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Assumptions of IV Methods for
Observational Epidemiology
Vanessa Didelez, Sha Meng and Nuala A. Sheehan

Abstract. Instrumental variable (IV) methods are becoming increasingly
popular as they seem to offer the only viable way to overcome the problem of
unobserved confounding in observational studies. However, some attention
has to be paid to the details, as not all such methods target the same causal
parameters and some rely on more restrictive parametric assumptions than
others. We therefore discuss and contrast the most common IV approaches
with relevance to typical applications in observational epidemiology. Further,
we illustrate and compare the asymptotic bias of these IV estimators when
underlying assumptions are violated in a numerical study. One of our con-
clusions is that all IV methods encounter problems in the presence of effect
modification by unobserved confounders. Since this can never be ruled out
for sure, we recommend that practical applications of IV estimators be ac-
companied routinely by a sensitivity analysis.

Key words and phrases: Causal inference, instrumental variables, Mendel-
ian randomization, relative bias, structural mean models.

1. INTRODUCTION

Inferring causation in observational studies is prob-
lematic, as observed associations can often be due to
other than causal explanations, confounding being of
special concern. Randomized controlled trials (RCTs),
rendering all other explanations unlikely by design,
are the accepted standard approach to causal inference.
However, we are here interested in epidemiological ap-
plications where it is not always possible nor desirable
to carry out RCTs. For example, it would be unethi-
cal or impractical to randomly allocate individuals to
exposures such as smoking, alcohol consumption, and
complex nutritional or exercise regimes. Furthermore,
the cohort of a trial might not be representative of the
target population for which health interventions are re-
quired [16, 39]. The standard approach to causal infer-
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ence from observational data is to assume that there is
no unobserved confounding, that is, that a sufficient set
of covariates has been measured. This is often implau-
sible and has produced misleading results in the past,
for example, regarding the effects of hormone replace-
ment therapy [38, 72].

Methods exploiting instrumental variables provide
an alternative solution. Suppose we are interested in
the causal effect of some exposure (e.g., cholesterol)
on disease (e.g., coronary heart disease), and believe
that important confounding factors are likely but un-
observable, perhaps because they are not fully under-
stood. Loosely speaking, an instrumental variable (IV)
is a third (observable) variable that is predictive of ex-
posure, but has no direct effect on the disease and is in-
dependent of the unobserved confounders. In general,
it is difficult to find a variable that can be justified as a
suitable IV for any particular problem. For randomized
trials with partial compliance, where the effect of the
actual treatment taken is of interest, the natural IV is
the randomization to treatment [29]; but, of course, this
is not an option when considering exposures that can-
not be randomized as mentioned earlier. Examples in
epidemiological contexts are the physician’s prescrip-
tion preference as an IV to assess drug effects [8, 55],
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cigarette price to assess the effects of smoking [41] or
genetic variants that are associated with exposures of
interest [16, 34, 39]. The latter has become known as
Mendelian randomization and, due to the fact that it is
currently generating a lot of interest in the epidemio-
logical literature, will serve as illustration throughout
(see Section 2).

Relying only on their defining properties, IVs can
be used to test for or bound the causal effect [2, 4, 23,
29, 32, 58]. However, identification and hence point
estimates of the causal effect are only obtainable un-
der additional parametric and distributional assump-
tions. Linear structural equation models, popular in
the econometrics literature [71, 74], are a well-studied
model class that allows identification. Generalizations
to nonlinear structural equations based on log-linear or
probit modeling, for example [47, 70], are also avail-
able (see overview [13]). Inspired by the simplicity of
the linear case, where the IV estimator is given as the
ratio of the coefficients from the regressions of out-
come on IV and exposure on IV, alternative methods
have been put forward replacing these two linear re-
gressions by nonlinear ones. One such example which
is popular in Mendelian randomization studies with bi-
nary outcomes is what we will call the “Wald-type”
estimator. This combines odds ratios or risk ratios for
the genotype-outcome relationship with the mean dif-
ference in exposure given the genotype [10, 11, 16, 35,
40, 66].

An important consideration when using IV methods
is the target of inference, that is, the precise definition
of the causal parameter of interest. In our experience,
epidemiologists are mostly interested in the population
causal effect, that is, a comparative measure of sub-
jecting everyone in a given population to exposure as
opposed to no exposure, as would ideally be obtained
in an RCT. However, some prominent IV methods tar-
get causal effects within specific subgroups. These are
the effect of treatment on the compliers [2, 33], or the
effect of treatment on the treated [32, 57, 59, 67]. The
complier causal effect is motivated by RCTs with par-
tial compliance and contrasts the effect of treatment
versus nontreatment for those individuals who follow
their assignment whatever it is. In our view, the inter-
pretation of this causal parameter is very much bound
to the randomization scenario and we will therefore not
consider it any further. The effect of “treatment on the
treated” can be translated as the “effect of exposure
on the exposed” in an epidemiological context and de-
scribes the effect of preventing those who would nor-
mally be exposed from becoming exposed. This partic-

ular subgroup effect is explicitly modeled by structural
mean models (SMMs) [32].

In this paper we compare the above approaches with
regard to their use in observational epidemiology and
focus on issues that have recently arisen, for exam-
ple, in Mendelian randomization applications, to make
the discussion concrete. We formally consider the tar-
geted causal parameters and the underlying modeling
assumptions of IV methods. We argue that their as-
sumptions should be made explicit so that those most
plausible for a given problem can be chosen. As mod-
els are never expected to be exactly true in practice,
we complement the theoretical comparison by a nu-
merical study of the possible bias under violations of
the assumptions. The outline of the paper is as fol-
lows. In Section 2 we begin by presenting the basic
idea of IVs with the example of Mendelian random-
ization as recently applied to investigate the effects of
alcohol consumption. We then introduce the main con-
cepts of causal inference in Section 3, a central issue
being the different notions of causal effect parameters.
Section 3.2 gives the core conditions characterizing an
instrumental variable. In Section 4 we present the IV
models that we will consider, and provide general indi-
cations of how they interrelate. Section 5 investigates
the performance in terms of relative asymptotic bias of
these methods in a numerical study where we focus on
the particular case where all variables are binary in or-
der to facilitate exact evaluation of the relevant quanti-
ties. We conclude with a discussion of the implications,
both for epidemiological applications and more gener-
ally.

2. USING A GENETIC VARIANT AS AN IV

We will relate to Mendelian randomization through-
out the paper as a concrete application of an IV ap-
proach in observational epidemiology and outline the
basic idea here using an example taken from Chen et
al. [12]. Further details, including history and nomen-
clature, are provided in a recent review [15].

Alcohol consumption has been found in observa-
tional studies to have a positive effect on coronary heart
disease (CHD) and negative effects on liver cirrhosis,
some cancers and mental health problems. These find-
ings, however, are strongly suspected to be confounded
by factors like diet, lifestyle and socioeconomic fac-
tors. Thus, in order to inform public health recommen-
dations on alcohol intake, for example, it is important
to verify which, if any, of these observed associations
is in fact causal for the relevant health outcome.
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The connection between the ALDH2 gene and alco-
hol consumption is well established and understood [6,
26, 42, 73]. The ALDH2*2 variant is associated with
an accumulation of acetaldehyde and hence with un-
pleasant symptoms after drinking alcohol. Carriers of
this variant tend to limit their alcohol consumption re-
gardless of their other lifestyle behaviors. Since genes
are randomly assigned during meiosis, ALDH2*2 car-
riers should not differ systematically from carriers of
the ALDH2*1 allele in any other respect. In particu-
lar, there should be no association between the vari-
ant and the unobserved confounders of the various re-
lationships between alcohol consumption and above
health outcomes. The plausibility of this assumption is
strengthened by the fact that there is no evidence of
ALDH2 association with typical known epidemiolog-
ical confounders such as age, smoking, BMI, choles-
terol, etc. [19]. The possibility that ALDH2 affects
the particular disease of interest by any route other
than through alcohol consumption can also be excluded
from the known functionality of the gene. Thus, for
any specific disease, we should observe that there are
more *1*1 and *1*2 than *2*2 genotypes among the
affected individuals if alcohol consumption is really
causal for that disease. The meta-analysis by Chen et
al. [12], based mainly on studies in Japanese popula-
tions, shows that blood pressure and risk of hyperten-
sion is higher for *1*1 than for *2*2 homozygotes,
and is also higher for heterozygotes (*1*2) than for
the *2*2 homozygotes. As the heterozygotes tend to
be moderate drinkers due to less pronounced adverse
symptoms, the study concludes that even moderate al-
cohol consumption is “harmful” for blood pressure.

The example shows how ALDH2 can be used as an
IV to provide evidence for a causal effect of the ex-
posure by establishing that the disease and the IV are
associated: the risks of high blood pressure and hyper-
tension are significantly different between the differ-
ent genotypes. As ALDH2 is assumed to have no di-
rect effect on blood pressure or hypertension other than
through alcohol consumption, the observed associa-
tions must be due to an effect of alcohol consumption
on blood pressure and hypertension. Since the above
assumptions define an IV, this reasoning only holds if
we can be fairly confident that ALDH2 is a valid IV.
Hence, only well-understood genotypes can be used as
IVs. Note, this does not yet provide a point estimate of
the causal effect of alcohol consumption on hyperten-
sion: it is merely evidence that there is such an effect.

The number of applications of Mendelian random-
ization is growing rapidly [10, 17, 18, 36, 42, 43, 46,

66]; a brief overview of some recent studies is given in
Sheehan et al. [64]. Note that even when a genetic vari-
ant can be found that is associated with the exposure
of interest, it does not automatically qualify as an IV.
Problems could occur when there are different subpop-
ulations with different allele frequencies and different
prevalences of disease, for instance, [9]. Finding a suit-
able genetic instrument is thus a challenge as discussed
in detail in several papers [16, 23, 24, 39, 48, 65].

3. CAUSAL INFERENCE

Epidemiologists are concerned with identifying the
causal effect of an exposure X on a disease Y , typically
with the view to informing public health interventions.
We therefore regard causal inference to be about the ef-
fect of intervening in, or manipulating, a given system
as is implicit in many approaches to causal inference
[21, 24, 31, 37, 49, 57, 62, 63].

It is useful to introduce notation to represent in-
tervention. Pearl [51] uses the do operator to distin-
guish between conditioning on an intervention in X,
P(Y |do(X = x)), and the usual conditioning on ob-
serving X, P(Y |X = x). The former reflects how the
distribution of Y should be modified when X has been
forced to the value x by some external intervention,
whereas the latter reflects how the distribution of Y

should be modified when X = x is simply observed.
The different conditions, observation versus interven-
tion, reflect the common wisdom correlation is not
causation. Note that we often write do(x) for do(X =
x).

Another formal approach is based on counterfactual
(potential outcome) variables [31, 62, 63]. Here Y(x1)

denotes the value that the outcome Y would have if
the variable X were set to the value x1, whereas Y(x2)

is the outcome if the same variable X were set to the
value x2. The variables Y(x1) and Y(x2) are counter-
factual because they can never both be observed to-
gether, so when one is fact, the other one is, of neces-
sity, contrary to fact. The notion of intervention also
underlies the counterfactual approach [31, 60, 62, 63].
Both approaches define a formal language for causal-
ity and provide specific mathematical notation for rep-
resenting interventions that we might be interested in.
Hence, they force us to be clear and explicit about any
assumptions underlying a given method of causal in-
ference.

3.1 Causal Parameters

Causal effect parameters are typically functions of
the distribution of Y under different interventions in X.
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The most popular is the average causal effect (ACE)
defined as the expected difference in Y under two dif-
ferent settings of X:

ACE(x1, x2) := E(Y |do(x2)) − E(Y |do(x1)),

where x1 is typically some baseline value. The ACE
is a natural choice of causal parameter when the ef-
fect of X is suspected to be linear on Y . When Y is
nonnegative or binary, in contrast, it is more common
to use a multiplicative measure like the causal relative
risk (CRR) defined as

CRR(x1, x2) := E(Y |do(x2))

E(Y |do(x1))
,(1)

or, for binary Y , the causal odds ratio (COR) given by

COR(x1, x2) := P(Y = 1|do(x2))P (Y = 0|do(x1))

P (Y = 0|do(x2))P (Y = 1|do(x1))
.

Note that the odds ratio is mainly used in case-control
studies to approximate the relative risk in the case of a
rare disease.

All these causal parameters are population parame-
ters, that is, they compare setting X = x1 with setting
X = x2 for the whole population of interest. They are
what is measured in a comparison of the active and
control groups in a controlled randomized experiment
when all subjects comply with their treatment assign-
ment. In some situations, we may be more interested in
the causal effect within a subset of the population, that
is, conditional on a specific value of some observed
covariates. For example, we might want to know the
average causal effect of male alcohol consumption on
oesophageal cancer risk. The above causal parameters
can easily be adapted by conditioning on covariates
provided these are prior to exposure. We will not con-
sider this further in the present paper.

However, one particular causal subgroup effect, or
local causal effect, is very relevant in the epidemiolog-
ical literature. This is the effect of exposure on the ex-
posed group [29, 57, 58], or the effect of treatment re-
ceived as it is known in the context of clinical trials (cf.
[25], e.g.). For example, we might be interested in the
effect of reducing alcohol consumption for those indi-
viduals who would normally tend to have high alcohol
consumption, but not in the question of increasing alco-
hol consumption for those who normally do not drink
much. This does not quite correspond to conditioning
on observed covariates, as what the subjects “would
normally” be exposed to in the future is not usually ob-
servable. However, it can be assumed that if no inter-
vention takes place, alcohol consumption will remain

high for those individuals with existing high consump-
tion. In counterfactual notation the corresponding local
causal relative risk, LCRR, for instance, is given by

LCRR := E(Y (x)|X = x)

E(Y (0)|X = x)
,(2)

where Y(x) is the value of the outcome if an individ-
ual’s alcohol consumption is set to be x and Y(0) is the
counterfactual outcome if it is set to be at a baseline
level, while conditioning on X = x means that the “nat-
ural” alcohol consumption is x. Note that given X = x,
we actually observe Y = Y(x), so that the numerator of
(2) is equal to E(Y |X = x). This type of causal para-
meter can also be expressed with the do-notation, but
we need to distinguish between the “natural” value of
exposure X and the one that it is set to by interven-
tion X̃. When no intervention takes place, these two
are identical, that is, X ≡ X̃. However, when an inter-
vention takes place, it is assumed that X̃ “overrules” X

so that Y causally depends on X̃ while being still asso-
ciated with X due to the fact that X is informative for
the unobserved confounding that also predicts Y . The
above can then be translated to

LCRR := E(Y |X = x,do(X̃ = x))

E(Y |X = x,do(X̃ = 0))
.(3)

See Robins, VanderWeele and Richardson [61] and
Geneletti and Dawid [28] for more details on how to
interpret this local causal effect without counterfactual
notation. Local versions of the ACE and COR can eas-
ily be defined analogously to the above LCRR. Note
that the term “local” causal effect in the IV literature is
most commonly used for the effect of treatment on the
“compliers” in an RCT [2, 29, 33], which we are not
dealing with here and which is different from (3).

One further causal parameter that is sometimes con-
sidered is the individual causal effect which is ex-
pressed with potential outcomes as Y i(x2) − Y i(x1).
It is the difference between the potential outcomes for
a specific individual i. Assumptions under which the
individual causal effect can be identified are inherently
untestable [20], but may be justified given specific sub-
ject matter background knowledge.

Finally, we want to emphasize that a population pa-
rameter like CRR in (1) will be different from a con-
ditional or local parameter LCRR in (2) or from an
individual causal effect when the effect of exposure
is different in different subgroups or individuals, that
is, under heterogeneity or effect modification. For in-
stance, those who naturally have a high alcohol con-
sumption are likely to be different in many other rele-
vant but unobservable respects than those who have a
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naturally low alcohol consumption and, therefore, the
effect of changing that level should be different in these
two groups. In particular, there may be no overall effect
in the population (i.e., CRR = 1) if negative and pos-
itive effects in subgroups (or individuals) cancel each
other out. In such a situation, an estimator that targets
the CRR will be biased for the LCRR and vice versa.
We reiterate that the accepted gold standard RCT ran-
domizing individuals to either x1 or x2 always targets
a population causal effect.

3.2 Instrumental Variables

The standard approach to estimating a causal para-
meter from observational data is to assume that a suffi-
cient set of observed confounders is available for which
we then adjust [21, 30, 37, 51, 62]. When there is rea-
son to suspect additional unobserved confounding, the
causal effect cannot typically be obtained in this way.
In this situation, IV methods permit a different way
of performing causal inference by exploiting the ad-
ditional information provided by the instrumental vari-
able.

Recall that we denote the exposure of interest (in-
termediate phenotype or modifiable risk factor) by X

and the outcome (disease) by Y . Furthermore, we let G

be the instrument (e.g., genotype in a Mendelian ran-
domization study) and U an unobserved variable (or,
more realistically, a set of unobserved variables) that
will represent the confounding between X and Y . The
properties that define an IV are expressed in terms of
conditional independence statements where A ⊥⊥ B|C
means A is independent of B given C. The core condi-
tions are the following:

1. G ⊥⊥ U , that is, G must be (marginally) indepen-
dent of the confounding between X and Y ;

2. G �⊥⊥ X, that is, G must not be (marginally) inde-
pendent of X;

3. G ⊥⊥ Y |(X,U), that is, conditionally on X and
the confounder U , the instrument and the response are
independent.

These properties can, to a limited extent, be tested
from the observable data (i.e., without measurements
on U ) when G,X,Y are all categorical. This is be-
cause they impose certain inequality constraints on the
joint distribution p(y, x, g) (see [50, 51] for details).
Analogous constraints can also be obtained for situa-
tions where joint observation of (G,X,Y ) is not pos-
sible, but separate observations on (G,X) and (G,Y )

are available from different studies [52], for instance,

as is often the case for Mendelian randomization ap-
plications. Furthermore, Ramsahai [53] develops a sta-
tistical test for violation of these inequality constraints
that properly accounts for the sampling variability in
the estimated probabilities. When the data are categor-
ical, these inequalities should always be verified in or-
der to detect “gross” violations of the above core con-
ditions. However, it should be kept in mind that distri-
butions p(y, x, g,u) will exist which violate the core
conditions but may have marginals p(y, x, g) that still
satisfy these inequalities. We are not aware of analo-
gous inequality constraints that could be checked when
X is continuous (but see [5] for the case where instru-
ment or outcome are continuous). Categorizing contin-
uous variables is not advisable, as it is possible that the
continuous variables satisfy the above core conditions,
while their discrete versions do not. Hence, since a test
of the inequalities can only falsify the core assumptions
but never confirm them, and since it cannot be carried
out when the exposure is continuous, it is crucial to al-
ways justify the core conditions on the basis of subject
matter or other relevant background knowledge.

A shorthand way of encoding conditional indepen-
dence restrictions is via graphical models [14]. The di-
rected acyclic graph (DAG) in Figure 1 is the unique
representation of the above core conditions. Further-
more, this graph is equivalent to a factorization of the
joint density on (Y,X,U,G) in the following way:

p(y, x,u, g) = p(y|u,x)p(x|u,g)p(u)p(g).(4)

While this describes how the variables behave “natu-
rally,” we have to specify our assumptions about how
an intervention in X operates on the system. This takes
the form of an additional structural assumption which
states that intervening in X does not affect the distribu-
tions of any other factors in (4) besides the conditional
distribution of X. Under intervention on X, the joint
distribution of (4) thus becomes

p(y,u, g, x|do(x0))
(5)

= p(y|u,x0)I (x = x0)p(u)p(g),

where I (·) is the indicator function. The correspond-
ing DAG in Figure 2 graphically shows the conditional

FIG. 1. The DAG representing the core conditions required for G

to be an instrument.
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FIG. 2. The DAG representing the core conditions under inter-
vention in X.

independence relationships among Y,G and U for the
core conditions and an intervention on X. One imme-
diate implication is that G ⊥⊥ Y |do(X), which is also
known as the exclusion restriction condition in the IV
literature, where it is typically expressed with potential
outcomes as G ⊥⊥ Y(x) [2, 33].

Taking this a step further, we can also express the
IV assumptions when the effect of exposure on the
exposed individuals is of interest. Using the notation
introduced in Section 3.1, let X denote the “natural”
exposure level, while X̃ denotes the exposure that is
set by an intervention. When there is no intervention,
they are identical and (4) is valid. Under intervention,
X̃ overrules the “natural” X with respect to the condi-
tional distribution of Y and we obtain the joint distrib-
ution under intervention

p
(
y,u, g,X = x|do(X̃ = x0)

)
= p(y|u,x0)p(X = x|u,g)p(u)p(g),

which can again be represented graphically with a
DAG as in Figure 3 [28, 61]. As before, we have the ex-
clusion restriction Y ⊥⊥ G|do(X̃), but we can also de-
rive, for instance, that Y is not independent of G given
X and do(X̃).

4. SOME COMMON IV MODELS

With the above core conditions 1–3 and structural
assumption of (5), the IV can be used to test for the
presence of a causal effect, or to derive lower and upper
bounds on causal effects for the case when all variables
are categorical [4, 22, 44, 57]. However, for general
distributions of (X,Y,G,U), the core conditions alone
do not necessarily allow point-identification of causal
effects, except for some extremely unusual situations
[29].

FIG. 3. The DAG representing the core conditions under inter-
vention in X̃ and “natural” exposure X.

Below we present some common model restrictions,
that is, additional parametric assumptions, that enable
point-identification of causal parameters. When the
causal parameter is identified, it can be estimated con-
sistently; in practice, small sample sizes can still in-
duce problems, but we will ignore this issue here.

Our terminology is as follows. Let θ∗ be the true
causal parameter of interest, for example, the CRR
θ∗ = EP ∗(Y |do(x2))/EP ∗(Y |do(x1)), where expecta-
tions are taken with respect to the true distribution P ∗.
Restrictions are imposed in the form of a statistical
model M, which is simply a set of distributions with
some common characteristics for the random variables
of interest, for example, the conditional mean of Y

being linear in X. The model M is correctly speci-
fied if P ∗ ∈ M. The model M further allows point-
identification of the true causal effect parameter when
θ∗ is equal to a function θM(P ∗

X,Y,G) that only depends
on the observational (i.e., not interventional) distribu-
tion of the observable variables. The exact form of the
function θM depends on the model assumptions, that
is, on M. If the model M is misspecified, then it does
not contain the true distribution P ∗ and θM(P ∗

X,Y,G)

will not necessarily be equal to θ∗, as the former relies
on wrong model assumptions. We call the causal para-
meters of interest, θ∗, the target of inference, and we
call θM(P ∗

X,Y,G) the estimand regardless of whether
the model is correctly specified or not. Hence, the esti-
mand is equal to the target under a correct model and
otherwise potentially different. Note that the interven-
tion distribution P ∗(Y = y|do(x)) itself might be of
interest as a target, and, if identified, any causal para-
meter can be obtained from it.

As we will see below, θM can typically be expressed
in terms of conditional probabilities or expectations
with respect to the observational distribution of X,Y

and G. For practical data analysis, these have to be
replaced, for instance, by the corresponding empiri-
cal relative frequencies, averages or regression coef-
ficients, assuming that we have an independent identi-
cally distributed (i.i.d.) sample of (X,Y,G); this then
yields an estimator θ̂M. We will not go into the details
of the actual construction of estimators θ̂M as func-
tions of the sample but will focus on how different
models M allow point-identification and what the cor-
responding estimands θM(P ∗

X,Y,G) are.
Note that when parametric assumptions are made,

the core conditions can sometimes be weakened, for
example, by requiring only that G and U are uncor-
related, but we do not discuss this further here. Also,
some, but not all, of the following approaches are only
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defined when Y and/or G are binary. This will be indi-
cated when relevant.

4.1 Linear IV Models

The classical IV method was developed in the con-
text of linear models M which we define in more de-
tail below, and results in an estimator θ̂M, given as the
ratio of the least squares slope estimators from linear
regressions of Y on G and of X on G. We will call this
the linear IV average effect estimator, and its estimand
θM is

LIVAE := Cov(Y,G)

Cov(X,G)
.(6)

The LIVAE can equivalently be estimated by obtaining
predicted values X̂ from the regression of X on G and
then by regressing Y on X̂. It is therefore known as
two-stage least squares [1, 71]. In the special case of
binary instrument G, we have

LIVAE = E(Y |G = 1) − E(Y |G = 0)

E(X|G = 1) − E(X|G = 0)
.(7)

This is analogous to the Wald method, which was orig-
inally proposed to deal with the case of measurement
errors in both variables X and Y [7, 69]. As we shall
now discuss, the LIVAE identifies either the popula-
tion, individual or local average causal effect (ACE,
ICE or LACE), depending on the particular model as-
sumptions.

In addition to the three IV conditions and structural
assumption (5), assume that the conditional expecta-
tion of Y is linear without interactions and that all de-
pendencies only affect the mean. Then

E(Y |X = x,U = u) = E
(
Y |do(X = x),U = u

)
(8)

= βx + h(u),

where h(u) is some function of u only. With α =
E(h(U)), we have

E
(
Y |do(X = x)

) = α + βx,(9)

so that the ACE for a unit difference in X is equal
to the model parameter β , while the causal rela-
tive risk CRR(x1, x2) under this model is equal to
(α + βx2)/(α + βx1). It can easily be seen (cf.
Appendix) that, under the above assumptions, β =
Cov(Y,G)/Cov(X,G). Hence, the LIVAE identifies
the ACE. In the Appendix we show that the CRR is
also identified in this linear model and we will call the
corresponding estimand LIVRR.

When Y is binary, for example, assumption (8) can-
not hold exactly, as it allows E(Y |X,U) to take values

outside [0,1]. It might still be used as a sensible ap-
proximation in practice, especially when the range of
X is restricted and its effect is small. As mentioned
above, causal relative risks and odds ratios that might
be of more interest for binary Y can also be identified
based on the linear model as detailed in the Appendix.

Under stronger model assumptions, such as those
common in the econometrics literature, for instance,
the LIVAE identifies the individual causal effect, ICE.
A structural equation model describes how the individ-
ual responses Y i depend structurally (i.e., under ma-
nipulation) on other variables [51, 71]. This can also be
expressed using counterfactuals [8]. A structural equa-
tion counterpart for (9) that parameterizes the ICE is
given by

Y i(x) = βIx + ξ i(10)

for individual i, where ξ i can be regarded as a combi-
nation of Ui and other (nonconfounding) factors that
determine the outcome. The problem of confounding
by U leads to ξ and X not being independent, so that
βI cannot be estimated consistently from a regression
of Y on X, and the LIVAE is used instead. For the in-
terpretation it is important to note that model (10) ex-
plicitly assumes that the causal effect is the same for
each individual i, while (8) assumes that manipulating
X has the same average effect regardless of the value
of U on the linear scale. In fact, model (10) implies
(8), but the converse is not true (see the Appendix for
details).

Each of models (8) and (10), together with the IV
assumptions, allows us to identify the effect of expo-
sure on the exposed, that is, the local average causal
effect LACE, via the LIVAE from (6). However, the
LACE can be identified under weaker model assump-
tions, namely, those of an additive structural mean
model (cf. the Appendix or Hernan and Robins [32]).
Using the notation introduced in Section 3.1, let X de-
note the “natural” exposure level, while X̃ denotes the
exposure that is set by an intervention (overruling the
“natural” X). An additive SMM assumes that

E(Y |X = x,G = g)
(11)

− E
(
Y |X = x,G = g,do(X̃ = 0)

) = βLx,

where X = 0 again denotes a suitable baseline value.
Here, βLx is the effect of reducing the exposure to this
baseline value for those who under “natural” circum-
stances are exposed to X = x and have G = g. Note
that this additive SMM makes no explicit assumptions
about individual causal effects or the role of U ; in fact,
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U is allowed to modify the effect of X on Y . Implic-
itly, however, the manner in which Y depends on U is
restricted by the assumption that the above difference
in conditional expectations (11) does not depend on G.
The different interpretation of the LIVAE in the context
of linear models and presence of effect modification is
also discussed by Brookhart and Schneeweiss [8].

In summary, we can use the LIVAE to estimate (i) the
individual causal effect, if we believe that the individ-
ual effect is the same for everyone on the linear scale,
or (ii) the average causal effect, if we believe that the
average effect is the same for different values of U , or
(iii) the local effect on the exposed, if we believe that
this is the same for different values of G.

4.2 Nonlinear Wald Type Methods

As mentioned earlier, the LIVAE is the same as
Wald’s estimator which was originally devised to deal
with measurement errors [69]. In this section we con-
sider two further methods leading to ratio based IV es-
timators and which we will therefore call Wald type
estimators (cf. also [39, 46, 66]).

Several applications of Mendelian randomization,
typically considering a binary outcome Y , a continu-
ous exposure X and a dichotomous genotype G, have
used the following reasoning to obtain an IV estima-
tor for a causal effect [10, 11, 16, 35, 40]. The naïve
odds ratio of Y given X, which we denote NOR, is
suspected to be confounded. The odds ratio of Y given
the instrument G, which we denote by OR(Y |G), is
not confounded due to core condition 3, and should be
roughly equal to the causal odds ratio, COR, between
X and Y scaled by the mean difference in exposure for
the two genotypes, δ = E(X|G = 1) − E(X|G = 0),
that is, OR(Y |G) ≈ CORδ . Therefore, in these applica-
tions, the quantity NORδ is compared with OR(Y |G)

and, if similar, the conclusion is drawn that there is no
confounding and, hence, that NOR ≈ COR. We thus
consider the following as the Wald type odds ratio es-
timand:

WaldOR := OR(Y |G)1/δ.

(On the log-scale this is the ratio of log-odds difference
and the mean difference δ, hence “Wald type.”) At first
sight, this reasoning seems heuristic, and there is no
model assumption from which it can be theoretically
derived. However, by regarding the odds ratio as an ap-
proximation to the relative risk for rare diseases, we
can motivate the above formula theoretically. The fol-
lowing is a slight generalization of the structural equa-
tion approach presented by Mullahy [47] and suitable

not only for binary but also for general nonnegative re-
sponse Y (X and G can be continuous or discrete). As-
suming a log-linear model [and structural assumption
(5)],

logE(Y |X = x,U = u)

= logE
(
Y |do(X = x),U = u

)
(12)

= γ x + h(u),

where h(u) is some function of u only. It can then eas-
ily be seen that the causal relative risk for one unit dif-
ference in X is simply CRR = expγ . Further, we sup-
pose that X has conditional mean

E(X|G = g,U = u) = δg + k(u),(13)

where k(u) is some function of u only, and, in addition,
we require that the distribution of X is such that[

X − (
δG + k(U)

)] ⊥⊥ G|U.(14)

Note that this requirement cannot be satisfied when X

is binary, for instance, but is automatically true when
it has a conditional normal distribution. It can now be
shown (cf. the Appendix or Mullahy [47]) that the CRR
is identified because γ is equal to the ratio of the log-
coefficient from a loglinear regression of Y on G and
the coefficient from a linear regression of X on G. In
the special case of a binary instrument G, this simpli-
fies to

γ = logE(Y |G = 1) − logE(Y |G = 0)

E(X|G = 1) − E(X|G = 0)
.

The method of estimating this via two regressions as
mentioned above is also called two-stage quasi max-
imum likelihood [47]. We will refer to the estimand
based on the right-hand side of the above as the Wald
relative risk (WaldRR), given by

WaldRR := RR(Y |G)1/δ,

where RR(Y |G) is shorthand for the relative risk of Y

given G. When G is binary, δ is the mean difference in
X, otherwise it is Cov(X,G)/Var(G).

The WaldRR identifies the CRR under the above
combination of log-linear model for Y given X and U ,
and the stated assumptions on the conditional distribu-
tion of X given G and U . Note that when Y is nonneg-
ative and continuous, it is, in principle, possible (but
not common) to elaborate the assumptions further so
that the individual relative causal effect Y i(x2)/Y i(x1)

is identifiable; model (12) would then need to be refor-
mulated as a structural equation model analogously to
the linear case earlier.
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When Y is binary and P(Y = 1) is small (“rare dis-
ease assumption”), WaldRR and WaldOR will be ap-
proximately the same, so that in this case we can ar-
gue that the WaldOR approximately identifies the COR
under the same model assumptions. A different justifi-
cation of WaldOR has been proposed by [3] based on
a logistic SMM and some very rough approximations,
under which it identifies the LCOR.

4.3 Multiplicative Structural Mean Models

We already mentioned that the LIVAE can be justi-
fied in an additive SMM identifying the causal mean
difference within the exposed individuals (LACE). Al-
ternatively, we now consider a multiplicative structural
mean model (MSMM) [32]. Again using the notation
introduced in Section 3.1, let X denote the “natural”
exposure level, while X̃ denotes the exposure that is
set by an intervention (overruling the “natural” X). An
MSMM parameterizes the LCRR (2) and is given by

log
{
E(Y |X = x,G,do(X̃ = x))

E(Y |X = x,G,do(X̃ = 0))

}
= γLx,(15)

where X̃ = 0 stands for a suitable baseline value as be-
fore. Hence, γLx is the log-relative risk of changing
the exposure to this baseline for those who would nor-
mally be exposed to X = x, where it is assumed that the
effect is the same within different levels of the instru-
ment G. This does not follow from the core IV condi-
tions nor from the structural assumption (5). It means,
for example, that reducing the alcohol intake for those
individuals who are heavy drinkers has the same effect
on the relative risk for hypertension regardless of their
ALDH2 genotype. This may be unrealistic if those
who drink much despite carrying the ALDH2*2 variant
are different in relevant aspects from those who drink
much and do not carry this allele. An analogous as-
sumption is made by the additive SMM (11) but for the
risk difference; note that except for trivial cases both,
the assumption that G does not modify the effect on the
multiplicative and on the additive scale, cannot be true
at the same time [32]. This assumption of no hetero-
geneity with respect to levels of G is required so that
the model has only one unknown parameter, since we
can only identify one parameter. When baseline covari-
ates have been measured, it is possible to identify more
complex SMMs and this assumption could be relaxed
[3, 27, 32], but we do not consider this any further here.

In general, a SMM estimator for a causal parame-
ter is obtained by solving estimating equations that are
based on the exclusion restriction mentioned in Sec-
tion 3.2. The solution typically does not have a closed

form expression. However, for the case where X and G

are binary, an explicit solution exists [32, 57] (cf. also
the Appendix), yielding that exp(−γL) equals

1 − E(Y |G = 1) − E(Y |G = 0)

E(YX|G = 1) − E(YX|G = 0)
.(16)

The parameter γL can easily be estimated using the
corresponding empirical frequencies or averages. Un-
der the multiplicative SMM, we hence obtain that the
estimand is the inverse of (16), which we will call
MSMMRR. It identifies the LCRR under the IV core
conditions and the assumptions of an MSMM. In order
for it to also identify the population effect CRR, it is
sufficient to assume that X and U cannot interact on
Y on the multiplicative scale [32]. This is analogous to
the “no interaction” assumption in linear model (8). In
this special case we can also obtain closed formulae for
the odds ratio and risk difference [32, 57] (cf. also the
Appendix).

Logistic structural mean models have been proposed
[67], but these require more restrictive assumptions,
and conditions enabling consistent estimation are rel-
atively complicated. We therefore omit them here.
Robins and Rotnitzky [59] provide a detailed discus-
sion of the fundamental difficulty with identifiability
in SMMs, other than for the additive or multiplicative
cases.

4.4 Comparison of Assumptions

The estimands, their target causal effects and the
conditions for identification are summarized in Table 1.
(WaldOR as an approximation to WaldRR is omitted.)
The following points are noteworthy:

• One could say that the strongest assumptions are
those underlying the WaldRR and WaldOR, as they
rely on a specific outcome model for the distribu-
tion of Y given (X,U), as well as a specific expo-
sure model for the distribution of X given (G,U).
Neither the linear models nor the SMMs require the
latter.

• All IV approaches underlying point-estimation rely
on some “no-interaction” (or homogeneity/no effect
modification assumption). No interaction between
X and U on the linear (or log-linear) scale in the
sense of model (8) [or model (12)] is sufficient to en-
sure the assumption of no interaction between X and
G in the additive (or multiplicative) SMMs, models
(11) and (15) (see the Appendix). However, the “no-
interaction” assumption may either be true on the
linear or on the log-linear scale, but not both, except
in trivial cases like Y ⊥⊥ X|U or Y ⊥⊥ U |X [32].
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TABLE 1
Summary of IV model assumptions under which the various estimands identify the targeted causal effects

(in addition to general IV assumptions)

Estimand Target Model assumptions

LIVAE ICE Constant additive individual effect [Y i(x) linear in x].

LIVAE ACE E(Y |X = x,U = u) linear in x, no (X,U)-interaction on additive scale.

LIVAE LACE E(Y |X = x,G = g) − E(Y |X = x,G = g,do(X̃ = 0)) linear in x, no
(X,G)-interaction on additive scale.

LIVRR CRR Same as LIVAE for ACE.

WaldRR CRR (i) E(X|G = g,U = u) linear in g, no (G,U)-interaction on additive scale,
additive independent residual. (ii) E(Y |X = x,U = u) log-linear in x, no
(X,U)-interaction on multiplicative scale.

MSMMRR LCRR log{E(Y |X = x,G = g)/E(Y |X = x,G = g,do(X̃ = 0))} linear in x, no
(X,G)-interaction on multiplicative scale.

MSMMRR CRR As for LCRR, and no (X,U)-interaction on multiplicative scale.

• In contrast to the MSMM, the linear and Wald-
type models do not require joint information on
(X,Y,G); they allow identification of the causal pa-
rameter based on separate information on the joint
distribution of (X,G) and of (Y,G), only. This
means that an IV analysis can be performed by ex-
ploiting results, for example, from different exist-
ing genetic studies or meta-analyses as is particu-
larly relevant for Mendelian randomization applica-
tions [46, 66]. In addition, the WaldOR is useful for
case-control studies where, under the rare disease as-
sumption, δ can be approximated by a control group
estimate [35].

5. NUMERICAL ILLUSTRATION OF
ASYMPTOTIC BIAS

In the previous section we have given some exam-
ples of standard models that allow point-identification
of a causal parameter exploiting an IV. In practice, such
model assumptions are unlikely ever to hold exactly,
and we should be concerned with the robustness of IV
methods under violations of such assumptions. There-
fore, in this section we illustrate the possible bias of the
above approaches for a set of concrete scenarios that
would be realistic, for instance, in a Mendelian ran-
domization study. We place importance on the follow-
ing issues:

• A sensible IV model should allow consistent estima-
tion at the null-hypothesis of no causal effect.

• A sensible IV model should also allow consistent, or
at least not seriously biased, estimation when there

is in fact no confounding, and hence a “naïve” analy-
sis, based on a regression of response Y on exposure
X without using an IV, would be valid.

• A sensible IV model should also not induce more
bias than such a naïve approach.

We want to investigate which of the various IV meth-
ods satisfy these desiderata, or what situations lead to
the most serious violations.

Using the notation introduced at the beginning of
Section 4, we base our comparison on the difference
between the targeted causal parameter θ∗ and the es-
timand θM under a given model M, evaluated at the
true distribution P ∗. More precisely, we use the rela-
tive measure

θM − θ

θ
,

which is the asymptotic relative bias of any consistent
estimator θ̂M for θM. If the model is correctly speci-
fied, that is, P ∗ ∈ M, and identifies the causal parame-
ter, then the above is zero. The asymptotic relative bias
can be calculated exactly, using numerical integration
where required, under a given choice of a “true” joint
distribution P ∗ of (X,Y,G,U) (see below). In special
cases it is even possible to express the bias explicitly
as in [8] for the linear case. Note that we are not con-
sidering any sampling properties of specific estimators
θ̂M and hence are not simulating any data.

We restrict our numerical comparison to the causal
relative risk, θ∗ = CRR, as target. We compare the lin-
ear model, with estimand LIVRR, the log-linear Wald
type approach, with estimand WaldRR (WaldOR is al-
ways slightly more biased for CRR than WaldRR and
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is therefore omitted), and the multiplicative SMM, with
estimand MSMMRR, which all identify the CRR under
their respective assumptions as detailed in Section 4.

5.1 Full Model

The true joint distributions P ∗ for (X,Y,G,U) that
we use for the comparison are specified as follows. To
facilitate interpretation and to keep the number of para-
metric and distributional choices limited, we consider
dichotomous observable variables Y , X and G with the
following interpretations:

Y =
{

1, diseased,
0, healthy,

X =
{

1, exposed,
0, not exposed,

and we label G = 1 to denote the value of the instru-
ment that predisposes to X = 1.

The dependence of Y on X and U is given by a logis-
tic regression. In addition, we assume that this model
is invariant with respect to intervention on X, by which
we mean

logitE(Y |X = x,U = u)

= logitE
(
Y |do(X = x),U = u

)
(17)

= α1 + α2x + α3u + α4xu.

The conditional distribution of X given G and U is also
determined by a logistic dependence:

logitE(X|G = g,U = u)
(18)

= β1 + β2g + β3u + β4gu.

Finally, the marginal distribution of G is determined
by pg = P(G = 1), which we set to 50% throughout
(all estimands are unaffected by pg), while p(u) is con-
tinuous and set to have a uniform distribution on [0,1].

The true CRR can easily be calculated from the
above using (5) and integrating out as∫ {1 + exp(−α1 − α2 − α3u − α4u)}−1p(u)du∫ {1 + exp(−α1 − α3u)}−1p(u)du

.(19)

Note that the CRR does not depend on (18), but θM
does for the IV models considered here.

For the above true distributions P ∗, all models from
Section 4 are essentially misspecified, since none of
them model a logistic dependence of Y on (X,U). Ex-
ceptions are α2 = α4 = 0, or for the linear and MSMM
when α3 = α4 = 0. Also, note that if α4 = 0, then there
is no effect modification by U on the logistic scale.
This does not strictly imply no effect modification on

the additive or multiplicative scales, though departure
from these assumptions will be more extreme when
α4 �= 0.

Our choice of P ∗ is motivated by the fact that a lo-
gistic model like (17) would be the standard model as-
sumption for a binary outcome if the confounder(s)
U could be observed. It is noteworthy that this de-
fault model assumption for the case of observed con-
founding is not necessarily compatible with standard
IV methods for unobserved confounding.

5.1.1 Settings of the parameters. There are eight
parameters in (17) and (18). By varying these, we
consider the following set of scenarios which we re-
gard as realistic for epidemiological studies based on
Mendelian randomization, for example.

We choose three strengths for the causal effect: none
(CRR = 1.0), small (CRR = 1.33) and large (CRR =
3.03); this is obtained by adjusting α2 accordingly.
Confounding is varied by setting α3 ∈ {0,0.1,1,2},
while keeping β3 = 2 fixed. Interactions are investi-
gated by varying β4, α4 ∈ {−1,0,1}, but note that we
only consider combinations where |α4| ≤ |α3|, as large
interactions with small main effects are commonly per-
ceived as unrealistic. The remaining parameters are
chosen so as to satisfy the following criteria. The
strength of the association between G and X is kept
constant at a relative risk of 2.4 throughout by adjusting
β2 accordingly. We fix the marginals P(X = 1) = 0.13
and P(Y = 1) = 0.03 by setting β1 and α1 accordingly.
These latter values, respectively, are again typical for
the exposure frequencies and rare disease situations,
as are often encountered in Mendelian randomization
studies.

5.1.2 Bounds. To further characterize the chosen
scenarios, we calculated the nonparametric bounds for
the CRR (and the ACE for comparison) [4, 22, 44, 57]
for all our settings and found that they were always ex-
tremely wide and always included the null hypothesis
of no effect. For those settings where CRR = 3.03, for
instance, the bounds were of the order [0.2,30] (and
about [−0.08,0.8] for the ACE where the true ACE
was around 0.06). These are the “tightest assumption-
free bounds” [4], meaning that the observable frequen-
cies p(y, x, g) alone, derived from the above distrib-
utions by marginalizing over U , do not allow us to
narrow down the causal effects any further. This re-
emphasizes the fact that point-identification via an IV
model relies heavily on the additional parametric as-
sumptions that have to be made. Narrower bounds can
be obtained when a stronger instrument is used, that is,
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by increasing the G–X association. However, the rela-
tive risk of 2.4 used here is about as strong as we would
expect to see in a Mendelian randomization study.

5.2 Numerical Results

We now compare the asymptotic biases of the
LIVRR, WaldRR and MSMMRR. In addition, we con-
sider the naïve relative risk, NRR, obtained as P ∗(Y =
1|X = 1)/P ∗(Y = 1|X = 0), which gives an indication
of the bias of a standard analysis when not using an IV.
In our settings, the NRR is unbiased when there is no
confounding, but not necessarily otherwise.

5.2.1 No causal effect. We begin with the case
where CRR = 1, which usually constitutes the null
hypothesis. When α4 = α2 = 0, no table is shown as
none of the IV models from Section 4 are misspecified,
only the NRR is biased by as much as 39%. However,
CRR = 1 can also arise when α2 and α4 are nonzero
and of opposite signs. The relative biases for the corre-
sponding settings are shown in Table 2.

The problem we mentioned earlier, and that becomes
evident here, is that there can be two types of scenar-
ios where CRR = 1: either there is no causal effect of
exposure in any subgroup (α2 = α4 = 0), or there are
different causal effects in subgroups which cancel out
overall. The latter occurs when α2 and α4 are nonzero
in such a way that the ratio of integrals in (19) happens
to be one.

All IV methods exhibit some bias in these scenar-
ios, with around 20% relative bias in the worst case.

TABLE 2
Asymptotic relative biases when estimating CRR for all settings

with CRR = 1 and α4 �= 0

Relative bias

α3 α4 β4 NRR LIVRR WaldRR MSMM

1 1 0 0.277 0.105 0.110 0.095
2 0.414 0.092 0.095 0.075

1 −1 0.020 −0.113 −0.108 −0.101
2 0.174 −0.106 −0.102 −0.087

1 1 1 0.361 0.198 0.213 0.163
2 0.545 0.177 0.189 0.125

1 −1 0.025 −0.202 −0.187 −0.169
2 0.226 −0.195 −0.181 −0.140

1 1 −1 0.184 0.006 0.006 0.006
2 0.272 0.002 0.002 0.002

1 −1 0.013 −0.009 −0.009 −0.009
2 0.115 −0.006 −0.006 −0.005

We can see the following patterns in Table 2. When
β4 = −1, all IV estimators are only slightly biased,
while the NRR can be biased by up to 27%. There are
only two settings where all IV methods are more biased
than the naïve one, and these are when α4 = −1 and
α3 = 1, and β4 = 0 or 1. For all considered settings,
the MSMMRR is the least biased, and the WaldRR is
the most biased, but the order of magnitude is gener-
ally comparable and we would not suggest an overall
ranking of the approaches based on these results alone.

Recall that the MSMMRR does not actually target
the CRR, but targets a particular subgroup effect—the
local causal relative risk of exposure within the ex-
posed—instead. The latter is typically not one when
α2 �= 0.

5.2.2 Causal effect but no confounding. Let us now
consider those scenarios where there is no confound-
ing (so either α3 = α4 = 0 or β3 = β4 = 0). No plots or
tables are shown here as only the WaldRR has nonzero
bias. This is because all assumptions of the naïve, lin-
ear and multiplicative structural mean models are sat-
isfied when there is no confounding and when X and
Y are binary. In contrast, as noted in Section 4.2 and
again in the Appendix, the assumption (14) underlying
the WaldRR cannot be satisfied when X is binary. We
observed biases for the WaldRR and WaldOR of up to
3.2% and 4.5%, respectively, for a moderate effect size
of CRR = 1.33, and biases as large as 65% and 76%,
respectively, when CRR = 3.03.

5.2.3 Causal effect and confounding. We now con-
sider those scenarios where there is a causal effect as
well as confounding. Tables 3 and 4 show the results
for a small causal effect (CRR = 1.33) and a large
causal effect (CRR = 3.03), respectively.

First, let us compare the results for small versus large
CRR. The naïve relative risk (NRR) behaves similarly
in both cases. The LIVRR is more biased when the true
causal effect is large—this is plausible as the nonlinear-
ity of the model is more pronounced for larger causal
effects. The WaldRR is unacceptable when CRR =
3.03: with relative biases between 40% and 250%, it
seriously overestimates the true effect. As its bias is ei-
ther comparable to, or much larger than, the bias for
the other two IV methods when CRR = 1.33, we will
not consider the WaldRR any further. The relative bias
of the MSMMRR, in turn, is similar for small and large
CRR with a maximum of 17%.

As one might expect, the LIVRR and MSMMRR are
only slightly biased, and much less so than the NRR,
whenever there is no X–U interaction, α4 = 0. More
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TABLE 3
Asymptotic relative biases when estimating CRR for all settings

with CRR = 1.33

Relative bias

α3 α4 β4 NRR LIVRR WaldRR MSMM

0.1 0 0 0.015 0.003 0.036 −0.000
1.0 0.150 0.027 0.066 −0.001
2.0 0.299 0.051 0.097 −0.002

1.0 1 0 0.275 0.130 0.206 0.093
2.0 0.411 0.141 0.222 0.072

1.0 −1 0 0.020 −0.085 −0.071 −0.101
2.0 0.172 −0.052 −0.033 −0.088

0.1 0 1 0.019 0.005 0.038 −0.000
1.0 0.195 0.048 0.095 −0.002
2.0 0.392 0.096 0.160 −0.004

1.0 1 1 0.358 0.247 0.380 0.159
2.0 0.541 0.273 0.422 0.120

1.0 −1 1 0.025 −0.153 −0.148 −0.169
2.0 0.225 −0.100 −0.089 −0.142

0.1 0 −1 0.010 0.000 0.032 0.000
1.0 0.100 0.001 0.034 0.000
2.0 0.197 0.002 0.034 0.000

1.0 1 −1 0.182 0.004 0.039 0.005
2.0 0.270 0.002 0.032 0.002

1.0 −1 −1 0.013 −0.004 0.027 −0.009
2.0 0.114 −0.000 0.034 −0.006

surprising is that this is also the case when β4 = −1
regardless of the other parameter values. This is not
due to less confounding, as we can see that the naïve
relative risk is still noticeably biased in those settings.

All methods struggle the most when α4 �= 0 and
β4 = 1—the MSMMRR bias then reaches 17% and the
extent of the LIVRR bias can range from 24% for small
CRR to 45% for large CRR.

Even though there is no uniformly best method, both
tables show that the MSMMRR is much less biased in
most settings. The only cases where it is outperformed
by the LIVRR arise when α4 = −1. The only cases
where it is outperformed by the NRR are when addi-
tionally α3 = 1.

5.2.4 Sign of bias. Due to our choices of the coeffi-
cients of U , the NRR is always positively biased. The
IV estimators can, however, be negatively biased, espe-
cially when α4 or β4 are negative. Also, their bias does
not always have the same sign. Therefore, we cannot
say that IV methods generally over- or underestimate
the true causal effect.

TABLE 4
Asymptotic relative biases when estimating CRR for all settings

with CRR = 3.03

Relative bias

α3 α4 β4 NRR LIVRR WaldRR MSMM

0.1 0 0 0.014 0.006 0.671 −0.001
1.0 0.145 0.066 0.870 −0.006
2.0 0.289 0.128 1.090 −0.010

1.0 1 0 0.265 0.161 1.220 0.084
2.0 0.397 0.210 1.410 0.061

1.0 −1 0 0.020 −0.036 0.539 −0.102
2.0 0.167 0.033 0.757 −0.093

0.1 0 1 0.018 0.013 0.695 −0.001
1.0 0.188 0.132 1.110 −0.010
2.0 0.379 0.263 1.630 −0.017

1.0 1 1 0.344 0.334 1.950 0.144
2.0 0.523 0.447 2.510 0.102

1.0 −1 1 0.025 −0.070 0.440 −0.170
2.0 0.217 0.062 0.858 −0.150

0.1 0 −1 0.009 −0.001 0.647 −0.000
1.0 0.096 −0.006 0.637 −0.000
2.0 0.191 −0.014 0.605 −0.000

1.0 1 −1 0.176 −0.019 0.590 0.005
2.0 0.261 −0.028 0.570 0.003

1.0 −1 −1 0.013 0.004 0.663 −0.009
2.0 0.110 −0.002 0.648 −0.006

5.2.5 Other comparisons. We also considered the
other causal parameters, ACE and COR, as targets
in our chosen scenarios using the corresponding esti-
mands under the three IV models. We got broadly sim-
ilar results with the SMM approach generally produc-
ing less biased results, except in the presence of inter-
actions, and the Wald approach behaving very poorly
throughout even when there is little or no confounding.

All results presented so far were for scenarios with
3% disease frequency and 13% exposure frequency.
We also considered scenarios with 20% disease and/or
50% or 85% exposure frequencies, but do not report
them in detail as the results followed similar patterns
in terms of relative performances of the various ap-
proaches. All IV methods show much less bias with
50% exposure frequency, with the WaldRR perform-
ing much more sensibly, in particular. The MSMM is
still clearly the least biased and is not sensitive to in-
teraction effects when the exposure frequency is 50%.
This might be due to the exposure distribution being
more balanced, so that conditioning on X is not so in-
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formative for U and, hence, the local causal effect is
not much different from the population causal effect
even when there are strong interactions.

5.3 Practical Implications

In Section 4.4 we compared the assumptions un-
derlying the IV models of Section 4 on theoretical
grounds. The above numerical study adds the follow-
ing insights:

• The linear IV approach is often not considered ap-
propriate when the outcome variable is binary or
nonnegative. However, we found that it performed
better than expected for binary Y with relative as-
ymptotic bias below 20% in all but six of the con-
sidered scenarios and with less bias than that of the
naïve approach in all but five scenarios. This may be
deemed acceptable, especially given the simplicity
of the linear IV estimator. However, for the linear-
ity assumption to be at least approximately appropri-
ate with binary outcomes, the range of exposure X

should be restricted and the true causal effect small.
The latter is not uncommon for epidemiological—
especially Mendelian randomization—applications.

• Although it is clear by theory alone that the Wald
type methods from Section 4.2 make very strong as-
sumptions, we have seen here that they are not just
slightly but can be extremely biased when these as-
sumptions are violated. It is especially worrisome
that this occurs for realistic scenarios, that the bias
can be worse than with the naïve approach and in-
creases with the strength of the true causal effect,
and that they can be biased even when there is no
confounding since the model for the exposure X is
violated. We would therefore not recommend this
approach unless there is good reason to be confident
in the model assumptions. A small true causal effect
and a balanced or approximately normal distribution
of the exposure X, possibly after suitable transfor-
mation, would support this confidence.

• As mentioned before, all IV approaches, excluding
the bounds, make an assumption of no-interaction or
no effect modification by the unobserved confounder
U either on the additive or multiplicative scale. The
results show that violation of this assumption indeed
seriously increases the bias of all IV methods and
can lead to bias even at the null hypothesis of no
causal effect. In practice, this assumption is difficult
to asses or justify, as it involves the unobserved con-
founders which might include factors that are poorly
understood.

• As far as the relative bias is concerned, the MSMM
approach seems the most recommendable for situa-
tions similar to those of Section 5.1, especially for
binary outcomes. However, other properties are rel-
evant for practical application, most important be-
ing the efficiency of the estimators. As our numeri-
cal study only considers a specific set of scenarios, it
is also not possible to say whether the MSMM per-
forms equally well in very different situations. We
therefore recommend that further comparison and
sensitivity analyses are carried out for any specific
application.

6. CONCLUSION AND DISCUSSION

Our theoretical comparison of different IV methods
was motivated by the need for such methods in obser-
vational epidemiology, with Mendelian randomization
applications providing an example that has generated
a lot of recent interest. The core conditions 1–3 plus
the structural assumption (5) are sufficient for testing
for a causal effect of exposure on disease, but, as em-
phasized here, the identification of a causal effect has
to rely on additional model assumptions which, if in-
appropriate, can induce bias as illustrated in our nu-
merical study. The need for a comparison of IV meth-
ods is also highlighted by the results of a recent study
which concluded that there were very few differences
between IV approaches because they yielded similar
results on particular data sets [54, 56]. Our results do
not support this point of view and show that any model
assumptions have to be justified carefully.

The main points to be made from our comparison
are that the different IV approaches target different pa-
rameters, where we are not referring to the difference
between a risk difference and risk ratio, for instance,
but the difference between an individual, population or
local causal effect. In the case of the latter, the SMM
approach (additive or multiplicative) makes the weak-
est assumptions, as it does not require a model for the
exposure X given the instrument G, and it only as-
sumes (log-)linearity of the effect within the exposed
individuals. Under stronger assumptions, essentially if
U and X do not interact on Y on the relevant scale,
the local causal effect is equal to the population causal
effect. However, the multiplicative SMM requires joint
data on the observable variables which may not always
be available from existing studies. For the linear model
it has also been noted by [8] that the traditional ratio
estimator LIVAE has to be given a different interpre-
tation in the presence of effect modification. The Wald
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type estimator for the relative risk, together with the
odds ratio as an approximation to the latter, is simple
and useful for meta-analyses but makes very specific
assumptions about all conditional distributions, espe-
cially that of the exposure, and also requires the ab-
sence of interactions on the multiplicative scale.

Our bias calculations are of course only valid for
the particular model and scenarios we chose to con-
sider, but we believe they still raise serious issues. Not
surprisingly, all estimators encounter difficulties in es-
timating the population effect in scenarios where the
exposure has different effects within levels of the un-
observed confounder. Maybe more surprising are the
particularly poor performances of the Wald relative risk
and odds ratio—especially in the absence of confound-
ing. This is supported by a recent study on odds ra-
tio estimators which also found that the WaldOR was
often outperformed by other approaches [3]. However,
we did not find that it did “especially well” at the causal
null hypothesis, as reported there, when there were in-
teractions in the model for the outcome Y . An obvious
implication for practical applications of IV methods is
that the plausibility of such interactions, on the chosen
effect scale, should be explicitly addressed. If such in-
teractions are judged to be likely on the multiplicative
scale, then the MSMM estimator is closer to the local
effect and the Wald relative risk is likely to be seriously
biased. Also, one has to keep in mind that such inter-
actions can induce bias of all IV methods even at the
null hypothesis of no causal effect, though one might
hope that such exact cancellations of subgroup effects
are rare. It might be argued that, in practice, important
effect modifiers will be known and observed as addi-
tional covariates, so that once these are taken into ac-
count, only negligible interactions with the unobserved
confounders remain, but by definition this cannot be
verified empirically. Note that any justification for the
absence of effect modification has to take the chosen
measurement scale into account. Due to the increased
bias we have seen in our numerical study, we would
therefore recommend that practical applications of IV
methods be complemented by some sensitivity analy-
ses, especially with regard to such interactions in the
model for the outcome Y . Moreover, we would advise
that these considerations are also valid for continuous
outcomes which are often analyzed unquestioned with
linear no-interaction models.

The particularly restrictive assumptions underlying
the WaldRR (and WaldOR) raise serious concern about
how to handle situations where we do not have joint in-
formation on all the relevant variables, such as in most

meta-analyses, rendering the multiplicative SMM esti-
mator inapplicable. The linear IV estimator could, in
principle, be applied, as it too does not require joint
data and is not as badly biased, but for binary dis-
ease outcomes, risk differences are rarely reported. In
most applications the exposure is continuous and ro-
bustness of the nonlinear Wald estimators to violations
in those cases remains to be investigated. It certainly
does not seem advisable to dichotomize a continuous
exposure.

We have only considered the asymptotic bias of the
various estimators. In practice, their efficiency will also
be of major concern. It is well known that IV estimators
have larger variance than the naïve estimators when
there is no unobserved confounding. The variance, un-
like the bias, very much depends on the strength of the
instrument, but when there is strong confounding, it
is impossible to find a strong instrument [7, 45]. The
SMM estimators, derived from estimating equations,
can be made semi-parametrically efficient by choos-
ing appropriate weights in these equations [58]. Some
methods for improving the efficiency of the Wald type
relative risk have been proposed [47]. Further compar-
isons of properties and sampling behavior of IV esti-
mators for the special case of a binary outcome can be
found in [3, 13].

Another important issue that we have not addressed
here is that of measurement error. Theoretically, it is
not a problem if the IV is affected by measurement er-
ror, as long as this is not differential. If the exposure
is affected by measurement error, we can still use the
IV approach to test for a causal effect. However, all
the above IV estimators are then expected to be biased,
as core condition 3 is likely to be violated when X is
the measured, and not the true, exposure. In that case,
we have to make even more modeling assumptions,
namely, about the specific measurement error process,
in order to obtain valid point estimates [68].

APPENDIX

Justification of LIVAE

We have established that the ACE is equal to the
model parameter β in model (8). Define G̃ = G −
E(G), then E(YG̃) = Cov(Y,G). With core condi-
tion 1 and model (8),

E(YG̃) = EGE(YG̃|G)

= EG

(
βE(XG̃|G) + G̃E(h(U))

)
= βE(XG̃).
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Hence, β = Cov(Y,G)/Cov(X,G), which is the
LIVAE estimand.

Risk ratios or odds ratios require estimation of the
intercept of (9) obtained as follows:

α̂ = E(Y ) − β̂E(X),

where β̂ = LIVAE from above. Hence, the CRR and
COR are identified by

LIVRR := α̂ + β̂

α̂
,

LIVOR := (α̂ + β̂)(1 − α̂)

α̂(1 − α̂ − β̂)
.

Further, under the additive SMM (11) we have
by simple rearranging that E(Y |X,G,do(X̃ = 0)) =
E(Y − βLX|X,G), where we use that E(Y |X =
x,G,do(X̃ = x)) = E(Y |X = x,G). The exclusion re-
striction implies that Y ⊥⊥ G|do(X̃ = 0) (cf. Figure 2),
which induces an estimating equation to obtain βL

based on the moment condition E((Y − βLX)G̃) = 0,
where G̃ = G−E(G), as before. The solution is again
βL = Cov(Y,G)/Cov(X,G).

Justification of WaldRR

In addition to the model assumptions expressed in
(12) and (13), we need (14), that is, the random vari-
able ξ := X − E(X|G,U) has to satisfy ξ ⊥⊥ G|U .
This is automatically satisfied when X has a normal
distribution with constant variance given (G,U), or a
variance that only depends on U . More generally, this
is satisfied when the model for X given (G,U) is a
location-scale family, where only the location parame-
ter depends on G,U , for example, the class of (noncen-
tral) t-distributions; any class that restricts the support
of the distributions it contains, like the Bernoulli, will
not typically satisfy this condition, though.

Hence, by definition, we can write X = δG+k(U)+
ξ . Consider now a regression of Y on G alone and sub-
stitute this expression for X:

E(Y |G = g)

= EUEX|G=g,UE(Y |X,U)

= EU [exp{h(U)}EX|G=g,U exp{γX}]
= EU

[
exp{h(U)}
·Eξ |G=g,U exp

{
γ

(
δg + k(U) + ξ

)}]
= exp{γ δg}EU [exp{h(U) + γ k(U)}

·Eξ |G=g,U exp{γ ξ}]
(∗)= const · exp{γ δg},

where (∗) uses ξ ⊥⊥ G|U , so that Eξ |G=g,U exp{γ ξ}
is constant in G. Hence, the coefficient of G in a log-
linear regression of Y on G is γ δ. Furthermore, δ can
be recovered from a linear regression of X on G, as
the latter is independent of U . Thus, as stated in Sec-
tion 4.2, the CRR is identified by the WaldRR.

Justification of MSMMRR

Analogously to the argument for the additive SMM,
we have by simple rearranging that

E
(
Y |X,G,do(X̃ = 0)

)
(20)

= E(Y exp(−γLX)|X,G).

The exclusion restriction Y ⊥⊥ G|do(X̃ = 0) now in-
duces an estimating equation to obtain γL based on
the moment condition E(Y exp(−γLX)G̃) = 0, where
still G̃ = G − E(G). Due to the nonlinearity of the ex-
ponential function, this does not have a simple closed
form solution as in the linear case, except for binary
variables as shown next.

When G is binary, the exclusion restriction implies
that E(Y |G = 1,do(X̃ = 0)) = E(Y |G = 0,do(X̃ =
0)). By averaging over X,

E(Y exp(−γLX)|G = 1) = E(Y exp(−γLX)|G = 0).

When X and Y are binary as well, we obtain that
E(Y exp(−γLX)|G) is equal to E(YX exp(−γL)|G)−
E(YX|G) + E(Y |G). Hence, we can rearrange the
above equality to give (16).

Under additional assumptions, the ACE and COR
are also identified in an MSMM. First, we note that by
integrating out first G and then X from (20), we obtain
an expression for E(Y |do(X̃ = 0)) as

e−γLE(Y |X = 1)P (X = 1) + E(Y |X = 0)P (X = 0).

If we assume that the Y -X relative risk is the same
within subgroups of U as in model (12), then exp(γL)

is also the (population) CRR (cf. also next section).
Thus, by substituting, we now obtain an expression for
E(Y |do(X̃ = 1)) as

E(Y |X = 1)P (X = 1) + eγLE(Y |X = 0)P (X = 0).

From these it is straightforward to obtain the estimands
that identify the ACE or COR by replacing γL by the
negative log of (16).
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Relations Between Assumptions

Under the IV conditions the linear model (8) implies
the additive SMM (11). As E(Y |X = x,U = u) =
E(Y |do(X = x),U = u) = βx + h(u), with definition
of X̃ from Section 3.1,

E
(
Y |X = x,G = g,do(X̃ = x̃)

)
= βx̃ + E(h(U)|G = g,X = x)

and, hence,

E
(
Y |X = x,G = g,do(X̃ = x)

)
− E

(
Y |X = x,G = g,do(X̃ = 0)

) = βx,

which is an additive SMM.
It can be shown analogously that the log-linear

model (12) implies the MSMM (15). In each case the
reverse is not true, as discussed by Hernan and Robins
[32] for the special case where all variables are binary.

Further, the structural equation model (10) implies
model (8) and hence (11). The former states that the
potential responses of a generic individual are given
as Y i(x) = βIx + ξ i , where ξ i is fixed for the indi-
vidual but not between individuals. Hence, across the
population E(Y (x)|U = u) = βIx + E(ξ |U = u). In-
terpreting E(Y (x)|U = u) as E(Y |do(X = x),U = u)

and using (5), we obtain E(Y |X = x,U = u) = βIx +
h(u), which is equivalent to (8). The reverse is clearly
not true as counterexamples are easy to construct.
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