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Interval Estimation for Messy
Observational Data
Paul Gustafson and Sander Greenland

Abstract. We review some aspects of Bayesian and frequentist interval es-
timation, focusing first on their relative strengths and weaknesses when used
in “clean” or “textbook” contexts. We then turn attention to observational-
data situations which are “messy,” where modeling that acknowledges the
limitations of study design and data collection leads to nonidentifiability. We
argue, via a series of examples, that Bayesian interval estimation is an attrac-
tive way to proceed in this context even for frequentists, because it can be
supplied with a diagnostic in the form of a calibration-sensitivity simulation
analysis. We illustrate the basis for this approach in a series of theoretical
considerations, simulations and an application to a study of silica exposure
and lung cancer.
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1. INTRODUCTION

The conventional approach to observational-data
analysis is to apply statistical methods that assume a
designed experiment or survey has been conducted. In
other words, they assume that all unmodeled sources of
variation are randomized under the design. In most set-
tings, deviations of the reality from this ideal are dealt
with informally in post-analysis discussion of study
problems. Unfortunately, such informal discussion sel-
dom appreciates the potential size and interaction of
sources of bias and, as a consequence, the conventional
approach encourages far too much certainty in infer-
ence (Eddy, Hasselblad and Schachter, 1992; Green-
land, 2005, 2009; Greenland and Lash, 2008; Molitor
et al., 2009; Turner et al., 2009).

The entrenchment of the conventional approach de-
rives in part from the fact that realistic models for ob-
servational studies are not identified by the data, a fact
which renders conventional methods and software use-
less (except perhaps as part of a larger fitting cycle).
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The most commonly proposed mode of addressing
this problem is sensitivity analysis, which, however,
leads to problems of dimensionality and summariza-
tion. The latter problems have in turn been addressed
by Bayesian and related informal simulation methods
for examining nonidentified models (which are often
dealt with under the topic of nonignorability). These
methods include hierarchical (multilevel) modeling of
biases (Greenland, 2003, 2005), which is intertwined
with the theme of the present paper.

We start in Section 2 by reviewing some notions of
interval estimator performance, with emphasis on cov-
erage averaged over different parameter values. Sec-
tion 3 then extends this discussion to include inter-
vals arising from hierarchical Bayesian analysis when
data from multiple studies are at hand. These two sec-
tions reframe existing theory and results in a manner
suited for our present needs. We emphasize a well-
known tradeoff: To the extent the selected prior dis-
tribution is biased relative to reality, the coverage of a
Bayesian posterior interval will be off, but perhaps not
by much; and in return the intervals can deliver sub-
stantial gains in precision and reduced false-discovery
rates compared to frequentist confidence intervals. In
addition, hierarchical priors provide a means to reduce
prior misspecification as studies unfold.
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In Section 4 we turn to the more novel aspect of
our work, by studying the case which we believe
better captures observational-study reality, in which
priors are essential for identification. Here the usual
order of robustness of frequentist vs. Bayesian proce-
dures reverses: Confidence intervals become only ex-
treme posterior intervals, obtained under degenerate
priors, with coverage that rapidly deteriorates as real-
ity moves away from these point priors. In contrast,
the general Bayesian framework with proper priors
offers some protection against catastrophic undercov-
erage, with good coverage guaranteed under a spec-
trum of conditions specified by the investigator and
transparent to the consumer. Section 5 summarizes the
lessons we take away from our observations and makes
a recommendation concerning the practical assessment
of interval estimator performance. We conclude that
Bayesian interval estimation is an attractive way to pro-
ceed even for frequentists, because its relevant calibra-
tion properties can be checked in each application via
simulation analysis. We close with an illustration of
our proposed practical approach in an application to
a study of silica exposure and lung cancer in which an
unmeasured confounder (smoking) renders the target
parameter nonidentified.

2. THE WELL-CALIBRATED LAB

Let θ denote the parameter vector, and D the observ-
able data, for a study that is to be carried out. Assume
for now that the distribution of (D|θ)(i.e., “the model”)
is known correctly. Say that φ = g(θ) is the scalar para-
meter of interest, and that I (D) is an interval estimator
for this target. We define the labwise coverage (LWC)
of I with respect to a parameter-generating distribu-
tion (PGD) P as

C(I,P ) = Pr{φ ∈ I (D)}.(1)

Here the probability is taken with respect to the distri-
bution of (θ,D) jointly, with θ ∼ P and (D|θ) follow-
ing the model distribution.

Interval coverage with respect to a joint distribution
on parameters and data, as in (1), has been consid-
ered by many authors, but not with a consistent ter-
minology. While it might be temping to refer to (1)
as “Bayesian” coverage, we find this confusing since
(1) can be evaluated for Bayesian or non-Bayesian in-
terval estimators. We choose to call it labwise cover-
age since C(I,P ) is the proportion of right answers
reported by a lab or research team applying estimator
I in a long series of studies of different phenomena

(different exposure-disease relationships, say) within a
research domain. The role of the PGD P is then to de-
scribe the corresponding across-phenomena variation
in the underlying parameter values. Interest in labwise
coverage might be very direct in some contexts, in that
estimator operating characteristics in a long sequence
of actual studies really are the primary consideration.
Or interest may be more oblique, in that performance
on the “next” study is of interest, and this performance
is being measured conceptually by regarding the next
study as a random draw from the population of “poten-
tial” or “future” studies.

If I is a frequentist confidence interval (abbreviated
FCI), then it will attain nominal coverage exactly for
any PGD. That is, if Pr{φ ∈ I (D)|θ} = 1 − α for every
value of θ , then C(I,P ) = 1 − α for any P . Thus,
correct coverage for a hypothetical sequence of studies
with the same parameter values implies correct cover-
age in the more realistic setting of repeatedly applying
a procedure in a sequence of differing real problems.
While this fact is often viewed as a robustness property
of an FCI, Bayarri and Berger (2004), citing Neyman
(1977), emphasize that it is the labwise coverage that
is relevant for practice. Put another way, if a lab is well
calibrated in the LWC sense of producing 95% inter-
vals that capture the true parameter for 95% of studies,
and the cost of failing to capture is the same across
studies (as might be the case in some genome stud-
ies or screening projects), there is little obvious benefit
if the intervals happen to also have correct frequentist
coverage.

2.1 Bayesian Intervals under PGDs

For a given choice of prior distribution � on the pa-
rameter vector θ , a 1 − α Bayesian posterior credible
interval (BPCI) for the target parameter φ would be any
interval having Bayesian probability 1 − α of contain-
ing φ given the observed data D. The most common
choices of BPCI are the equal-tailed BPCI (i.e, the
interval formed by the α/2 and 1−α/2 posterior quan-
tiles of the target parameter), and the highest-posterior-
density (HPD) BPCI. Though HPD intervals are op-
timally short, we consider only equal-tailed intervals
here, given their simple interpretation and widespread
use.

If the prior � and the PGD P coincide, then a
BPCI is guaranteed to have correct labwise coverage.
This strikes us as a fundamental property of BPCIs,
though it is surprisingly unemphasized in most intro-
ductions to Bayesian techniques. Henceforth, we refer
to a BPCI arising from a prior distribution set equal to
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the PGD as an omniscient or “oracular” BPCI (abbre-
viated OBPCI), in the sense that the investigator is om-
niscient in knowing the actual PGD giving rise to fu-
ture studies. It is indeed a fanciful assumption to think
that the PGD would be known exactly, so throughout
this paper we pay much attention to nonomniscient BP-
CIs (abbreviated NBPCI). That is, we will evaluate lab-
wise coverage when the investigator’s prior distribution
� differs from the PGD P .

It is worth noting that BPCIs have desirable proper-
ties from a decision-theoretic point of view. The situ-
ation is complicated in that both coverage and length
must be reflected in the loss function. Hence, this func-
tion must be bivariate, or be a univariate combination
of coverage and length terms (which would necessitate
some weighting of the two). Robert (1994) gives some
general discussion of this point. Despite this complica-
tion, there are still results which link, and come close
to equating, BPCIs and admissible interval estimators
(see, for instance, Meeden and Vardeman, 1985). Thus,
the common argument for Bayesian point estimators
having desirable frequentist properties does extend, al-
beit with complications, to the case of interval estima-
tors.

Additionally, there are large-sample results saying
that in “regular” modeling situations with large sam-
ple sizes and priors with unrestricted support, BPCIs
will have frequentist coverage that converges to nomi-
nal coverage, at every possible set of parameter values.
These results are based on obtaining a likelihood that
dominates the prior given enough data; as such, they
are not very useful for our purposes, because later we
turn to problems in which no such domination occurs.
We will however find use for a variant of this result in
which information is accumulated over a sequence of
studies. First, however, we illustrate the operating char-
acteristics of some interval estimators in a simple but
relevant situation.

2.2 Example: Mixture of Near-Null and
Important Effects

Say that θ represents the strength of a putative
exposure-disease relationship (which may indeed be
one of a sequence of such exposure-disease combina-
tions to be investigated). For instance, θ might be a
risk difference or a log odds-ratio relating binary expo-
sure and disease variables. Suppose that D is a univari-
ate sufficient statistic such that D|θ ∼ N(θ,σ 2) where
σ 2 is known. Then (D ± qα/2σ) can be reported as a
100 × (1 − α)% frequentist confidence interval (FCI)

for θ , where qα/2 is the 1 −α/2 standard normal quan-
tile.

In the context of observational epidemiology, null
or minimal effects are common, and large effects are
rare. Thus, the PGD giving rise to a sequence of stud-
ies might have most of its mass at or near zero. For
instance, say the PGD is a mixture of two normal dis-
tributions: N(0, ε2) with weight p and N(0, k2ε2) with
weight 1 − p, for a “small” ε and k > 1. This is in-
terpreted as the first component generating minimal or
near-null associations, while the second gives rise to
important as well as near-null associations, for exam-
ple, |θi | < 2ε and |θi | > kε might reasonably be de-
scribed as near-null and important respectively.

We simulate 500,000 parameter-data ensembles with
ε = 0.05, p = 0.85, k = 8, and σ 2 = 0.025. If θ is a
log odds-ratio, then these values have exp(θi) within
(0.91,1.1) as near-null, and exp(θi) outside (0.67,1.5)

as important. The choice of σ 2 = 2/((500)(0.2)(0.8))

approximates the amount of information for the log
odds ratio when comparing two independent groups (as
in an unmatched case-control study) with 500 subjects
per group and exposure prevalences around 20%.

The first two rows of Table 1 give operating charac-
teristics of the FCI and the (equal-tailed) OBPCI as in-
terval estimators for θ (both at the nominal 95% level).
Note that when used as the prior distribution for θ , the
mixture distribution is conjugate, so that computation
of the OBPCI is straightforward. As is consistent with
theory, the labwise coverages of both procedures are
within simulation error of the nominal 95%. On aver-
age, though, the OBPCI is considerably shorter than
the FCI, by almost a factor of two. This results from
the infusion of prior information.

Motivated by taking |θ | < 2ε as a minimal effect, we
also define the total discovery rate (TDR), false discov-
ery rate (FDR) and false nondiscovery rate (FNR) for
interval estimation as follows: The TDR is simply the
proportion of reported intervals that exclude the min-
imal range, that is, give confidence that the effect is
not minimal. The FDR is then the proportion of these
“discoveries” that are false, that is, in which the pa-
rameter actually does lie in the minimal range. Simi-
larly, amongs intervals intersecting the minimal range,
the FNR is the proportion for which the target is actu-
ally outside this range. We can then describe how the
OBPCI is more conservative than the FCI: The OBPCI
attains a lower FDR at the cost of a higher FNR, as
evidenced in the first two rows of Table 1.

Investigators are not omniscient. To illustrate con-
sequences of defective prior information, we examine
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TABLE 1
Frequency properties of interval estimators based on 500,000 simulated parameter-data pairs from PGD with ε = 0.05, p = 0.85, k = 8.

The “omniscient” posterior (OBPI) uses these parameter values; the “nonomniscient” posterior (NBPI) uses the values of p and k shown∗

Coverage % Avg. length TDR % FDR % FNR %

FCI 95.0 0.62 6.3 17.0 11.5
OBPI 95.0 0.33 2.2 0.6 14.1
NBPI:
p = 0.50, k = 4 95.8 0.41 2.1 0.5 14.2
p = 0.50, k = 12 97.3 0.46 3.2 2.5 13.3
p = 0.95, k = 4 89.8 0.24 0.9 0.0 15.2
p = 0.95, k = 12 91.7 0.26 1.8 0.2 14.4
N(0, ν2) 94.8 0.44 2.1 0.6 14.1
N(0,0.5ν2) 92.1 0.36 0.8 0.0 15.2
N(0,2ν2) 96.5 0.51 3.5 3.4 13.0

∗Simulation standard errors for coverage, TDR ≈ 0.04%. The simulation standard errors for FDR are considerably larger and variable, since
only a small portion (the TDR) of the simulated pairs contribute to the estimated proportion.

results in which the prior distribution deviates from
the PGD. Our example is far from a comprehensive
study of prior misspecification, and we doubt that such
a study could be done given all the contextual elements
involved. Rather, we wish to illustrate some qualita-
tive points that will be relevant later, regarding poten-
tial consequences of such misspecification.

Two sets of NBPCI results are given in Table 1.
The first set corresponds to an investigator using the
same form of a mixture-normal prior with the correct
value of ε (which defines the notion of a minimal effect
and so is contextually established), but with misspeci-
fied values of p and k (choosing p = 0.50 or p = 0.95,
and k = 4 or k = 12). The second set corresponds to
an investigator who does not elucidate a mixture struc-
ture for the prior, but rather simply applies a mean-
zero normal prior. The case where the prior variance τ 2

equals the PGD variance of ν2 = pε2 + (1 − p)k2ε2

is considered, as are the cases where the prior vari-
ance is half/double the PGD variance. The results in
Table 1 underscore the disadvantage of the NBPCI rel-
ative to the FCI and the unattainable OBPCI: The lab-
wise coverage now deviates from nominal. Arguably,
however, these deviations are modest. Moreover, the
NBPCI tend to maintain the other attractive features
seen with the OBPCI, namely, the much shorter aver-
age length and lower FDR compared to the FCI. Note
that the deviations from nominal coverage are less pro-
nounced and tend toward conservatism when the prior
is more spread out than the PGD (p = 0.50 in the
first set of results, τ 2 = 2ν2 in the second). This is
not surprising, since NBPCIs will resemble FCIs more

and more in the “flat” prior limit. In contrast, the de-
viations can be markedly anticonservative when the
prior is more concentrated (p = 0.95 in the first set,
τ 2 = 0.5ν2 in the second). Thus, by using very dis-
persed priors, we can improve the precision and reduce
the FDR of our intervals without incurring objection-
able deviations from nominal coverage. If, however, we
“get greedy” and attempt to improve performance by
using overconfident priors, we risk unacceptable dete-
rioration of coverage.

In this and subsequent examples, we have used
equal-tailed BPCIs because these are intuitive and
commonly reported. It is well known, however, that for
a given data set the HPD interval (or possibly region) is
the shortest interval with the specified Bayesian proba-
bility content. In fact, Uno, Tian and Wei (2005) prove
an interesting result about labwise coverage of HPD
intervals, in the case that the prior and PGD coincide.
They show that the HPD interval with coverage 1 − α

does not always minimize average width subject to
obtaining labwise coverage 1 − α. Rather, the mini-
mizing procedure in general involves the HPD inter-
val with coverage 1 − α(D), such that E{α(D)} = α,
where the data-dependent coverage level α(D) arises
by thresholding the posterior densities for all studies at
the same cutoff value. Thus, in cases where the width
of the posterior density varies across studies, HPD in-
tervals with higher (lower) coverage levels will be re-
ported for studies with narrower (wider) posterior den-
sities. While we do not pursue this further here, it is
worth emphasizing that the simple and intuitive inter-
pretations associated with using a BPCI of fixed cover-
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age level can be sacrificed in order to obtain intervals
which are narrower on average.

Given the performance issues illustrated in Table 1,
we find it overly simplistic to argue against the use
of Bayesian interval estimation simply because prior
specification is required, and because it is impossible
to get this specification exactly right in terms of match-
ing the PGD. Furthermore, as we discuss in the next
section, by using a hierarchically structured prior, one
can effectively move the prior closer to the PGD as a
sequence of studies unfolds.

3. HIERARCHICAL PRIOR DISTRIBUTIONS

As we have emphasized, consideration of a sequence
of studies is a conceptual device capturing the reality
facing most investigators. Studies in medicine and pub-
lic health are nowhere near identical in design, conduct
and population studied and, hence, there is no basis for
asserting parameter equality across these studies. This
fact is the rationale for random-effects models in meta-
analysis, which typically employ very simple models
for the PGD. When a new study is performed, how-
ever, data from m previous studies can be used to im-
prove the prior distribution for θ by using a hierarchi-
cally structured prior distribution, which in turn will
make the labwise coverage closer to nominal (as m in-
creases, particularly). This further strengthens the fre-
quentist appeal of Bayesian intervals.

Say that the study to be carried out has parameter-
data ensemble (D, θ) and is preceded by m earlier
studies with ensembles (D∗

1 , θ∗
1 ), . . . , (D∗

m, θ∗
m). If the

m + 1 ensembles are independent and identically dis-
tributed (i.e., each according to the PGD and the data
model), it makes sense to allow the interval estimator
for θ to depend on the earlier data as well as the current
data. The labwise coverage (1) then generalizes to

C(I,P ) = Pr{φ ∈ I (D;D∗)},(2)

where D∗ = (D∗
1 , . . . ,D∗

m) and the probability is taken
with respect to the joint distribution of the m + 1
parameter-data ensembles.

The standard Bayesian approach to borrowing
strength across studies involves a hierarchical prior.
That is, the prior � asserts that the m + 1 compo-
nents of (θ∗, θ) are independent and identically dis-
tributed given a further parameter vector λ. Then λ

itself is assigned a prior distribution. Application of
Bayes theorem to form the posterior distribution on
θ involves the likelihood contribution of D|θ , with
�(θ |D∗) = ∫

�(θ |λ)�(λ|D∗) dλ playing the role of

the prior. That is, the earlier studies inform the value of
λ, which in turn informs θ , in advance of observing D.
If the PGD is well approximated by the posited (θ |λ)

prior for some value of λ (say, λ0), and if the number
of previous studies m is large, then �(λ|D∗) should be
concentrated near λ0. Thus, the “effective prior” being
applied to θ will be close to the PGD, which should
result in labwise coverage for BPCIs that is close to
nominal.

The use of hierarchical priors to “borrow strength”
across studies and the evaluation of coverage along
the lines of (2) originates under the rubric of “em-
pirical Bayes” procedures (see, for instance, Morris,
1983), which typically involve a non-Bayesian approx-
imation to �(λ|D∗). With the advent of better algo-
rithms and machines for Bayesian computation, how-
ever, fully Bayesian “hierarchical modeling” is now
commonplace. It should also be noted that treating the
parameter values for the m+1 studies as exchangeable
as described is a modeling assumption that will some-
times be inappropriate. Notably, in a situation where
all studies focus on the same relationship at different
calendar times, the assumption may be dubious but
may be weakened to allow for trends. For instance, the
“Ty Cobb” example in Morris (1983) involves explicit
modeling of a time trend for parameter values corre-
sponding to consecutive calendar years. Analogously,
the assumption may be weakened to allow for group
effects; for example, the occupational-cancer example
in Greenland (1997) explicitly models changes in as-
sociation over cancer type and exposure type. In such
examples it is a residual component of the study para-
meters (after time or group effects are regressed out)
that is assumed exchangeable. The exchangeability in-
herent in assuming the original study parameters are
conditionally i.i.d. would be appropriate only if no im-
portant information is conveyed by the time order or
other known and varying characteristic of the parame-
ters being modeled as an ensemble.

To give a simple illustration, suppose again that
D|θ ∼ N(θ,σ 2) with σ 2 known. For computational
ease we first consider a simpler PGD than previ-
ously, namely, a N(λ0, τ

2) distribution. Consider a
partially omniscient investigator who knows the vari-
ance of the PGD, but not the mean, and in hierar-
chical fashion assigns the prior θ |λ ∼ N(λ, τ 2), λ ∼
N(δ,ω2). The marginal prior distribution is then θ ∼
N(δ, τ 2 + ω2). In the absence of previous studies,
or with an i.i.d. prior assuming independence of θ

and θ∗, the posterior on θ would arise from combin-
ing this prior with D, and the discrepancy between this
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prior and the PGD would induce some degree of non-
nominal labwise coverage. With a correct hierarchical
prior, however, the previous data will pull �(λ|D∗)
toward λ0, and hence pull �(θ |D∗) toward the PGD.

The present setting is sufficiently simple that the
LWC given in (2) can be computed directly (one-
dimensional numerical integration is required, but re-
peated simulation of data is not). As an example, sup-
pose σ = 1, and the PGD has λ0 = 3, τ = 1. Con-
sider four prior distributions for λ, with ω = 1, and
δ = 0,1,2,3. Note that these priors range from very
bad (mean of the PGD lies three prior standard devia-
tions away from the prior mean) to unrealistically good
(mean of the PGD coincides with the prior mean). Fig-
ure 1 illustrates the coverages (2) for the resulting 95%
BPCIs, as the number of previous studies m increases.
When m = 0 (thought of as either no previous studies,
or as an i.i.d. prior across studies), the coverage ranges
from less than 80% for the “worst” prior to somewhat
above 95% for the “best” prior. As Figure 1 illustrates,
however, for all the priors the coverage converges quite
quickly to the nominal 95% as m increases, to match
the OBPCI coverage. The figure also displays the in-
terval width as a function of m. In this simple setting
the width is governed by

Var(θ |D,D∗)
= σ 2τ 2(σ 2 + τ 2)−1

(3)
× [1 + σ 2ω2τ−2{(m + 1)ω2

+ σ 2 + τ 2}−1],
which depends on neither the observed data nor the hy-
perparameter δ. Note that by m = 30 most of the po-
tential reduction in width has been realized, that is, the
width is close to the OBPCI width which corresponds
to the m → ∞ limit of (3). While the convergence of
coverage and length to match the OBPCI represents a

FIG. 1. Labwise coverage and interval length for the nominal
95% BPCI, as a function of the number of previous studies m. Cov-
erage is given for four choices of hyperparameter δ, whereas the
length does not depend on δ. The dashed horizontal line in the sec-
ond panel corresponds to the length of the OBCPI.

well-known calibration feature of Bayes and empirical-
Bayes estimation, it is interesting to see how rapidly it
can proceed in simple settings.

Of course, the above illustration is very simplis-
tic, particularly as the variance components involved
in the prior are taken to be known, and only the
mean of the PGD must be learned via previous data.
At the other end of the spectrum, one anticipates
that complex PGDs, such as those involving a mix-
ture of near-null and important effects, will require
a larger number of studies before they are estimated
well. To investigate this, we reconsider the example
of the previous section, involving a mixture of near-
null and important effects. Now, however, we treat
(p, k) as unknown parameters with prior distributions
p ∼ Uniform(0,1) and k ∼ Uniform(4,20). As before,
the PGD is based on p = 0.85 and k = 8. Empirical re-
sults on coverage and average length appear in Table 2.
These are based on only 1000 simulated parameter-
data meta-ensembles (with each meta-ensemble en-
compassing m + 1 parameter-data ensembles), since
the posterior computation is burdensome. In particular,
a simple Markov chain Monte Carlo algorithm (with
random walk proposals) is applied to sample from
(p, k|D,D∗), while (θ |p,k,D,D∗) = (θ |p,k,D) can
be sampled from directly. Results for coverage are
quite appealing, in that the labwise coverage (2) mod-
estly exceeds nominal when the number of previous
studies m is small, presumably because �(θ |D∗) is
very flat, and also modestly exceeds nominal when m

is large, presumably because �(θ |D∗) is close to the
PGD. However, the very slow convergence of �(θ |D∗)
to the PGD is manifested by the average interval width.
Even with m = 100 previous studies, the average width
is still 44% larger than that of the OBCI. Nonetheless,
it is 23% narrower than the FCI, a worthwhile gain paid
for by a minor conservatism.

There are many examples of hierarchical model-
ing in the literature, where unknown means and vari-
ances are themselves modeled via prior distributions

TABLE 2
Empirical properties of interval estimators with a prior

distribution on (p, k) and m previous studies. Results based
on 1000 simulated parameter-data meta-ensembles

m Coverage % Avg. length

0 96.4 0.515
10 95.9 0.491
20 95.8 0.487

100 95.4 0.476
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or estimated via marginal likelihood. These methods
have performed quite well in large-scale simulations
and in applications that provide subsequent valida-
tion (Brown, 2008). Special methodology for inference
about the distribution of a sequence of effects has ex-
panded apace, driven by work on multiple comparisons
(and particularly false discovery rates) in genome stud-
ies (see, for instance, Efron et. al., 2001 and Newton
and Kendziorski, 2003).

We have emphasized that formal inclusion of pre-
vious studies on various phenomena within a research
team’s domain of study can have positive benefits for
subsequent studies within this domain, in terms of both
labwise coverage and average width. Consequently,
a formal scheme to obtain a prior which is close to
the PGD for a given domain seems desirable when
practical. In other circumstances, however, it should
be possible to informally use previous studies in con-
structing a reasonable prior distribution. As alluded to
earlier, for instance, in many sub-fields of epidemiol-
ogy investigators do have well-grounded notions con-
cerning the across-study prevalence of near-null effects
and magnitude of important effects. One anticipates
that a prior formed from direct elicitation of the inves-
tigators’ views should not deviate greatly from a prior
formed from formally updating a “flat” prior based on
previous studies. Regardless of which route is taken,
construction of a prior which is reasonably close to the
PGD for future studies in the domain seems to be a
realistic and worthwhile goal. With this encouraging
message in hand, we now turn to examining the use
of Bayesian interval estimators in nonidentified model
settings.

4. INTERVAL ESTIMATION IN
NONIDENTIFIED MODELS

The case for BPCIs versus FCIs seems mixed thus
far, particularly as FCIs are guaranteed to have correct
labwise coverage, without requiring any knowledge of
the PGD. But in a large class of statistical problems,
construction of valid FCIs is not possible. Recall that
in general a model is nonidentified if there are multiple
sets of parameter values giving rise to the same distri-
bution of observables. We have argued that this class
of models is the only realistic choice in most observa-
tional studies of human health and society (Greenland,
2005; Gustafson, 2006). This is particularly true in dis-
ciplines such as epidemiology where honest appraisal
of what modeling assumptions are justified, and what
limitations are inherent in the available data, ought to
lead investigators to nonidentified models routinely.

Identifiable models are desirable when they can sup-
ply root-n consistent estimators of target parameters, as
in classic industrial and laboratory experiments. With
study problems such as measurement error, missing
data, selection bias and unmeasured confounders, how-
ever, extremely strong assumptions may be required
to attain an identified model. Most statistical methods
assume absence of such problems, and the remainder
assume that the form of the problems is known up to
a few identifiable parameters. Either way, there is a
strong possibility that the resulting model is grossly
misspecified, with the resulting FCIs exhibiting exces-
sive precision and severe undercoverage for the infer-
ential target.

Put another way, using an overly simplified model
for the sake of identifiability results in root-n consis-
tent inference for the wrong parameter (e.g., an uncon-
ditional association, when the desired inferential target
is an association conditional on an unmeasured covari-
ate) (Greenland, 2003, 2005; Gustafson, 2006). If, as
usual, the parameter being estimated does not equal the
target parameter, the interval coverage for the latter will
tend to zero as the sample size increases.

Backing away from untenable assumptions may re-
sult in a model that is better specified (closer to re-
ality, or at least better representing the true inferen-
tial target), but which lacks identifiability. There is
extreme hesitance among statisticians regarding the
use of nonidentified models, because they do not give
rise to estimators with familiar statistical properties,
such as root-n shrinkage of interval estimators to some
value. But for Bayesian analysis there is no concep-
tual or computational difference in how inferences are
obtained from a nonidentified model compared to an
identified model. In fact, from a radical subjective
Bayesian perspective, identification is a matter of a de-
gree and always a function of the full prior (including
the prior for the data given the parameters).

In summary, in nonidentified problems there is no
route to FCIs achieving exactly nominal coverage for
any set of underlying parameter values. If in these set-
tings we simplify the model to the point of identifiabil-
ity, then FCIs are readily obtained via standard meth-
ods, but are likely to have grossly incorrect coverage
probabilities due to misspecification. Without simplifi-
cation, models are nonidentified, which precludes con-
struction of FCIs having the nominal coverage proba-
bility at every point in the parameter space.

Some frequentist approaches to problems of this sort
involve (i) specifying bounds (rather than prior distrib-
utions) on key parameters, and (ii) constructing interval
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estimators having at least nominal coverage at every
point in the parameter space, with the consequence that
the coverage will be higher than nominal at most pa-
rameter values. Some recent suggestions along these
lines include Imbens and Manski (2004), Vansteelandt
et al. (2006) and Zhang (2009); we illustrate such an
approach in the first of the two examples below. Con-
versely, the use of Bayesian or approximately Bayesian
inferences from nonidentified models was suggested at
least as far back as Leamer (1974), and has long been
discussed under special topics such as nonignorable
missingness (Little and Rubin, 2002). It has also at-
tracted considerable attention in recent literature; see,
for instance, Dendukuri and Joseph (2001); Green-
land (2003, 2005); Gustafson (2005b); Gustafson and
Greenland (2006a, 2006b); Hanson, Johnson and Gard-
ner (2003); Joseph, Gyorkos and Coupal (1995); Mc-
Candless, Gustafson and Levy (2007, 2008); Scharf-
stein, Daniels and Robins (2003).

For Bayesian procedures, the exact attainment of
nominal labwise coverage by an OBPCI still holds un-
der nonidentified models. The result in general (for any
kind of model) is known, but surprisingly unempha-
sized in the literature (see Rubin, 1984, and Rubin and
Schenker, 1986, for exceptions). Yet it seems to be a
useful reference point, as it provides a clear calibra-
tion, or “anchor,” for an interval estimation procedure
in a nonidentified model. On the other hand, we gen-
erally expect the choice of prior to be far more influ-
ential on the posterior distribution when the model is
nonidentified, so that lab-wise coverage may deviate
rapidly from nominal as the prior distribution deviates
from the PGD. We investigate this phenomenon in the
two examples below.

4.1 Example: Prevalence Survey
with Nonresponse

Vansteelandt et al. (2006) illustrate some frequen-
tist techniques for sensitivity analysis in nonidentified
models in the following setting. A binary outcome Y

may be observed (R = 1) or missing (R = 0, nonre-
sponse) for each study unit, so that the available data
consist of n i.i.d. realizations of (RY,R). The inferen-
tial target is the outcome prevalence, π = Pr(Y = 1),
while the missingness may be informative, that is, Y

and R may be associated. One parameterization for this
situation is p = Pr(R = 1), s = Pr(Y = 1|R = 1), and
γ = logit{Pr(Y = 1|R = 0)} − θ where θ = logit(s).
Then the inferential target is π = (1 − p) expit(θ +
γ ) + ps. This is a nonidentified inference problem be-
cause the likelihood for the observed data depends only

on p and s, while the inferential target also depends
on γ .

We consider the coverage and average length of three
interval estimators for π . The first is the naïve interval
estimator obtained by assuming γ = 0, that is, assum-
ing the missingness is completely at random, and esti-
mating π as the sample proportion of the observed out-
comes. The second is an interval estimator suggested
by Vansteelandt et al. (2006), designed to have at least
nominal frequentist coverage (approximately) under
every fixed value of γ in a specified interval I ; we take
I = (−2,2) in the present example. Let π̂l and π̂u be
the estimates of π when fixing the value of γ at the
lower and upper endpoints of I respectively. Then the
interval estimator with target level 1 − α is of the form
(π̂l −qα∗/2se(π̂l), π̂u +qα∗/2se(π̂u)), where α∗ is cho-
sen to make the minimum coverage as γ varies in I

equal to 1 − α (with the minimum attained at one of
the endpoints). We refer to this interval as a conserv-
ative frequentist confidence interval (CFCI). The rela-
tionship between α∗ and α depends on the unknown
parameters, hence, estimates are plugged in and the
coverage properties become approximate rather than
exact. Vansteelandt et al. (2006) call interval estimators
of this form “pointwise estimated uncertainty regions,”
since the coverage claim applies to the true value of the
target parameter. These authors also propose “weak”
and “strong” estimators with coverage claims pertain-
ing to the set of all target parameter values consistent
with the observed data law (i.e., interval estimation of
an interval). For more details see Vansteelandt et al.
(2006).

The third interval estimator is the equal-tailed Bayes-
ian credible interval arising from a uniform prior dis-
tribution for γ on the same interval I , along with
uniform(0,1) priors for both p and s. Under this spec-
ification the parameters p, s and γ remain independent
of one another a posteriori, with beta distributions for
p and s arising from binomial updating, and a uniform
posterior distribution on I for γ ; that is, no updating of
γ occurs.

Empirical labwise coverage and average length for
nominal 95% intervals are given in Table 3. The PGDs
used have normal distributions for β = logit(p) and
θ = logit(s) with μβ = logit 0.67, σβ = (logit 0.89 −
logit 0.67)/2, μθ = logit 0.5 and σθ = (logit 0.8 −
logit 0.5)/2. Thus, the PGD for (p, s) concentrates
around more typical-use scenarios than does the prior
for these parameters. The PGD is completed by γ ∼
uniform(J ) for various specifications of interval J.
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TABLE 3
Empirical coverage probabilities and average lengths for nominal
95% interval estimators of a prevalence π . Results are given for
naïve estimator, the CFCI and the BPI. For each choice of PGD
(i.e., choice of interval J ), results are based on 10,000 simulated

parameter-data ensembles with a sample size of n = 500.
Simulation standard errors for coverages are 0.5% or less. Both

the CFCI and the BPI assume an interval range I = (−2,2) for γ

J in PGD: Naïve CFCI Bayes

J = (−2,2) 42% 99% 95%
J = (−3,3) 30% 93% 80%
J = (−1,1) 67% 100% 100%
J = (−1,3) 40% 95% 84%
J = (2,2) 9% 95% 71%
Average length 0.11 0.33 0.28

Note that one specification is the single-point inter-
val J = [2,2], which corresponds to fixing γ at the
endpoint of I , and hence corresponds to a partially
frequentist evaluation of coverage. Note also that the
average interval lengths do not depend on the specifi-
cation of J for this problem, since the distribution of
the observed data (under the joint distribution of pa-
rameters and data) does not depend on J . Thus, the
average lengths of 0.11 for the naïve interval, 0.33 for
the CFCI, and 0.28 for the BPCI apply for any J .

Table 3 verifies that when J in the PGD and I in
the prior coincide, the Bayesian intervals have LWC
within simulation error of nominal, despite the dis-
crepancy between the uniform priors for (p, s) and the
logit-normal PGDs for (p, s). In contrast, the CFCI ap-
proach is indeed quite conservative when I and J coin-
cide, with labwise coverage of 99% and average length
17% greater than the BPCI. As expected, the labwise
coverage of both the CFCI and the BPCI is highly af-
fected by any discrepancy between I and J . As adver-
tised, the CFCI achieves conservative coverage in all
cases, except for a slight dip below nominal in the case
that J is wider than (and contains) I . Note, in particu-
lar, that the CFCI achieves nominal coverage when γ

is fixed at an endpoint of I, whereas the BPCI coverage
drops to 71% in this setting.

The differences between labwise coverage of BPCIs
and CFCIs are somewhat hidden in Table 3, since nom-
inal 95% intervals do not have much “room” to obtain
higher than nominal coverage. Thus, we also report re-
sults for nominal 80% intervals (Table 4). Admittedly,
such intervals are seldom reported in practice (though
see Greenland et al., 2000, for an exception), but they
are useful for gauging the extent to which a given in-
terval estimator is conservative. The average lengths of

TABLE 4
Empirical coverage probabilities and average lengths for nominal
80% interval estimators of a prevalence π . Both the CFCI and the
BPI assume an interval range I = (−2,2) for γ . The table entries

are as per Table 2

J in PGD: Naïve CFCI Bayes

(−2,2) 27% 96% 80%
(−3,3) 19% 83% 59%
(−1,1) 47% 100% 98%
(−1,3) 26% 87% 69%
(2,2) 4% 80% 31%
Average length 0.069 0.29 0.22

these intervals are 0.069 (naïve), 0.29 (CFCI) and 0.22
(BPCI). When I and J match, we now see very sub-
stantial over-coverage (96%) for the CFCI, with an av-
erage width 30% greater than for the OBPCI. We also
see more clearly the over-coverage that results for both
CFCI and BPCI when J is narrower than I .

The BPCI and the CFCI are constructed to satisfy
different criteria, and we are not attempting to argue
than one is better than the other. In particular, note the
tradeoff exhibited in Tables 3 and 4. If the investiga-
tor has an interval of values I in mind for γ , then the
CFCI has a conservatism which may be appealing: at
least nominal coverage can be obtained with respect
to any averaging across values in I , including the se-
lection of single points. On the other-hand, if labwise
coverage with respect to the Uniform(I ) distribution
is at issue, then the BPCI will be shorter on average,
and have correct coverage. We do emphasize that this
correct coverage constitutes a calibration property of
the BPCI which the CFCI does not possess. That is,
without doing simulation, we do not know to what ex-
tent the CFCI based on interval I will exhibit higher
than nominal labwise coverage when the PGD is based
on I . But we do know automatically that the BPCI us-
ing I in the prior will exhibit correct labwise cover-
age when the PGD is based on I . Thus, the BPCI is
anchored via the investigator’s knowledge that exactly
nominal coverage would be obtained in a sequence of
studies with PGD equal to the prior, and presumably at
least nominal coverage would eventually be attained in
a sequence of studies in which the support of the prior
contains the PGD. In this sense, posterior coverage is
conservative precisely when the prior is conservative
relative to the PGD. The CFCI labwise coverage has a
more murky connection to the PGD, which is the price
it pays for obtaining correct frequentist coverage at the
endpoints of the prior interval I .
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4.2 Example: Case-Control Study
with Misclassification

Consider an unmatched case-control study of the
association of a disease indicator Z and a binary
exposure indicator X, with X subject to indepen-
dent nondifferential misclassification. Let r0 = Pr(X =
1|Z = 0) and r1 = Pr(X = 1|Z = 1) be the preva-
lences of actual exposure among nondiseased and
diseased source population members, and let SN =
Pr(X∗ = 1|X = 1) and SP = Pr(X∗ = 0|X = 0) be
the sensitivity and specificity of the exposure classi-
fication in the study. The numbers apparently exposed
among the n0 nondiseased controls and n1 diseased
cases in the study are modeled as Yi ∼ Bin(ni, θi) for
i = 0 and i = 1 respectively, with θi = riSN + (1 −
ri)(1 − SP) = Pr(X∗ = 1|Z = i). If all four parame-
ters (r0, r1,SN,SP) are unknown, then this model is
not identified by the observed counts (y1, y0, n1 − y1,

n0 − y0). Bayesian inference under this model is con-
sidered by Gustafson, Le and Saskin (2001), Gustafson
(2003), Greenland (2005), Chu et al. (2006) and
Gustafson and Greenland (2006a), among others.

We consider prior distributions and PGDs of the fol-
lowing form: A bivariate normal distribution for the
logit prevalences (logit r0, logit r1), with correlation ρ

and identical marginals (mean μ and variance τ 2).
The log-odds ratio, β = logit(r1) − logit(r0), is then
distributed as N{0, (1 − ρ)2τ 2}. The correlation is es-
sential to reflect the fact that information about the ex-
posure prevalence in one group would alter bets about
the prevalence in the other group, due to prior infor-
mation about β (Greenland, 2001). SN and SP are
here taken as independent of the exposure prevalences
and each other, however, with SN ∼ Beta(aN, bN) and
SP ∼ Beta(aP , bP ); more realistic priors might allow
dependent SN and SP (Chu et al., 2006; Greenland
and Lash, 2008), or one could instead reparameterize
the problem to make prior independence reasonable
(Greenland, 2009).

Bayesian computation is readily implemented via
the efficient algorithm of Gustafson, Le and Saskin
(2001). While this algorithm takes advantage of struc-
ture imbued by assigning uniform priors on preva-
lences, we can use importance sampling to adapt the
algorithm output to the present prior specification. As
an example, m = 10,000 parameter-data ensembles
with n1 = n2 = 500 are drawn from the PGD based
on μ = −2.3, τ = 1.17, ρ = 0.76, aN = aP = 18,
aN = aP = 4. These choices produce a 95% logit-
symmetric interval for each ri of (0.01,0.50) and a

95% log-symmetric interval for eβ of (0.2,5.0). Also,
the modes of the SN and SP distributions are 0.85, with
95% logit-symmetric intervals of (0.637,0.946).

For each data set, seven interval estimates for β are
constructed:

(i) the standard FCI assuming no misclassification;
(ii) an FCI derived by taking SN = 0.85 and

SP = 0.85 as known values;
(iii) the omniscient BPCI arising when the prior dis-

tribution coincides with the PGD;

Nonomniscient BPCIs with priors based on correct
specification of (μ, τ, ρ) but:

(iv) aN = aP = 9.5, bN = bP = 2.5 (keeping the
prior modes on SN and SP at 0.85 but making the dis-
tribution more diffuse);

(v) aN = aP = 26.5, bN = bP = 5.5 (modes at
0.85 but overly concentrated);

(vi) aN = aP = 23.5, bN = bP = 8.5 (still overly
concentrated and modes shifted down to 0.75);

(vii) aN = aP = 28.5, bN = bP = 3.5 (still overly
concentrated and modes shifted up to 0.95).

Empirical properties of the interval estimators (at the
nominal 95% level) are described in Table 5.

In the previous example, the joint posterior density
was a product of the marginal posterior density for
the two parameters appearing in the likelihood func-
tion and the marginal posterior density (equal to the
prior density) for the one parameter not in the like-
lihood. This factorization simplified the mathematics
of how the prior influences the posterior distribution
of the target parameter. In the present example, how-
ever, the structure of the problem is more nuanced. As
emphasized by Gustafson, Le and Saskin (2001), the
support of the two parameters not in the likelihood,

TABLE 5
Empirical labwise properties of nominal 95% interval estimators
for a log odds ratio β based on 10,000 simulated parameter-data
ensembles. The simulation standard errors for coverage are less
than 0.5%. Results for estimator (ii) are based only on the 81%

of ensembles for which the method works

Coverage Avg. length

(i)-FCI 44% 0.60
(ii)-FCI 81% 2.20
(iii)-OBPI 95% 2.02
(iv)-NBPI 95% 2.12
(v)-NBPI 94% 1.94
(vi)-NBPI 95% 2.32
(vii)-NBPI 87% 1.56
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(SN,SP), depends on the values of the two parameters
in the likelihood, (θ0, θ1), since by construction 1 − SP
and SN must straddle both θi values. To some extent
then, the posterior distribution of (SN,SP) can depend
on the data, even though these parameters do not ap-
pear in the likelihood function. Gustafson (2005a) dis-
cusses such indirect learning about parameters in non-
identified models in more general terms.

Given that the data can provide some information
about (SN,SP), one might anticipate that the NBPCI
coverage would be less sensitive to the choice of
prior than in a situation without any indirect learning.
The results in Table 5 bear this out, with the cover-
age of nominal 95% NBPIs ranging from 87% to 95%
across the priors considered. In accord with theory, the
OBPCI coverage is within simulation error of nomi-
nal, which can be regarded as a check that our scheme
for posterior computation is working adequately (see
Cook, Gelman and Rubin, 2006, for elaboration).

While the link between (SN,SP) and (θ0, θ1) is ex-
ploited to advantage under a Bayesian analysis, it is
problematic for the FCI based on taking SN and SP as
fixed values less than one. In particular, the FCI is not
defined for data sets with one or both θ̂i falling out-
side the interval (1 − SP,SN). Moreover, this can hap-
pen via sampling variation even if the postulated val-
ues of (SN,SP) happen to be correct. Tu, Litvak and
Pagano (1994, 1995) discussed this problem, and of-
fered some mitigating strategies when exposure preva-
lence (say, in a single population) is the inferential tar-
get of interest. Such strategies yield interval estimates
for prevalence with an endpoint at zero or one, which
limits their utility for odds-ratio inference. In our case,
the results for estimator (ii) in Table 5 are based on only
the 81% of sampled parameter-data ensembles not giv-
ing rise to the aforementioned problem. Perversely, this
method is failing in situations where the data are most

suggestive that the guessed values of (SN,SP) might
be wrong. Put another way, the FCI fails on data sets
where Bayesian intervals may do particularly well via
more prior-to-posterior updating of (SN,SP).

As a final point concerning this example, we recog-
nize that it is quite reasonable to also study the fre-
quentist properties of the Bayesian interval estimator.
This can become quite computationally burdensome,
however, if evaluation of frequentist coverage at many
points in the parameter space is desired: each point ne-
cessitates simulation of many data sets, and each data
set may require many MCMC iterations in order to
compute the interval estimate. Rather than pursuing
this course, we note that the simulation of parameter-
data ensembles as used to evaluate labwise coverage
also yields information about frequentist coverage.

Thus, say that the frequentist coverage for parameter
vector θ∗ is of interest. If m parameter-data ensembles
are simulated, then we might consider the proportion α

of ensembles for which θ is closest to θ∗ in some sense.
Then the empirical coverage for this subset of ensem-
bles approximates the frequentist coverage at θ∗, with
the approximation improving as α → 0 and mα → ∞.
Admittedly, it may be computationally prohibitive to
make the approximation error very small, so we re-
fer to the reported coverage as “near-frequentist cover-
age” around θ∗. Notwithstanding its approximate na-
ture, this can still reveal trends in frequentist coverage
across the parameter space.

To apply this to the present example, we extend the
simulation size to m = 100,000 parameter-data en-
sembles, and set α = 0.01. Various points θ∗ in the
parameter space are considered, by fixing r0 = 0.10,
r1 = 0.15, and then setting SN and SP at values corre-
sponding to specific prior quantiles. Thus, we investi-
gate how the frequentist coverage depends on the com-
patibility between the prior and the true SN and SP val-
ues. Results appear in Table 6. We see under-coverage

TABLE 6
Near-frequentist coverage in the case-control study with misclassification example

SP∗ = 0.63 SP∗ = 0.77 SP∗ = 0.83 SP∗ = 0.88 SP∗ = 0.95

SN∗ = 0.63 90% 95% 97% 97% 98%
SN∗ = 0.77 92% 98% 99% 99% 99%
SN∗ = 0.83 93% 99% 99% 99% 99%
SN∗ = 0.88 92% 99% 99% 99% 99%
SN∗ = 0.95 93% 98% 99% 99% 98%

NOTE: Evaluation is for parameter values θ∗ given by r∗ = (0.10,0.15) and the indicated values of (SN∗,SP∗), using α = 0.01 of the
m = 100,000 simulated parameter-data ensembles in each instance. The chosen values for (SN∗,SP∗) correspond to 2.5th, 25th, 50th, 75th
and 97.5th percentiles of the prior distribution.
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for SP values which are low in relation to the prior, and
over-coverage when SP or SN is high in relation to the
prior. Generally, however, the variation in frequentist
coverage as SN and SP values move around the region
supported by the prior distribution seems quite modest.

5. RECOMMENDATIONS

The above arguments and illustrations are intended
to summarize and explain in simple form several prac-
tical recommendations that we and others have reached
in the course of numerous theoretical studies, simula-
tions and real applications. Like others before us, we
first recommend forming prior distributions and then
reporting Bayesian interval estimates for parameters of
interest, particularly in nonidentified model contexts.
Based on our investigations, however, we further sug-
gest that a special form of sensitivity analysis be car-
ried out as well.

Sensitivity analysis is conducted in much applied
work; typically this involves reporting multiple in-
ferences corresponding to multiple models and (for
Bayesians) multiple prior distributions. While these
analyses are often better than standard reports of re-
sults from just one model, the resulting collection of
interval estimates leads to problems of summarization
and interpretation of the collection. Thus, we recom-
mend instead that one start with a single, relatively in-
clusive “covering” prior distribution that subsumes the
diversity of opinions and possibilities for the parame-
ters. Then, as a safeguard, we would evaluate the lab-
wise coverage of Bayesian intervals arising from this
prior, for a variety of PGDs differing somewhat from
the prior. If the coverage does not fall much below
nominal as the PGD deviates from the prior, then we
may argue that our statistical procedure is probably (in
the subjective judgmental sense) at least roughly cali-
brated, in the across-study sense of labwise coverage.
Otherwise, we may consider ourselves alerted to a po-
tentially serious miscalibration.

Table 3, in the context of prevalence surveys with
nonresponse, provides one example of studying the
sensitivity of labwise coverage as the PGD deviates
from the prior distribution. We close with a further
example from a specific and well-developed scientific
context.

5.1 Example: Silica Exposure and Lung Cancer

We revisit the investigation of Steenland and Green-
land (2004) on the relationship of silica exposure to
lung cancer. In a cohort of 4626 industrial sand work-
ers with high silica exposure, 109 lung-cancer deaths

were observed, compared to an expected count of 68.1
under the null hypothesis of no association between sil-
ica exposure and lung cancer. This comparison of the
cohort to US population data is adjusted for age, race,
calendar time and sex. It is not adjusted for smoking
status though, because smoking histories were not col-
lected for this cohort.

Steenland and Greenland used prior information de-
rived from other studies in order to remedy this sit-
uation using both Monte Carlo sensitivity analysis
(MCSA) and Bayesian analysis. To describe this analy-
sis, let β1 be the log relative risk of lung-cancer death
for silica exposure versus no exposure, within strata de-
fined by smoking behavior, and let β2 and β3 be log
relative risks for current smokers compared to never
smokers, and former smokers compared to never smok-
ers. Assuming a log-linear model without products be-
tween silica exposure and smoking effects, the ob-
served death count can be regarded as a Poisson re-
alization with log-mean λ, where

λ = c + β1 + log(p1 + p2e
β2 + p3e

β3)

− log(q1 + q2e
β2 + q3e

β3).

Here c is a known offset obtained from population
data (c = log 68.1 in the present example), while
(p1,p2,p3) and (q1, q2, q3) are probability distribu-
tions over (never, current, former) smokers, in the ex-
posed and unexposed populations respectively. This is
a highly nonidentified model, with nine unknown pa-
rameters involved in the mean function. Identification
of the target parameter β1 can only be obtained via a
strong assumption, for example, that smoking behav-
ior and occupational silica exposure are unassociated,
that is, (p1,p2,p3) = (q1, q2, q3), which is known to
be false. Thus, a far more principled analysis combines
the Poisson model for data along with prior distribu-
tions for (β1, β2, β3), (p1,p2,p3) and (q1, q2, q3).

Based on data from a large cohort study of smok-
ing and lung cancer, Steenland and Greenland took
β2 ∼ N(log(23.6),0.0942) and independently β3 ∼
N(log(8.7),0.0942). They used smoking data on a
small sample of 199 workers to inform the prior p ∼
Dirichlet(199 × (0.26,0.40,0.34)), and used a large
national survey to inform the prior on q . This survey
involved 56,000 subjects, but to account for various un-
certainties it was discounted by a factor of four to yield
the prior q ∼ Dirichlet(14,000 × (0.34,0.35,0.31)).
Steenland and Greenland used a very diffuse prior
on β1. This is not appropriate for investigating labwise
coverage, however, as some data sets simulated from
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parameters generated under this prior will have implau-
sibly low (i.e., zero) death counts, while others will
have implausibly large counts. Thus, for present pur-
poses we take the prior β1 ∼ N [0, {ln(5)/2}2], which
puts most of its weight on relative risks between 1/5
and 5. This completes specification of the prior distri-
bution.

Bayesian computation for the present situation is
readily implemented in a two-stage manner. First, an
approximate posterior sample is simulated by drawing
λ values “as if” λ had a flat prior, and independently
drawing (β2, β3,p1,p2,p3, q1, q2, q3) values from
their prior distribution. Second, this posterior sam-
ple is “made exact” via importance sampling, which
recognizes the actual prior distribution in the (λ,β2,

β3,p1,p2,p3, q1, q2, q3) parameterization. Note that
omitting the second step corresponds to the MCSA in
Steenland and Greenland. In the present example this
second step has negligible impact, though in general
importance sampling can be used to convert MCSA
inferences to fully Bayesian inferences in situations
where the two do not agree so closely.

Applied to the cohort data, a 95% equal-tailed BPCI
for exp(β1) is (1.12,1.73), which is very similar to
the interval reported by Steenland and Greenland using
their slightly different prior. For comparison, the analy-
sis which ignores the confounding effect of smoking
gives the interval (1.31,1.91). This result is based on
the same prior for β1 as above, with the presumption
that (p1,p2,p3) = (q1, q2, q3). Thus, the impact of ac-
knowledging smoking as a confounder is to push the
interval estimate for β1 toward (but not across) the null,
and to widen the interval by about 15%. This widen-
ing is somewhat modest, since there is relatively good
prior data about smoking effects and smoking behavior
in the two populations and the association of smoking
with silica exposure in these data appears to be small.

We know that BPCIs based on this prior will have
correct labwise coverage for a PGD equal to the prior.
We wish to see how far the coverage deviates from
nominal as the PGD deviates from the prior. We thus
examine eight PGDs, starting with the prior and con-
sidering all possible combinations of:

(i) shifting the prior mean for β2 left or right by
one prior standard deviation;

(ii) shifting the prior mean for β3 left or right by
one prior standard deviation;

(iii) discounting the prior on (p1,p2,p3) by a factor
of two or (further) discounting the prior on (q1, q2, q3)

by a factor of two.

TABLE 7
Labwise coverage of 95% Bayesian intervals for β1 as the PGD
varies, in the silica and lung cancer example. The first row gives
coverage when the PGD equals the prior. The remaining eight
rows give coverage when the PGD is an alteration of the prior.

The three-character code describes the alteration. The first
character (+ or −) indicates whether the mean of β2 is increased

or decreased, the second character does the same for the mean
of β3, and the third character (p or q) indicates whether the prior
on p or the prior on q is discounted. Results are based on 100,000
realizations, giving simulation error for coverage less than 0.1%

PGD Coverage %

Prior 94.8
− − p 92.6
− − q 94.8
− + p 93.1
− + q 95.2
+ − p 92.0
+ − q 94.5
+ + p 92.4
+ + q 94.8

Table 7 gives coverage results using 95% equal-
tailed BPIs for β1. When the PGD equals the prior, the
labwise coverage is within simulation error of nominal,
as theory dictates. As the model is highly nonidentified,
we are not surprised to see lower than nominal cover-
age for most of the PGDs considered. We are pleas-
antly surprised, however, to see that the loss of cover-
age is very mild. This adds credence to the Bayesian
results given by Steenland and Greenland (2004).

Based on examples as well as theoretical and sim-
ulation studies, we recommend that PGD sensitivity
analysis be used when inference based on nonidentified
models is required. No important sensitivity was seen
in the preceding example. Nonetheless, high sensitivity
to plausible PGD specifications would have suggested
that the full model (including those for the prior dis-
tribution and data-generating mechanism) had inade-
quately captured posterior uncertainty given the actual
prior uncertainty of the analysts, and that interval esti-
mates from the model could be seriously miscalibrated.
Hence, as with failed regression diagnostics, we would
find ourselves advised to revise our model rather than
rely on it.

Of course, this advice raises classic issues of the im-
pact of post-data model revision based on diagnostics,
long recognized as a challenge for applied Bayesians
as well as for applied frequentists (Box, 1980). We thus
regard these issues as an important direction for further
research in our proposed approach.
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