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A Multivariate Variance Components Model
for Analysis of Covariance in Designed
Experiments
James G. Booth, Walter T. Federer, Martin T. Wells and Russell D. Wolfinger

Abstract. Traditional methods for covariate adjustment of treatment means
in designed experiments are inherently conditional on the observed covari-
ate values. In order to develop a coherent general methodology for analysis
of covariance, we propose a multivariate variance components model for the
joint distribution of the response and covariates. It is shown that, if the de-
sign is orthogonal with respect to (random) blocking factors, then appropri-
ate adjustments to treatment means can be made using the univariate variance
components model obtained by conditioning on the observed covariate val-
ues. However, it is revealed that some widely used models are incorrectly
specified, leading to biased estimates and incorrect standard errors. The ap-
proach clarifies some issues that have been the source of ongoing confusion
in the statistics literature.

Key words and phrases: Adjusted mean, blocking factor, conditional
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1. INTRODUCTION

This article concerns the adjustment of treatment
means in designed experiments to account for one or
more covariates. Analysis of covariance has a long his-
tory, dating back to Fisher (1934). Much of its develop-
ment in the context of designed experiments followed
soon after. Examples can be found in many classical
textbooks, including Federer (1955), Cochran and Cox
(1957), Snedecor and Cochran (1967), as well as more
recent texts such as Milliken and Johnson (2002). We
are specifically interested in settings in which the co-
variates are random variables, not fixed by the design.
Also, we generally suppose that the covariate values
are not affected by the treatments, for example, be-
cause they were measured prior to application of the
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treatments. The multivariate mixed model we propose
can be modified to handle problems in which this as-
sumption is not valid. However, there are additional in-
ferential issues in this case.

As a canonical example we discuss in detail the ran-
domized complete blocks (RCB) design with a single
covariate. In the classical analysis of this design the
blocks are treated as fixed, and the covariate is included
as a predictor. The least squares treatment means ob-
tained from the fixed blocks model fit adjust the arith-
metic treatment means to account for differences in the
average covariate measurements among the treatments.
Including the covariate block means as an additional
predictor has no effect on the least squares fit because
differences at the block level are already accounted for.
Treating blocks as fixed effectively confines the scope
of inference to only those blocks and covariate values
in the study. In particular, the standard errors obtained
from the fixed effects model for the least squares treat-
ment means do not account for repeated sampling of
blocks.

However, in most applications the blocks in the study
can be viewed as a random sample from a population
of interest, and it is of interest to extend the scope
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of inference to the population of blocks. An obvious
modification of the classical model in this case is to
simply treat the block effects as random; that is, to fit
a (univariate) mixed model with two variance compo-
nents. Under the standard independence and normality
assumptions, adjusted treatment means obtained from
the mixed model have the same form as the classical
least squares means, except that the covariate regres-
sion coefficient is a weighted average of the estimates
obtained from intra- and inter-block regressions.

A key point made in this paper is that both uni-
variate fixed and mixed models for analysis of covari-
ance are inherently conditional on the measured co-
variate values. An obvious question is, therefore, what
joint distribution for response and covariate leads to the
conditional models. We show that by simply treating
the block effects as random in the randomized com-
plete blocks design setting, one is implicitly assuming
that the marginal block variance for the covariate is
zero; that is, an implied model for the joint distribu-
tion that is not realistic. As a result, the adjusted treat-
ment means obtained from the naive, univariate mixed
model are biased. However, by starting with a bivari-
ate variance components model for the joint distribu-
tion of response and covariate, one is led to a sensible
univariate conditional model, which properly accounts
for the design with respect to the covariate. The idea
of a bivariate model is suggested in Cox and McCul-
lagh [(1982), Section 7], but not fully developed. Mul-
tivariate variance components models are discussed in
Khuri, Mathew and Sinha [(1998), Chapter 10], but the
application to analysis of covariance is not considered.
The fully conditional approach was also advocated by
Neuhaus and McCulloch (2006) who consider the sit-
uation where random effects in a generalized linear
mixed model may be correlated with one of the pre-
dictors. Classical likelihood approaches lead to incon-
sistent estimators in this setting. Results in Neuhaus
and McCulloch (2006) show that conditional maxi-
mum likelihood can eliminate the bias.

An outline of the remainder of the paper is as fol-
lows. In the next section we look back historically and
attempt to explain why some fundamental issues in
analysis of covariance are still unresolved. The ran-
domized complete blocks design is discussed in de-
tail in Section 3. In Section 4 we show how the bi-
variate model for the randomized complete blocks de-
sign can be generalized to orthogonal designs, and to
allow adjustment for multiple covariates. In the or-
thogonal case the conditional model for the response
given the covariates implied by the multivariate mixed

model for the joint distribution turns out to be a uni-
variate mixed model. This implies that appropriate ad-
justment of treatment means can be accomplished us-
ing standard software. The methodology is applied to
some standard examples of orthogonal designs. The
nonorthogonal case is discussed in Section 5. Here we
show that appropriate adjustment cannot be accom-
plished by fitting a univariate mixed model. However,
an EM algorithm for fitting a general multivariate lin-
ear variance components model is developed using ar-
guments that parallel those for the univariate case, as
discussed in Searle, Casella and McCulloch (1992),
Chapter 8. The methodology is applied to balanced in-
complete block designs and unbalanced designs. We
conclude with some discussion in Section 6.

2. HISTORICAL PERSPECTIVE

Since analysis of covariance in designed experi-
ments has such a long history, readers may wonder
why confusion over such basic modeling issues persists
even today. We attempt to explain this by discussing
the topic in its historical context. Arguably, the hey-
day of analysis of covariance was pre-1960, predat-
ing the widespread use of matrix algebra in statistics
and clearly before the availability of high-speed com-
puting. Matrices are two hundred and some years old
but their use in statistics only became commonplace in
the late 1950s. The very first paper in the first issue
of the Annals of Mathematical Statistics by Wichsell
(1930) is entitled “Remarks on Regression,” yet it has
no matrices. It is likely that the lateness of adoption
of matrices arose from their being treated as a topic
in pure mathematics and, hence, their practical use
in statistical modeling remained hidden. In the clas-
sic design books Cochran and Cox (1957) and Federer
(1955), there is no mention of matrices, whereas in
Kempthorne (1952) the design problem is formulated
as a general linear model but is not applied to analyze
any advanced designs. Kempthorne [(1952), page 66]
even notes that, at the time, there did not appear to
be a complete matrix formulation of the general linear
model anywhere in the literature. In unbalanced data
it was a longtime puzzle why statistical methods gave
two different least squares estimates of fixed effects in
a one-way classification depending upon whether one
assumed that one effect was zero, or that all the effects
summed to zero. The literature had certainly not kept
up with R. C. Bose’s (1949) concept of estimability.
Nor were 1950s design and linear model researchers
aware that Penrose’s (1955) generalized inverse ma-
trix could be used to solve the normal equations in the
nonfull rank setting, as in design problems. With the
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aid of a generalized inverse, Rao (1962) demonstrated
how the unique unbiased estimators of estimable func-
tions could be constructed. In a recent Statistical Sci-
ence conversation (Wells, 2009) Shayle Searle points
out that random effects modeling in the 1950s was
quite limited and mostly for balanced data. One of the
early formulations of matrix methods in variance and
covariance components analysis can be found in Searle
(1956).

An excellent paper by Zelen (1957) reviews the
thinking at the time for balanced incomplete block
(BIB) designs. The algebraic manipulations associated
with the multivariate model described in this paper
would be very difficult, if not impossible, without the
use of matrix algebra and facility with the multivariate
normal distribution, mathematical tools that were not
fully developed in the statistics literature at the time of
Zelen’s paper. We focus on Zelen’s discussion of intra-
and inter-block regressions, which we summarize with
the following two quotes from Section 3 of his paper:

in the analysis of covariance, the inter-block
model will be important if the variability
of the concomitant variate is large for “be-
tween blocks” as compared to the variabil-
ity “within blocks.” This situation may al-
low more precise inter-block estimates of
the regression coefficients as compared to
the corresponding intra-block estimates

and later, when discussing the slopes of intra- and inter-
block regressions,

Some statisticians, however, have advocated
a more general model which allows the
intra-block regression coefficients to be dif-
ferent from the inter-block regression. In
this paper, all models are such that the intra-
block regression is the same as that for the
inter-block regression. It is difficult for this
writer to visualize situations allowing sepa-
rate regressions.

It turns out that the “[s]ome statisticians” Zelen re-
ferred to were right, but why? Clearly their arguments
were not entirely convincing at the time. The bivariate
variance components model described in Section 3.3
reveals that Zelen’s two statements are incompatible.
In fact, between block variation in the covariate implies
that the intra- and inter-block regressions are not the
same. Putting it another way, forcing the two slopes to
be equal amounts to an assumption that there is no vari-
ation among the block covariate means. This assump-
tion is clearly violated in practical circumstances and

therefore leads to biased (adjusted) treatment means as
well as inconsistent estimates of variance components.

3. RANDOMIZED COMPLETE BLOCKS DESIGN

3.1 Classical Approach

Consider a randomized complete blocks design with
response, Y , and associated concomitant variable, Z.
Suppose that Z is measured prior to application of
the treatment but is possibly correlated with the re-
sponse. Let i = 1, . . . , t be the index for treatment, and
j = 1, . . . , b be the index for block. The classical fixed
effects linear model for this design is as follows:

Yij = μ + τi + βj + γ zij + Eij ,(1)

where Eij ∼ N(0, σ 2
e ), independently, and

∑
i τi =∑

j βj = 0. Notice that replacing the covariate zij with
the block centered value zij − z̄·j has no effect on the
fit of this model because the term, −γ z̄·j , can be incor-
porated into the fixed effect for block j . The adjusted
mean for treatment i is the estimated mean response at
a fixed value of Z, conventionally taken to be its aver-
age observed value, z̄··.

Throughout this paper Greek letters represent fixed
effects (unknown parameters), upper case Roman let-
ters are random variables or known matrices, and lower
case Roman letters are either observed values of ran-
dom variables or known constants (or vectors). With
these conventions it is implicit in the notation that
model (1) characterizes the conditional distribution of
the response given the observed values of the concomi-
tant variable.

We define the inter-block regression model to be the
implied model for the block means, specifically,

Ȳ·j = μ + βj + γ z̄·j + Ē·j .

Thus, in this context, the inter-block model contains
no information about treatment differences, or about
the regression parameter, γ , because the terms, γ z̄·j ,
are confounded with the block effects. We define the
intra-block regression model using the t −1 orthogonal
Helmert contrasts, h2, . . . ,ht , between components of
the observation vector, Yj , for block j . Specifically, let
Y ∗

ij = hT
i Yj , for i = 2, . . . , t and j = 1, . . . , b, and sim-

ilarly define z∗
ij and E∗

ij . Then the intra-block model in
this case is

Y ∗
ij = τ ∗

i + γ z∗
ij + E∗

ij ,

where τ ∗
i = hT

i τ , i = 2, . . . , t , are t − 1 orthogonal
contrasts among the treatment means. It follows that
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TABLE 1
Adjusted treatment means and standard errors for Pearce’s apple yield data

Univariate fixed Univariate mixed Bivariate mixed

Treatment Adj.Mean Std.Err. Adj.Mean Std.Err. Adj.Mean Std.Err.

A 280.48 6.37 280.41 13.69 280.48 12.98
B 266.57 6.36 266.55 13.68 266.57 12.98
C 274.07 6.36 274.05 13.68 274.07 12.98
D 281.14 6.44 281.32 13.72 281.14 13.02
E 300.92 6.72 301.33 13.87 300.92 13.19
S 251.34 6.86 250.85 13.95 251.34 13.28

Adjusted means and their standard errors for the apple yield data from Pearce (1953, 1982),
based on fixed effects, univariate mixed effects and bivariate mixed effects models. The
standard errors involve the ML estimates of variance components.

all the information about treatment differences, and
the covariate regression parameter, is contained in the
intra-block model.

The adjusted treatment means are estimates of the
mean responses when Z = z̄··. These are given by

μ̂i,adj = μ̂ + τ̂i + γ̂ z̄·· = ȳi· − γ̂ (z̄i· − z̄··),(2)

for i = 1, . . . , t , where γ̂ is the BLUE for γ . These do
not involve the (estimated) block effects because they
are averages over the blocks and the block effects sum
to zero. In the fixed effects case, γ̂ is the ordinary least
squares estimate

γ̂ols = zT (Ct ⊗ Cb)y
zT (Ct ⊗ Cb)z

,(3)

where Ct = It − J̄t is the centering matrix of dimension
t , and y = (y11, y12, . . . , ytb)

T is the entire response
vector, with z defined analogously. Since CbJ̄b = 0, it
follows from (3) that γ̂ols is independent of the unad-
justed treatment mean vector, (It ⊗ J̄b)y, with compo-
nents, ȳi·, i = 1, . . . , t . Hence, the variance formula for
the adjusted means based on the traditional model with
fixed block effects is

var(μ̂i,adj) = σ 2
e

b
+ σ 2

e

zT (Ct ⊗ Cb)z
(z̄i· − z̄··)2.(4)

For numerical illustration we consider the apple
yield data from Pearce (1953, 1982). In this experi-
ment there were b = 4 blocks, and t = 6 treatments
(A, B, C, D, E and S), with S being the standard prac-
tice in English apple orchards of keeping the land clean
in the summer. The response, Y , is the yield per plot,
and the covariate, Z, is the number of boxes of fruit,
measured to the nearest tenth of a box, for the four sea-
sons previous to the application of the treatments. The

adjusted treatment means and their estimated standard
errors, based on three different models, are reported in
Table 1.

3.2 Univariate Mixed Model

In most applications the blocks can be regarded as
a random sample from a population, and it is of inter-
est to make inferences about the average treatment ef-
fects across the population of potential blocks. In such
cases it makes sense to treat the block effects as ran-
dom. Thus, model (1) becomes

Yij = μ + τi + Bj + γ zij + Eij ,(5)

where now Bj ∼ i.i.d.N(0, σ 2
b ) independently of the

random errors, Eij . Replacing the covariate zij with
the data centered value, zij − z̄··, has no effect on the fit
of this model because the term, −γ z̄··, can be incorpo-
rated into the fixed intercept. However, unlike the fixed
block model (1), replacing the covariate with block
centered values, zij − z̄·j , does affect the fit.

The inter-block regression model derived from (5) is

Ȳ·j = μ + γ z̄·j + Bj + Ē·j ,(6)

while the intra-block model is the same as in the fixed
effects case. Thus, when the block effects are treated
as random, they are incorporated into the error term
of the inter-block model. As a result, the inter-block
model does contain additional information about the
covariate regression parameter. In particular, it would
appear from (6) that the information in the inter-block
model will increase with the variability of the covariate
block means. This explains the first quote from Zelen
(1957) given in Section 2 (albeit for a BIB design).

The adjusted treatment means based on model (5)
have the form (2), being the expected treatment means
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in repeated sampling (involving different blocks) at a
common concomitant variable value, Z = z̄··. How-
ever, the BLUE for γ is a weighted average of the
estimates obtained from the intra- and inter-block re-
gression models, where the weights are inversely pro-
portional to their variances. Let ρ denote correlation
between any two sample treatment means, that is,

ρ = cor(Ȳi·, Ȳk·) = σ 2
b

σ 2
b + σ 2

e /t
.

Then, it is shown in the Appendix that the BLUE of γ

based on (5) has the form

γ̂mixed = zT [(It − ρJ̄t ) ⊗ Cb]y
zT [(It − ρJ̄t ) ⊗ Cb]z

(7)

= zT (Ct ⊗ Cb)y + (1 − ρ)zT (J̄t ⊗ Cb)y

zT [(It − ρJ̄t ) ⊗ Cb]z
.

If the block variance dominates the error variance, and
hence ρ ≈ 1, then the mixed effects estimate of γ is
close to the ordinary least squares estimate in (3). On
the other hand, if the block variance is dominated by
the error variance, then ρ ≈ 0, and the estimate in (7)
corresponds to the fixed effect case in which the block
effects are omitted from the model.

The adjusted means and their standard errors based
on the mixed effects model (5), for the apple yield data,
are tabulated in Table 1. The ML variance component
estimates in this example are σ̂ 2

e = 194.55 and σ̂ 2
b =

553.98, resulting in a correlation estimate ρ̂ = 0.9447,
and γ̂ = 28.89. This compares with the ordinary least
squares estimate γ̂ = 28.40. Thus, in this case the ad-
justed mean values are quite similar. However, the stan-
dard errors reported by the software are quite differ-
ent. This is because inferences from the fixed effects
model (1) are restricted to the four blocks in the study,
whereas those from the model (5) apply to the popula-
tion of blocks. Specifically, since (7) implies γ̂mixed is
independent of the unadjusted treatment means,

var(μ̂i,adj)

= σ 2
e + σ 2

b

b

+ zT [(It − ρJ̄t ) ⊗ Cb]�[(It − ρJ̄t ) ⊗ Cb]z
(zT [(It − ρJ̄t ) ⊗ Cb]z)2

· (z̄i· − z̄··)2,

where � ≡ var(Y) = σ 2
e It ⊗ Ib + σ 2

b Jt ⊗ Ib. Notice
that, even as ρ approaches 1, this variance formula still
differs from the fixed effects variance given in (4) by
an additive amount, σ 2

b /b, which accounts for variation
due to sampling of blocks.

3.3 Bivariate Mixed Model

As noted in the Introduction, the models (1) and (5)
are inherently conditional on the observed values of the
covariate Z. The fixed effects model (1) is appropriate
if the blocks in the experiment are the only ones of in-
terest, whereas model (5) is an attempt to broaden the
applicability of inferences to the hypothetical popula-
tion from which the blocks were drawn. An obvious
question is what model(s) for the joint distribution of
(Y,Z) leads to the conditional model (5)?

Consider a bivariate model in which the distribution
of Z is independent of the treatments but allows for
random variation between blocks and residual error.
Specifically,(

Yij

Zij

)
=

(
μy

μz

)
+

(
τi,y

0

)
(8)

+
(

Bj,y

Bj,z

)
+

(
Eij,y

Eij,z

)
where the block effects are i.i.d. bivariate normal,(

Bj,y

Bj,z

)
∼ i.i.d.N2

[(
0
0

)
,�B =

(
σ 2

b,y σb,yz

σb,zy σ 2
b,z

)]
,

independently of the bivariate residual errors,(
Eij,y

Eij,z

)
∼ i.i.d.N2

[(
0
0

)
,�E =

(
σ 2

e,y σe,yz

σe,zy σ 2
e,z

)]
.

As before, let Yj = (Y1j , . . . , Ytj )
T denote the re-

sponse vector for the j th block, and similarly define
Zj . Then the conditionally specified model implied by
bivariate model (8) can be formally derived using the
fact that(

Yj

Zj

)

∼ i.i.d.N2t

[(
μy

μz1t

)
,

(
σ 2

e,yIt + σ 2
b,yJt

σe,zyIt + σb,zyJt
(9)

σe,yzIt + σb,yzJt

σ 2
e,zIt + σ 2

b,zJt

)]
,

where μy is the vector of treatment means with com-
ponents, μi,y = μy + τi,y . It follows that

E(Yj |Zj = zj )

= μy + (σe,yzIt + σb,yzJt )(σ
2
e,zIt + σ 2

b,zJt )
−1

· (zj − 1tμz)
(10)

= μy + (σe,yzIt + tσb,yzJ̄t )
1

σ 2
e,z

·
(

It − tσ 2
b,z

σ 2
e,z + tσ 2

b,z

J̄t

)
(zj − 1tμz)

= μy + γe(zj − 1tμz) + γb1t (z̄·j − μz),
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where γe = σe,yz/σ
2
e,z and

γb = σ 2
e,zσb,yz − σe,yzσ

2
b,z

σ 2
e,z(σ

2
b,z + σ 2

e,z/t)
.(11)

The conditional variance is

var(Yj |Zj = zj )

= σ 2
e,yIt + σ 2

b,yJt

− (σe,yzIt + σb,yzJt )(σ
2
e,zIt + σ 2

b,zJt )
−1

· (σe,zyIt + σb,zyJt )
(12)

= σ 2
e,yIt + σ 2

b,yJt

− (σe,yzIt + σb,yzJt )
1

σ 2
e,z

·
(

It − σ 2
b,z

σ 2
e,z + tσ 2

b,z

Jt

)
(σe,zyIt + σb,zyJt )

= σ 2
e It + σ 2

b Jt ,

where σ 2
e = σ 2

e,y − σ 2
e,yz/σ

2
e,z, and

σ 2
b = σ 2

b,y − [γeσb,yz + γb(σb,yz + σe,yz/t)].(13)

It follows from (10) and (12) that the univariate con-
ditional model implied by (9) is

Yij = μ + τi + Bj + γezij + γbz̄·j + Eij ,(14)

where μ = μy − (γe + γb)μz, τi ≡ τi,y , and Bj ∼
i.i.d.N(0, σ 2

b ) independently of Eij ∼ i.i.d.N(0, σ 2
e ).

The inter-block regression model implied by (14) is

Ȳ·j = μ + γbez̄·j + Bj + Ē·j ,

where

γbe ≡ γe + γb = σb,yz + σe,yz/t

σ 2
b,z + σ 2

e,z/t

is the slope of the inter-block regression. Thus, in this
case the inter-block model contains no information
about the intra-block covariate regression coefficient.
Similarly, in the case of a generalized linear mixed
model, where random effects may be correlated with
one of the predictors, it is shown in Neuhaus and Mc-
Culloch (2006) that conditional maximum likelihood
also leads naturally to the partitioning of the covariate
into between- and within-cluster components.

Writing (13) in terms of the intra-block and inter-
block slopes, γe and γbe, we obtain

σ 2
b = σ 2

b,y − γeσe,yz/t − γbe(σb,yz + σe,yz/t).

Thus, the block variance for the response in the con-
ditional model is the marginal block variance adjusted
for intra- and inter-block regression on the covariate.

The univariate mixed model (5) is the conditional
model implied by (8) when γb = 0, which only happens
if σ 2

b,z = 0, an unrealistic assumption in practice. At
this point it is interesting to recall Zelen’s (1957) com-
ments, quoted earlier, concerning the equality of slopes
in the inter- and intra-block models, and the infor-
mation in the inter-block model about the intra-block
slope increasing with the block-to-block variability in
the covariate. It is now clear that these statements are
incompatible. Block-to-block variability in the covari-
ate implies that the inter- and intra-block slopes are dif-
ferent. For this reason the use of the univariate mixed
model (5) leads to biased estimates of adjusted means
and inconsistent estimates of variance components as
the number of blocks increases.

We define the adjusted treatment means to be the
expected responses if the covariate values were all
equal to the average observed covariate value. Thus,
the model (14) implies

μi,adj = μ + τi + (γb + γe)z̄··
(15)

= μi,y + γbe(z̄·· − μz).

It is shown in the Appendix that μ̂z = z̄··, that γ̂e equals
the ordinary least squares estimate based on univariate
fixed effects model, and that μ̂i,y = ȳi· − γ̂e(z̄i· − z̄··).
It follows that the adjusted treatment means based on
(14) are identical to (2).

Estimates of the adjusted treatment means for the
apple yield data based on (14) are given in Table 1.
The estimate of the inter-block slope in this case is
γ̂be = 37.25. This is quite different in magnitude (al-
though not statistically) from the estimated intra-block
slope, γ̂e = 28.40. Since the intra-block estimate is
identical to those based on the univariate fixed effects
model, the standard errors for the adjusted means are
given by

var(μ̂i,adj) = σ 2
e + σ 2

b

b
+ σ 2

e

zT (Ct ⊗ Cb)z
(z̄i· − z̄··)2.

The estimated standard errors are larger than those
based on the fixed effects model by an additive fac-
tor of σ 2

b /b. This is as is should be, because the scope
of inference has been broadened to the population of
blocks.

Up to now we have assumed that the covariate values
are not affected by the treatments. If they are, then the
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bivariate model (8) is no longer appropriate. An obvi-
ous modification of (8) in this case is(

Yij

Zij

)
=

(
μy

μz

)
+

(
τi,y

τi,z

)
+

(
Bj,y

Bj,z

)
+

(
Eij,y

Eij,z

)
.

The conditional model for Y given Z implied by this
model has exactly the same form as (14). However, the
treatment effect parameter τi is equal to τi,y − γeτi,z.
This makes sense in that what is being estimated is
the direct effect of treatments on the response mean,
as opposed to the indirect effect through the covariate.
As noted by Bartlett (1936), there is reason for caution
in this setting due to hidden extrapolation. Comparing
conditional expectations of treatment means at equal
covariate levels may not make sense if the treatments
affect what covariate values are observed.

4. GENERAL ORTHOGONAL BLOCKING DESIGNS

4.1 Theory

Let Zij = (Zij1, . . . ,Zijm)T be a covariate vector as-
sociated with the response Yij , for i = 1, . . . , k in repli-
cate j = 1, . . . , b. Thus, the data matrix for replicate j

is given by ⎡
⎢⎢⎢⎢⎣

Y1j ZT
1j

Y2j ZT
2j

...
...

Ykj ZT
kj

⎤
⎥⎥⎥⎥⎦ = [Yj ,Zj ],

say. Let Z∗
jr denote the r th column of Zj . Suppose that

Yj can be decomposed into Yj = μy +Tj +Uj , where
μy is the fixed mean of Yj , which depends on the treat-
ments, Tj is the sum random factors associated with
treatments (and therefore independent of Zj ), and Uj

is the sum of q random design factors plus residual er-
rors.

We suppose that vec[Uj ,Zj ], j = 1, . . . , b, are i.i.d.
multivariate normal vectors of dimension k(m + 1),
with means, vec[0k,μ

T
z ⊗ 1k], where the components

of μz are the marginal means of the m covariates,
and with covariance matrix, V. We say that the de-
sign is an “orthogonal blocking design” if the matrix
V has the following structure. Let A0 ≡ J̄k , and Al ,
l = 1, . . . , q , be k × k matrices with the properties
that (a) Al is idempotent, (b) AlAl′ = 0 if l �= l′, and∑q

l=0 Al = Ik . Then we suppose there exist nonsingu-
lar matrices, G0,G1, . . . ,Gq , each of dimension m+1,
such that

V =
q∑

l=0

Gl ⊗ Al .(16)

Notice that a design can be orthogonal, in this sense,
regardless of the assignment of the treatments.

In general, the matrix V is a function of (q +
1)1

2(m + 1)(m + 2) free variance and covariance para-
meters which determine the q + 1 variance-covariance
matrices, �0, . . . ,�q , associated with the residual er-
rors, and the q random design factors. In particular, we
note that the variance–covariance structure for Uj is

Vuu =
q∑

l=0

gl,uuAl ,

where gl,uu, l = 0, . . . , q , are scalar parameters, and
that this structure is that implied by orthogonality of
the random blocking factors.

EXAMPLE. Consider the RCB design discussed in
Section 3. In this case there is only one covariate, so
m = 1. The vector Uj associated with the j th block
consists of the sum of the block effect and and the
residual error vector,

Uj = 1tBj + Ej .

Finally, the covariance matrix for (YT
j ,ZT

j )T is given
by

V = �E ⊗ It + �B ⊗ Jt

= (�E + t�B) ⊗ J̄t + �E ⊗ (I − J̄t ).

The fact that vec[Uj ,Zj ], j = 1, . . . , b, are i.i.d.
multivariate normal vectors implies that marginally
vec(Zj ), j = 1, . . . , b, are i.i.d. N(μz ⊗ 1k,Vzz),
where u and z subscript combinations are used to de-
note components of the partitioned matrix. Moreover,
conditionally upon Z, Uj , j = 1, . . . , b, have indepen-
dent normal distributions with means

E(Uj |Zj = zj )

= VuzV−1
zz (zj − μz ⊗ 1k)

=
( q∑

l=0

gl,uz ⊗ Al

)( q∑
l=0

G−1
l,zz ⊗ Al

)
(zj − μz ⊗ 1k)

=
( q∑

l=0

gl,uzG−1
l,zz ⊗ Al

)
(zj − μz ⊗ 1k)

=
( q∑

l=0

γ T
l ⊗ Al

)
(zj − μz ⊗ 1k),

where γ T
l = gl,uzG−1

l,zz is a 1 × m parameter vector.
Since (γ T

l ⊗ Al)(μz ⊗ 1k) = γ T μz ⊗ Al1k = 0, unless



230 BOOTH, FEDERER, WELLS AND WOLFINGER

l = 0, in which case it equals γ T
0 μz1k , we have

E(Uj |Zj = zj ) = −γ T
0 μz1k +

q∑
l=0

m∑
r=1

γlrAlz∗
jr .

Finally, since Tj has mean zero, and is independent of
Zj ,

E(Yj |Zj = zj ) = μc
y +

q∑
l=0

m∑
r=1

γlrAlz∗
jr ,

where μc
y = μy −γ T

0 μz1k . Thus, the conditional mean
of the response is given by a linear model with treat-
ment effects incorporated into μc

y , and covariate re-
gression effects with slopes, {γlr}, l = 0, . . . , q , associ-
ated with each of the m covariates, r = 1, . . . ,m. Since
Al1k = 0 for l > 0, the expected response if all the co-
variates are equal to their respective marginal means
is

μadj = μy − 1kγ
T
0 (z̄∗·· − μz),

which generalizes the formula (15) for the RCB design.
The conditional variance of Uj is given by

var(Uj |Zj = zj ) = Vuu − VuzV−1
zz Vzu

=
q∑

l=0

(gl,uu − gl,uzG−1
l,zzgl,zu) ⊗ Al

=
q∑

l=0

λlAl ,

corresponding to an orthogonal design with orthogonal
partition {Al}.

EXAMPLE. Consider again the RCB design of Sec-
tion 3. Note that the conditional mean (10) can be re-
expressed in the form,

E(Yj |Zj = zj ) = μc
y + γbeJ̄tzj + γe(It − J̄t )zj ,

where μc
y = μy −γbeμz, and γbe = γe +γb. Moreover,

the conditional variance (12) can be reexpressed as

var(Yj |Zj = zj ) = (σ 2
e + tσ 2

b )J̄t + σ 2
e (It − J̄t ).

4.2 Examples

4.2.1 Split-plot designs.. Consider a standard split-
plot experiment with t whole-plot treatments, each
replicated r times, and s split-plot treatments in each
wholeplot. Let Yijk denote response to split-plot treat-
ment k, in whole-plot j assigned to whole-plot treat-
ment i. Similarly index the covariate values Zijk . Then,
the marginal models for the response and covariate are

Yijk = μy + αi,y + W(i)j,y + τk,y + ατik,y + Eijk,y

and

Zijk = μz + W(i)j,z + Eijk,z

respectively. Bivariate normality for the pairs, (W(i)j,y,

W(i)j,z) and (Eijk,y,Eijk,z), imply that the conditional
model for appropriate covariate adjustment has the
form,

Yijk = μ + αi + W(i)j + τk + ατik

(17)
+ γwz̄ij · + γezijk + Eijk,

where αi is the fixed main effect of the ith wholeplot
treatment, τk is the fixed main effect of the kth split-
plot treatment, and W(i)j is the random effect of the
j th wholeplot replicate nested within the ith wholeplot
treatment. Milliken and Johnson [(2002), Section 15.4]
discuss a split-plot design in the context of a cookie
baking experiment in which oven temperature is the
whole plot factor, and cookie type is the split-plot fac-
tor. The covariate in their example is the thickness of
the slices of cookie dough, but their proposed “equal
slopes” model does not include the whole plot regres-
sion term in (17).

If the experiment is arranged in b blocks, with r

replicate wholeplots for each wholeplot treatment level
in each block, then the marginal model for the response
is

Yijkl = μy + Bi,y + αj + (Bα)ij + W(ij)k,y

+ τl + (Bτ)il + (ατ)jl + (Bατ)ij l + Eijkl,y.

Since the treatments have no effect on the covariate,
the marginal model for Z is

Zijkl = μz + Bi,z + W(ij)k,z + Eijkl,z.

Notice that, in this case, there are random interactions
between the blocking factor and treatments that af-
fect the response, but not the covariate. Bivariate nor-
mality of the pairs, (Bi,y,Bi,z), (W(ij)k,y,W(ij)k,z) and
(Eijkl,y,Eijkl,z), results in a conditional model for the
response with a covariate adjustment at the individ-
ual response level, as well as adjustments for covariate
variation in wholeplot and block means, specifically,

Yijkl = μ + Bi + αj + (Bα)ij + W(ij)k

+ τl + (Bτ)il + (ατ)jl + (Bατ)ij l

+ γbz̄i··· + γwz̄ijk· + γezijkl + Eijkl.
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4.2.2 Latin square design.. Let Yijk denote the re-
sponse in cell (i, j) of a latin square design involving
two random blocking factors and a fixed treatment fac-
tor, each with b levels. An appropriate model ignoring
any covariate information is

Yrijk = μy + Ri,y + Cj,y + τk + Eijk,y.

A marginal model for a random covariate is

Zrijk = μz + Ri,z + Cj,z + Eijk,z.

Bivariate normality of the pairs, (Ri,y,Ri,z), (Cj,y,

Cj,z) and (Eijk,y,Eijk,z), results in a conditional
model for the response with a covariate adjustment at
the individual response level, as well as adjustments
for covariate variation in row and column means. That
is,

Yijk = μ + Ri + Cj + τk + γr z̄i··
+ γcz̄·j ·· + γezijk + Eijk.

4.2.3 Incomplete block designs.. Consider an in-
complete block design with k < t treatments appearing
in each block. Let Yj and Zj denote the response and
covariate vectors for block j . The arguments of Sec-
tion 3.3 lead to the conditional model (14), with the
subscript i taking k values in {1,2, . . . , t} depending
on the value of j , and with the block regression para-
meter, γb, having the same form as (11) with t replaced
by k. We note here that even though this design is not
orthogonal with respect to the response, it is orthogo-
nal from the perspective of the covariate. It follows that
the appropriate adjustment for covariates in an incom-
plete block design can be carried out using a univariate
mixed model.

As an example we consider data from a study con-
ducted by the National Bureau of Standards, discussed
in Zelen [(1957), Section 6], to determine the effects of
four geometrical shapes on the current noise of resis-
tors. As described by Zelen, the “geometrical shapes
were rectangular parallelepipeds (all having the same
thickness) formed by taking all four combinations of
2 widths (w1,w2) and 2 lengths (l1, l2).” Three resis-
tors were mounted on each of 12 ceramic plates ac-
cording to a BIB design. The response was the loga-
rithm of the noise measurement, and the covariate was
the logarithm of the resistance of each resistor. Esti-
mated treatment effects and their standard errors ob-
tained using the univariate mixed model of the form
(5), and using the conditional model (14) derived from
the bivariate model (8), are given in Table 2. There are
substantial differences in both the estimated effects and

TABLE 2
Estimated treatment effects and standard errors for Zelen’s BIB

Univariate Bivariate

Treatment Effect Std.Err. Effect Std.Err.

l1w1 −0.519 0.112 −0.449 0.233
l1w2 −0.238 0.029 −0.229 0.040
l2w1 0.249 0.031 0.238 0.045
l2w2 0.508 0.109 0.440 0.226

Estimated treatment effects and standard errors obtained using the
mixed models (5) and (14). In each case the variance components
were estimated REML which explains why the first set of estimates
(labeled “univariate”) differ slightly from those obtained by Zelen
(1957).

the standard errors obtained using the two models. The
estimates are also highly correlated, and these correla-
tions must be taken into account in comparisons among
the length and width combinations. In particular, Zelen
considered the interaction contrast,

π = (l2w1 − l2w2) − (l1w1 − l1w2).

Estimates of π under the two models (5) and (14)
are 0.022 and 0.018 respectively, with standard errors
0.056 and 0.061. Thus, both models lead to the same
conclusion that there is little statistical evidence for in-
teraction.

5. NONORTHOGONAL DESIGNS

5.1 Factorization

A key feature of the multivariate mixed model in the
orthogonal design case is that the parameters in the
conditional model for Y (μc

y and γ l , l = 0,1, . . . , q)
are variation independent of those in the marginal
model for Z (μz and Gl,zz, l = 0,1, . . . , q). The two
sets of parameters combined represent a 1–1 transfor-
mation of the bivariate model parameterization (μy ,
μz, Gl , l = 0,1, . . . , q). In general, this decompo-
sition of the parameter space may not be possible,
in which case appropriate adjustment of the treat-
ment means cannot be accomplished using a univariate
mixed model. To see this, suppose that the covariate
data is only partially observed, say, z = (zo, zm), where
zo denotes the observed part, and zm the unobserved.
Then, the joint distribution of the data is

f (y, zo;μy,μz,G)

=
∫

fY |Z(y|z;μc
y,γ )fZ(z;μz,Gzz)dzm,
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and, hence, the marginal distribution of zo is∫ ∫
fY |Z(y|z;μc

y,γ )fZ(z;μz,Gzz)dzm dy.

There is now no guarantee that the parameters that de-
termine the marginal distribution of zo will be separa-
ble from those that determine the conditional distribu-
tion of y given zo.

To further illustrate this point, consider again the
RCB design discussed in Section 3. In this case the bi-
variate model has t +7 parameters which determine the
marginal means and block and error covariance matri-
ces, (μy,μz,�B,�E). The parameterization in terms
of the marginal model for Z, and the conditional model
for Y , is a union of two variation independent compo-
nents of dimensions 3 and t + 4 respectively. Specifi-
cally, (μz, σ

2
b,z, σ

2
e,z)∪ (μ, γe, γb, σ

2
e , σ 2

b ), where μ has
ith component equal to μ + τi . Now suppose that only
k < t covariate values are recorded in block j . Let
zj,o denote the observed vector of covariate values (of
length k) and let z̄·j,o denote its mean value. Then,
modifying the arguments that led to equation (10) re-
sults in the conditional mean

E(Yj |Zj,o = zj,o) = μy + γe(zj,o − 1kμz)

+ γb,o1k(z̄·j,o − μz),

where γb,o has the same functional form as (11) with t

replaced by k. Thus, if the blocks have different num-
bers of covariate measurements, the parameters of the
conditional model for Y are not separable from those
of the marginal model for Z.

5.2 General Multivariate Mixed Model

To simplify the notation, we relabel the vector of re-
sponses as Z0 (i.e., Z0 ≡ Y). Then Z = vec[Z0,Z1,

. . . ,Zm] is a vector containing all the responses and
associated values of m covariates stacked on top of one
another. Thus, if the number of responses is n, then Z
has length n × (m + 1). The multivariate mixed model
described in this paper can be written in the form,

Z = Xβ +
r∑

i=1

CiTi +
q∑

i=0

DiBi ,

where X determines the means structure, Ti ∼ N(0,

σ 2
i Ici

), independently for i = 1, . . . , r , are random fac-
tors associated with treatments, and Bi ∼ N(0,�i ⊗
Idi

), independently for i = 0,1, . . . , q , are random
(blocking) factors associated with the design, with the
exception of B0, which is the residual error term (so
that d0 ≡ n). It is convenient to partition the matrices

X, Ci and Di into blocks consisting of the n rows as-
sociated with the response, or one of the m covariates.
Thus, X = [XT

0 ,XT
1 , . . . ,XT

m]T , Ci = [CT
i0, . . . ,CT

im]T
and Bi = [BT

i0, . . . ,BT
im]T . Note that, if the covariates

are unaffected by the treatments, then Cij ≡ 0 for j >

0. The model implies that Z has variance-covariance
matrix equal to

V ≡ var(Z) =
r∑

i=1

CiCiσ
2
i +

q∑
i=0

Di (�i ⊗ Idi
)DT

i .

We define the adjusted response mean vector as its
conditional expectation given the covariates evaluated
at their estimated mean values. If we partition the vari-
ance matrix, V, into n×n matrix components, the con-
ditional expectation of the response vector is given by

E(Y|Zi = 1nμ̂zi
, i = 1, . . . ,m)

= X0β + [rV0i]([Vij ]mi,j=1)
−1[c1nμ̂z,i − 1nμz,i].

Here, we have used the notational definitions in Searle,
Casella and McCulloch [(1992), Section 8.3]. Thus, for
example, [rV0i] = [V01, . . . ,V0m]. The estimate of the
adjusted mean response vector is therefore

μ̂adj = X0β̂ = X0(XT V̂−1X)−1XT V̂−1Z.

A “naive” variance-covariance formula for the adjusted
mean vector, ignoring variability due to the estimation
of V, is given by the conditional variance of μ̂adj as-
suming V is known. Specifically,

var(μ̂adj) = X0(XT V−1X)−1XT [Vi0V∗
00V0j ]mi,j=0

· X(XT V−1X)−1XT
0 ,

where [Vij ] = V−1, and V∗
00 = V00 − [rV0i] ·

([Vij ]mi,j=1)
−1[cV0j ].

5.3 EM Algorithm

The distributional assumptions described above im-
ply that the “complete” data vector,

(ZT ,TT
1 , . . . ,TT

r ,BT
1 , . . . ,BT

q )T ,

has a multivariate normal distribution with mean
(βT XT ,0T )T . The assumptions imply the covariance
between Z and Ti and Bi are, respectively,

cov(Z,TT
i ) = Ciσ

2
i ,

and

cov(Z,BT
i ) = Di(�i ⊗ Idi

).

Thus, the joint density of the complete data vector is

f (z, t,b) = |2π�|−1/2 exp(−Q/2),
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where Q = [(z − Xβ)T , tT ,bT ]�−1[(z − Xβ)T , tT ,

bT ]T , and

� =
⎡
⎣ V {rCiσ

2
i }

{cCT
i σ 2

i } {dIci
σ 2

i }
{c(�i ⊗ Idi

)DT
i } 0T

{rDi (�i ⊗ Idi
)}

0
{d�i ⊗ Idi

}

⎤
⎦ .

This implies that

|�| = |{dIci
σ 2

i }||{d�i ⊗ Idi
}||D0(�0 ⊗ In)DT

0 |

=
{

r∏
i=1

σ
2ci

i

}{ q∏
i=1

|�i |di

}
|�0|n,

because D0 = Im+1 ⊗ In. The complete data log-
likelihood is therefore

l = −1

2

r∑
i=1

ci logσ 2
i − 1

2

q∑
i=0

di log |�i |

− 1

2

r∑
i=1

TT
i Ti

σ 2
i

− 1

2

q∑
i=0

BT
i (�i ⊗ Idi

)−1Bi ,

where

B0 = Z − Xβ −
r∑

i=1

CiTi −
q∑

i=1

DiBi

depends on the parameter β . It follows that the maxi-
mum likelihood estimates based on the complete data
are

σ̂ 2
i = 1

ci

TT
i Ti , i = 1, . . . , r,(18)

�̂i =
[

1

di

BT
ij Bik

]m

j,k=0
, i = 0, . . . , q,(19)

and

Xβ̂ = X[XT (�0 ⊗ In)
−1X]−1XT (�0 ⊗ In)

−1

(20)

·
(

Z −
r∑

i=1

CiTi −
q∑

i=1

DiBi

)
.

The EM algorithm consists of iteratively replacing Ti

and Bi in (20), and TT
i Ti and BT

ij Bik in (18) and (19),
by their conditional expectations given the observed
data Z. These expectations are straightforward to cal-
culate because the conditional distributions involved
are multivariate normal. Specifically,

Ti |Z = z ∼ N [σ 2
i CT

i V−1(z − Xβ),

σ 2
i Ici

− σ 4
i CT

i V−1Ci],

TABLE 3
Adjusted means and standard errors for unbalanced apple yield

data

Covariate Response Response Std.Err.
Treatment mean mean Adj.Mean

A 8.53 283.67 269.29 13.35
B 8.40 266.67 255.69 13.35
C 8.35 275.25 271.62 12.73
D 7.93 270.25 277.47 12.73
E 7.48 277.25 295.96 12.73
S 9.30 279.50 251.63 12.73

Adjusted means and their standard errors for the apple yield data
from Pearce (1953, 1982), with covariate and response data miss-
ing for treatments A and B in block 1. The standard errors were
computed using equation (17) and the ML estimates of variance
components.

independently, for i = 1, . . . , r , and

E(Bi |Z = z) = (�i ⊗ Idi
)DT

i V−1(z − Xβ),

var(Bi |Z = z) = �i ⊗ Idi

− (�i ⊗ Idi
)DT

i V−1Di(�i ⊗ Idi
),

independently, for i = 1, . . . , q .

5.4 An Unbalanced Example

Consider the apple yield data from Pearce (1953)
discussed in Section 2. Suppose that the observations
(both covariate and response) were missing for treat-
ments A and B in block number 1. The adjusted means
based on this unbalanced data are given in Table 3. The
adjusted means are evaluated at the ML estimate of
the covariate population mean, μ̂z = 8.2080, which is
not the same as the overall mean covariate value, z̄ =
8.3182, because of the imbalance with respect to treat-
ments. The standard errors for the adjusted means for
treatments A and B are larger than for the other treat-
ments because they are based on observations from
three blocks rather than four.

6. DISCUSSION

The traditional methods for covariate adjustment of
treatment means in designed experiments are inher-
ently conditional. In order to develop a coherent gen-
eral methodology, we have proposed a multivariate
variance components model for the joint distribution
of the response and covariates. We have shown that, if
the design is orthogonal with respect to blocking fac-
tors, then appropriate adjustments to treatment means
can be made using the univariate variance components
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model obtained by conditioning on the observed co-
variate values. As noted in Section 5, the key to this is
the factorization for the joint distribution of (Y,Z),

f (y, z; θ) = fY |Z(y|z; θ1)fZ(z; θ2),

where the conditional density fY |Z defines a univariate
linear mixed model for the response variable Y , and
where θ = (θ1, θ2) and θ1 and θ2 are variation indepen-
dent.

Our approach reveals the fact that some widely used
models generate biased adjusted means and incorrect
standard errors because the assumed conditional model
imposes unrealistic constraints on the joint distribution.
Our multivariate model also clarifies some issues that
have been the source of longstanding confusion in the
statistics literature. One such example is in the analy-
sis of balanced incomplete block designs. As noted
by Zelen (1957), “With respect to the non-covariance
situation, most statisticians agree that the inter-block
analysis may be important if the number of blocks is
‘large’ or if the variability between blocks is ‘small’.”
However, what is less understood is that the same state-
ment is true in the analysis of covariance. The multi-
variate analysis makes this clear because it reveals that
between block variation in the covariate implies that
the slope of the inter-block regression is different from
that in the intra-block regression.

In the multivariate model discussed in this paper, we
assume that the effect of the covariates is the same for
all treatments. It is common in the literature for authors
to consider models in which this is not the case. For
example, one can easily modify the univariate analysis
of covariance model (5), for a randomized blocks ex-
periment, to allow the slope of the covariate regression
to depend on the treatment (see, for example, Milliken
and Johnson, 2002, Chapter 9). However, as we have
shown, this univariate analysis is incorrect because it
fails to account for the block regression with respect to
the covariate. If the block regression components are
included in the model, should these also depend on the
treatments? It is the opinion of these authors that the
correct univariate model for covariate adjustment, if
one exists, must be motivated by a multivariate model
for the joint distribution of the response and the co-
variates. For example, a conditional model for the re-
sponse in which the regression slopes depend on the
treatments is implied by a multivariate model in which
the error covariance structure is heterogeneous across
treatments, but this model also implies that the condi-
tional error variances are heterogeneous across treat-
ments, an assumption that is not typically made. In ad-
dition, it seems unnatural to assume heterogeneity in

the error covariance structure unless there is also het-
erogeneity in the block variance–covariance matrices.
Thus, it is unclear to these authors if there is a coher-
ent univariate analysis that allows covariate effects to
depend on the treatments.

The ideas presented in this paper underscore the im-
portance of proper model specification and careful pa-
rameter interpretation in regression analysis of blocked
and clustered data. The formulation of the multivariate
model guards against ad hoc formulation and misspec-
ification of the regression model by omitting the block-
level mean effects that may seriously bias the estimate
of the individual-level effects.

A number of articles have explored particular types
of adjusting and centering for block and cluster means.
There are several reasons for adjusting for the block
and cluster means. As noted by Berlin et al. (1999),
variability in block and cluster means is common, and
can confound the estimated association between the
individual-level exposure measurement and outcome;
adjusting for the cluster mean may remove confound-
ing bias. Similarly, Neuhaus and Kalbfleisch (1998) ar-
gue that inference on the individual-level effects can be
misleading without adjustment. Both Kreft, de Leeuw
and Aiken (1995) and Raudenbush and Bryk (2002)
articulate the need for evaluating block and cluster-
level effects as predictor variables in their own right.
The paper by Begg and Parides (2003) reviews dif-
ferent heuristic adjustment and centering approaches
for the separation of individual-level and block/cluster-
level effects on response and their appropriate interpre-
tation. In this paper we suggest a multivariate model
that automatically yields the best adjustment and cen-
tering suggested by Begg and Parides (2003).

Throughout this article we assumed a joint normal
multivariate model. It is well known (see Cambanis,
Huang and Simons, 1981) that conditional moment cal-
culations are robust with respect to the family of ellip-
tically contoured distributions. That is, if two random
vectors have a joint elliptically contoured distribution,
then the conditional distribution of one given the other
is also elliptically contoured. The location and scale
parameters of the conditional distribution do not de-
pend upon auxiliary parameters of the joint distribu-
tion, and consequently, the conditional mean and co-
variance calculations which apply in the normal case
are valid in this more general elliptically contoured set-
ting as well.

In the Bayesian context Gelman (2005) presents a
general hierarchical regression approach for ANOVA
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problems in which effects are structured into exchange-
able batches. In this sense, ANOVA is a special case of
linear regression, but only if hierarchical models are
used. In fact, the batching of effects in a hierarchical
model has an exact counterpart in the rows of the analy-
sis of the variance table. In the case where the batches
are nonexchangeable Gelman (2005) recommends sub-
tracting batch-level regression predictors, then additive
effects for the factor levels in each batch could be mod-
eled as exchangeable. The proposed multivariate vari-
ance components model for the joint distribution of
the response and covariates would be a better start-
ing point for the hierarchical modeling in the case of
nonexchangeable batches. Assigning probability distri-
butions for the treatment effects and variance compo-
nents automatically leads to coherent Bayesian infer-
ences for the analysis of the covariance model.

Our modeling strategy has assumed, as is traditional
in designed experiments, that the covariate values are
not affected by the treatments, for example, because
they were measured prior to application of the treat-
ments. From a graphical models viewpoint, our model
is B → Y ← Z ← B , where B = (By,Bz). It is a di-
version to try to frame the model in this article on a
causal inference scaffold since the inferential goals are
quite different. In this article we have outlined a coher-
ent framework for the adjustment of treatment means
in designed experiments that account for one or more
covariates, whereas in causality one is trying to assess
an intervention effect (of Z on Y ) in the presence of
a background variable (B) (Cox and Wermuth, 2004).
The commonality of the two issues lies in the fact that
in both one is trying to sort out a set of consistent con-
ditional relations within a system of random variables.
A goal in casual modeling is to address the overall re-
gression coefficient of Y on Z where B has been de-
coupled from Z, that is, B and Z are nonadjacent in
the graph. A consequence of this decoupling is that γb

in (11) equals zero so that the partial and overall effect
Z on Y coincide, in which case the conditional model
implied by (8) reduces to the univariate mixed model
(5). Separating the block effect from the covariate mas-
sively restricts the scope of possible models. By start-
ing with a bona fide multivariate model for the joint
distribution of response, covariates and blocks, one is
led to a sensible univariate conditional model, which
properly accounts for the design with respect to the co-
variate.

Finally, we note that the multivariate variance com-
ponent model has interesting applications beyond just
analysis of covariance. For example, the generalization

of a paired t-test for a univariate response to multi-
ple observations per subject is a mixed effects model
with between and within subject error components. If
the response is multivariate, then a multivariate vari-
ance components model allows the same generaliza-
tion to repeated multivariate measurements. The use of
multivatiate variance components models for repeated
measures analysis is considered in Khuri, Mathew and
Sinha (1998), Chapter 10.

APPENDIX: ML ESTIMATION BASED ON THE
BIVARIATE MODEL FOR A RCB DESIGN

The representation of the bivariate model given in (9)
implies that the joint density of (y, z) can be factored,

f (y, z) =
b∏

j=1

fY |Z(yj |zj )fZ(zj ).

Likelihood-based inference can equivalently be based
on the joint density of a 1–1 transformation of the
data vector. Specifically, let Ht denote the Helmet
matrix of dimension t , and consider the transforma-
tion, (Yj ,Zj ) → (Y∗

j ,Z∗
j ) ≡ (HT Yj ,HT Zj ), for j =

1, . . . , b. The (i, j)th component of Y∗ is Y ∗
ij = hT

i Yj ,

where hi is the ith column of H. Similarly, Z∗
ij =

hT
i Zj .
Now, using the facts that hT

i hi′ = 0 for i �= i ′,
hT

i hi = 1, and hT
i 1 = 0, for i = 2, . . . , t , it is straight-

forward to verify that the pairs, (Y ∗
ij ,Z

∗
ij ), i = 1, . . . , t

and j = 1, . . . , b, are mutually independent. Further-
more,(

Y ∗
1j

Z∗
1j

)
∼ i.i.d.N2

[(
θ1,y

θ1,z

)
,�E + t�B

]
,

j = 1, . . . , b,

and for each i = 2, . . . , t,(
Y ∗

ij

Z∗
ij

)
∼ i.i.d.N2

[(
θi,y

0

)
,�E

]
, j = 1, . . . , b,

where θi,y = hT
i μy and θ1,z = hT

1 1μz. It now follows
that

Z∗
1j ∼ i.i.d.N(θ1,z, σ

2
e,z + tσ 2

b,z),

j = 1, . . . , b,

Y ∗
1j |Z∗

1j = z∗
1j ∼ i.i.d.N(θ1,yz + γbez

∗
1j , σ

2
be),

j = 1, . . . , b,

Z∗
ij ∼ i.i.d. N(0, σ 2

e,z),

i = 2, . . . , t, j = 1, . . . , b,
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and for i = 2, . . . , t ,

Y ∗
ij |Z∗

ij = z∗
ij ∼ i.i.d.N(θi,y + γez

∗
ij , σ

2
e ),

j = 1, . . . , b,

where γbe = (σe,yz + tσb,yz)/(σ
2
e,z + tσ 2

b,z) = γb +
γe, θ1,yz = θ1,y − γbeθ1,z, and σ 2

be = σ 2
e,y + tσ 2

b,y −
γbe(σe,yz + tσb,yz).

From these distributional results we can easily de-
duce the ML estimates. In particular, θ̂1,z = z̄∗

1· which
implies μ̂z = z̄··,

γ̂be =
∑b

j=1(z
∗
1j − z̄∗

1·)y∗
1j∑b

j=1(z
∗
1j − z̄∗

1·)2
=

∑b
j=1(z̄·j − z̄··)ȳ·j∑b
j=1(z̄·j − z̄··)2

= zT (J̄t ⊗ Cb)y

zT (J̄t ⊗ Cb)z
,

γ̂e =
∑t

i=2
∑b

j=1(z
∗
ij − z̄∗

i·)y∗
ij∑t

i=2
∑b

j=1(z
∗
ij − z̄∗

i·)2

=
∑t

i=1
∑b

j=1(zij − z̄i· − z̄·j + z̄··)yij∑t
i=1

∑b
j=1(zij − z̄i· − z̄·j + z̄··)2

= zT (Ct ⊗ Cb)y
zT (Ct ⊗ Cb)z

,

θ̂1,yz = ȳ∗
1· − γ̂bez̄

∗
1· and θ̂i,y = ȳ∗

i· − γ̂ez̄
∗
i·, i = 2, . . . , t .

Note that θ̂i,y �= ȳ∗
i·. Also, the ML estimate of γe is

identical to the OLS estimate of γ based on the stan-
dard fixed effects model (1). Also, θ̂1,y = ȳ∗

1· = hT
1 ȳ·,

but θ̂i,y = ȳ∗
i· − γ̂ez̄

∗
i· = hT

i (ȳ· − γ̂ez̄·), for i = 2, . . . , t .
Hence,

μ̂y = Hθ̂y = HHT ȳ· − γ̂eHHT z̄· + γ̂e1z̄··
= ȳ· − γ̂e(z̄· − 1z̄··),

which agrees exactly with the adjusted mean formula
(2) based on the fixed effects model (1).

Finally, if there is no between block variation in the
covariate (i.e., σ 2

b,z = 0), then γb = 0. In this case, γ̂be

and γ̂e are independent estimates of γe. The ML esti-
mate of γe in this case is a weighted average of the two
independent estimates, with weights inversely propor-
tional to their conditional variances. Since

var(Y|z) = (σ 2
e It + σ 2

b J) ⊗ Ib

= (σ 2
e + tσ 2

b )[(1 − ρ)It + ρJ̄t ],
it follows that

var(γ̂be|z) = σ 2
e + tσ 2

b

zT (J̄t ⊗ Cb)z
,

and

var(γ̂e|z) = (1 − ρ)
σ 2

e + tσ 2
b

zT (Ct ⊗ Cb)z
.

This implies that

γ̂e,ML = zT [(J̄t + 1/(1 − ρ)Ct ) ⊗ Cb]y
zT [(J̄t + 1/(1 − ρ)Ct ) ⊗ Cb]z

= zT [(It − ρJ̄t ) ⊗ Cb]y
zT [(It − ρJ̄t ) ⊗ Cb]z

,

which agrees with (7).
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