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Reversing the Stein Effect
Michael D. Perlman and Sanjay Chaudhuri

Abstract. The Reverse Stein Effect is identified and illustrated: A statistician
who shrinks his/her data toward a point chosen without reliable knowledge
about the underlying value of the parameter to be estimated but based instead
upon the observed data will not be protected by the minimax property of
shrinkage estimators such as that of James and Stein, but instead will likely
incur a greater error than if shrinkage were not used.
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1. THE CASE FOR SHRINKAGE: THE STEIN
EFFECT

Suppose that X is an observed random vector in p-
dimensional Euclidean space Rp such that X = Y + δ,
where δ is an unknown location parameter and Y is an
unobserved absolutely continuous random vector. Un-
der the mild assumption that Y ≡ X−δ is directionally
symmetric,1 it is easy to heuristically justify “shrink-
age” estimators for δ of the form

δ̂γ ≡ δ̂γ (X; δ0) = γ (X − δ0) · (X − δ0) + δ0,(1)

where γ ≡ γ (X − δ0) ∈ [0,1) and δ0 is any fixed
shrinkage target point in Rp . The improvement offered
by such shrinkage estimators is often referred to as the
Stein Effect.

First, for fixed δ and δ0, let B1 ≡ B1(‖δ − δ0‖; δ0) ⊂
Rp denote the ball of radius ‖δ − δ0‖ centered at δ0
and let H be the halfspace bounded by a hyperplane
∂H tangent to B1 at δ (see Figure 1). Then

{X|‖X − δ0‖ > ‖δ − δ0‖} = Bc
1,(2)

Prδ[‖X − δ0‖ > ‖δ − δ0‖|δ0]
= Prδ[X ∈ Bc

1 |δ0]
(3)

> Prδ[X ∈ H | δ0]
= 1

2 ,
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1 �Y d= − �Y , where �Y := Y/‖Y‖ is the unit vector in the direction
of Y (see Appendix A).

where (3) follows from directional symmetry by Propo-
sition 1(c) in Appendix A. Furthermore, under some-
what stronger but still general assumptions (see Propo-
sition 2 in Appendix A),

lim
p→∞ Prδ[‖X − δ0‖ > ‖δ − δ0‖]

(4)
≡ lim

p→∞ Prδ[X ∈ Bc
1] = 1.

Thus, ‖X − δ0‖ is usually an overestimate of ‖δ − δ0‖,
so an estimator of the form γ (X − δ0) · (X − δ0) for
δ − δ0 should be preferable to X − δ0 itself. Writing δ

as (δ − δ0) + δ0 immediately leads to estimators for δ

of the form (1).
Second (see Appendix B),

{X | ∃γ̃ ∈ [0,1) 
 ‖δ̂γ̃ − δ‖ < ‖X − δ‖} = Bc
2,(5)

where γ̃ ≡ γ̃ (X − δ0, δ − δ0) is allowed to depend on δ

and B2 ≡ B2(‖δ−δ0‖; δ̄) is the ball of radius 1
2‖δ−δ0‖

centered at 1
2(δ0 + δ) ≡ δ̄. Since Bc

2 ⊃ Bc
1 , also

Prδ[X ∈ Bc
2 | δ0] > 1

2(6)

and, under the assumptions of Proposition 2 in Appen-
dix A,

lim
p→∞ Prδ[X ∈ Bc

2] = 1.(7)

This shows that if δ were known, then usually some
shrinkage factor γ̃ applied to X − δ0 will move X

closer to δ, again suggesting a search for estimators of
the form (1).

2. THE STEIN PARADOX

Assume now that Y ∼ Np(0, σ 21p), the multivariate
normal distribution with mean 0 and covariance matrix
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FIG. 1. The balls B1 and B2 in (2) and (5).

σ 21p , where σ 2 > 0 is known, so X ∼ Np(δ, σ 21p). In
this simple case, the James–Stein (JS) estimator for δ

is given by

δ̂JS ≡ δ̂JS(X; δ0)
(8)

=
(

1 − σ 2(p − 2)

‖X − δ0‖2

)
(X − δ0) + δ0,

where δ0 is a fixed but arbitrary point in Rp . The trun-
cated ≡ “plus-rule” JS estimator

δ̂+
JS ≡ δ̂+

JS(X; δ0)
(9)

=
(

1 − σ 2(p − 2)

‖X − δ0‖2

)+
(X − δ0) + δ0

is a shrinkage estimator of the form (1). These re-
nowned estimators have the property that when p ≥ 3,
they dominate X under both the mean square error
(MSE) and Pitman closeness (PC) criteria:2 for every
fixed δ, δ0 ∈ Rp ,

Eδ[‖δ̂+
JS(X; δ0) − δ‖2|δ0]

(10)
< Eδ[‖δ̂JS(X; δ0) − δ‖2|δ0]
< Eδ[‖X − δ‖2] ≡ pσ 2,(11)

2See Baranchik (1964) or Efron and Morris (1973) for (10),
James and Stein (1961), Efron and Morris (1973), Arnold (1981),
Anderson (1984), Berger (1985), or Lehmann and Casella (1998)
for (11), our Appendix C for (12), and Efron (1975) or Sen,
Kubokawa and Saleh (1989) for (13). In Efron’s equation (2.11),
page 265, the second inequality should be reversed.

Prδ[‖δ̂+
JS(X; δ0) − δ‖ < ‖X − δ‖|δ0]

(12)
> Prδ[‖δ̂JS(X; δ0) − δ‖ < ‖X − δ‖|δ0]

= Pr
[
χ2

p

(‖δ − δ0‖2

4σ 2

)
≥ ‖δ − δ0‖2

4σ 2 + p − 2

2

]
(13)

>
1

2
(14)

and approaches 1 as p → ∞ if ‖δ−δ0‖
σ

= o(p) (ap-
ply Chebyshev’s inequality), where χ2

p(η) denotes a
noncentral chi-square random variate with p degrees
of freedom and noncentrality parameter η. Note espe-
cially that:

(A) the improvements offered by the JS estimators can
be great, especially when p is large: if δ = δ0,
then MSE(δ̂+

JS) < MSE(δ̂JS) = 2σ 2 � pσ 2, and if
‖δ−δ0‖ = o(p) with σ 2 fixed, then Prδ[‖δ̂−δ‖ <

‖X−δ‖] → 1 as p → ∞ for both δ̂ = δ̂JS and δ̂+
JS;

(B) the MSE and PC dominances of X by δ̂JS and δ̂+
JS

hold even if the true mean δ is arbitrarily far from
the shrinkage target δ0.

Of the two properties (A) and (B), it is (B) that is
most surprising, since it is not difficult to construct es-
timators that satisfy (A), for example, a Bayes estima-
tor w.r. to a normal prior centered at δ0. However, such
a Bayes estimator will not satisfy (B), the difference
stemming from the fact that the Bayes estimator will
have a constant shrinkage factor, while the shrinkage
factors in (8) and (9) are adaptive.3

When first discovered, the domination of X by the
JS estimators was highly surprising, because the esti-
mator X itself is as follows:4

(a) the best unbiased estimator of δ,
(b) the best translation-invariant estimator of δ,
(c) the maximum likelihood estimator (MLE) of δ,
(d) a minimax estimator of δ, and
(e) an admissible estimator of δ when p = 1 or 2.

So compelling were these properties of X that its dom-
ination by the JS estimators came to be known as the
Stein Paradox.5

3In fact, the JS estimator can be derived via an empirical Bayes
argument based on such priors—see Stein [(1966), page 356],
Efron and Morris [(1973), pages 117–118], Arnold [(1981), Sec-
tion 11.4].

4Cf. Berger (1985), Lehmann and Casella (1998).
5Cf. Efron and Morris (1977).
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3. LOST IN SPACE: THE REVERSE STEIN EFFECT

Star Trek, Stardate 4598.0: The Federation Starship
U.S.S. Enterprise, about to rendezvous with interstellar
space station Delta, was struck by a mysterious distor-
tion of the space-time continuum that disrupted all its
power systems, including navigation, communications,
and computers. Out of control, the Enterprise careened
wildly and randomly through interstellar space at max-
imum warp for three days until, equally mysteriously,
its warp drive went off-line and the ship came to a full
stop. Captain Kirk knew that, without power and com-
munication, their only hope for rescue was to launch
a probe that would come close enough to Delta to be
detected and convey their present location.

By means of stellar charts, Lieutenant Ohura deter-
mined the present location X of the Enterprise, but be-
cause all computer records had been lost, the location δ

of station Delta was unknown. Mr. Chekov, fresh out
of the Space Academy where he studied multivariate
statistical analysis under Admiral Emeritus Stein, im-
mediately suggested a solution:

“We can utilize the Stein Effect! Because the Enter-
prise essentially followed a random walk while out of
control we know that X ∼ N3(δ, σ

213), while from the
duration of the disruption and the characteristics of our
warp engines we know that σ = 2400 light-years. If
we use the truncated James–Stein estimator δ̂+

JS(X; δ0)

with p = 3 to estimate δ by shrinking X toward a fixed
point δ0, then by (11) and (14), δ̂+

JS(X; δ0) is more
likely to be closer to Delta than our present location X

is, no matter where Delta is! And what’s more, we can
shrink X toward any δ0 that we like!”

“Amazing!” Kirk said. “Now I wish I had paid more
attention in my stats class,” (smiling to himself: but
that’s not how one makes Admiral!) “But what about
δ0? To what shrinkage target point should we actually
send our probe?”

“Why, toward Earth, of course,” Scotty6 said in his
thick Scottish brogue. “The Scotch there is the best in
the galaxy.”

“No, toward Qo’noS7” Lt. Worf8 exclaimed. “Per-
haps they will send us some fresh qagh9—I am so tired
of this replicated stuff.”

6A.k.a. James Doohan, who, during the writing of this paper,
beamed out of this universe on July 20, 2005, the 36th anniversary
of the first human landing on an extraterrestrial body.

7The Capitol of the Klingon Empire.
8Yes, we know, Worf didn’t appear until Star Trek: The Next Gen-

eration—some slack, please.
9A Klingon dish of serpent worms, best when served live.

“Permit me to suggest Denobula,” Dr. Phlox10 of-
fered. “Tomorrow is the tenth wedding anniversary of
my third wife and her fourth husband—perhaps the
probe might convey my congratulations to them.”

Suggestions for the shrinkage target point δ0 were
soon received from every member of the 400-person
crew, all except Mr. Spock. After several minutes he
raised his left eyebrow and said “This is not logical.
Please accompany me to the holodeck.11”

When the officers were assembled on the holodeck,
Spock commanded: “Computer,12 construct a three-
dimensional star chart showing the distribution in the
galaxy of the homeworlds δ0 of our crew members.
What if any statistical properties does this distribution
possess?”

“The dis-tri-bu-tion of home-worlds is such that δ0
is di-rec-tion-al-ly sym-me-tric a-bout our pre-sent lo-
ca-tion X,” the computer intoned monotonically.

“Computer, display the following set:

{δ0 | ∃γ̌ ∈ [0,1) 
 ‖δ̂γ̌ − δ‖ < ‖X − δ‖},(15)

where γ̌ ≡ γ̌ (X − δ0,X − δ) may depend on δ.”
“This set is ex-act-ly Hc, the com-ple-ment of the

closed half-space H in Fig-ure 2 on my mon-i-tor.”
“Then, since Pr[δ0 ∈ Hc|X] = 1

2 by directional sym-
metry, this shows that shrinkage toward a randomly

FIG. 2. The complement of H is the set (15).

10Okay, he appeared a century earlier on Star Trek: Enterprise—
more slack please.

11And still more slack.
12Ok, let’s suppose that the computer power has been restored, but

only momentarily.
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chosen δ0 would have at most a 50–50 chance of mov-
ing X closer to δ even when the shrinkage factor is
chosen optimally for δ.”

“As for James–Stein shrinkage,” Spock continued,
“Computer, for representative values of δ, display the
set of all δ0 such that the James–Stein shrinkage esti-
mator δ̂+

JS(X; δ0) lies closer to δ than does our present
location X.”

“The two re-pres-ent-a-tive ca-ses are now dis-
played in Fig-ures 3a and 3b13 on my mon-i-tor.”

“Thank you, Computer. It is apparent from these two
displays,” Spock said to the assembled officers, “that
the set14 of δ0 such that James–Stein shrinkage toward
δ0 does more harm than good is quite extensive. Fur-
thermore, since Mr. Chekov assures us that this choice

(a) ‖X − δ‖ < σ
2

√
p − 2

(b) ‖X − δ‖ > σ
2

√
p − 2

FIG. 3. The cross-hatched region is the set {δ0|‖δ̂+
JS(X; δ0) −

δ‖ < ‖X − δ‖}.

13See Appendix D for their derivation.
14This set is the complement of the cross-hatched region in Fig-

ure 3a or 3b

can be made arbitrarily, in the interest of fairness, we
may as well choose δ0 at random from our crew mem-
bers’ homeworlds. But then, contrary to Mr. Chekov’s
assertion, δ̂+

JS(X; δ0) is less likely to be closer to δ than
is our present location X.”

“More precisely, by the directional symmetry of δ0
about X, it follows from Figures 3a and 3b that

Pr[‖δ̂+
JS(X; δ0) − δ‖ > ‖X − δ‖|X]

(16)
> Pr[δ0 ∈ H | X] = 1

2 .

If δ0 is actually symmetrically distributed about X,
then it is easy to see that

E[δ̂+
JS(X; δ0) | X] = X,(17)

so by Jensen’s inequality,

E[‖δ̂+
JS(X; δ0) − δ‖2|X] > E[‖X − δ‖2|X]

(18)
≡ pσ 2 ∀δ ∈ Rp.

Furthermore, under additional but still general assump-
tions,15

lim
p→∞ Prδ[‖δ̂+

JS(X; δ0) − δ‖ > ‖X − δ‖] = 1.(19)

Thus, it is likely that James–Stein shrinkage will actu-
ally move us farther away from δ. I conclude, therefore,
that we should simply tether the probe to the Enterprise
and hope that Delta can detect our present location X.”

“Boy, Spock, you are a party pooper,” Bones16 said.
“I sure hope we don’t shrink toward Vulcan.”

“Resistance is futile,” said Seven-of-Nine.17

“But, but,—I don’t understand this,” Chekov stam-
mered. “How can the James–Stein estimator be inferior
to X after all? Don’t (16) and (18) contradict (14) and
(11)? For example, under any probability distribution
for δ0, (11) yields

Eδ[‖δ̂+
JS(X; δ0) − δ‖2] < Eδ[‖X − δ‖2]

(20)
≡ pσ 2 ∀δ ∈ Rp,

while (18) yields

Eδ[‖δ̂+
JS(X; δ0) − δ‖2] > Eδ[‖X − δ‖2]

(21)
≡ pσ 2 ∀δ ∈ Rp.

I am so confused!”
“Beam me to the bar, Scotty,” Kirk finally mumbled.

“Maybe I can figure this out after I belt down a few.”

15See Proposition 3 in Appendix D.
16Dr. McCoy.
17Right again, but how could we leave her out?
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4. TO SHRINK OR NOT TO SHRINK—THAT IS THE
QUESTION

Mr. Spock quickly assured Mr. Chekov that no for-
mal contradiction had occurred: the probabilities and
expectations appearing in (11), (14), (16), and (18) are
conditional probabilities and conditional expectations
with different conditioning variables. Furthermore, the
joint distributions of (X, δ0) in (20) and (21) are dif-
ferent, having joint pdfs of the forms fδ(X)f (δ0) and
fδ(X)f (δ0|X), respectively. In the former, X and δ0
are independent, whereas in the latter, δ0 is dependent
on X.

However, Captain Kirk’s dilemma18 remains: to
shrink or not to shrink? If, according to property (B),
the shrinkage target δ0 can be chosen arbitrarily and
still reduce the MSE and PC, can choosing δ0 at ran-
dom in some symmetric manner actually increase the
MSE and PC?

The short answer is yes, the Reverse Stein Effect
is just as real as the original Stein Effect itself—
both are simply manifestations of the strong curva-
ture of spheres in multi-dimensional Euclidean space.
Figures 3a, 3b, and the results (16), (18), and (19)
show that, without some prior knowledge of the lo-
cation δ, Captain Kirk should not shrink X. If the
shrinkage target δ0 is chosen without reliable prior in-
formation but instead is based upon the data X, the
minimax/Bayesian robustness property (B) of the JS
estimator is lost and no longer guarantees that shrink-
ing is not harmful on average.

The implications for statistical practice are apparent.
A shrinkage estimator is only as good as, but no bet-
ter than, the prior information upon which it is based.
Without reliable prior, as opposed to posterior,19 in-
formation, shrinkage is likely to decrease the accuracy
of estimation. As Barnard20 concluded, if the statisti-
cal estimation problem is truly invariant under transla-
tion, then the best invariant estimator should be used,
namely, X itself.

18Captain Kirk is “exactly in the position of Buridan’s ass,” as
described in Barnard’s discussion of the noninvariant nature of the
James–Stein estimator in Stein [(1962), page 288]. The ass, when
presented with two bales of hay, equidistant to his right and left,
refused to move, seeing no reason to prefer one direction over the
other. Like Barnard, we maintain that, in the absence of additional
influences, such as prior information about the delectability of dex-
tral vs. sinistral hay (or a loss function reflecting a negative effect
of starvation), the ass’s refusal to budge was correct.

19As represented, for example, by “data-dependent” priors.
20Cf. Stein [(1962), page 288].

APPENDIX A: DIRECTIONAL AND SPHERICAL
SYMMETRY; VERIFICATION OF (4)

DEFINITION 1. Y ∈ Rp is directionally symmetric

if �Y d= − �Y , where �Y := Y
‖Y‖ is the unit vector in the

direction of Y . Y is directionally symmetric about y0 if
Y − y0 is directionally symmetric.

Clearly Y is directionally symmetric if Y is symmet-

ric: Y
d= −Y . Thus, any multivariate normal or ellip-

tically contoured random vector Y centered at 0 is di-
rectionally symmetric. Directional symmetry is much
weaker than symmetry, as seen from the following re-
sult.

PROPOSITION 1. Let Y be an absolutely continu-
ous random vector in Rp . The following are equiva-
lent:

(a) Y is directionally symmetric.
(b) Pr[Y ∈ C] = Pr[−Y ∈ C] for every closed con-

vex cone C ⊆ Rp .
(c) Pr[Y ∈ H ] = 1

2 for every central (i.e., 0 ∈ ∂H )
halfspace H ⊆ Rp .

PROOF. The implications (a) ⇔ (b) ⇒ (c) are
straightforward. We will show that (c) ⇒ (a). Let P

(resp., Q) denote the probability distribution of Y

(resp., �Y ). First note that since P [∂H ] = 0, P [H ] = 1
2

is equivalent to

P [H ] = P [Hc] = P [−H ].(22)

Thus, for any two central halfspaces H and H0,

P [H ∩ H0] − P [Hc ∩ Hc
0 ]

= P [H ] − P [Hc
0 ]

= P [Hc] − P [H0]
= P [Hc ∩ Hc

0 ] − P [H ∩ H0],
hence,

P [H ∩ H0] = P [Hc ∩ Hc
0 ]

(23)
= P [(−H) ∩ (−H0)].

It follows from Lemma 1 below that

Q[A ∩ S0] = Q[(−A) ∩ (−S0)](24)

for every Borel set A ⊆ S p (the unit sphere in Rp),
where S0 = H0 ∩ S p . Thus,

Q[A] = Q[A ∩ S0] + Q[A ∩ (−S0)]
= Q[(−A) ∩ (−S0)] + Q[(−A) ∩ (S0)](25)

= Q[−A]
for every such A, hence, (a) holds. �
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LEMMA 1. Let Y be an absolutely continuous ran-
dom vector in Rp and let P and Q be as defined above.
Suppose that H0 ⊂ Rp is a central halfspace such that
P [H0] = 1

2 , so also Q[S0] = 1
2 where S0 = H0 ∩ S p . If

Q[S | S0] = Q[−S | −S0](26)

for every hemisphere S ⊂ S p , then

Q[A | S0] = Q[−A | −S0](27)

for every Borel set A ⊆ S p , which is equivalent to (24)
because Q[±S0] = P [±H0] = 1

2 . Since every hemi-
sphere S has the form H ∩ S p for some central half-
space H , (26) is equivalent to

P [H | H0] = P [−H | −H0](28)

for every central halfspace H ⊂ Rp , which in turn is
equivalent to (23).

PROOF. Without loss of generality, set H0 =
{(y1, . . . , yp−1, yp) | yp > 0} so

S0 =
{
(y1, . . . , yp−1, yp)

∣∣∣ p∑
i=1

y2
i = 1, yp > 0

}
,(29)

and let π denote the stereographic projection21 of S0

onto its tangent hyperplane L0 ≡ {(y1, . . . , yp−1,1)}.
Then the relation

π(S ∩ S0) = K(30)

determines a bijection between the sets of all hemi-
spheres S ⊂ S p and all (not necessarily central) half-
spaces K ⊂ L0.

Let Q̃ denote the probability measure on S p given
by

Q̃[A] = Q[−A | −S0],(31)

so (26) states that

Q[S | S0] = Q̃[S](32)

for every Borel set A ⊆ S p . Let R and R̃ denote
the probability measures induced on L0 by Q[· | S0]
and Q̃, respectively, under the mapping π , that is,

R[B] = Q[π−1(B) | S0],(33)

R̃[B] = Q̃[π−1(B)](34)

21Cf. Ambartzumian [(1982), page 26], Watson [(1983), page 23].

for every Borel set B ⊆ L0. Then for each halfspace
K ⊂ L0,

R[K] = Q[π−1(K) | S0] = Q[S ∩ S0 | S0]
(35)

≡ Q[S | S0],
R̃[K] = Q̃[π−1(K)]

(36)
= Q̃[S ∩ S0] ≡ Q[−(S ∩ S0) | −S0]
= Q[−S | −S0] ≡ Q̃[S],(37)

hence, R[K] = R̃[K] ∀K by (32). Thus by the Cramér–
Wold device [cf. Billingsley (1979), page 334], R[B] =
R̃[B] ∀B , hence, setting A = π−1(B) in (33) and (34),
Q[A | S0] = Q̃[A] ∀A, which establishes (27). �

DEFINITION 2. Y ∈ Rp is spherically symmet-

ric ≡ orthogonally invariant if Y
d= 	Y for every or-

thogonal transformation 	 of Rp . Y is spherically sym-
metric about y0 if Y − y0 is spherically symmetric.

For example, Y ∼ Np(0, σ 21p) is spherically sym-
metric. Clearly spherical symmetry implies symmetry.
It is well known that Y is spherically symmetric iff �Y
is uniformly distributed on the unit sphere Sp and is
independent of ‖Y‖. We now use this fact to verify (4)
by the following proposition, where δ, δ0, X, Y , σ , ψ ,
and τ all depend on p.

PROPOSITION 2. Assume that:

(i) δ0 is (fixed or) random is independent of X;
(ii) Y ≡ X − δ is spherically symmetric;

(iii) ‖δ0−δ‖
‖Y‖ ≡ ‖δ0−δ‖

‖X−δ‖ = o(p1/2) in probability as
p → ∞. Then [cf. (4)]

lim
p→∞ Prδ[‖X − δ0‖ > ‖δ − δ0‖]

(38)
≡ lim

p→∞ Prδ[X ∈ Bc
1] = 1.

The boundedness assumption (iii) is satisfied, for ex-
ample, if X ∼ Np(δ, σ 21p) and δ0 ∼ Np(ψ, τ 21p)

with ‖ψ − δ‖/σ = o(p) and τ/σ = o(p1/2).

PROOF. Let μp denote the uniform probability
measure on Sp . By (i) and (ii), Prδ[X ∈ B1 | δ0] de-
pends on δ0 only via ‖δ0 − δ‖ (the radius of B1), and

Prδ[X ∈ B1|‖δ0 − δ‖](39)

= Pr[Y ∈ B1 − δ|‖δ0 − δ‖]
= E{Pr[ �Y ∈ ‖Y‖−1(B1 − δ)|‖Y‖,‖δ0 − δ‖]|

(40)
‖δ0 − δ‖}

= E
{
μp

(‖Y‖−1(B1 − δ)
)|‖δ0 − δ‖}

.
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Because B1 − δ is a ball with 0 ∈ ∂(B1 − δ), the set
(‖Y‖−1(B1 − δ)) ∩ Sp is a spherical cap on Sp which,
after some geometry, can be expressed as{

(z1, . . . , zp)
∣∣∣ z1

(z2
1 + · · · + z2

p)1/2
≥ ‖Y‖

2‖δ0 − δ‖
}

(41)

when ‖Y‖ ≤ 2‖δ0 − δ‖, and is empty otherwise. Fur-
thermore, μp can be represented as the distribution of
�Z, where Z ≡ (Z1, . . . ,Zp) ∼ Np(0,1p). Therefore,

μp

(‖Y‖−1(B1 − δ)
)

= 1

2
Pr

[
Z2

1

Z2
1 + · · · + Z2

p

≥ ‖Y‖2

2‖δ0 − δ‖2

∣∣∣(42)

‖Y‖,‖δ0 − δ‖
]

when ‖Y‖ ≤ 2‖δ0 − δ‖, and = 0 otherwise. Thus, by
(40),

Prδ[X ∈ B1|‖δ0 − δ‖]

≤ 1

2
Pr

[
Z2

1

Z2
1 + · · · + Z2

p

≥ ‖Y‖2

2‖δ0 − δ‖2

∣∣∣(43)

‖δ0 − δ‖
]
,

hence,

Prδ[X ∈ B1]
(44)

≤ 1

2
Pr

[
Z2

1

Z2
1 + · · · + Z2

p

≥ ‖Y‖2

2‖δ0 − δ‖2

]
.

But Z2
1 + · · · + Z2

p = O(p) in probability by the Law
of Large Numbers, so by (iii), the right-hand side of
(44) approaches 0 as p → ∞, which yields (38). �

APPENDIX B: VERIFICATION OF (5)

If we set h(γ ) = ‖δ̂γ (X; δ0)−δ‖2 and δ̄ = 1
2(δ0 +δ),

then

h′(1) = 2(X − δ0)
t (X − δ)

(45)
= 2[‖X − δ̄‖2 − ‖δ − δ̄‖2].

Since the right-hand side of (5) is the set {X | h′(1) >

0}, (5) follows.

APPENDIX C: VERIFICATION OF (12)

First note that δ̂JS(X; δ0) �= δ̂+
JS(X; δ0) iff ‖X−δ0‖ <

σ
√

p − 2 (the ball B1 of radius σ
√

p − 2 centered at

δ0; see Figures 4a, 4b), in which case δ̂+
JS(X; δ0) = δ0.

Define

C := {X|‖δ̂+
JS(X; δ0) − δ‖ < ‖X − δ‖},(46)

D := {X|‖δ̂JS(X; δ0) − δ‖ < ‖X − δ‖},(47)

so (12) is equivalent to

Pr[C | δ0] > Pr[D | δ0].(48)

Since C \ B1 = D \ B1, this is equivalent to

Pr[C ∩ B1 | δ0] > Pr[D ∩ B1 | δ0].(49)

But (see Figures 4a, 4b)

X ∈ B2 ⇒ ‖δ̂JS(X; δ0) − δ‖ > ‖X − δ‖,(50)

where B2 is the ball of radius ‖δ0 − δ‖ centered at δ,
so D ∩ B2 = ∅. Thus,

C ∩ B1 = (B1 \ B2) � D ∩ B1,(51)

hence, (49) holds. (Note that no distributional assump-
tion on X is needed.)

APPENDIX D: VERIFICATION OF FIGURES 3A
AND 3B; VERIFICATION OF (19)

First we verify that Figures 3a and 3b accurately de-
pict the region

{δ0|‖δ̂+
JS(X; δ0) − δ‖ < ‖X − δ‖}.(52)

Let γ = (1− σ 2(p−2)

‖X−δ0‖2 )+, so 0 ≤ γ < 1 and δ̂+
JS(X; δ0) =

γ (X − δ0) + δ0. Each of the following inequalities is
equivalent to that in (52):

‖(1 − γ )(δ0 − δ) + γ (X − δ)‖2 < ‖X − δ‖2,

(1 − γ )2‖δ0 − δ‖2 + 2γ (1 − γ )(δ0 − δ)t (X − δ)

< (1 − γ 2)‖X − δ‖2,

(1 − γ )‖δ0 − δ‖2 + 2γ (δ0 − δ)t (X − δ)

< (1 + γ )‖X − δ‖2,

‖δ0 − δ‖2 < γ [‖X − δ0‖2] + ‖X − δ‖2.

If ‖δ0 −X‖2 < σ 2(p−2), that is, δ0 lies inside the ball
of radius σ

√
p − 2 (see Figures 3a, 3b), then γ = 0

and the last inequality becomes ‖δ0 − δ‖2 < ‖X − δ‖2,
which holds iff δ0 lies inside the ball B of radius ‖X −
δ‖ centered at δ. If ‖δ0 − X‖2 < σ 2(p − 2), that is,

δ0 lies outside this ball, then γ = (1 − σ 2(p−2)

‖X−δ0‖2 ) and
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(a) ‖δ0 − δ‖ < σ
2

√
p − 2 (b) ‖δ0 − δ‖ > σ

2

√
p − 2

FIG. 4. Illustrating the implication (50).

the last inequality instead is equivalent to each of the
following:

‖δ0 − δ‖2 < ‖X − δ0‖2 + ‖X − δ‖2 − σ 2(p − 2),

σ 2(p − 2) < 2‖X − δ‖2 + 2(X − δ)t (δ − δ0),

σ 2(p − 2) < 2(X − δ)t (X − δ0),

σ 2(p − 2)

2‖X − δ‖ <
−−−−→
(X − δ)

t
(X − δ0),

which holds exactly in the open halfspace K shown in
Figures 3a and 3b. Thus, the region (52) is the union
B ∪ K of the cross-hatched regions in these figures.

Finally, we verify (19), which now can be written
equivalently as

lim
p→∞ Prδ[δ0 ∈ B ∪ K] = 0,(53)

by the following proposition, in which δ, δ0, X, V , σ ,
and τ now depend on p.

PROPOSITION 3. Assume the following:

(i′) V ≡ δ0 − X is independent of X;
(ii′) V is spherically symmetric;

(iii′) ‖X−δ‖
‖V ‖ ≡ ‖X−δ‖

‖δ0−X‖ = o(p1/2) in probability as
p → ∞;

(iv′) σ−2‖X−δ‖ ·‖V ‖ ≡ σ−2‖X−δ‖ ·‖δ0 −X‖ =
o(p3/2) in probability as p → ∞. Then [cf. (19)]

lim
p→∞ Prδ[‖δ̂+

JS(X; δ0) − δ‖ > ‖X − δ‖] = 1.(54)

The boundedness assumption (iii′) [resp., (iv′)] is sat-
isfied, for example, if X ∼ Np(δ, σ 21p) and δ0 ∼

Np(X, τ 21p) with τ/σ = o(p1/2) [resp., σ/τ =
o(p1/2)], so both are satisfied if τ/σ ∼ pε with 0 ≤
|ε| < 1/2.

PROOF. By the argument that yielded (38) in Ap-
pendix A [with (i)–(iii) and X, Y , B1 − δ, and ‖δ0 − δ‖
replaced by (i′)–(iii′) and δ0, V , B − X, and ‖X − δ‖],
we obtain

lim
p→∞ Prδ[δ0 ∈ B] = lim

p→∞ Prδ[V ∈ B − X] = 0.(55)

Next, again by the argument in Appendix A but with
B1 − δ replaced by K − X,

Prδ[δ0 ∈ K|‖X − δ‖](56)

= E
{
μp

(‖V ‖−1(K − X)
)|‖X − δ‖}

(57)

= 1

2
Pr

[
Z2

1

Z2
1 + · · · + Z2

p

≥ σ 4(p − 2)2

4‖X − δ‖2‖V ‖2

∣∣∣
(58)

‖X − δ‖
]
.

Thus, by (iv′),

lim
p→∞ Prδ[δ0 ∈ K]

= 1

2
lim

p→∞ Pr
[

Z2
1

Z2
1 + · · · + Z2

p

(59)

≥ σ 4(p − 2)2

4‖X − δ‖2‖V ‖2

]
= 0,

so (53) and (54) are confirmed. �
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