η, hr and Hr , resp.), shows that

lim
L→Hr

sup
N

E

[∫ t

0

(∫
[L,Hr)

hr(x)η(N)
s (dx)

)
ds

]
= 0.(7.30)

On the other hand, the definition of C
(N)
2 (T ,L) in (7.8), when combined with

Proposition 5.5 and (7.23), shows that

sup
N

E
[
C

(N)
2 (T ,L)

] ≤ sup
N

E

[∫ T

0

(∫
[L,Hr)

hr(x)η(N)
s (dx)

)
ds

]
.

Taking the limit, as L → Hr , and invoking (7.30), it follows that (7.28) holds for
i = 2. Finally, to show (7.29), we see that, by the definition of C3(T ,L) in (7.9)
and the change of variables formula,

E[C3(T ,L)] = E

[∫ t

0

(∫ Q(s)

Q(s)∧Fηs (L)
hr((F ηs )−1(y)) dy

)
ds

]

≤
∫ t

0

(∫
[L,Hr)

hr(x)ηs(dx)

)
ds.

If hr is bounded, then (7.29) holds by simply applying the bounded convergence
theorem on the right-hand side of the equality in the above display. On the other
hand, suppose hr is lower-semicontinuous on (Lr,Hr) for some Lr < Hr . Then,
by Theorem A.3.12 of [5] and the fact that P a.s., η

(N)
s

w→ ηs , as N → ∞, for a.e.
s ∈ [0, T ], this implies that for any such s and L > Lr ,∫ t

0

(∫
[L,Hr)

hr(x)ηs(dx)

)
ds ≤ lim inf

N→∞

∫ t

0

(∫
[L,Hr)

hr(x)η(N)
s (dx)

)
ds.

Integrating both sides over s ∈ [0, T ] and taking expectations, an application of
Fatou’s lemma yields

E[C3(T ,L)] ≤ lim inf
N→∞ E

[∫ t

0

(∫
[L,Hr)

hr(x)η(N)
s (dx)

)
ds

]
.
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Taking the limit as L → Hr , an application of (7.30) shows that (7.29) holds. �

We now prove the main limit result.

PROOF OF THEOREM 7.1. Fix t ∈ [0,∞) such that ν
(N)
t

w→ νt , η
(N)
t

w→
ηt , E(N)(t) → E(t), X(N)(t) → X(t), R(N)(t) → R(t), A

(N)·,ν (t)
w→ A·,ν(t),

D
(N)· (t)

w→ A·,ν(t), A
(N)·,η (t)

w→ A·,η(t), S
(N)· (t)

w→ A·,η(t) as N → ∞. Since
Y (N) → Y a.s., this occurs for t outside a countable set. By (7.2), this implies
that as N → ∞,

D(N)
ϕ (t) → Aϕ,ν(t) =

∫ t

0
〈ϕ(·, s)hs(·, s), νs〉ds,

(7.31)
ϕ ∈ Cb

([0,H s) × R+
)
.

An analogous argument also implies that, as N → ∞,

S
(N)
ψ (t) → Aψ,η(t) =

∫ t

0
〈ψ(·, s)hr(·, s), ηs〉ds,

(7.32)
ψ ∈ Cb

([0,H r) × R+
)
.

In particular, when ϕ = ψ = 1, the above two displays imply that (3.8) holds.
Also, we immediately obtain that, as N → ∞, 〈1, ν

(N)
t 〉 → 〈1, νt 〉 and 〈1, η

(N)
t 〉 →

〈1, ηt 〉. When combining with (2.15), (2.30), (2.14), (2.20), (2.12), (2.6), (7.4), this
implies that all the equations in Definition 3.3 are satisfied at time t except (3.9)
and (3.11).

It only remains to show that (3.9) and (3.11) are also satisfied at time t . We shall
just prove (3.11). The same argument will also show that (3.9) holds. Dividing
(2.28) by N , we have

〈
ψ(·, t), η(N)

t

〉 = 〈
ψ(·,0), η

(N)
0

〉 + ∫ t

0

〈
ψx(·, s) + ψs(·, s), η(N)

s

〉
ds

− S
(N)
ψ (t) +

∫
[0,t]

ψ(0, s) dE(N)(s).

Since η
(N)
0

w→ η0 by Assumption 3.1(4), η
(N)
s

w→ ηs for a.e. s ∈ [0, t], η
(N)
t

w→ ηt

by our choice of t and ψ(·, t) and ψx(·, s) + ψs(·, s), s ∈ [0, t], are bounded and
continuous, as N → ∞, we have〈

ψ(·, t), η(N)
t

〉 → 〈ψ(·, t), ηt 〉 and
〈
ψ(·,0), η

(N)
0

〉 → 〈ψ(·,0), η0〉,
and, by the bounded convergence theorem,∫ t

0

〈
ψx(·, s) + ψs(·, s), η(N)

s

〉
ds →

∫ t

0
〈ψx(·, s) + ψs(·, s), ηs〉ds.
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On the other hand, using an integration-by-parts argument, the facts that E(N)(0) =
0, E(N) → E, E is nondecreasing and ψs(0, ·) is bounded and continuous on [0, t],
along with the bounded convergence theorem, we see that, as N → ∞,∫

[0,t]
ψ(0, s) dE(N)(s) →

∫
[0,t]

ψ(0, s) dE(s).

Combining the last four displays with (7.32), it follows that (3.11) holds. Then
it follows that all fluid equations are satisfied for all but countably many t . By
right-continuity (with respect to t) of each of the terms in all fluid equations, we
conclude that all fluid equations are a.s. satisfied for all t ∈ [0,∞). This completes
the proof of the desired result that (X, ν, η) satisfies the fluid equations. �

7.2. Proof of Theorem 3.8. This section is devoted to the proof of Theo-
rem 3.8. Recall T (N)

t (s) in (2.17) and its fluid scaled version defined in (3.3).
Observe that the virtual waiting time defined in (2.18) can be rewritten in terms of
the fluid-scaled quantities as

W(N)(t)
.= inf

{
s ≥ 0 :D(N)(t + s) − D(N)(t) + T (N)

t (s) > Q(N)(t)
}
.(7.33)

We first show that for each t ∈ [0,∞), T (N)
t ⇒ T t as N → ∞, where T t is defined

in (3.26). Notice that a customer j who arrived into the system before time t and
has not reneged by time t must have a potential waiting time w

(N)
j (u) > u − t for

all u > t sufficiently small. In addition, for that customer to have reneged from
the queue (before entering service) in the period [t, t + s], there must exist a time
u ∈ [t, t + s] such that the customer is still in queue (i.e., has not yet entered
service) or, equivalently, such that w

(N)
j (u) < χ(N)(u−), the waiting time of the

head-of-the-line customer just prior to u, and the customer reneges, so that the
slope of her potential waiting time changes from one to zero. Therefore, for each
s ∈ [0,∞), T (N)

t (s) can be alternatively expressed as

T (N)
t (s) = ∑

u∈[t,t+s]

E(N)(u)∑
j=−E (N)

0 +1

1{dw
(N)
j /dt(u−)>0,dw

(N)
j /dt(u+)=0}

× 1{u−t<w
(N)
j (u)≤χ(N)(u−)}.

Let

T (N),1
t (s)

.= ∑
u∈[t,t+s]

E(N)(u)∑
j=−E (N)

0 +1

1{dw
(N)
j /dt(u−)>0,dw

(N)
j /dt(u+)=0}1{w(N)

j (u)≤χ(N)(u−)}

and

T (N),2
t (s)

.= ∑
u∈[t,t+s]

E(N)(u)∑
j=−E (N)

0 +1

1{dw
(N)
j /dt(u−)>0,dw

(N)
j /dt(u+)=0}1{w(N)

j (u)≤u−t}.
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It is easy to see that T (N)
t (s) = T (N),1

t (s) − T (N),2
t (s), T (N),1

t (s) = R(N)(t +
s) − R(N)(t), T (N),2

t (s) ≤ S(N)(t + s) − S(N)(t) and T (N),2
t (s + δ) − T (N),2

t (s) ≤
S(N)(t +s+δ)−S(N)(t +s). Therefore, an application of Kurtz’s criteria in Propo-
sition 6.2 shows that the relative compactness of the fluid scaled versions T (N),1

t

and T (N),2
t of T (N),1

t and T (N),2
t , respectively, follows from that of R(N) and S(N)

established in Lemma 6.3. By a straightforward adaption of the argument used
in Proposition 7.2 to show the convergence of R(N) to R, we can conclude that
T (N)

t ⇒ T t as N → ∞.
Recall the application of the Skorokhod representation theorem in Theorem 7.1

to assume, without loss of generality, that Y (N) converges a.s. to Y . Here, we can
also assume, in addition, that T (N)

t (s) → T t a.s., as N → ∞. Since Q is contin-
uous at t and, by (7.2), A1,ν = ∫ ·

0〈hs, νs〉ds is continuous by the integral repre-
sentation, and T t has continuous paths by definition, it follows that, almost surely,
Q(N)(t) → Q(t) and for each T ∈ [0,∞), as N → ∞,

sup
s∈[0,T ]

∣∣D(N)(t + s) − A1,ν(t + s)
∣∣ → 0 and sup

s∈[0,T ]
∣∣T (N)

t (s) − T t

∣∣ → 0.

From (7.33), it is easy to see that W(N)(t) ≤ (D(N))−1(D(N)(t) + Q(N)(t)) −
t for each N . By the tightness result established in Theorem 6.1, we know that
D(N)(t) + Q(N)(t) is bounded uniformly in N , and due to Lemma 4.10 of [21]
and the assumption that A1,ν is uniformly strictly increasing, we also know that
(D(N))−1 → (A1,ν)

−1 uniformly on compact sets, as N → ∞. Hence, W(N)(t) is
bounded uniformly in N . Therefore, there exists a subsequence, W(Nn)(t), n ∈ N,
that converges to a limit in [0,∞), which we denote by W ∗. From (7.33) and the

right-continuity of D(N),Q(N) and T (N)
t , we then have D(Nn)(t + W

(Nn)
(t)) −

D(Nn)(t) + T (Nn)
t (W(Nn)(t)) ≥ Q(Nn)(t). Sending n → ∞, we obtain

A1,ν(t + W ∗) − A1,ν(t) + T t (W
∗) ≥ Q(t).(7.34)

Together with (3.27), this shows that W(t) ≤ W ∗. Now, suppose that W(t) < W ∗,
and fix w such that W(t) < w < W ∗. Since A1,ν is uniformly strictly increasing
and T t is nondecreasing, the inequality W(t) < w implies that A1,ν(t + w) −
A1,ν(t) + T t (w) > Q(t). Therefore, for sufficiently large N , we have D(N)(t +
w) − D(N)(t) + T (N)

t (w) > Q(N)(t) and hence W(N)(t) ≤ w. In turn, this implies
that W(Nn)(t) ≤ w for sufficiently large n ∈ N. Sending n → ∞ and using the
convergence of W(Nn)(t) to W ∗, we then obtain W ∗ ≤ w. This contradicts the
choice of w. Hence W(t) = W ∗, and this proves the desired result.

APPENDIX A: EXPLICIT CONSTRUCTION OF THE STATE PROCESSES

In this section, we construct all state processes and auxiliary processes described
in Section 2.2 from the initial data {E (N)

0 ,X(N)(0),w
(N)
j (0), a

(N)
j (0), j = −E (N)

0 +
1, . . . ,0}, {α(N)

E (t), t ∈ [0,∞)}, {vj , j ∈ Z} and {rj , j ∈ Z}.
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Fix N and, for simplicity, we omit the dependence on N in notation. Let
E(0) = 0. The process E on [0,∞) can be obtained from αE using the relation
(2.1). Let � = 0, τ0 = 0, and let R(τ�) = D(τ�) = K(τ�) = 0,

Q(τ�)
.= [X(τ�) − N ]+,(A.1)

and for j > E(τ�), let wj(τ�) = aj (τ�) = 0. Now, for t ∈ [τ�,∞), define

χ�(t)
.= inf{x > 0 :ητ�

[0, x] ≥ Q(τ�)} + t − τ�.(A.2)

Also, for j = −E0 + 1, . . . ,0, . . . ,E(τ�) and t ∈ [τ�,∞), let

w�
j (t)

.= (
wj(τ�) + t − τ�

) ∧ rj ,

a�
j (t)

.=
{

0, if wj(τ�) = rj or wj(τ�) ≤ χ�(τ�),(
aj (τ�) + t − τ�

) ∧ vj , if χ�(τ�) < wj (τ�) < rj ,

η�
t

.=
E(τ�)∑

j=−E0+1

δwj (t)1{dwj /dt(t+)>0},

ν�
t

.=
E(τ�)∑

j=−E0+1

δaj (t)1{daj /dt(t+)>0},

R�(t)
.=

E(τ�)∑
j=−E0+1

∑
s∈[0,t]

1{wj (s)≤χl(s−),dwj /dt(s−)>0,dwj /dt(s+)=0},

D�(t)
.=

E(τ�)∑
j=−E0+1

∑
s∈[0,t]

1{daj /dt(s−)>0,daj /dt(s+)=0}.

Next, define

τ�+1
.= inf

{
t > 0 :

(
D�(t) − D(τ�)

) ∧ (
R�(t) − R(τ�)

) ∧ (
E(t) − E(τ�)

)
> 0

}
.

For t ∈ [τ�, τ�+1), let Y(t) = Y �(t) for Y = wj , aj , j ∈ −E0 + 1, . . . ,E(τ�),
R,D,η, ν and χ and set Y(t) = Y(τ�) for Y = X,Q,wj , aj , j > E(τ�). More-
over, define

X(τ�+1)
.= X(τ�) + E(τ�+1) − E(τ�) − D(τ�+1) + D(τ�)

− R(τ�+1) + R(τ�),

ητ�+1
.= η�

τ�+1
+ (

E(τ�+1) − E(τ�)
)
δ0,

and, if E(τ�+1) > E(τ�), then E(τ�+1) = E(τ�)+ 1, and then let wj(τ�+1)
.= 0 for

j ∈ {E(τ�) + 1, . . . ,E(τ�+1)}. In this case, Q(τ�+1) and χ(τ�+1) can be defined
via equations (A.1) and (A.2), but with � replaced by � + 1, and the procedure
can be reiterated. Now, max{� : τ� ≤ t} is bounded by E0 + E(t), and is therefore
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a.s. finite. Therefore, τ� → ∞ as � → ∞, and so the above procedure constructs
the above processes on [0,∞). K and S can then be defined, respectively, via
equations (2.14) and (2.13).

For each j ≥ −E (N)
0 , by the construction, we have

wj(t) = ∑
E(�)≥j

1[τ�,τ�+1)(t)
(
wj(τ�) + t − τ�

) ∧ rj

=
{

t ∧ rj , if j = −E (N)
0 , . . . ,0,

(t − ζj ) ∧ rj , otherwise,

where ζj = inf{t > 0 :E(t) = j}. Hence the process wj defined above is indeed
the potential waiting time process of customer j . It is also not to hard to see that
the process aj defined above is the age process of customer j and satisfies (2.7).
We next show that the process χ constructed above satisfies (2.5). It is easy to see
that χ(0) = χ0(0) by (A.2) with t = 0 and � = 0. The χ(0) satisfies (2.5) for t = 0.
When t ∈ [τ0, τ1), Q(t) = Q(0), ηt = η0

t and χ(t) = χ0(t). Then we have

χ0(t) = inf{x > 0 :ητ0[0, x] ≥ Q(τ0)} + t − τ0 = inf{x > 0 :ηt [0, x] ≥ Q(t)}.
Hence χ satisfies (2.5) on the interval [τ0, τ1). By the standard induction argument,
we can see that χ satisfies (2.5) for all t ≥ 0.

For each t ≥ 0, by the construction, we have

ηt =
∞∑

�=0

1[τ�,τ�+1)(t)

E(τ�)∑
j=−E0+1

δwj (t)1{dwj /dt(t+)>0}

=
∞∑

�=0

1[τ�,τ�+1)(t)

E(t)∑
j=−E0+1

δwj (t)1{dwj /dt(t+)>0}

=
E(t)∑

j=−E0+1

δwj (t)1{dwj /dt(t+)>0}.

This shows that the η constructed satisfies (2.3). A similar argument shows that
the processes ν, D and R constructed satisfy (2.8), (2.9) and (2.11), respectively.
Finally, K and S satisfy (2.14) and (2.13) by construction.

Recall that, for t ∈ [0,∞), F̃t is the σ -algebra generated by(
E0,X(0), αE(s),wj (s), aj (s), j ∈ {−E0 + 1, . . . ,0} ∪ N, s ∈ [0, t]}

and {Ft } is the associated completed, right-continuous filtration.

LEMMA A.1. The processes wj , aj , j ≥ −E0 + 1 and E,R,D,η, ν,χ,X,Q,
K,S are càdlàg and {Ft }-adapted.
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PROOF. The càdlàg property of those processes follows from the construction.
Now we show that all the processes are {Ft }-adapted. Indeed, it follows immedi-
ately from (2.1), (2.3), (2.8), (2.9) and (2.10) that E,η, ν,D and S are Ft -adapted.
We next show that χ is Ft -adapted. By equations (2.4) and (2.5) evaluated at
time 0, it follows that χ(0) is a function of X(0) and η0 and hence F0-adapted.
Now, let t > 0. For each � ≥ 0, by the induction argument, χ�(t) is Ft -adapted, and
τ� is an Ft -stopping time. Since χt = χ�

t if t ∈ [τ�, τ�+1), χ is Ft -adapted. Equa-
tions (2.11) and (2.12) show that R and X are Ft -adapted, and it follows from (2.4)
and (2.14) that Q and K are Ft -adapted. �

The next lemma establishes some basic properties of χ(t), the waiting time of
the head-of-the-line customer at time t , defined in (2.5).

LEMMA A.2. χ is piecewise linear with downward jumps that occur when the
head-of-the-line customer either enters service (due to a departure from service) or
reneges from the queue. Hence, χ(t−) ≥ χ(t) for every t ∈ (0,∞). Moreover, for
every t > 0, there exists εt (ω) ∈ (0, t) such that for all t̃ ∈ (t − εt (ω), t), χ(t−) −
χ(t̃−) = t − t̃ > 0.

PROOF. By the construction, χt = χ�
t if t ∈ [τ�, τ�+1). Since χ� is linear

on [τ�, τ�+1), χ is piecewise linear. Also χ can only jump at τ�+1, � ≥ 0.
Based on the definition of τ�+1, it is not hard to see that χ can only have a
downward jump at τ�+1 when the head-of-the-line customer either enters service
[D�(τ�+1) − D(τ�) > 0] or reneges from the queue [R�(τ�+1) − R(τ�) > 0]. Then
we have χ(t−) ≥ χ(t) for every t ∈ (0,∞). The last statement of the lemma fol-
lows from the fact that χ is càdlàg and piecewise linear. �

APPENDIX B: STRONG MARKOV PROPERTY

In this section we show that the state descriptor V (N) = (α
(N)
E ,X(N), ν(N), η(N))

is a strong Markov process with respect to the filtration {F (N)
t , t ≥ 0} defined in

Section 2.2.4. To ease the notation, we shall suppress the superscript (N) from the
notation.

Let MD[0,H s) and MD[0,H r) be the subsets of MF [0,H s) and MF [0,H r),
respectively, such that each measure in MD[0,H s) and MD[0,H r) takes the
form

∑k
i=1 δxi

. Define

V .=
{

(α, x,μ,π) ∈ R+ × Z+ × MD[0,H s) × MD[0,H r):
x ≤ 〈1,μ〉 + 〈1, π〉, 〈1,μ〉 ≤ N

}
,(B.1)

where R+ is endowed with the Euclidean topology d , Z+ is endowed with the
discrete topology ρ and MD[0,H s) and MD[0,H r) are endowed with the weak
topology, respectively. The space V is a closed subset of R+ ×Z+ × MF [0,H s)×
MF [0,H r) and is endowed with the usual product topology. Since R+ × Z+ ×
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MF [0,H s) × MF [0,H r) is a Polish space, then the closed subset V is also a
Polish space. Now, denote

V (t)
.= (αE(t),X(t), νt , ηt ), t ≥ 0.

It is obvious that V is a V -valued process adapted to the filtration {F V
t , t ≥ 0}, the

natural filtration generated by V .
For each y, z ∈ V and t ≥ 0, let

Pt(y, z) = P
(
V (t) = z|V (0) = y

)
.(B.2)

For any measurable function ψ defined on V and t ≥ 0, define the function Ptψ

on V as

Ptψ(y) = E[ψ(V (t))|V (0) = y], y ∈ V.(B.3)

LEMMA B.1. The state descriptor V is strong Markov with respect to {Ft ,
t ≥ 0}, and hence is strong Markov with respect to {F V

t , t ≥ 0}. Moreover, {Pt , t ≥
0} in (B.2) is the Markov semigroup of V .

PROOF. To establish the strong Markov property, we shall identify V as a,
so-called, piecewise deterministic Markov process (cf. [11]). From the explicit
pathwise construction of V in Appendix A, it follows that V is a piecewise deter-
ministic process with jump times {τ1, τ2, . . .}. Each jump time is either the arrival
time of a new customers or the time of a service completion or the time to the end
of a patience time. Note that, due to the nonidling condition, the time of entry into
service of a customer must coincide with either the arrival time of that customer or
the time of service completion of another customer. Let τ0 = 0. For each integer
n ≥ 0, let Pn = V (τn). Then {(τn,Pn), n ≥ 0} forms a marked point process. For
each n ≥ 0, V evolves in a deterministic fashion on [τn, τn+1). For each t ≥ 0 and
y ∈ V with y = (α, x,

∑k
i=1 δui

,
∑l

j=1 δzi
) and k ≤ N , define

φt(y)
.=

(
α + t, x,

k∑
i=1

δui+t ,

l∑
j=1

δzi+t

)
.(∗)

It is easy to see that

φt+s(y) = φs(φt (y)), φ0(y) = y,

and the map t 
→ φt (y) is continuous in the interval [0,∞). For each t ≥ 0, let

〈t〉 = max{n ≥ 1 : τn ≤ t}
with the convention that max ∅ = 0. We can see that

V (t) = φt−τ〈t〉(Vτ〈t〉).(B.4)
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The jump dynamics are captured by {rt (y,C), t ≥ 0, y ∈ V,C ⊂ V}. For each
t ≥ 0, y ∈ V,C ⊂ V , rt (y,C) is the conditional probability that a jump leads
to a state in C, given that the jump occurs at time t from state y. Let y =
(α, x,

∑k
i=1 δui

,
∑l

j=1 δzi
). Recall that there are only three types of jump times

for the process V . Given that V jumps at time t from state y, if we know which
type the jump time t is, then we know to which state the process V jumps to. For
example, suppose that the number k in the expression of y is less than N , then,
at state y, there is at least one idle server. If the jump is due to the new arrival,
then the process V will jump to state (0, x + 1,

∑k
i=1 δui

+ δ0,
∑l

j=1 δzi
+ δ0). Let

p1,p2,p3, respectively, be the conditional probability that the jump at time t is
due to the arrival of a new customer, service completion of a customer in service,
the end of patience time for some customer in the system, respectively, given that
the jump occurs at time t from state y. Then the probability measure rt (y, ·) can
be easily written from y and pi , i = 1,2,3.

The jump time dynamics are captured by the survivor functions {Hs,y(t) : 0 ≤
s ≤ t, y ∈ V}, where Hs,y(t) is the conditional probability that the time for the
next jump is more than time t given the state being at y at time s, in other words,
for y = (α, x,

∑k
i=1 δui

,
∑l

j=1 δzi
),

Hs,y(t) = 1 − F(α + t − s)

1 − F(α)

k∏
i=1

1 − Gs(ui + t − s)

1 − Gs(ui)

(∗∗)

×
l∏

j=1

1 − Gr(zj + t − s)

1 − Gr(zj )
.

It is easy to see that Hs,y(t) satisfies

Hs,y(u) = Hs,y(t)H t,φt−s (y)(u), s ≤ t ≤ u.

Then by Theorem 7.3.2 of [11], V is a piecewise deterministic Markov process
constructed from {(τn,Pn), n ≥ 0} using functions φt for the deterministic part,
survivor functions Hs,y for jump time distributions and transition probabilities
rt for the jumps. Thus it follows from Theorem 7.5.1 of [11] that V is a strong
Markov process. The second part of the lemma follows directly from the definition
of the {Pt , t ≥ 0} in (B.2). �

REMARK B.2. For future purposes, we note that the results of this paper in-
cluding, in particular, the strong Markov property established above, continue to
be valid if the state component α

(N)
E introduced in Section 2.1 is, instead, defined

as follows:

α
(N)
E (s)

.=
{

s, if E(N)(s) = 0,
inf

{
u > s :E(N)(u) > E(N)(s)

} − s, if E(N)(s) > 0.
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Observe that when E(N)(s) > 0, α
(N)
E (s) represents the time from s until the next

arrival, and if E(N) is a renewal process, then α
(N)
E is simply the forward recurrence

time process. A minor variation of the proof of Lemma B.1 given above shows
that the strong Markov property holds in this case as well. First, the definition
of φt(y) should be modified by replacing α + t by α − t in (∗). With V , rt and
p1, p2, p3 defined as before, in this case, the probability measure rt (y, ·) can be
easily determined from y, the distribution of the remaining time from t to the
next arrival and pi , i = 1,2,3. Note that if α > 0 at time t , then p1 = 0. On the
other hand, if α = 0 at time t , then V jumps at time t due to the arrival of a
new customer, and, hence, p1 = 1. Moreover, given that V jumps at time t from
state y, if the type of the jump at time t is known, then it is possible to determine
the state to which the process V jumps. For example, suppose that the number k

in the expression for y is less than N . Then, at state y, there is at least one idle
server. If the jump is due to a new arrival, then the state V will jump to the region
{c ∈ [0,∞) : (c, x + 1,

∑k
i=1 δui

+ δ0,
∑l

j=1 δzi
+ δ0)} according to the distribution

of the time to the next arrival (which is determined by the current state α due
to the assumption that α

(N)
E is Markov with respect to its own filtration). Once

again, the jump time dynamics are captured by the survivor functions, with the
only difference that now the ratio (1−F(α + t − s))/(1−F(α)) on the right-hand
side of (∗∗) should be replaced by 1{α≥t−s}. The rest of the proof then follows as
before.
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