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Using GWAS Data to Identify Copy
Number Variants Contributing to Common
Complex Diseases
Sebastian Zöllner and Tanya M. Teslovich

Abstract. Copy number variants (CNVs) account for more polymorphic
base pairs in the human genome than do single nucleotide polymor-
phisms (SNPs). CNVs encompass genes as well as noncoding DNA, mak-
ing these polymorphisms good candidates for functional variation. Conse-
quently, most modern genome-wide association studies test CNVs along
with SNPs, after inferring copy number status from the data generated by
high-throughput genotyping platforms.

Here we give an overview of CNV genomics in humans, highlighting pat-
terns that inform methods for identifying CNVs. We describe how genotyp-
ing signals are used to identify CNVs and provide an overview of existing
statistical models and methods used to infer location and carrier status from
such data, especially the most commonly used methods exploring hybridiza-
tion intensity. We compare the power of such methods with the alternative
method of using tag SNPs to identify CNV carriers. As such methods are
only powerful when applied to common CNVs, we describe two alternative
approaches that can be informative for identifying rare CNVs contributing to
disease risk. We focus particularly on methods identifying de novo CNVs and
show that such methods can be more powerful than case-control designs. Fi-
nally we present some recommendations for identifying CNVs contributing
to common complex disorders.

Key words and phrases: Copy number variation, genome-wide association
study, SNP, hidden Markov model, linkage disequilibrium.

BACKGROUND

Genome-wide association studies (GWAS) have suc-
cessfully identified many loci contributing to common
complex diseases, and additional variants continue to
be identified as sample sizes increase. However, nearly
all common single nucleotide polymorphisms (SNPs)
associated with complex diseases have small effect
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sizes and explain only a small fraction of the heritabil-
ity of disease [30]. Hence, it is prudent to consider
other types of heritable variation that may account for
this unexplained heritability. One promising candidate
is copy number variation (CNV).

CNVs are segments of the genome that exist in
different copy numbers in the population. Tradition-
ally, CNVs are defined to be at least 1 kb long [42],
but as the ability to detect these polymorphisms im-
proves, shorter segments are also considered. About
90% of CNVs have two allelic states [35]. By com-
parison to the NCBI human reference sequence or to
a study-specific reference sample, such biallelic CNVs
are classified as deletions if the alternate allele carries
fewer copies of the variable sequence than the refer-
ence, and insertions (or duplications) when the alter-
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nate allele contains more copies than the reference. The
remaining 10% of loci have copy number states not
compatible with a two allelic system, many of which
may be explained by multiple overlapping CNVs [35].

Some publications refer to CNVs with apprecia-
ble minor allele frequency as copy number poly-
morphisms (CNPs), and genomic regions containing
multiple overlapping CNVs are called CNV regions
(CNVRs). Here, we will use the term CNV for all copy
number polymorphisms. The cancer community has
introduced the term copy number alteration (CNA) for
somatic copy number variation; in the following we
focus on germline CNVs.

CNVs are distributed ubiquitously throughout the
genome, with a 25-fold enrichment near segmental du-
plications [20, 46]. The reported proportion of the hu-
man genome covered by CNVs varies between 16%
[20] and 5% [35]. Such discrepancies arise because
most CNVs are rare. About 40% of the covered region
described by Itsara et al. [20] shows divergent copy
number in only one out of ∼2000 individuals; CNVs
with minor allele frequency (MAF) > 1% cover less
than 1% of the human genome. Therefore, the number
of detected CNVs will depend strongly on the sample
size of the study; larger samples are likely to detect
much larger numbers of CNVs. Moreover, CNV allele
frequencies correlate with CNV location; CNVs near
segmental duplications have higher average population
frequency than do CNVs at random loci in the genome
[20]. Taken together, these results suggest that more
genetic variation is attributable to CNVs than to SNPs
[45]. While several studies have shown that CNVs en-
compass genes less often than would be expected by
chance [5, 20], up to ∼2900 genes overlap known
CNVs [42]. Several CNVs have been shown to be as-
sociated with common disorders (reviewed below), but
generally, carriers of genes with aberrant copy number
do not show noticeable clinical phenotypes. The phe-
notypic impact of CNVs near or within genes is gener-
ally unclear.

It is of great interest to understand the contribu-
tion of copy number variation to phenotypic diver-
sity in humans, and especially to the risk of common
complex disorders. Several specialized methods, such
as BAC Array Comparative Genomic Hybridization
(CGH) [49], Representational Oligonucleotide Mi-
croarray Analysis (ROMA) [29] and Agilent CGH [3]
have been developed to detect CNVs. It is also possible
to infer CNVs using data from genome-wide genotyp-
ing arrays. Such approaches are inexpensive and con-
venient, since vast amounts of data generated during

GWAS are already available for analysis. However, the
optimal strategy for evaluating such data is still an open
question.

Below, we will explore existing methods and data
that may inform such strategies. After a brief charac-
terization of genomic patterns of copy number vari-
ation and reported associations between CNVs and
common disorders, we will discuss the signals gen-
erated by genotyping arrays that can be used to iden-
tify CNVs, the methods that exploit one or more of
these signals, and possible pitfalls of these methods.
Based on the genomic patterns of CNVs and the per-
formance of CNV detection methods, we will discuss
several strategies to identify CNVs contributing to dis-
ease risk, and provide approximate power calculations.
Throughout the paper, we will focus on challenges of
analyzing genotype data and hybridization data such as
generated from modern genotyping platforms.

GENOMICS OF CNVS

In the following, we provide an overview of the ge-
nomic characteristics of CNVs cataloged thus far. To
illustrate several of the described patterns, we summa-
rize data deposited in the Database of Genomic Vari-
ants (DGV) [19], which describes >20,000 structural
variants identified in more than thirty independent
studies. However, some of the reported data sets may
be conflicting, as many early studies had high false
positive and/or false negative rates, as well as lim-
ited ability to accurately determine the boundaries of
CNVs. As technology improves, patterns are becom-
ing more reliable.

Studies consistently report that CNVs are distributed
ubiquitously throughout the genome [5, 24, 42, 43]
while being 25-fold enriched in regions of segmental
duplication [20]. Approximately two-thirds of CNVs
in the DGV are deletions, and most studies included
in the DGV report more deletions than duplications. It
is not clear whether this difference reflects an actual
excess of deletion polymorphisms, or whether detec-
tion methods have more power to identify deletions.
Such a bias is plausible, as most CNV detection meth-
ods rely on hybridization intensities, and the relative
difference in intensity due to a deletion is larger than
that corresponding to a duplication. However, among
CNVs > 100 kb in length, duplications are more fre-
quent than deletions [20].

The DGV contains CNVs as large as 8 Mb, with a
median size of 17.6 kb. The inferred length of a de-
tected CNV is dependent on aspects of the underlying
technology, such as probe spacing, probe length and
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FIG. 1. Median CNV length for 23 studies in the Database of
Genomic Variants. After excluding polymorphisms <1 kb in length,
we selected all studies with at least 50 polymorphisms remaining,
and median CNV length for each study is represented by one bar.
Bars are color-coded to indicate the method used to identify CNVs,
as indicated by the label on the right.

signal resolution. To illustrate the differences between
technologies, we calculated the median CNV length for
all studies collected in the DGV (Figure 1), excluding
variants shorter than 1 kb. The median length of de-
tected CNVs varies a great deal across studies, and the
distribution of CNV length suggests that BAC arrays
and ROMA tend to overestimate CNV size. Among
studies that report at least 50 CNVs, the longest ob-
served median CNV length is 225 kb [43], while the
shortest observed median CNV length is 2.5 kb [26].
The median length of a study is clearly dependent on
its method of CNV detection. Agilent CGH methods,
sequencing and methods based on Mendelian incon-
sistencies estimate a median length of ∼10 kb, while
methods based on BAC CGH and ROMA suggest
a median length of ∼175 kb. Interestingly, methods
based on SNP chips generate widely varying estimates,
ranging from 7.5 kb to 200 kb. Some of this variability
seems to be explained by differences between the geno-
typing platforms and the resolution of the algorithms
used to analyze the data. As more recent experimental
methods yield much shorter estimates of median CNV
length (even though they should be well powered to de-
tect longer CNVs), it seems likely that the CNV lengths
reported from BAC CGH arrays and some genotyping
arrays are overestimates [56].

Origin of CNVs

While CNVs are ubiquitous throughout the genome,
we have only limited understanding of their mutation

process. The high frequency of CNVs in regions of seg-
mental duplication suggests that these CNVs are gen-
erated by nonallelic homologous recombination [54].
By careful analysis of the flanking sequence of 98 in-
sertions and 129 deletions, Kidd et al. [24] determined
that about 40% of those CNVs were caused by nonal-
lelic homologous recombination. Of the remaining in-
sertions, ∼30% were caused by nonhomologous end
joining, ∼20% by retrotransposition and ∼10% by ex-
pansion or contraction of a variable number of tandem
repeats. Among deletions, ∼45% were caused by non-
homologous end joining and ∼15% by retrotransposi-
tion, while a variable number of tandem repeat regions
did not contribute. These distributions depended on the
size of the CNV; the proportion of CNVs formed by
nonallelic homologous recombination is larger among
CNVs > 5 kb. In a recent study, Arlt et al. [1] subjected
human fibroblasts to mitotic replication stress, which
resulted in numerous copy number changes. The au-
thors observed that most breakpoint junctions showed
micro-homologies, suggesting that the copy number
changes were generated by nonhomologous end join-
ing. It is not yet clear if the same processes generate
naturally occurring CNVs. Further work is necessary to
estimate the rates of these events and to understand the
contribution of surrounding genetic motifs. Such un-
derstanding may allow us to predict mutation hotspots
for CNV and to estimate mutation rates at these loca-
tions. Based on these parameters, we can design meth-
ods to infer the location of CNVs and hotspots of de
novo mutations. In fact, several studies have used fea-
tures of genomic DNA such as segmental duplications
to predict the locations of CNVs [47, 48].

Current estimates of the rates of de novo CNV muta-
tions derive from family studies. CNV status is inferred
for members of a nuclear family, and CNVs observed
in the offspring, but not in the parents, are assumed to
be de novo variants. As both false positives in the off-
spring and false negatives in the parents result in false
inference of a de novo event, it seems likely that the
high rates of de novo events reported in some publica-
tions may be the result of cell line artifacts or affected
by the high error rates of the applied CNV detection
methods. In a recent study that carefully controlled for
such errors, McCarroll et al. [35] observed 10 de novo
events in 60 families, suggesting de novo mutation
rates of ∼0.08 per generation per genome. When as-
sessing de novo CNV mutation directly by sperm typ-
ing, Turner et al. [53] estimated rates between 5 ·10−5

and 9 · 10−7 per genome per generation at four likely
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CNV mutation hotspots selected for their high rates of
nonallelic homologous recombination.

Rates of de novo CNV mutation also are reflected
in the extent of linkage disequilibrium (LD) between
CNVs and flanking markers. If a CNV arises once dur-
ing evolution, the LD pattern observed between the
CNV and nearby SNPs is expected to resemble the pat-
tern of LD observed between pairs of SNPs. On the
other hand, if multiple mutational events generate ap-
parently identical CNVs, and each mutation event oc-
curs on a different haplotype background, we expect to
observe little or no LD between the CNV and adjacent
markers. Several studies have suggested that the extent
of LD between CNVs and markers is comparable to
the LD between pairs of SNPs [15, 35], implying a low
de novo mutation rate of CNVs. CNVs in segmental
duplications are reported to have less LD with nearby
SNPs [28]. It is unclear whether this reduced LD is
truly caused by a higher rate of CNV mutation in these
regions, or whether this observation is an artifact of
reduced SNP coverage. As SNP density in segmental
duplications is generally lower than in other genomic
regions due to the difficulty of designing high-quality
genotyping assays for duplicated SNPs [28], marker
panels are less likely to contain markers with the allele
frequency necessary to obtain high values of r2. Nev-
ertheless, coalescent simulations show that even rela-
tively high mutation rates of 10−5 are consistent with
high levels of linkage disequilibrium [61].

Frequency Spectrum and Signals of Selection

Mutation rates of some CNVs are several orders of
magnitude higher than mutation rates of SNPs [36];
therefore, it is remarkable that CNVs show an excess
of rare variants, compared to population genetic pre-
dictions [5]. Recently, Itsara et al. [20] reported that in
a sample of 2500 individuals, 35% of all copy num-
ber variable sequence was copy number variable in a
single individual. Less than 1% of CNVs had MAF >

1%. McCarroll et al. [35] reported after analyzing the
HapMap sample that only 38% of detected CNVs had
MAF > 1%. The same paper [35] emphasizes that
8% of CNVs responsible for interindividual variabil-
ity have MAF ≤ 1%. This estimate is again consis-
tent with an excess of rare variants; population genetics
models of constant population size predict that 2% of
mean difference between individuals will be generated
by polymorphisms with MAF ≤ 1%.

Nevertheless, CNVs with appreciable MAF occur
worldwide. Jakobsson et al. [21] explored the distri-
bution of 396 nonsingleton CNV loci inferred in a

worldwide sample of 405 individuals from 29 popu-
lations, observing that 69% of the detected CNVs oc-
curred in more than one continental group. Using the
CNVs to form a population history, they recaptured the
same evolutionary history that is inferred from SNP
data. In comparison, Kidd et al. [24] reported that of
1695 CNVs detected in a panel of four Yoruba, two
CEPH, one Chinese and one Japanese individual, 15%
of all CNVs were observed in two or more continental
groups. When analyzing the HapMap sample using the
Affymetrix 6.0 chip, McCarroll et al. [35] found that
42% of all nonsingleton CNVs were present in more
than one continental group. While the differences be-
tween these estimates may be a result of the different
experimental platforms used, the common message is
that a large proportion of common CNVs can be found
worldwide. Whether this wide dispersal of common
CNVs is the result of parallel mutation in multiple eth-
nic groups or migration is not clear.

The frequency distribution of CNVs, with its strong
excess of rare variants, can be interpreted as a signal
of purifying selection acting on CNV loci, or as a sig-
nal of population growth. Under a model of population
growth we would observe similar allele frequency dis-
tributions for CNVs and SNPs, as both are subject to
the same history. However, we observe a greater ex-
cess of rare variants among CNVs than among SNPs,
indicating that purifying selection is acting to remove
many derived CNV alleles from the population [5, 43].
This theory is further supported by the finding that rare
CNVs are more likely to overlap with genes than com-
mon CNVs [20]. Similar evidence has been observed
in model organisms: In inbred mouse strains, Henrich-
sen et al. [14] reported a paucity of CNVs in ubiq-
uitously expressed household genes and an excess of
CNVs in genes with highly variable or tissue-specific
expression patterns as evidence that CNVs are under
purifying selection. Moreover, Emerson et al. [10] re-
ported evidence that standing copy number variation
in Drosophila is reduced due to purifying selection.
As the selection acting on CNVs is more pronounced
than that observed for SNPs, CNVs are likely to have
greater functional impact than SNPs, negatively affect-
ing the reproductive fitness of carriers.

Functional Signals of CNVs

Given these signals for purifying selection, it is un-
surprising that several CNVs affecting the risk of com-
mon complex disorders have been reported. Widely
cited is the effect on HIV/AIDS risk of a copy num-
ber polymorphism encompassing the gene encod-
ing CCL3L1 [13], a potent human immunodeficiency
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virus-1 (HIV-1)—suppressive chemokine and ligand
for the HIV co-receptor CCR5. Lower copy number
of the CCL3L1 gene results in reduced secretion of
the CCL3L1 protein and is associated with increased
risk of HIV-1 infection. More recently, reduced copy
number of the beta-defensin gene cluster has been re-
ported to be associated with susceptibility to infectious
and inflammatory diseases, particularly Crohn’s dis-
ease [11, 34] and psoriasis [16]. Furthermore, results
of Willer et al. [59] implicated a 45 kb deletion up-
stream of NEGR1 as being associated with body-mass
index.

As most CNVs are rare, it can be difficult to demon-
strate a statistically significant association between a
specific allele and disease. Hence, some studies have
examined the association between disease status and
total CNV load. Rather than testing for association be-
tween a single CNV and a disease phenotype, such
analyses assess whether cases have a significant excess
of CNVs (either deletions or insertions) compared to
controls. Using this design, Sebat et al. [44] demon-
strated a contribution of deletions to the risk of autism.
More recently, Walsh et al. [55] reported that de novo
insertions contribute to the risk of schizophrenia, and
Zhang et al. [60] presented similar results for bipolar
disorder.

While several risk-CNVs have been detected, the
mechanisms by which these CNVs increase disease
risk are largely unknown. Bridging the gap between
statistical association and biological understanding is
complicated by the fact that even CNVs that duplicate
or delete entire genes may not result in discernable
phenotypes. Moreover, which genes are affected by a
CNV may be hard to predict. Recent studies comparing
gene expression and CNVs across twelve inbred strains
of mice demonstrated that, other than in the CCL3L1
gene, changes in copy number often have little or no
effect on expression levels [14]. On the other hand, the
same study showed that longer CNVs can alter the ex-
pression of genes over a distance of up to 3 Mb. Thus,
CNVs that contribute to disease risk may do so by act-
ing on causal genes not normally associated with the
location of the CNV, creating yet another challenge as
we seek to understand the molecular mechanisms un-
derlying disease risk.

A final challenge of detecting CNVs affecting com-
mon disorders is the small effect size of such CNVs.
Given prior genetic epidemiology experiences with
common complex diseases, we can make predictions
about possible effect sizes of CNVs under different
scenarios. Consider a common CNV (MAF > 5%)

that is tagged by surrounding SNPs. If such a CNV
had a large effect size (OR > 2), the surrounding
SNPs would present a strong signal for association in
a GWAS, and the region would easily be identified. So
far, no such CNV has been detected; CNVs detected
through LD with neighboring SNPs have small effect
sizes, comparable to those of disease-associated SNPs
[34, 59].

Rare CNVs that segregate in the population are
transmitted to offspring according to Mendel’s rules.
Hence, CNVs with effect sizes comparable to those of
variants underlying Mendelian disorders are expected
to generate strong linkage signals. However, for the last
30 years, geneticists have collected families for com-
mon complex disorders and failed to identify linkage
signals that can be explained by CNV. The absence
of strong linkage and association signals indicates that
there is an upper bound on the effect size of inher-
ited CNVs that contribute to complex traits. Population
samples are unlikely to discover inherited CNVs with
large effect sizes.

IDENTIFYING CNVS IN GWAS

Given their genomic patterns, CNVs are enticing
candidates for causative variants, and it is of great inter-
est to identify CNVs associated with common diseases.
As many CNVs are rare, and the effect sizes of com-
mon CNVs are likely to be small, such studies require
large sample sizes. Genome-wide association studies
that type densely spaced panels of SNPs in large sam-
ples of cases and controls are already commonplace,
and therefore provide an inexpensive resource to ex-
plore the contribution of CNVs to common diseases.

The utility of this approach depends on how many
CNVs are covered by the probes on genotyping ar-
rays. Older genotyping arrays type relatively few SNPs
within common CNVs. As markers located within
CNVs are likely to fail multiple quality control cri-
teria such as HWE, early array designs excluded such
“problematic” markers. Newer genotyping technolo-
gies such as the Affymetrix 6.0 and the Illumina
Human1M-Duo BeadChip have increased coverage
of CNV regions. Even most of the arrays commonly
used today directly interrogate only a subset of known
CNVs. McCarroll et al. [35] reported that only 44% of
common CNVs detected in HapMap samples were rep-
resented by at least one SNP on the Affymetrix 500K
or Illumina 650Y arrays, and less than 20% of com-
mon CNVs are represented by three or more SNPs.
It has been estimated that at least 20% of deletions
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longer than 1 kb span exactly zero probes on all com-
mercially available arrays [6]. As accurate copy num-
ber estimates require typing multiple SNPs within a
CNV, the ability to infer CNVs directly is limited by
this coverage.

Most modern genotyping chips contain dedicated
CNV probes to facilitate copy number estimation. The
Affymetrix 6.0 chip contains 800,000 probes equally
spaced over the genome, as well as 140,000 probes
targeted specifically at known CNV regions [35]; the
Illumina Human1M-Duo BeadChip contains 36,000
nonpolymorphic probes to interrogate known CNV re-
gions. During analysis, such CNV probes can either be
analyzed individually or combined with SNP probes
by treating CNV probes as genotyping probes cover-
ing monomorphic SNPs. Independent of the specific
platform, several challenges must be overcome to per-
form thorough copy number analysis using GWAS
data. First, the signal is sparse; >99% of each indi-
vidual genome is at normal copy number compared to
a reference sequence. Second, the signal is noisy, and
a single SNP or probe is usually insufficient to predict
copy number status.

At least three types of evidence have been extracted
from genotyping data and used to infer the presence of
CNVs: (1) Non-Mendelian Inheritance errors (NMIs)
in family data; (2) Departures from Hardy–Weinberg
Equilibrium (HWE); and (3) Differences in signal in-
tensity measured during the genotyping reaction.

Non-Mendelian Inheritance Errors (NMIs) in Family
Data

Deletions segregating in families can cause the ap-
pearance of non-Mendelian inheritance; hence, NMI
analysis has proven to be a powerful approach to lo-
calize deletions [5, 33]. In most genotyping assays,
hemizygous genotypes are inferred to be homozygous
for the present allele. If a hemizygous parent transmits
the deletion-carrying chromosome during meiosis, the
child will be hemizygous and appear to be homozygous
for the allele transmitted from the other parent. If that
allele is different from the allele observed in the parent
transmitting the deletion, the offspring’s genotype will
be inconsistent with his two parents under Mendel’s
rules, and the trio will be considered to be an NMI (Fig-
ure 2). The observation of multiple consecutive SNPs
with non-Mendelian inheritance in the same trio indi-
cates the presence of a segregating deletion. However,
not all deletions can be identified through NMI analy-
sis. Carriers in the parental generation will be identi-
fied only if the chromosome carrying the deletion is

FIG. 2. Mendelian inheritance errors. The left panel displays the
genotype of a nuclear family at a single marker; the father is hem-
izygous for a deletion that has been transmitted to the offspring.
The right panel shows the genotypes as they would be called by
a genotyping algorithm. Both hemizygotes are falsely typed as ho-
mozygotes. Note that even though the actual transmission in the
right panel follows Mendel’s rules, the observed genotypes seem to
indicate an impossible inheritance.

transmitted to the offspring. Even a transmitted dele-
tion will generate an NMI only if the allele transmitted
from the other parent is inconsistent. The probability of
the deletion being transmitted is 0.5 and the probabil-
ity of a transmitted deletion creating an NMI is equal
to the heterozygosity of the SNP. Thus, the probabil-
ity of observing an NMI if one of the parents carries a
deletion is equal to half the heterozygosity of the SNP,
therefore ≤0.25. Since consecutive SNPs covered by a
deletion are usually in LD, they do not generate NMIs
independently of one another even when conditioning
on the deletion being transmitted. Hence, the probabil-
ity of seeing any pattern of NMIs among consecutive
SNPs depends on the haplotype frequencies in the pop-
ulation.

Departures from the Hardy–Weinberg Equilibrium

Not only will genotyping algorithms generally iden-
tify hemizygous individuals as homozygotes, they also
will call homozygous SNPs in duplicated regions as
heterozygous, if different alleles are present at the two
different loci. Consequently, observed genotype fre-
quencies of SNPs covered by deletions or duplications
may show departures from HWE. SNPs within a dele-
tion will show an excess of homozygous genotypes
for both alleles. Consecutive SNPs all showing an ex-
cess of homozygote calls are indicators of a segregat-
ing deletion, and the minor allele frequencies of SNPs
within a deletion will be overestimated from the data.
The expected excess of homozygotes can be expressed
dependent on the frequency of the deletion, and the
deletion frequency can be estimated from the differ-
ence between the expected and the observed number
of homozygotes (see the Appendix for details).
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For SNPs covered by duplications, the scenario is
more complicated. SNPs within a duplication usually
will show an excess of heterozygous genotype calls;
the magnitude of this excess depends on the frequency
of the duplication, the distribution of alleles that have
been duplicated and the LD between the original re-
gion and the duplicate(s). Hence, the frequency of a
duplication cannot be estimated from genotyping data.
In the Appendix, we provide an overview of the change
in genotype and allele frequencies generated by this ef-
fect.

Note that such considerations assume uniform be-
havior of genotyping algorithms. For some SNPs
within a duplication, genotype clustering algorithms
may not be able to assign the correct three clusters to
the intensity signal, and produce false genotype calls
or fail to call the SNP. Thus, markers that fail qual-
ity control should be examined carefully to determine
whether they lie within CNVs.

Differences in Signal Intensity Measured During
the Genotyping Reaction

Last, we can use the intermediate signal generated
by modern genotyping platforms to infer CNVs. The
two most commonly used high-throughput genotyping
platforms (Illumina and Affymetrix) genotype by hy-
bridizing the DNA of an individual to a chip, generat-
ing a fluorescent signal for each allele at every marker
tested. The intensity of this fluorescent signal depends
on the number of alleles present. Due to the dynamic
range of modern arrays, which have been optimized
to yield accurate genotype calls, and since the scan-
ners used to detect signal become saturated, hybridiza-
tion intensity is not quite proportional to the number
of copies of an allele. Moreover, the intensity distri-
bution varies between probes and between genotypes
for each probe [62]. Consequently, it is not obvious
how to model the distribution of hybridization inten-
sities. The intensity of the signal also depends on all of
the usual confounders of oligonucleotide array analy-
sis such as the total amount of DNA hybridized, back-
ground fluorescence and hybridization quality [9, 37].
The signal distribution along a chromosome has been
described to show a wave-like pattern easily mistaken
for CNVs [31]. Finally, interpreting this signal is chal-
lenging because the inference of CNV status is con-
founded with the genotype calling based on the same
signal. Especially for low-quality DNA data (e.g., from
whole genome amplification), hybridization intensities
are often unsuitable to call CNVs although SNP geno-
type calls may be accurate [41].

An important first step in the analysis of hybridiza-
tion data is the normalization of signal intensities. The
raw data usually will consist of one intensity signal
for each of the two possible alleles. The goal of the
normalization step is to transform the two dimensional
data into a single random variable that is identically
distributed for all loci with baseline copy number, in-
dependent of the underlying genotype. For Illumina
arrays, this normalization is usually performed by cal-
culating the Log-R ratio. The calculation involves out-
lier removal, followed by normalization against back-
ground signal. Based on these normalized intensities,
genotypes are called. The Log-R ratio (LRR) is the log-
arithm of the ratio of the observed signal for a particu-
lar individual to the average signal of individuals in the
reference panel with the same genotype. Hence, indi-
viduals with the same copy number as those in the ref-
erence panel have LRR ≈ 0, while LRR < 0 indicates a
deletion, and LRR > 0 indicates duplication. This nor-
malization algorithm assumes that individuals in the
reference panel have the baseline copy number for all
markers. If this is not the case, the normalization will
be shifted, a problem, especially, for individuals carry-
ing rare alleles [62]. In addition, Illumina’s normaliza-
tion procedure provides the B allele frequency (BAF),
a measure for the ratio of intensity signals between the
two genotyping channels. This statistic can be consid-
ered to be a quantitative representation of genotype,
taking values near 0 or 1 for homozygous genotypes
and near 0.5 for heterozygous genotypes.

For Affymetrix arrays, no equivalent widely-used
normalization strategy exists. While quantile methods
are most often used to normalize the overall hybridiza-
tion intensity across arrays (e.g., [23]), most methods
analyzing Affymetrix data employ additional, method-
specific normalization algorithms to account for dif-
ferences in hybridization intensity distribution between
loci and alleles.

EXISTING METHODS FOR ANALYZING
GWAS DATA

Two possible strategies exist for analyzing the con-
tribution of CNVs to common diseases in GWAS data.
Either CNVs are tested using nearby SNPs as proxies,
or CNVs are inferred from genotyping data, and the
resulting calls are tested for association.

Linkage Disequilibrium (LD) Between CNVs and
Nearby SNPs

As common CNVs in unique regions of the genome
are often in strong LD with neighboring SNPs [15,
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35], these SNPs serve as proxies for the linked CNVs,
and SNP genotyping is an accurate and inexpensive
alternative to CNV typing. The utility of a SNP as a
proxy measure is dependent on the r2 between the SNP
and the CNV. For CNVs typed in the HapMap sam-
ple [35] and other large population samples [20], it is
possible to define a set of CNVs that are well tagged
by known markers. McCarroll et al. [35] reported that
most common (MAF > 5%), biallelic CNVs discov-
ered in HapMap samples can be captured perfectly by
at least one SNP in the HapMap Phase II data (r2 = 1
between CNV and tag SNP); however, only 30–40%
of these CNVs are tagged perfectly by SNPs on com-
mercially available genotyping arrays, while 45–65%
can be captured by markers with r2 > 0.8. Similarly,
Cooper et al. [6] reported that, among 84 common dele-
tions observed in eight Yoruba, Japanese, Chinese and
CEPH samples (worldwide MAF > 5%), 82% were
tagged by at least one HapMap Phase II SNP with r2 >

0.8, and 48–54% were captured (r2 > 0.8) by markers
on commercially available arrays. As standard oper-
ating procedure, GWAS impute all HapMap markers,
using algorithms such as MACH [27], and test them
for association. Consequently, GWAS studies already
test SNPs tagging most common CNVs. This strategy
has been used successfully to identify CNVs associated
with complex traits [34, 59]. However, this strategy has
some weaknesses: First, tag SNPs cannot be used to in-
fer rare CNV alleles or de novo events. Second, since
most markers on commercial arrays are biallelic, mul-
tiallelic CNVs are necessarily poorly tagged. Third,
CNVs located in segmental duplications are generally
more difficult to tag [35, 46]. For these reasons, the
copy number status of many CNVs must be estimated
using other methods.

Analyzing CNV Calls

Early approaches for identifying CNVs from geno-
typing data focused largely on NMIs and departures
from HWE to identify deletions in HapMap samples
[5, 33]. Kohler and Cutler [22] combined NMIs, devia-
tions from HWE and frequency of missing data to infer
deletions from GWAS data.

Presently, most CNV detection methods focus on
analyzing hybridization intensity data, often ignoring
other sources of information such as LD or departure
from HWE. To identify CNVs, researchers adapted
several methods that were originally designed to an-
alyze cancer data (e.g., circular binary segmentation,
CBS [38]) or designed for other platforms. The first
method specifically designed for genotyping arrays is

an extension of the SW-ARRAY algorithm [39] by Ko-
mura et al. [25] to analyze data from Affymetrix 500K
chips. In the recent literature, hidden Markov model
(HMM) methods are the most commonly applied tool.
First proposed by Fridlyand et al. [12], these methods
exploit the local correlation of trait status. As CNVs
often extend over multiple markers, combining infor-
mation across neighboring markers is often more pow-
erful than looking at one marker at a time. Colella et
al. [4] proposed an objective Bayes Hidden Markov
Model to infer location and carrier status of CNVs from
Illumina BeadArray data. With PennCNV [56], Wang
et al. extended this model to utilize information for re-
lated individuals. Such HMM methods have been ap-
plied in many projects (i.e., [20, 21]), and most CNVs
in the databases have been located with these or simi-
lar algorithms. Unfortunately, HMM methods have rel-
atively high error rates, especially for shorter CNVs.
PennCNV has an error rate of 25% for CNVs of any
length and 9% for CNVs encompassing ten or more
SNPs [56]. While no error rates have been reported for
other HMM methods, they are not fundamentally dif-
ferent from PennCNV and, it is unlikely that they per-
form substantially better.

Most HMM and CBS methods used to infer CNVs
analyze one individual at a time, and only post-hoc
combine the calls across individuals. While this keeps
the memory requirements for each analysis to a min-
imum, it potentially reduces the ability to exploit oc-
currences of the same CNV in multiple individuals.
Recently, methods designed under a different para-
digm have been published. Rather than scanning the
genome for signals of copy number variation, these
methods only analyze known copy-number variable re-
gions. Such methods do not have to account for the
uncertainty of the CNV location, and can therefore
generate more precise estimates of carrier status. The
algorithm Canary [23] fits a Gaussian Mixture model
to the intensity distribution and assigns copy num-
ber status according to cluster membership. Other re-
cent methods attempt to quantify the uncertainty of the
CNV call; such measures of uncertainty can be incor-
porated into tests for association by weighting each call
according to its confidence. CNVEM [62] is based on
a similar idea, using a Bayesian framework to calculate
the posterior probability of copy number, thus account-
ing for the uncertainty in the CNV genotyping. Simi-
larly, Barnes et al. [2] proposed a frequentist method of
modeling copy number states as a latent variable and
then using a mixture model to test for association. All
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of the methods focusing on known CNVs report sub-
stantially lower error rates compared to HMM models,
although few such estimates of error rates have been
replicated independently.

Such methods for calling known CNVs depend on
precise estimates of CNV location. Large collections
of CNVs have been described in multiple databases, in-
cluding the Database of Genomic Variants (DGV) [8],
the Human Genome Structural Variation Project [18]
and the Copy Number Variation Project Data Index [7].
Some care must be taken when selecting loci from
these databases; as technology and algorithms used to
detect CNV are still evolving, these databases contain
false positives, and not all common copy number vari-
ants have been detected and reported. Furthermore, the
boundaries of CNVs in these databases may be impre-
cise, as some methods for CNV detection only yield
approximate boundaries. In practice, it may be advis-
able to focus on CNV collections reported by recent
studies, as these tend to be based on more precise
methodology. Of course, focusing on CNVs reported
in databases is not appropriate when exploring the im-
pact of de novo CNV mutations, since such variants
may not have been previously observed. In this case,
the analysis can be performed in two steps, with an ini-
tial CNV discovery step using an HMM such as Pen-
nCNV. While such methods may not detect every CNV
in each carrier, it is sufficient to identify each CNV
once in the sample and to generate estimates of its bor-
ders. In a second step, the copy number status of these
CNVs can be called in all individuals using more pre-
cise algorithms.

Comparing Tag SNPs and CNV Calling

It is not obvious whether directly estimating CNV
carrier status is actually a useful strategy if a CNV is
tagged by nearby SNPs; even in the best case, meth-
ods estimating the carrier status of a CNV have much
higher error rates than SNP genotyping [23]. The an-
swer depends on the degree of LD between the CNV
and the proxy SNPs, as well as the error rate for in-
ferring CNVs directly. Here we assess which approach
is more powerful, by determining the sample size in-
flation necessary to overcome power loss due to errors
in CNV inferences, and compare it to the inflation in
sample size necessary to overcome the power loss due
to incomplete LD (r2 < 1). We show that under many
scenarios, testing tag SNPs results in a more powerful
test than calling CNVs and testing inferred CNV calls.

Following an argument from Pritchard and Prze-
worski [40], we derive the distribution of a χ2-test for

association based on a 2 × 2 contingency table depen-
dent on the rate of calling error. Based on that distri-
bution, we calculate the inflation factor (IF) by which
the sample size needs to be increased to overcome the
loss of power due to CNV calling errors. Assuming no
calling error, the distribution of a χ2-test in a sample
of N1 cases and N1 controls is

χ2
1 = (P (C|case) − P(C|control))2N1

2P(C)(1 − P(C))
,

where P(C|case) is the observed frequency of the mi-
nor CNV allele in cases, P(C|control) is the observed
frequency of the minor CNV allele in controls and
P(C) is the overall observed frequency of the minor
CNV allele. Now let O be the event of calling the mi-
nor allele of the CNV, C the event of the minor CNV al-
lele being present and A the event of the major CNV al-
lele being present. Then we can parameterize P(O|C)

as the probability of correctly calling the minor allele
if the minor allele is present and P(O|A) as the prob-
ability of falsely calling the minor allele if the major
allele is present. Hence,

P(O) = P(O|C)P (C) + P(O|A)P (A)

is the total number of CNVs being called in the sample.
In this model, the χ2-test for association in a sample of
N2 cases and N2 controls is

χ2
2 = ([P(O|C) − P(O|A)]

× [P(C|case) − P(C|control)])2
N2

/
(
2P(O)

(
1 − P(O)

))
.

To calculate the increase in sample size necessary to
overcome the loss of power due to errors in calling
CNV alleles, we can calculate the inflation factor (IF):

IF = N2

N1
= 1

(P (O|C) − P(O|A))2

P(O)(1 − P(O))

P (C)(1 − P(C))
.

The right side of the equation indicates the factor by
which the sample size has to be multiplied to over-
come the loss of power due to calling errors. This in-
flation factor can be directly compared to the infla-
tion of sample size necessary to overcome incomplete
LD (r2 < 1), as testing for association at a marker
with r2 = x to the risk variant inflates the sample size
by 1/x [40].

To compare tagging strategies with direct calling of
CNVs, we calculated the inflation factor for a range of
error rates and CNV frequencies commonly reported
in the literature (Table 1). Most CNV calling meth-
ods have reported error rates between 0.1 and 0.3. As
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TABLE 1
Impact of calling error on association testing for common CNVs. We display the inflation factor (IF) for sample size, necessary to overcome

typing error of common CNVs. The first line shows the sample frequency of the rare CNV allele, the first column shows the probability of
falsely calling the rare CNV allele and the second column shows the probability of correctly calling the rare CNV allele. For each set of

parameters the table shows the inflation factor (IF) for the sample size to overcome the effects of this genotyping error and
the LD (r2) to a tag SNP that results in the same loss of power

P(C) (freq. of minor CNV allele)

P(O|A) P (O|C) 0.02 0.05 0.1 0.2

(false positive rate) (sensitivity) IF r2 IF r2 IF r2 IF r2

0.01 0.9 1.74 0.57 1.37 0.73 1.25 0.80 1.20 0.83
0.8 2.05 0.49 1.59 0.63 1.44 0.69 1.40 0.71
0.7 2.49 0.40 1.88 0.53 1.70 0.59 1.66 0.60

0.05 0.9 4.41 0.23 2.45 0.41 1.80 0.56 1.48 0.67
0.8 5.51 0.18 2.99 0.33 2.16 0.46 1.78 0.56
0.7 7.13 0.14 3.77 0.27 2.68 0.37 2.18 0.46

falsely calling the rare allele of a CNV at a specific
location is unlikely under most methods, we assumed
that most errors were false calls of the major allele in
the presence of the minor allele; the probability of such
errors is (1−P(O|C)); we consider values of P(O|C)

between 0.7 and 0.9, for values of P(O|A) of 0.01 and
0.05. For larger values of P(O|A), the inflation factor
increases rapidly (data not shown). For comparison, we
also calculated the r2 between the CNV and the best
tag SNP that results in the same inflation factor for the
tag SNP approach.

Our results indicate that calling error reduces the
power of testing rare CNVs more than it reduces the
power of testing common CNVs. Even modest error
rates [P(O|A) = 0.01, P(O|C) = 0.8] increase the
required sample size for finding rare CNVs (MAF =
0.02) by 50% or more, particularly relevant as large
sample sizes are required to detect these rare variants in
the first place (Table 1). Comparison with LD statistics
indicates that, under these conditions, a SNP tagging
the CNV with r2 ≥ 0.49 is sufficient to provide a more
powerful test than inferring CNV status and directly
testing the CNV for association with disease. Further-
more, a high false positive rate [P(O|A)] increases the
sample size more than does a high false negative rate
(1 − P(O|C)). For high values of P(O|A), inferring
and testing a CNV yields poor results, compared to the
tagging method; under all considered parameter com-
binations, a tag SNP with r2 ≥ 0.67 to the CNV allows
for a more powerful test for association.

Note that these considerations assume that only a
single tag SNP provides information about the allelic

state of the CNV. In practice, we can expect multiple
SNPs to be in LD with the CNV, and combining in-
formation across tag SNPs will result in an even more
powerful test statistic. However, when no tag SNP is
available for a particular CNV, valuable information
may be gained by inferring CNV status directly from
GWAS data.

TESTING CNVS FOR ASSOCIATION WITH
DISEASE

After inferring carrier status, several methods can be
used to test for association between inferred carrier sta-
tus and disease. As most CNVs are biallelic, we can ap-
ply methods developed for rejecting the null hypothesis
of no association between a biallelic marker and a phe-
notype, such as the chi-square test or logistic regres-
sion. In such studies we consider the inferred carrier
status to be the true carrier status. However, in tests for
transmission distortion [17, 50] it should be considered
that transmitted CNVs are generally easier to detect
than nontransmitted CNVs, particularly if NMIs are
used to identify carriers. A further potential problem
may be generated by the stringency of the CNV calling
algorithm. Commonly, such algorithms impose a high
burden of proof (e.g., posterior probability > 0.95) be-
fore assigning the minor allele, in order to minimize
the effects of measurement error. This approach can
increase the number of false negative calls and intro-
duce nonrandom missingness, thus inflating the false-
positive rate of a family-based test for association [2].

Tests for association can be improved by account-
ing for the uncertainty in the estimate of carrier status.
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Bayesian methods will generally provide a posterior
probability for carrier status [2, 62], and in frequentist
inference methods this uncertainty can be ascertained
by bootstrap or jackknife procedures. Once this uncer-
tainty is known, tests for association can be adjusted
accordingly. For Bayesian estimates we can compare
the summed expected posterior carrier status in a χ2

test or in a logistic expression.
Finally, Stranger et al. [52] skip the step of infer-

ring CNV status for such regions and directly test for
association between hybridization intensity and case-
control status. This method is susceptible to false pos-
itives due to shifts in mean and/or variance of the un-
derlying intensity distributions, and such shifts occur
frequently in practice [2].

ALTERNATIVE STRATEGIES TO ASSOCIATION
MAPPING

As most CNVs have low MAF, tests for associa-
tion between a single CNV and a disease are likely to
have low power, especially if p-values are corrected for
multiple tests. Therefore, alternative strategies must be
considered. Here we present two such strategies: first a
test for an excess of de novo CNV mutations at a locus
and second a test for an excess loading of minor CNV
alleles in cases compared to controls.

Detection of de novo CNVs

As recent results indicate that de novo CNV mu-
tations are rare [35], multiple de novo mutations in
the same region of the genome suggest candidates for
risk variants. However, even if de novo mutations are
over-represented and highly penetrant among cases,
the combined variants at one locus are still unlikely to
have allele frequency > 1% in cases. Hence, applying
standard testing strategies to compare allele frequen-
cies between cases and controls will be underpowered.
Consider, for example, a genomic region carrying 6 de
novo mutations in 1000 cases, and none in 1000 con-
trols. Testing for association yields a Fisher’s exact p-
value of 0.015, no clear evidence of association. How-
ever, this p-value does not account for the observation
that the rate of de novo mutations is low and therefore
the probability of observing 6 de novo deletions at the
same locus by chance is unlikely.

Nevertheless, it is not clear how many de novo mu-
tations must be observed in the same region before the
finding is significant. Such a critical value depends on
two parameters: the rate of de novo mutation, and the
number of locations in the genome where such muta-
tions occur. While the mutation rate can be estimated

from existing data sets, early estimates of these rates
were confounded with high false negative rates [57].
Recent studies suggest that these rates may be as low
as 0.08 per genome per meiosis [35].

Estimating the second parameter, the number of ge-
nomic regions experiencing de novo CNV mutation, is
more challenging. About 40% of CNVs are generated
by nonallelic homologous recombination [24], which
is caused by flanking repetitive elements and segmen-
tal duplications. Such segmental duplications cover 5%
of the genome. Thus, it is likely that most nonpatho-
genic de novo mutations occur in only a small subset
of the genome. However, better understanding of the
processes generating CNVs are necessary for a precise
estimate of the subset of the genome with high CNV
mutation rate.

To explore the power of detecting a risk variant by
observing an excess of de novo mutations, we per-
formed computer simulations based on the two para-
meters described above. We set the de novo mutation
rate of noncausal CNVs to μ per meiosis per genome,
uniformly distributed over k locations in the genome.
We further assumed that a subset ε, of all de novo CNV
alleles would be identified. We did not model other
sources of error, as false positive de novo CNV calls,
by definition, are not expected to cluster at particular
loci in the genome, and therefore do not affect our test
statistic.

Assuming a sample of n nuclear families, we mod-
eled as the null distribution the total number of detected
noncausal de novo CNVs, ci , at each location i, as
Poisson-distributed with rate 2μnε/k. Defining M =
max{ci : i = 1, . . . , k} as the maximum number of non-
causal de novo mutations observed anywhere in the
genome, the critical value for a test of an excess of
de novo CNVs is equal to CVα = min{x : P(M ≥
x) < α}. Note that the alpha level chosen here is the
experiment-wide type I error rate; by maximizing M

over all CNV mutation hotpots, we have corrected for
genome-wide multiple testing.

To simulate the distribution of causal de novo muta-
tions at a risk locus, we set p as the proportion of cases
in the population carrying the de novo CNV mutation
at a specific risk locus. Then the power for a test of
excess de novo mutations can be calculated using the
binomial distribution, B(εp,n).

We assessed the power of this method to detect a sig-
nificant excess of de novo mutations. We first calcu-
lated critical values for sample sizes of n = 500, 1000
and 2000 nuclear families, assuming a de novo mu-
tation rate of noncausal CNVs of μ = 0.1 per meio-
sis per genome, uniformly distributed over k = 500 or
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2000 locations in the genome. Assuming an average
length of 50 kb per CNV, these values of k correspond
to 0.8% or 3.2% of the human genome being CNV mu-
tation hotspots, with CNV mutation rates similar to the
rates observed at hotspots of nonallelic homologous re-
combination [53]. We set an error rate for CNV typ-
ing of ε = 0.75. Based on the resulting critical values,
we calculated the power of observing a significant re-
sult at α = 0.05, assuming that de novo CNVs occur
in p = 1%, 0.5% or 0.25% of all cases at a particu-
lar risk locus. These values are consistent with reports
that de novo CNVs thought to contribute to the risk of
psychiatric diseases are observed in 0.2% to 1% of all
cases [51, 53, 58]. For comparison, we calculated the
total sample size necessary to achieve 80% power in a
balanced case-control design at a significance level of
10−5 for all values of p, assuming that the CNV has
full penetrance and is not observed among controls.

Our results (Table 2) indicate that observing a large
number of CNV mutations at a single locus is unlikely.
Under all considered scenarios, observing 6 or more
de novo CNVs at one locus constitutes a significant re-
sult. For sample sizes >1000 trios, we have reason-
able power to detect de novo CNVs that are present in
0.5% of the cases. The results indicate that the power
of this approach strongly depends on the total num-
ber of CNV mutation hotspots, which is unknown for
the human genome. However, even if only 500 CNV
hotspots exist genome-wide, for a CNV observed in
1% (0.5%) of all cases, only 1000 (2000) trios are nec-
essary to achieve ∼80% power. For comparison, 5500
(11,000) unrelated individuals are required to achieve
similar power. This suggests that testing for an excess
of de novo mutations is a more powerful strategy than
case-control testing.

CNV Load of Rare Variants

As discussed previously, most minor alleles of CNVs
are rare, and tests of association between rare vari-
ants and a phenotype have limited power. However, it
is conceivable that multiple, independent CNVs each
contribute to disease risk. Jointly testing all CNVs may
therefore be more powerful than testing markers in-
dividually. If all such risk CNVs cover the same ge-
nomic interval, the contribution of that region can be
determined by counting the number of individuals who
carry a minor allele of any CNV overlapping with
the region. The counts in cases and controls can then
be compared [32], essentially treating all overlapping
CNVs as a single risk allele. Such joint analysis of mul-
tiple CNVs is more challenging under a model of ge-
netic heterogeneity, which assumes that a large number
of unlinked loci in the genome are affected by CNVs
that contribute to the risk of disease. Under this model,
testing each individual locus may not result in a signif-
icant signal. However, as the total number of CNVs in
an apparently healthy individual is small [35], if sev-
eral CNVs contribute to the risk of disease, cases as
a whole may carry substantially more minor CNV al-
leles than do controls. Therefore, a commonly applied
test is to count the number of minor CNV alleles ob-
served genome-wide in cases, and compare that to the
number of minor CNV alleles in controls. While such a
test is more powerful under a model of genetic hetero-
geneity, it has two weaknesses. First, it is very sensitive
to any experimental error affecting cases and controls
differentially. For example, batch effects can increase
the total number of CNVs observed in one batch over
the next. If cases and controls are analyzed in differ-
ent batches, such effects will immediately cause sig-

TABLE 2
Critical values and power in tests for de novo mutations. The first row indicates the number of sites for noncausal CNVs, and the second line
displays the sample size. The third line shows the number of CNVs in one location constituting a significant number of de novo CNVs. The

next three lines show the power to detect a locus carrying an excess of de novo mutation, assuming that these de novo mutations can be
observed in 1%, 0.5% or 0.25% of all cases. The last column provides the sample size necessary to detect the CNV with 80% power in a

case-control design at a significance level of 10−5

Number of de novo CNV mutation hotspots

500 2000

Sample size 500 1000 2000 500 1000 2000 Case-control sample size

CVα 4 5 6 3 4 5
1.00% 0.52 0.86 >0.99 0.72 0.94 >0.99 5500
0.50% 0.12 0.32 0.76 0.29 0.52 0.94 11,000
0.25% 0.02 0.04 0.18 0.07 0.12 0.52 22,000
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nificant genome-wide differences in CNV numbers be-
tween cases and controls. Second, this test lacks in-
terpretability. A significant signal only indicates that
CNVs somewhere in the genome increase disease risk.
Further testing of larger samples is required to under-
stand the contribution of individual CNVs. CNVs that
show an excess of minor alleles in cases that is not sta-
tistically significant may be good candidates for further
tests in larger samples.

This strategy has been used successfully to identify
CNVs affecting autism. Initially, Sebat et al. [44] ob-
served a genome-wide excess of CNVs in autism pa-
tients, but no individual CNV or locus was significant
after multiple test correction. Further work by Weiss
et al. [58] in larger samples demonstrated that several
of the loci showing suggestive evidence in the original
report [44] are significantly associated with the risk of
autism.

CONCLUSIONS

Copy number variation accounts for much of the ge-
netic variation discovered to date in humans. Some of
this variation is clearly functional; studies in recent
years have discovered several CNVs contributing to the
risk of common complex diseases such as autism [44]
and psoriasis [16]. Hence, studying the contribution
of CNVs to common diseases has become standard
practice during the course of genome-wide association
studies. As the genotype and hybridization signals gen-
erated by genotyping platforms provide information
about CNVs, it is efficient to use this signal to infer
CNV location and carrier status in the sample. Most
studies that impute CNVs from genotype array data
focus on analyzing hybridization data. Such analyses
require careful normalization of the intensity data, as
hybridization signals are susceptible to experimental
noise that may lead to false inferences.

Many methods have been developed to localize
CNVs using such hybridization intensity data (e.g.,
[25, 56]). While such methods generally perform well
for CNVs covered by large numbers of probes, they
tend to have higher error rates for CNVs that span only
a few genotyped probes [56]. The high error rates are
in part due to the fact that these methods aim to jointly
localize CNVs and determine carrier status in individ-
uals, thus increasing the uncertainty of the inference
procedure. As databases now contain >20,000 CNVs,
many of which have been observed more than once
in different samples, it seems likely that most com-
mon CNVs are now known and that CNVs not yet

present in databases are rare, at least in Caucasians.
Consequently, algorithms have been developed that,
using GWAS data, infer copy number for CNVs whose
boundaries are known [23, 62]. Such algorithms are
more precise in calling common CNVs and therefore
facilitate more powerful tests for association. However,
it is still necessary to apply more general algorithms to
detect unknown CNVs, rare CNVs and de novo events.

Most CNVs are in strong LD with SNPs in the
HapMap, and it is not always clear that inferring CNVs
to test for association is the most powerful strategy. As
we have shown, even modest error rates in CNV call-
ing result in a loss of power comparable to testing a tag
SNP with r2 ≤ 0.8. Consequently, tests based on in-
ferred CNV alleles are often unlikely to be more pow-
erful than testing surrounding SNPs for association. In
this context, it is interesting to note that both common
risk CNVs identified to date through genotype scans
were first localized via tag SNPs; only follow-up test-
ing identified these CNVs as likely risk alleles [34, 59].

On the other hand, this observation also indicates
that SNPs flanking a CNV can provide information
about CNV carrier status, suggesting that existing
methods for calling CNV alleles could be improved
by jointly considering haplotype background and hy-
bridization intensity of the covered markers. As hap-
lotype background and hybridization intensity provide
orthogonal evidence for CNV status, such a method
would likely be substantially more precise and allow
more powerful tests.

Maximizing the power of tests for association is cru-
cial, as the effect sizes of common CNVs are likely
to be small, and the minor alleles of most CNVs are
rare. Hence, tests for association between CNVs and
diseases are likely to have low power even under the
best circumstances. Other strategies to identify CNV
contributing to the risk of common diseases should
also be explored. Recent studies have indicated that de
novo events generating new CNVs are rare [35]. This
suggests that testing a genomic region for an excess
of de novo CNVs is potentially a powerful strategy.
Moreover, such de novo CNVs are more likely to have
large effect sizes. Several such CNV regions have in
fact been detected [44, 55]. We have presented calcu-
lations, based on conservative estimates, that for mod-
erate sample sizes, simple tests for local excesses of de
novo mutations have good power to identify such CNV
mutation hotspots. However, commonly collected sam-
ples of unrelated cases and controls do not provide
any information as to whether a CNV observed several
times among cases and not in controls is the result of
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several de novo mutations or just a result of sampling
variation on a rare CNV. Hence, the power to detect a
rare risk variant that is the result of multiple de novo
events is substantially higher in family-based studies.

Any CNV-disease association identified using geno-
typing chips has to be evaluated carefully. While ana-
lyzing the hybridization signal from genotyping plat-
forms provides cheap information about CNV status in
a population, genotyping arrays are not the gold stan-
dard for determining carrier status. In association stud-
ies, erroneous calls of carrier status usually result in a
loss of power, rather than false positive associations.
However, in a study testing for an excess of de novo
mutations, even a few inaccurate CNV calls can lead
to false positives. Hence, if a CNV appears to be as-
sociated with a phenotype, it seems prudent to use an
independent technology, such as CGH, PCR or rese-
quencing, to verify the inferred carrier status and the
association signal.

In the near future, GWAS will be supplemented with
studies that sequence regions of interest or even the
entire genomes of affected and unaffected individu-
als. Paired end-sequencing allows the detection of re-
gions where the distance between two short reads is
significantly longer or shorter than expected; such re-
gions are likely to carry CNVs. In the case of single-
end sequencing, it is necessary to infer CNVs by indi-
rect measures, such as the number of reads generated
for each region. As read-lengths increase, it becomes
easier to align reads, and it may become possible to
identify CNV breakpoints within a read. Then it will
be possible to identify such features from the gener-
ated sequence. As technology advances at an incredi-
ble pace, we will constantly be challenged to develop
newer, better statistical tools to infer the presence and
location of CNVs.

Ultimately, to understand the role that CNV plays in
human disease, we must better elucidate the biological
processes that create CNV, improve the sensitivity and
specificity of experimental methods that identify CNV,
and develop statistical methods that fully leverage the
signals of CNV that exist in data derived from genome-
wide genotyping arrays as well as next-generation se-
quencing technologies.

APPENDIX

In the following we will explore patterns of geno-
type frequencies and the Hardy–Weinberg equilibrium
in SNPs covered by CNVs. We consider the observed
haplotype frequencies P(G = AA), P(G = AB),

P(G = BB) of a SNP with alleles A and B . Let p

be the population frequency of allele A and q the allele
frequency of allele B . We first consider deletions, then
duplications.

Deletions

We introduce the segregating deletion as a third
genotype D with frequency d , so that d + p + q = 1.
Let G ∈ {AA,BB,AB} indicate the possible observed
genotypes and T ∈ {DD,AA,AD,AB,BD,BB} be
the set of all possible true genotypes. Genotype DD

will result in a failed genotyping reaction and hence
will never be observed.

Then, assuming no genotyping error for nondeletion
alleles,

P(G = AA) = P(T = AA|T �= DD)

+ P(T = AD|T �= DD)

= (p2 + 2dp)/(1 − d2),

P (G = BB) = P(T = BB|T �= DD)

+ P(T = BD|T �= DD)

= (q2 + 2dq)/(1 − d2),

P (G = AB) = P(T = AB|T �= DD)

= 2pq/(1 − d2).

Note that the estimated frequency of allele A is

pest = P(G = AA) + 1/2P(G = AB)

= (p + dp)/(1 − d2) = p/(1 − d),

so that we will observe fewer than the expected num-
ber of heterozygotes, given the estimated allele fre-
quencies: 2pestqest = 2pq/(1 − d)2 ≥ 2pq/(1 − d2) =
E(G = AB).

In a sample of n individuals with observed genotype
counts (CAA, CAB , CBB ), the expected departure from
HWE is

E
(
(CAB)2 − 4CAACBB

)

= Var(CAB) + E(CAB)2

− 4[E(CAA)E(CBB) + Cov(CAA,CBB)]
= npq/(1 − d2) + 8ndpq(1 − n)/(1 − d).

Insertions

We consider a model where every haploid copy of
the genome carries 0 or 1 insertions. Let T ∈ {A,B}
indicate the true genotype at the original location and
I ∈ {A,B} indicate the genotype at the duplication. To
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account for possible LD between the inserted region
and the original copy, as insertions can happen multi-
ple times, we consider the probability of carrying the
insertion allele conditional on the allele at the origi-
nal location, Q(I |T ). We define D ∈ {0,1,2}, the total
number of insertions on both chromosomes, and the
probability of carrying a duplication is dT :

P(G = AA)

= P(T = AA)[P(D = 0|A)

+ P(I = A)P (D = 1|A)

+ P(I = AA)P (D = 2|A)]
= p2[(1 − dA)2 + 2dA(1 − dA)Q(A|A)

+ d2
AQ(A|A)2]

= p2(
1 − dAQ(B|A)

)2
,

P (G = BB) = q2(
1 − dBQ(A|B)

)2
.

Hence, P(G = AA) = P(T = AA) = p2 iff Q(A|
A) = 1 or dA = 0. Similarly P(G = BB) = P(T =
BB) = q2 iff Q(B|B) = 1 or dB = 0. No departure
from HWE is generated if all duplications with the A

allele occur on chromosomes carrying the A allele at
the original location (likewise for allele B), regardless
of the frequency of the insertion. This pattern may be
observed if duplications are the result of nonallelic ho-
mologous recombination or other mechanisms creating
tandem repeats.
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