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Abstract: We consider the problem of modeling heteroscedasticity in semi-
parametric regression analysis of cross-sectional data. Existing work in this
setting is rather limited and mostly adopts a fully nonparametric variance
structure. This approach is hampered by curse of dimensionality in practi-
cal applications. Moreover, the corresponding asymptotic theory is largely
restricted to estimators that minimize certain smooth objective functions.
The asymptotic derivation thus excludes semiparametric quantile regression
models. To overcome these drawbacks, we study a general class of location-
dispersion regression models, in which both the location function and the
dispersion function are semiparametrically modeled. We establish unified
asymptotic theory which is valid for many commonly used semiparametric
structures such as the partially linear structure and single-index structure.
We provide easy to check sufficient conditions and illustrate them through
examples. Our theory permits non-smooth location or dispersion functions,
thus allows for semiparametric quantile heteroscedastic regression and ro-
bust estimation in semiparametric mean regression. Simulation studies in-
dicate significant efficiency gain in estimating the parametric component
of the location function. The results are applied to analyzing a data set on
gasoline consumption.
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1. Introduction

The problem of heteroscedasticity, which traditionally means nonconstant vari-
ance function, frequently arises in regression analysis of economic data. In this
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paper, we broaden the scope of heteroscedasticity by considering a general class
of location-dispersion regression models, where the relation between a response
variable Y and a covariate vector X is given by

Y = m(X) + σ(X)ε. (1.1)

In the above model, ε denotes the random error,m(·) is called regression function
and the nonnegative function σ(·) is called dispersion function. With different
specifications on ε, this formulation includes both the conditional mean and
conditional median (or more general quantile) regression models.

In the literature, model (1.1) has been thoroughly investigated for parametric
mean regression, where m(·) is characterized by a finite-dimensional parame-
ter and E(ε|X) = 0 (Davidian, Carroll and Smith, 1988; Zhao, 2001; Chapter
11, Greene, 2002, among others). This paper focuses on semiparametric regres-
sion models, which are less studied but are extremely useful due to their flex-
ibility to accommodate nonlinearality and to circumvent curse of dimensional-
ity (Härdle, Liang and Gao, 2000; Ruppert, Wand and Carroll, 2003; Yatchew,
2003). In particular, we consider the general setup with m(x) = m(x, α0, r0),
where α0 is a finite dimensional parameter and r0 is an infinite dimensional pa-
rameter. The main interest is often in making inference about α0 while treating
r0 as a nuisance parameter, which can only be estimated at a slower than

√
n

nonparametric rate.
In semiparametric regression models, the commonly used estimation proce-

dures in general still yield consistent estimators for α0 even if heteroscedasticity
is not accounted for. However, efficiency loss due to ignoring heteroscedasticity
may be substantial. Moreover, the correctness of the standard error formula for
α0 and the validity of the associated confidence intervals or hypothesis testing
procedures depend critically on the dispersion function (Akritas and Van Keile-
gom, 2001; Carroll, 2003). In addition, it is sometimes important to model the
dispersion function in order to obtain a satisfactory bandwidth for estimating
the nonparametric part of the regression function. Ruppert et al. (1997) pro-
vided such an example, where the heteroscedasticity is severe and the variance
function has to be estimated in order to obtain a good bandwidth for estimating
the derivative of the mean function.

In the semiparametric regression setting, Schick (1996), Liang, Härdle and
Carroll (1999), Härdle, Liang and Gao (2000, §2), Ma, Chiou and Wang (2006)
have studied heteroscedastic partially linear mean regression models, where the
variance function σ2(x) is assumed to be smooth but unknown. They estimate
the variance function nonparametrically, and then use the estimator to con-
struct weights to achieve more efficient estimation of the parametric compo-
nent of the mean regression function. Härdle, Hall and Ichimura (1993) investi-
gated heteroscedastic single-index models, so did Xia, Tong and Li (2002); and
Chiou and Müller (2004) proposed a flexible semiparametric quasi-likelihood,
which assumes that the mean function has a multiple-index structure and the
variance function has an unknown nonparametric form.

The aforementioned work, however, suffers from several drawbacks. First,
they have all adopted a fully nonparametric model for the variance function.
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This approach does not work well in high dimension due to curse of dimension-
ality. Second, their asymptotic theory can only be applied to a specific semi-
parametric structure. Third, these methods require a smooth objective func-
tion thus do not apply to semiparametric quantile regression models, see for
instance He and Liang (2000), Lee (2003), Horowitz and Lee (2005). In fact,
existing study of heteroscedastic quantile regression is restricted to paramet-
rically specified quantile function (Koenker and Zhao, 1994; Zhao, 2001). The
last point is also relevant when one is interested in robust estimation for the
mean regression model in the presence of outlier contamination.

We also like to mention Müller and Zhao (1995), who consider a general semi-
parametric variance function model in a fixed design regression setting. In their
model, the regression function is assumed to be smooth and is modeled nonpara-
metrically, whereas the relation between the variance and the mean regression
function is assumed to follow a generalized linear model. However, although the
variance function has both a parametric and nonparametric component, and so
can be considered as being semiparametric, its model differs quite a bit from
the semiparametric model we use in this paper.

The above concerns motivate us to propose a flexible semiparametric frame-
work for modeling heteroscedasticity and to develop a unified theory that ap-
plies to general semiparametric structures and non-smooth objective functions.
In particular, we advocate to adopt a semiparametric structure for modeling the
dispersion function. This approach avoids the rigid assumption imposed by a
parametric dispersion function; at the same time it circumvents the curse of di-
mensionality introduced by a nonparametric dispersion function. In this general
framework, we establish an asymptotic normality theory for estimating the form
of heteroscedasticity by building on the work of Chen, Linton and Van Keilegom
(2003), who developed a general theory for semiparametric estimation with a
non-smooth criterion function. We provide a set of easy to check sufficient con-
ditions, such that the asymptotic normality theory is valid for many commonly
used semiparametric structures, for instance, the partially linear structure and
the single-index structure. We discuss but do not get deep into how the knowl-
edge of heteroscedasticity can be used to construct a more efficient weighted
estimator for the parametric component of m(·).

We discuss two different constraints for the random error ε in (1.1): the
mean zero constraint and the median zero constraint, which correspond to mean
regression and median regression, respectively. Although the current theory is
restricted to cross-sectional data, the ideas and techniques can be applied to
extend to time-series models for heteroscedastic economic and financial data,
such as the autoregressive conditional heteroscedastic (ARCH) model of Engle
(1982).

The paper is organized as follows. In Section 2 we formally introduce the
semiparametric location-dispersion model and discuss how to estimate the dis-
persion function. Section 3 provides generic assumptions that are applicable to
general semiparametric models, and presents the asymptotic normality theory
for estimating the dispersion function. In Section 4 we verify these generic con-
ditions for two particular semiparametric models. The finite sample behavior of
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the proposed methods is examined in Section 5, while Section 6 is devoted to
the analysis of data on gasoline consumption. In Section 7 some ideas for future
research are discussed. Finally, all proofs are collected in the Appendix.

2. Estimation of a semiparametric dispersion function

2.1. Semiparametric location-dispersion model

We consider a general semiparametric location-dispersion model:

Y = m(X,α0, r0) + σ(X, β0, g0)ε, (2.1)

where X = (X1, . . . , Xd)
T is a d-dimensional covariate vector with compact

support RX , α0 and β0 are finite dimensional parameters, and r0 and g0 are
infinite dimensional parameters. Let (XT

i , Yi)
T = (X1i, . . . , Xdi, Yi)

T be i.i.d.
copies of (XT , Y )T . The conditions that need to be imposed on ε to make the
model identifiable are given in Section 2.3 (mean regression) and Section 2.4
(median regression).

The dispersion function is assumed to have a general semiparametric
structure. This paper discusses two examples in detail (Section 4), correspond-
ing to the exponentially transformed partially linear structure σ(X, β0, g0) =
exp(βT

0 X(1) + g0(X(2))) with X = (XT
(1), X

T
(2))

T and the single-index structure

σ(X, β0, g0) = g0(β
T
0 X), respectively. We assume that the unknown function g0

belongs to some space G of uniformly bounded functions that depend on X and
β through a variable U = U(X, β), where β belongs to a compact set B in R

ℓ,
with ℓ ≥ 1 depending on the model (e.g. U(X, β) = X(2) and U(X, β) = βTX
for the above partial linear and single index structures respectively). For any
function g, the notation gβ will be used to indicate the (possible) dependence on
β. The estimator of the true g0 will in fact in many situations be a profile estima-
tor, depending on β (see the examples in Section 4). For notational convenience
we use the abbreviated notation (β, g) = (β, gβ(·)), (β, g0) = (β, g0β(·)) and
(β0, g0) = (β0, g0β0(·)), whenever no confusion is possible. Whenever needed, we
will replace σ(X, β, g) by σ(X, β, gβ) or σ(X, β, gβ(U)) to highlight the depen-
dence of the function g on the parameter β or on the variable U (note that this
implies that the third argument of the function σ can be a function in G or an
element of R, depending on which notation we use).

To keep the notations and presentation simple, we assume that both g0 and
U are one-dimensional. However, all the results in this paper can be extended
in a straightforward way to the multi-dimensional case. For example, we may
have g0 = (g01, . . . , g0k) for some k ≥ 1, which allows a multiplicative model for

σ of the form σ(x) =
∏d

j=1 g0j(xj).
Although we will discuss later how to use the estimated dispersion function

to construct a more efficient estimator for α0, our main interest in this paper is
to establish a general theory for estimating β0 and σ(X, β0, g0). Therefore, we
will simply write m0 or m0(X) to denote the regression function in the sequel.
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2.2. A motivating example

To help understand the general estimation procedure, we start with a motivating
example given by

Y = m0(X) + exp{βT
0 X(1) + g0(X(2))}ε, (2.2)

where E(ε|X) = 0, Var(ε|X) = 1 and X = (XT
(1), X(2))

T , with X(1) = (X1, . . . ,

Xd−1)
T and X(2) = Xd. Note that model (2.2) can also be written as

(Y −m0(X))2 = exp
{

2βT
0 X(1) + 2g0(X(2))

}

+ exp
{

2βT
0 X(1) + 2g0(X(2))

}

(ε2 − 1). (2.3)

Since E(ε2 − 1|X) = 0, the regression function in the new model (2.3) is equal
to the variance function in the original model (2.2). Therefore we can apply
estimation techniques known from the literature on semiparametric regression
estimation to estimate the variance function. In particular, rewrite (2.3) as

(

Y −m0(X)

exp(βT
0 X(1))

)2

= exp(2g0(X(2))) + exp(2g0(X(2)))(ε
2 − 1), (2.4)

and estimate s(x2) = exp(2g0(x2)) by kernel smoothing:

ŝβ(x2) =

∑n
i=1K

(x2−X(2)i

an

)( Yi−m̂(Xi)
exp(βTX(1)i)

)2

∑n
i=1K

(x2−X(2)i

an

)

,

where K(·) is a kernel function, an is a smoothing parameter that tends to zero
as sample size gets large, and m̂(·) is a preliminary estimator of the regression
function m0(·).

Note that (2.4) can be rewritten as

(Y −m0(X))2 = exp(2βT
0 X(1))s(X(2)) + exp(2βT

0 X(1))s(X(2))(ε
2 − 1).

Thus we can estimate β0 by minimizing the following weighted least squares
objective function in β:

n−1
n
∑

i=1

[(Yi −m0(Xi))
2 − exp(2βTX(1)i)s(X(2)i)]

2

exp(4β̂∗TX(1)i)s2(X(2)i)
, (2.5)

where β̂∗ is an initial estimator of β0, like e.g. the unweighted least squares
estimator.

Taking the derivative of (2.5) with respect to β, then replacing s(X(2)i) and
m0(Xi) by their respective estimators, leads to the following system of equations
in β:

n−1
n
∑

i=1

[

(Yi − m̂(Xi))
2 − exp(2βTX(1)i)ŝβ(X(2)i)

exp(4β̂∗TX(1)i)ŝ
2
β̂∗
(X(2)i)

]

exp(2βTX(1)i)ŝβ(X(2)i)X(1)i

= 0. (2.6)
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Finally, the variance function can be estimated by σ̂2(x) = exp(2β̂Tx1)ŝβ̂(x2).
The above procedure can be iterated until convergence, where at each step the
estimator β̂∗ is updated, and the estimated variance function is used to improve
the estimator of m0.

The estimating equation (2.6) is obtained by the backfitting method. An
alternative approach is to first replace s(X(2)i) with the estimator ŝβ(X(2)i) in
(2.5), and then take the derivative with respect to β. One then also needs to
take into account the dependence of ŝβ(X(2)i) on β. This latter approach leads
to the so-called profile estimator. We focus our attention on backfitting type
estimators in this paper, see also Remark 2.1 in Section 2.3.

2.3. Estimation of the dispersion function with zero mean errors

We assume in this subsection that E(ε|X) = 0 and Var(ε|X) = 1, in which case
m0(X) = E(Y |X) and σ2(X, β0, g0) = Var(Y |X). Similarly as in (2.3), rewrite
model (2.1) as:

(Y −m0(X))2 = σ2(X, β0, g0) + σ2(X, β0, g0)(ε
2 − 1).

Then, β0 is the solution of the following set of equations in β:

H(β, g0,m0, w0) = E[h(X,Y, β, g0,m0, w0)] = 0,

where w0(x) = σ−4(x, β0, g0),

h(x, y, β, g,m,w) = w(x)
[

(y −m(x))2 − σ2(x, β, g)
] ∂

∂β
σ2(x, β, g), (2.7)

and where ∂
∂βσ

2(x, β, g) =
(

∂
∂βj

σ2(x, β, g(u(x, β)))
)

j=1,...,ℓ
. Note that ∂

∂βσ
2(x,

β, g) is in general not only a function of β and g, but also of ∂g
∂u , unless

u = u(x, β) does not depend on β, see for example the single-index struc-
ture discussed in Section 4. The weight function w(x) belongs to some space W
of uniformly bounded functions and could in principle be taken as w(x) ≡ 1.
However, better results are obtained in practice for the above choice of weight
function, which is motivated from efficiency considerations.

Let m̂ be an estimator of m0, which can be taken (in this first step) as
the estimated regression function under the homoscedasticity assumption. Let
ĝ(u) be an appropriate estimator of g0(u) that is differentiable with respect
to u. In many situations, the estimator ĝ depends on β, see for instance the
motivating example in Section 2.2; we will therefore denote it by ĝβ whenever
the dependence on β is relevant. We estimate the weight w0(x) by ŵ(x) =

σ−4(x, β̂∗, ĝβ̂∗), where β̂∗ is (in this first step) the unweighted least squares

estimator, i.e. β̂∗ satisfies Hn(β̂
∗, ĝβ̂∗ , m̂, 1) = 0, where

Hn(β, g,m,w) = n−1
n
∑

i=1

h(Xi, Yi, β, g,m,w),



I. Van Keilegom and L. Wang/Semiparametric modeling of heteroscedasticity 139

with h(x, y, β, g,m,w) defined in (2.7). Now, define β̂ as the solution in β of the
equations

Hn(β, ĝβ, m̂, ŵ) = 0. (2.8)

We estimate the variance function σ2(x, β0, g0) by σ̂2(x) = σ2(x, β̂, ĝβ̂). This
procedure can be iterated until convergence, where at each step we update the
estimator β̂∗ and we re-estimate m0 by using a weighted estimation procedure
that takes the heteroscedasticity into account via the estimated variance func-
tion.

Remark 2.1. Note that in the formula ofHn(β, ĝβ , m̂, ŵ) the derivative
∂
∂βσ

2(x,

β, ĝβ) is obtained without taking into account that ĝβ depends on β (i.e. we first
calculate the derivative ∂

∂βσ
2(x, β, g) and then plug-in g = ĝβ, thus

∂
∂βσ

2(x, β,

ĝβ) =
∂
∂βσ

2(x, β, g)|g=ĝβ ). As a consequence, our general estimation procedure

does not cover profile estimation methods (where the derivative of σ2(x, β, ĝβ)
takes the dependence of ĝβ on β into account). However, it is easy to extend our
method to profile estimators. See Section 7 for more details. For a comparison of
the backfitting estimator and the profile estimator, we refer to the recent paper
of Van Keilegom and Carroll (2007) and the references therein.

2.4. Estimation of the dispersion function with zero median errors

Now we consider the estimation of the dispersion function when it is assumed
that med(ε|X) = 0 in model (2.1), which implies that m0(X) = med(Y |X).
This can be straightforwardly extended to general quantile regression.

For identifiability of σ(x), we need some additional assumption on the distri-
bution of the random error. The assumption med(|ε||X)= 1 leads to σ(X, β0, g0)=
med(|Y −m0(X)| |X) (median absolute deviation). An alternative common as-
sumption is E(|ε| |X) = 1, which leads to σ(X, β0, g0) = E(|Y − m0(X)| |X)
(least absolute deviation). The second case is technically easier to deal with
than the first. We therefore concentrate on the first case, see also Remark 3.6
in Section 3.3.

Keeping the same notations as in Section 2.3, and writing model (2.1) as

|Y −m0(X)| = σ(X, β0, g0) + σ(X, β0, g0)(|ε| − 1),

we see that β0 is the solution in β ofH(β, g0,m0, w0) = E[h(X,Y, β, g0,m0, w0)] =
0, where now w0(x) = σ−1(x, β0, g0) and

h(x, y, β, g,m,w) = w(x)
[

2I
{

|y −m(x)| − σ(x, β, g) ≥ 0
}

− 1
] ∂

∂β
σ(x, β, g).

Note that the choice of the weight fucntion is motivated from efficiency con-
siderations. In fact, in the weighted least squares procedure that we used for
the setting of zero mean errors, the weights were equal to the variance of the
‘errors’ in the ‘model’ (Y −m0(X))2 = σ2(X, β0, g0) + σ2(X, β0, g0)(ε

2 − 1). In
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the current setting of zero median errors, a similar argument is used, but which
is now based on the median absolute deviation of the errors instead of the mean
squared deviation.

Let m̂ and ĝ be appropriate estimators of m0 and g0, depending on the im-
posed model on the regression and dispersion function. Suppose that ĝ(u) is dif-
ferentiable with respect to u. We estimate the weight function w0(x) by ŵ(x) =

σ−1(x, β̂∗, ĝβ̂∗), where we define the preliminary estimator β̂∗ as the solution of

the non-weighted minimization problem: β̂∗ = argminβ‖Hn(β, ĝβ , m̂, 1)‖, where
Hn(β, g,m,w) = n−1

∑n
i=1 h(Xi, Yi, β, g,m,w), and where ‖ · ‖ denotes the Eu-

clidean norm. Finally, let

β̂ = argminβ‖Hn(β, ĝβ , m̂, ŵ)‖.

As before, this procedure can be iterated to improve the estimation of β0. Note
that the function h is not smooth in β and hence β̂ does not necessarily satisfy
Hn(β̂, ĝβ̂, m̂, ŵ) = 0.

3. Asymptotic results

3.1. Notations and assumptions

The following notations are needed. Let f(y|x) = F ′(y|x) be the density of Y

given X = x, and let g′(u) = ∂g(u)
∂u for any g ∈ G. For any function g ∈ G, k ∈ K

and m ∈ M (where K and M are the spaces to which the true functions g′0
and m0 belong respectively), we denote ‖g‖∞ = supβ∈B supx∈RX

|gβ(u(x, β))|,
‖k‖∞ = supβ∈B supx∈RX

|kβ(u(x, β))| and ‖m‖∞ = supx∈RX
|m(x)|. Also,

N(λ,G, ‖·‖∞) is the covering number with respect to the norm ‖·‖∞ of the class
G, i.e. the minimal number of balls of ‖ · ‖∞-radius λ needed to cover G (see e.g.
Van der Vaart and Wellner (1996)). Finally, RU = {u(x, β) : x ∈ RX , β ∈ B},
U0 = U(X, β0), and U0i = U(Xi, β0) (i = 1, . . . , n).

Below we list the assumptions that are needed for the asymptotic results in
Subsections 3.2 and 3.3. The purpose is to provide easy-to-check sufficient condi-
tions such that the asymptotic results are valid for general semiparametric struc-
tures, and for both mean and median semiparametric regression models. The A
and B-conditions are on the estimators ĝ and m̂ respectively, whereas all other
conditions are collected under the C-list. In Section 4 we check these generic
conditions for particular models and estimators of m0(X) and σ(X, β0, g0).

Assumptions on the estimator ĝ

(A1) ‖ĝ−g0‖∞ = oP (1), sup‖β−β0‖≤δn supx∈RX
|(ĝβ−g0β)(u(x, β))| = oP (n

−1/4),
and the same holds for ĝ′ − g′0, where δn → 0, and where g0β(u) is such
that g0β0(u) = g0(u).

(A2)
∫∞

0

√

logN(λs,H, ‖ · ‖∞) dλ < ∞, where H = G or K, and where s = 1
for mean regression and s = 2 for median regression. Moreover, P (ĝβ ∈
G) → 1 and P (ĝ′β ∈ K) → 1 as n tends to infinity, uniformly over all β
with ‖β − β0‖ = o(1).
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(A3) The estimator ĝ0 = ĝβ0 satisfies

ĝ0(u)− g0(u) = (nan)
−1

n
∑

i=1

K1

(

u− U0i

an

)

η(Xi, Yi) + oP (n
−1/2)

uniformly on {u(x, β0) : x ∈ RX}, where E[η(X,Y )|X ] = 0, an → 0,
na2qn → 0, and K1 is a symmetric and continuous density of order q ≥ 2
with compact support.

(A4) supx∈RX
|{(ĝβ − g0β)− (ĝ0− g0)}(u(x, β))| = oP (1)‖β− β0‖+OP (n

−1/2),
for all β with ‖β − β0‖ = o(1).

Assumptions on the estimator m̂

(B1) ‖m̂−m0‖∞ = oP (n
−1/4).

(B2)
∫∞

0

√

logN(λs,M, ‖ · ‖∞) dλ < ∞, where s = 1 for mean regression and
s = 2 for median regression. Moreover, P (m̂ ∈ M) → 1 as n tends to
infinity.

(B3) Uniformly in x ∈ RX ,

m̂(x)−m0(x) = (nbn)
−1

n
∑

i=1

d
∑

j=1

K2

(

xj −Xji

bn

)

ζ1j(Xji, Yi)

+ n−1
n
∑

i=1

ζ2(Xi, Yi) + oP (n
−1/2),

where E[ζ1j(Xj , Y )|Xj ] = 0 (j = 1, . . . , d), E[ζ2(X,Y )] = 0, bn → 0,
nb4n → 0, and K2 is a symmetric and continuous density with compact
support.

Other assumptions

(C1) For all δ > 0, there exists ǫ > 0 such that inf‖β−β0‖>δ ‖H(β, g0,m0, w0)‖ ≥
ǫ > 0.

(C2) Uniformly for all β ∈ B, H(β, g,m,w) is continuous with respect to the
norm ‖ · ‖∞ in (g,m,w) at (g,m,w) = (g0,m0, w0), and the matrix Λ
defined in Theorem 3.1 and 3.3 is of full rank.

(C3) The function (x, β, z) → σ(x, β, z) is three times continuously differen-
tiable with respect to z and the components of x and β, and all derivatives
are uniformly bounded on RX × B × {g(u) : g ∈ G, u ∈ RU}. Moreover,
infx∈RX ,β∈B σ(x, β, g0) > 0 and supx,y f(y|x) <∞.

(C4) The function (x, β) → u(x, β) is continuously differentiable with respect
to the components of x and β, and all derivatives are uniformly bounded
on RX × B. Moreover, the function (u, β) → g0β(u) is continuously dif-
ferentiable with respect to u and the components of β and the derivatives
are uniformly bounded on RU ×B.

Remark 3.1. Let Cα
M (RU ) be the set of all continuous functions g : RU → R

with

‖g‖α = max
k≤α

sup
u

|g(k)(u)|+ sup
u1,u2

|g(α)(u1)− g(α)(u2)|
|u1 − u2|α−α

≤M <∞,
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where α is the largest integer strictly smaller than α. Then, by Theorem 2.7.1
in Van der Vaart and Wellner (1996), the condition on the covering number in
(A2) is satisfied if G belongs to Cα

M (RU ) with α > 1/2 for s = 1 and α > 1 for
s = 2.

Remark 3.2. In condition (A1), the function g0β(u) satisfies g0β0(u) = g0(u).
For specific examples of g0β(u), we refer to Section 4, particularly (4.2) and (4.4).
Note that if u(x, β) does not depend on β (like for the partial linear model),
then the conditions related to the derivative ĝ′ and the space K (see (A1) and
(A2)) can be omitted. On the other hand, if u(x, β) does depend on β, but
∂
∂βσ(x, β, g) is linear in g

′(u(x, β)), then it can be easily seen that the condition

sup‖β−β0‖≤δn supx∈RX
|(ĝ′β − g′0β)(u(x, β))| = oP (n

−1/4) is not necessary.

Remark 3.3. Note that assumption (B3) requires that the regression function
estimator involves at most univariate smoothing, which is the case for e.g. the
partial linear, single index or additive model for the regression function, but not
for the completely nonparametric model. It is possible to adapt this condition
to allow for the completely nonparametric case as well, but we believe that
whenever a semiparametric model is assumed for the variance function, it makes
more sense to consider a semiparametric model for the regression function as
well.

Remark 3.4. When the data are not i.i.d., the assumptions under which the
main results are valid, change. In fact, these assumptions are obtained by ap-
plying the results in Chen, Linton and Van Keilegom (2003). Part of the latter
paper is valid for general not necessarily i.i.d. data (namely their Theorems 1
and 2), whereas Theorem 3 is restricted to i.i.d. data. For that reason, the exten-
sion of the present paper to clustered or longitudinal data consists in replacing
the assumptions that rely on Theorem 3 by corresponding assumptions valid
for dependent data. The assumptions that are affected are the assumption on
the bracketing number in (A2) and (B2), and assumptions (A3) and (B3), to
which it should be added that the sum in the representation of ĝ0(u) and m̂(x)
converges to a normal limit.

3.2. Asymptotic results with zero mean errors

In the following theorem, we give the Bahadur representation and the asymp-
totic normality of the estimator β̂ under the general generic conditions given
in Section 3.1, and under the assumption that E(ε|X) = 0 and Var(ε|X) = 1.
Since β0 is often associated with important factors such as treatment effects,
the estimation of β0 is sometimes of independent interest, as it tells us how the
treatment affects the dispersion of the response variable in addition to its effect
on the location.

The proof is given in the Appendix. We use the notation d
dβσ

2(x, β, gβ) to

denote the complete derivative of σ2(x, β, gβ) with respect to β, i.e.,
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d

dβ
σ2(x, β, gβ)j = lim

τ→0

[

σ2
(

x, β + τej , gβ+τej(u(x, β + τej))
)

− σ2
(

x, β, gβ(u(x, β))
)]

/τ,

where ej has the jth entry equal to one and all the other entries equal to zero,
j = 1, . . . , ℓ.

Theorem 3.1. Assume that conditions (A1)-(A4), (B1)-(B2) and (C1)-(C4)
are satisfied. Then,

β̂ − β0 = n−1
n
∑

i=1

Λ−1
{

h(Xi, Yi, β0, g0,m0, w0) + ξ(Xi, Yi)
}

+ oP (n
−1/2),

and
n1/2(β̂ − β0)

d→ N(0,Ω),

where Ω = Λ−1V (Λ−1)T ,

Λ = −E
[

1

σ4(X, β0, g0)

∂

∂β
σ2(X, β0, g0)

d

dβT
σ2(X, β0, g0)

]

,

ξ(Xi, Yi) = −E
[

1

σ4(X, β0, g0)

∂

∂z
σ2(X, β0, z)|z=g0(U0i)

× ∂

∂β
σ2(X, β0, g0)

∣

∣

∣
U0 = U0i

]

η(Xi, Yi)fU0(U0i),

V = Var
{

h(X,Y, β0, g0,m0, w0) + ξ(X,Y )
}

,

with ∂
∂βσ

2(x, β0, g0) =
∂
∂βσ

2(x, β, g0)|β=β0 , and fU0(·) the density of U0.

Note that the above theorem does not require condition (B3). This is because

the difference m̂(X) − m0(X) cancels out in the expansion of β̂ − β0. As a

consequence, the asymptotic variance of β̂ − β0 does not depend on the way we
estimate the regression function m0, since usually also the function η (showing
up in the representation for ĝ − g0) does not depend on the way we estimate
m0. This agrees with the completely nonparametric case.

Based on the asymptotic results for β0, we can establish the asymptotic
normality of σ̂2(x) = σ2(x, β̂, ĝβ̂). The theorem is given below and its proof can
be found in the Appendix.

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold true. Then, for
any fixed x ∈ RX ,

(nan)
1/2

{

σ̂2(x)− σ2(x, β0, g0)
}

d→ N(0, v2(x)),

where

v2(x) =

[

∂

∂z
σ2(x, β0, z)|z=g0(u(x,β0))

]2

‖K1‖22Var
(

η(X,Y )|U0 = u(x, β0)
)

,

and ‖K1‖22 =
∫

K2
1 (v)dv.
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Note that the estimator β̂ does not contribute to the asymptotic variance
of σ̂2(x), since its rate of convergence is faster than the nonparametric rate
(nan)

1/2.

Remark 3.5. Note that the estimation of the regression function m0 can now
be updated, by using a weighted least squares procedure, where the weights are
given by the inverse of the estimated variance function σ̂2(x) = σ2(x, β̂, ĝβ̂). This
leads to more efficient estimation of the regression function. As a special case,
consider the partial linear mean regression model. Then, Härdle, Liang and Gao
(2000) (Theorem 2.1.2, page 22) showed that whenever the estimated weights
are uniformly at most oP (n

−1/4) away from the true (unknown) weights, then
the variance of the estimators of the regression coefficients is asymptotically
equal to the variance of the estimator obtained by using the true weights. In
our case the weights are at a distance OP ((nan)

−1/2) = oP (n
−1/4) away from

the true weights, and so their result applies, provided we can show that this
rate holds uniformly in x ∈ RX . We claim that this can be shown, but the
proof is long and technical and beyond the scope of this paper. Their result
could be generalized to other semiparametric regression models, but we do not
go deeper into this issue here (see also Zhao (2001) for a similar result in the
context of linear median regression). It would also be of interest to consider
the efficiency of the weighted least squares estimator relative to the unweighted
one. We illustrate this issue in the simulation section, where we will calculate the
variance of the unweighted and the weighted estimator for some specific models.

3.3. Asymptotic results with zero median errors

In Theorem 3.3 below, we give the Bahadur representation and the asymptotic
normality of the estimator for β0 under the assumption that med(ε|X) = 0 and
med(|ε| |X) = 1. The conditional density of ε given X is denoted by fε(·|X).

Theorem 3.3. Assume that conditions (A1)-(A4), (B1)-(B3) and (C1)-(C4)
are satisfied. Then,

β̂ − β0 = n−1
n
∑

i=1

Λ−1
{

h(Xi, Yi, β0, g0,m0, w0) + ξ(Xi, Yi)
}

+ oP (n
−1/2),

and
n1/2(β̂ − β0)

d→ N(0,Ω),

where Ω = Λ−1V (Λ−1)T ,

Λ = −E
[

1

σ2(X, β0, g0)
{2fε(1|X) + 2fε(−1|X)} ∂

∂β
σ(X, β0, g0)

d

dβT
σ(X, β0, g0)

]

,

ξ(Xi, Yi)

=
d

∑

j=1

E

[

1

σ2(X, β0, g0)
{−2fε(1|X) + 2fε(−1|X)}
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× ∂

∂β
σ(X, β0, g0)

∣

∣

∣
Xj = Xji

]

ζ1j(Xji, Yi)fXj
(Xji)

+ E

[

1

σ2(X, β0, g0)
{−2fε(1|X) + 2fε(−1|X)} ∂

∂β
σ(X, β0, g0)

]

ζ2(Xi, Yi)

− E

[

1

σ2(X, β0, g0)
{2fε(1|X) + 2fε(−1|X)} ∂

∂z
σ(X, β0, z)|z=g0(U0i)

× ∂

∂β
σ(X, β0, g0)

∣

∣

∣
U0 = U0i

]

η(Xi, Yi)fU0(U0i),

V = Var
{

h(X,Y, β0, g0,m0, w0) + ξ(X,Y )
}

.

Theorem 3.4. Assume that the conditions of Theorem 3.3 hold true. Then, for
any fixed x ∈ RX ,

(nan)
1/2

{

σ̂(x)− σ(x, β0, g0)
}

d→ N(0, v2(x)),

where

v2(x) =

[

∂

∂z
σ(x, β0, z)|z=g0(u(x,β0))

]2

‖K1‖22Var
(

η(X,Y )|U0 = u(x, β0)
)

.

Remark 3.6. The above two theorems can be easily adapted to the case where
the dispersion function is defined by σ(x, β, g) = E(|Y −m(X)| |X = x) (i.e.
E(|ε| |X) = 1). In fact, the formulas of the matrix Λ and of the function ξ
can be similarly obtained by combining the calculations done in the proofs of
Theorems 3.1 and 3.3. These calculations show that the parameter s in condition
(B2) equals 2, whereas for condition (A2) s equals 1. We omit the details.

4. Examples

In this section we consider two particular semiparametric regression models,
we propose estimators under these models and verify the conditions that are
required for the asymptotic results of Section 3. The first example is a repre-
sentative example for mean regression, the second one for median regression.

4.1. Single index mean regression model

In this first example we consider a mean regression model with a single index
regression and variance function:

Y = r0(α
T
0X) + g

1/2
0 (βT

0 X)ε, (4.1)

where E(ε|X) = 0, E(ε2|X) = 1 and where g0 is a positive function. In order to
correctly identify the model, we assume that α01 = β01 = 1. This model has also
been studied by Xia, Tong and Li (2002), using a different estimation method.
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Let m̂(x) be an estimator of the unknown regression function m0(x) = r0(α
T
0 x),

like e.g. the estimator proposed in Härdle, Hall and Ichimura (1993). See also
Delecroix, Hristache and Patilea (2006) for a more general class of semiparamet-
ric M -estimators of m0(x). Since the verification of conditions (B1) and (B2) is
easier than of conditions (A1) and (A2), we concentrate in what follows on the
verification of the A-conditions. First, define for any β ∈ R

d,

g0β(u) = E
(

(Y −m0(X))2|βTX = u
)

, (4.2)

and let

ĝβ(u) =

n
∑

i=1

K1a(u − βTXi)
∑n

j=1K1a(u− βTXj)
(Yi − m̂(Xi))

2,

where K1a(v) = K1(v/an)/an, K1 is a kernel function and an a bandwidth
sequence. For (A1), note that

ĝβ(u)− g0β(u) =

n
∑

i=1

K1a(u− βTXi)
∑n

j=1K1a(u− βTXj)
(Yi −m0(Xi))

2 − g0β(u)

+

n
∑

i=1

K1a(u − βTXi)
∑n

j=1K1a(u− βTXj)

{

(m̂(Xi)−m0(Xi))
2

−2(Yi −m0(Xi))(m̂(Xi)−m0(Xi))
}

= OP ((nan)
−1/2(log n)1/2) + oP (n

−1/4) = oP (n
−1/4),

uniformly in u and β, provided na2n(logn)
−2 → ∞ and infβ∈B infx∈RX

fβTX ×
(βTx) > 0 (where fβTX is the density of βTX). For ĝ′β , note that

∂
∂βσ

2(x, β, g) =

g′(βTx)x is linear in g′(βTx), and hence, by Remark 3.2, we only need to show
that ‖ĝ′ − g′0‖∞ = oP (1). This can be shown using standard calculations. Next,

let G = K = C
1/2+δ
M (RU ) for some δ > 0. It follows from Remark 3.1 that the

condition on the covering number of G and K in (A2) is satisfied. Moreover,
supu,β |ĝβ(u)| = supu,β |g0β(u)|+ oP (1) = OP (1) (and similarly for ĝ′β(u)), and

supβ,u1,u2
|ĝ′β(u1)− ĝ′β(u2)|/|u1−u2|1/2+δ ≤M provided na4+2δ

n (log n)−1 → ∞.
Hence, P (ĝβ ∈ G) → 1 and P (ĝ′β ∈ K) → 1. For (A3), note that

ĝ0(u)− g0(u)

=

n
∑

i=1

K1a(u− βT
0 Xi)

∑n
j=1K1a(u− βT

0 Xj)
(Yi −m0(Xi))

2 − g0(u)

− 2

n
∑

i=1

K1a(u−βT
0 Xi)

∑n
j=1K1a(u−βT

0 Xj)
(Yi −m0(Xi))(m̂(Xi)−m0(Xi))+ oP (n

−1/2).

Let K1 be a kernel of order q ≥ 3. Then, the first term above can be written as

n−1
n
∑

i=1

K1a(u− βT
0 Xi)

{

(Yi −m0(Xi))
2 − g0(β

T
0 Xi)

}

f−1
βT
0 X

(βT
0 Xi) + o(n−1/2),
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provided na6n → 0. The second term is a degenerate V -process (with kernel
depending on n), and can be written as a degenerate U -process, plus a term
of order OP ((nbn)

−1) = oP (n
−1/2) provided nb2n → ∞. The U -process can be

written out using Hajek-projection techniques, similar to the ones for regular
degenerate U -statistics, which shows at the end (after long but straightforward
calculations) that this term is oP (n

−1/2) provided nanbn → ∞. Hence, (A3)
holds true for η(x, y) = {(y−m0(x))

2 − g0(β
T
0 x)}f−1

βT
0 X

(βT
0 x). Finally, for (A4),

|(ĝβ − g0β − ĝ0 + g0)(β
Tx)| ≤

∣

∣

∣

∣

∂

∂β
[ĝβ̃ − g0β̃ ](β

Tx) (β − β0)

∣

∣

∣

∣

= oP (1)‖β − β0‖,

uniformly in β and x, where β̃ is between β0 and β. It now follows that β̂ − β0
is asymptotically normal, with mean zero and variance given in Theorem 3.1.

4.2. Partially linear median regression model

The second model we consider is a median regression model with a partially
linear regression function and an exponentially transformed partially linear dis-
persion function :

Y = αT
0X(1) + r0(X(2)) + exp(βT

0 X(1) + g0(X(2)))ε, (4.3)

where med(ε|X) = 0, E(|ε| |X) = 1, and X = (XT
(1), X(2))

T , with X(1) =

(X1, . . . , Xd−1)
T and X(2) = Xd. For any β ∈ R

d−1 and for m0(x) = αT
0 x1 +

r0(x2), let g0β(x2) = log s0β(x2), and ĝβ(x2) = log ŝβ(x2), where

s0β(x2) = E

( |Y −m0(X)|
exp(βTX(1))

∣

∣

∣
X(2) = x2

)

, (4.4)

and

ŝβ(x2) =

n
∑

i=1

K1a(x2 −X(2)i)
∑n

j=1K1a(x2 −X(2)j)

|Yi − m̂(Xi)|
exp(βTX(1)i)

,

where m̂(x) = α̂Tx1 + r̂(x2) is an estimator of the unknown regression function
m0(x), see e.g. Härdle, Liang and Gao (2000, Chapter 2). Define

β̂ = argminβ n
−1

n
∑

i=1

{ |Yi − m̂(Xi)| − exp(βTX(1)i)ŝβ(X(2)i)

exp(β̂∗TX(1)i)ŝβ̂∗(X(2)i)

}2

,

where

β̂∗ = argminβ n
−1

n
∑

i=1

{

|Yi − m̂(Xi)| − exp(βTX(1)i)ŝβ(X(2)i)
}2

.

As in the previous example, we restrict attention to verifying the A-conditions.
Since u(X, β) = X(2) does not depend on β, we do not need to check the
conditions related to ĝ′ and K. Note that

|ŝβ(x2)− s0β(x2)| ≤
∣

∣

∣

∣

∣

n
∑

i=1

K1a(x2 −X(2)i)
∑n

j=1K1a(x2 −X(2)j)

|Yi −m0(Xi)|
exp(βTX(1)i)

− s0β(x2)

∣

∣

∣

∣

∣
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+

n
∑

i=1

K1a(x2 −X(2)i)
∑n

j=1K1a(x2 −X(2)j)
|m̂(Xi)−m0(Xi)|

= OP ((nan)
−1/2(logn)1/2) + oP (n

−1/4) = oP (n
−1/4)

uniformly in x and β if na2n(logn)
−2 → ∞. Hence, (A1) is satisfied, provided

infx2,β s0β(x2) > 0. For (A2) similar arguments as in the first example show
that G = C1

M (RX(2)
) can be used. Next, consider the verification of condition

(A3). Using the property that for any x, y,

|x− y| − |x| = 2(−y)ψ(x) + 2(y − x)
[

I(y > x > 0)− I(y < x < 0)
]

,

where ψ(x) = 0.5− I(x < 0), we have

ŝ0(x2)− s0(x2)

=

n
∑

i=1

K1a(x2 −X(2)i)
∑n

j=1K1a(x2 −X(2)j)

|Yi − m̂(Xi)|
exp(βT

0 X(1)i)
− s0(x2)

=
n
∑

i=1

K1a(x2 −X(2)i)
∑n

j=1K1a(x2 −X(2)j)
exp(−βT

0 X(1)i)
{

|Yi −m0(Xi)|

−2(m̂(Xi)−m0(Xi))ψ(Yi −m0(Xi))

−2(Yi − m̂(Xi))
[

I(m̂(Xi)−m0(Xi) > Yi −m0(Xi) > 0)

−I(m̂(Xi)−m0(Xi) < Yi −m0(Xi) < 0)
]

}

− s0(x2)

= A(x2) +B(x2) + C(x2)− s0(x2) (say).

First consider

A(x2)− s0(x2) = n−1
n
∑

i=1

K1a(x2 −X(2)i)

{ |Yi −m0(Xi)|
exp(βT

0 X(1)i)
− s0(X(2)i)

}

× f−1
X(2)

(X(2)i) + oP (n
−1/2),

provided na4n → 0 and K1 is a kernel of order 2. Next, note that the term B(x2)
is a degenerate V -process, because in the i.i.d. representation of m̂(Xi)−m0(Xi),
each term has mean zero, and because E(ψ(Yi−m0(Xi))|Xi) = 0. Hence, as for
the first example, we have that B(x2) = oP (n

−1/2). Finally, using the notation

ǫi = Yi −m0(Xi) and d̂ = m̂−m0, consider

|C(x2)|

≤ 2

n
∑

i=1

K1a(x2 −X(2)i)
∑n

j=1K1a(x2 −X(2)j)
exp(−βT

0 X(1)i)
(

|ǫi|+ |d̂(Xi)|
)

I
(

|ǫi| < |d̂(Xi)|
)

≤ 4
n
∑

i=1

K1a(x2 −X(2)i)
∑n

j=1K1a(x2 −X(2)j)
exp(−βT

0 X(1)i)|d̂(Xi)|I
(

|ǫi| < |d̂(Xi)|
)
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≤ 4 sup
x1

exp(−βT
0 x1) sup

x
|d̂(x)|

(

inf
x2

fX(2)
(x2)

)−1

n−1

×
n
∑

i=1

K1a(x2 −X(2)i)I
(

|ǫi| < |d̂(Xi)|
)

+ oP (n
−1/2),

since supx |d̂(x)| = oP (n
−1/4) by (B1). Using e.g. Van der Vaart and Wellner

(1996, Section 2.11), it can be shown that the process

n−1
n
∑

i=1

K1a(x2 −X(2)i)I
(

|ǫi| < |d(Xi)|
)

− P
(

|ǫ| ≤ |d(X)| |X(2) = x2

)

is OP ((nan)
−1/2(logn)1/2) uniformly in x2 ∈ RX(2)

and in d = m − m0 with
m ∈ M. Hence,

n−1
n
∑

i=1

K1a(x2 −X(2)i)I
(

|ǫi| < |d̂(Xi)|
)

= P
(

|ǫ| ≤ |d̂(X)| |X(2) = x2

)

+OP ((nan)
−1/2(log n)1/2),

since P (m̂ ∈ M) → 1 by condition (B2). It now follows that

|C(x2)| = O
(

sup
x

|d̂(x)|
){

P
(

|ǫ| ≤ |d̂(X)| |X(2) = x2

)

+OP ((nan)
−1/2(logn)1/2)

}

= oP (n
−1/4)

∫

[Fǫ(|d̂(x)| |x) − Fǫ(−|d̂(x)| |x)]fX(1)
(x1)dx1 + oP (n

−1/2)

= oP (n
−1/4)2 sup

x,y
fǫ(y|x) sup

x
|d̂(x)| + oP (n

−1/2)

= oP (n
−1/2).

This finishes the proof for condition (A3). It remains to check (A4), which can
be done in much the same way as in the first example.

5. A Monte-Carlo example

We generate random data from a partially linear heteroscedastic median regres-
sion model given by

Yi = αT
0X(1)i + r0(X2i) + exp(β0X1i + g0(X2i))εi, i = 1, . . . , 400,

where Xi = (XT
(1)i, X2i)

T , X(1)i = (1, X1i)
T , α0 = (α00, α01)

T = (1, 0.75)T ,

β0 = −2, X1i and X2i are independent with uniform distribution on (0,1),
and εi (i = 1, . . . , n) are i.i.d. normal random variables that are independent
of X1i and X2i. Furthermore, the εi are standardized such that med(εi) = 0
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and E(|εi|) = 1. We consider the following choices for r0(x2) and g0(x2), where
r0(X2) satisfies the zero median constraint in order for the intercept to be iden-
tifiable.

Case 1: r0(x2) = 2(x2 − 0.5) and g0(x2) = 1.4− 2x2;
Case 2: r0(x2) = 2(x2 − 0.5) and g0(x2) = 1.1− 2x22;
Case 3: r0(x2) = exp(−x2)− exp(−0.5) and g0(x2) = 1.4− 2x2;
Case 4: r0(x2) = exp(−x2)− exp(−0.5) and g0(x2) = 1.1− 2x22.
Case 5: r0(x2) = sin(4(x2 − 0.5)) and g0(x2) = 1.4− 2x2.
Case 6: r0(x2) = sin(4(x2 − 0.5)) and g0(x2) = 1.1− 2x22.

The model is fitted using the backfitting algorithm described in Section 2.4.
Implementation of the algorithm involves two smoothing parameters, one for
estimating the conditional median function and the other for estimating the
dispersion function. For the former, we apply the automatic smoothing param-
eter selection method in Yu and Jones (1998), while for the latter, we consider
smoothing parameters on the grid [0.02, 0.20] with step size 0.02. We choose
the latter smoothing parameter by cross-validation such that the ability to es-
timating the conditional median function is optimized. This algorithm works
well in our simulations. We have not encountered any convergence problem. Al-
ternatively, one may apply the cross-validation method to the two smoothing
parameters jointly. This is, however, much more computationally intensive.

We report results from 500 independent simulation runs. First, we compare
the unweighted method with the weighted method for estimating α0. The un-
weighted method assumes that the dispersion function is constant; while the
weighted method updates the estimator α̂ via the weighted L1 regression where
the weights are taken to be the reciprocal of the estimated dispersion function.
Table 1 displays the bias and the MSE for estimating α00 and α01, respec-
tively. It also reports the simulated relative efficiency (SRE) for comparing the
weighted and unweighted methods. The SRE is defined as

SRE =
MSE for estimating α0 using the unweighted method

MSE for estimating α0 using the weighted method
,

where the MSE for estimating α0 is defined as the sum of the mean squared
errors for estimating each coordinate of α0. The simulation results suggest that
the weighted method significantly improves the efficiency of estimating α0 com-
pared with the unweighted method. In all six cases, we observe an efficiency
gain around 20-30% when using the weighted method.

Table 1

Estimating α0: comparing unweighted and weighted methods

α̂00 (unweighted) α̂01 (unweighted) α̂00 (weighted) α̂01 (weighted) SRE for
bias MSE bias MSE bias MSE bias MSE estimating α0

Case 1 0.051 0.072 −0.065 0.079 0.035 0.062 −0.040 0.060 1.238
Case 2 0.048 0.075 −0.059 0.076 0.031 0.064 −0.035 0.056 1.258
Case 3 0.009 0.053 −0.046 0.072 −0.010 0.042 −0.019 0.053 1.312
Case 4 0.021 0.057 −0.059 0.076 0.005 0.047 −0.035 0.056 1.291
Case 5 0.063 0.085 −0.071 0.075 0.040 0.068 −0.030 0.054 1.305
Case 6 0.031 0.072 −0.050 0.078 0.013 0.061 −0.021 0.052 1.329
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Table 2

Estimating β0

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
bias −0.052 −0.049 −0.040 −0.048 −0.038 −0.059
MSE 0.024 0.025 0.022 0.025 0.023 0.028
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Fig 1. Estimates of the functions r0(x2) and g0(x2) for case 6. Solid line: true curve; dashed
line: estimated curve.

Next, we consider estimating the dispersion parameter β0 when the weighted
method is used. Table 2 gives the bias and the mean squared error, which sug-
gests that β0 is estimated satisfactorily in all cases.

Finally, we give some idea on how well we estimate the nonparametric parts
of the semiparametric model. More specifically, we consider case 6 and compare
in Figure 1 the true curves of r0(x2) and g0(x2) with their respective estimates
(averaged over the 500 simulation runs). The estimated curves are very close to
the true curves. Results from all other cases are similar and not reported due
to space limitation.
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6. Analysis of gasoline consumption data

We illustrate the proposed method by means of a data set on gasoline con-
sumption. The data were collected by the National Private Vehicle Use Survey
in Canada between October 1994 and September 1996 and contain household-
based information (Yatchew, 2003). In this analysis, we use the subset of Septem-
ber data which consists of 485 observations. We are interested in estimating the
median of the log of the distance traveled per month by the household (de-
noted by Y = dist) based on six covariates: X1 = income (log of the previous
year’s combined annual household income before taxes which is reported in 9
ranges), X2 = driver (log of the number of the licensed drivers in the house-
hold), X3 = age (log of the age of driver), X4 = retire (a dummy variable for
those households whose head is over the age of 65), X5 = urban (a dummy
variable for urban dwellers), and X6 = price (log of the price of a liter of gaso-
line). The scatter plots of the response variable versus each covariate are given
in Figure 2.
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Fig 2. Plot for the gasoline consumption data.
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Table 3

Analysis of the gasoline consumption data (sd = standard error)

α0 β0

estimate sd estimate sd
income 0.351 0.099 −0.009 0.046
driver 0.662 0.087 0.245 0.108
age 0.193 0.162 −0.037 0.126
retire −0.283 0.130 0.169 0.129
urban −0.288 0.080 0.097 0.074

We fit a heteroscedastic partially linear median regression model, which
was motivated by a homoscedastic partially linear mean regression model by
Yatchew (2003). More specifically, we assume

dist = α01income+ α02driver + α03age+ α04retire + α05urban+ r0(price)

+ exp[β01income+ β02driver + β03age+ β04retire

+ β05urban+ g0(price)]ε,

i.e. Y = αT
0X(1)+ r0(X(2))+exp(βT

0 X(1)+ g0(X(2)))ε, where X = (XT
(1), X(2))

T

with X(1) = (X1, . . . , X5)
T and X(2) = X6 = price, and where r0(·) and g0(·)

are two unknown smooth functions. For identifying the model we assume that
med(ε|X) = 0 and E(|ε||X) = 1. The smoothing parameters are selected using
the approach described in Section 5. The smoothing parameter for estimating
the conditional median function is 0.02 and that for estimating the dispersion
function is 0.05.

Table 3 summarizes the estimated coefficients in the parametric parts of the
conditional median function and the dispersion function. It is not surprising
that households with larger income and more drivers tend to have higher me-
dian value of dist, and that retired people and urban dwellers tend to drive
less. Table 3 also contains the standard errors of the α̂j ’s and β̂j ’s. These are
obtained using a model-based resampling procedure. More specifically, we esti-
mate the parametric and nonparametric components in the above model and
obtain α̂, β̂, r̂ and ĝ. We then generate a bootstrap sample (i = 1, . . . , n):

Y ∗
i =

∑5
j=1 α̂jXji + r̂(X6i) + exp(

∑5
j=1 β̂jXji + ĝ(X6i))ε

∗
i , where the ε∗i satisfy

the constraints med(ε∗i |Xi) = 0 and E(|ε∗i ||Xi) = 1 (we use a normal distribu-
tion in the simulations). For each bootstrap sample, we re-estimate the αj ’s and
the βj ’s. The standard errors are then calculated from these estimators based
on 200 bootstrap samples. The results in Table 3 suggest that income, driver,
retire and urban have significant effects on the conditional median function.
Moreover, driver exhibits a significant effect on the dispersion function.

Figure 3 displays the estimated nonparametric components. The plots indi-
cate that for the majority of values of price, increased price is associated with
reduced conditional median of dist. However, for the lowest and highest values
of price, the effect of price on dist seems to be reversed. A similar pattern is
observed for the effect of price on the dispersion function. Note however that
for small and large values of price, the date are rather sparse, as can be seen
from Figure 2.
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Fig 3. Estimates of the functions r0(price) and g0(price) for the gasoline consumption data.

7. Discussion

This paper considers a general class of semiparametric location-dispersion mod-
els. The theory we have developed focuses on how to estimate the dispersion
function and the theoretical properties of the proposed estimators.

The estimators we use are of the back-fitting type. Alternatively, one may
consider profile estimators, which are obtained by replacing in the definition of
h(x, y, β, gβ,m,w) the partial derivative ∂

∂βσ
2(x, β, gβ) by the complete deriva-

tive d
dβσ

2(x, β, gβ), i.e. profile estimators take into account that gβ also depends

on β. See Van Keilegom and Carroll (2007) for a detailed analysis of the pros
and cons of profiling versus backfitting.

In the future, we would like to study in more detail the estimation of the
mean or median using weighted least squares with weights equal to the inverse
of the estimated dispersion function. The simulations in Section 5 suggest that
the efficiency gain is quite substantial. A theoretical analysis of the relative
efficiency will be very interesting. Certainly, we would also like to extend this
class of models to time-series setting.



I. Van Keilegom and L. Wang/Semiparametric modeling of heteroscedasticity 155

Appendix: Proofs

Proof of Theorem 3.1. We will make use of Theorem 2 in Chen, Linton and
Van Keilegom (2003) (CLV hereafter), which gives generic conditions under

which β̂ is asymptotically normal. First of all, we need to show that β̂ − β0 =
oP (1). For this, we verify the conditions of Theorem 1 in CLV. Condition (1.1)

holds by definition of β̂, while the second and third condition are guaranteed by
assumptions (C1) and (C2). For condition (1.4) we use assumptions (A1) and
(B1) for the estimators ĝ and m̂, whereas for ŵ more work is needed. In fact, one
should first consider the current proof in the case where w ≡ 1. In that case the
function w is not a nuisance function and redoing the whole proof with w ≡ 1, we
get at the end that β̂∗ − β0 = OP (n

−1/2) and ‖ŵ−w0‖∞ = oP (n
−1/4). Finally,

condition (1.5) is very similar to condition (2.5) of Theorem 2 of CLV, and we
will verify both conditions below. So, the conditions of Theorem 1 are verified,
up to condition (1.5) which we postpone to later. Next, we verify conditions
(2.1)–(2.6) of Theorem 2 in CLV. Condition (2.1) is, as for condition (1.1), valid

by construction of the estimator β̂. For condition (2.2), first note that since U =
U(X, β) depends in general on β, the criterion function h does not only depend

on the nuisance functions gβ,m and w, but also on g′β(u) =
∂gβ(u)

∂u . Therefore,
from now on we will denote H(β, gβ ,m,w, g

′
β) to stress the dependence on g′β.

Similar, whenever it is necessary to stress the dependence of ∂
∂βσ

2(x, β, gβ) on

g′β, we will write σ2
β(x, β, gβ , g

′
β). We need to calculate the matrix

d

dβT
H(β, g0β ,m0, w0, g

′
0β)

= E

[

− w0(X)
∂

∂β
σ2(X, β, g0β)

d

dβT
σ2(X, β, g0β)

+ w0(X)
{

σ2(X, β0, g0)− σ2(X, β, g0β)
} d

dβT

∂

∂β
σ2(X, β, g0β)

]

.

Note that when β = β0, the second term above equals zero and we find the
matrix Λ in that case. Hence, (2.2) follows from conditions (C2) and (C3).
Next, for (2.3) note that for β in a neighborhood of β0, the functional derivative
of H(β, g0β,m0, w0, g

′
0β) in the direction [g − g0,m−m0, w −w0, k − g′0] for an

arbitrary quadruple (g,m,w, k), equals

Γ(β, g0,m0, w0, g
′
0)[g − g0,m−m0, w − w0, k − g′0]

= lim
τ→0

1

τ

[

H(β, g0β + τ(gβ − g0β),m0 + τ(m−m0), w0 + τ(w − w0), g
′
0β

+ τ(kβ − g′0β))−H(β, g0β ,m0, w0, g
′
0β)

]

= E

[

(w − w0)(X)
{

σ2(X, β0, g0)− σ2(X, β, g0β)
} ∂

∂β
σ2(X, β, g0β)

]

− 2E

[

w0(X){Y −m0(X)}(m−m0)(X)
∂

∂β
σ2(X, β, g0β)

]
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− E

[

w0(X)
∂

∂z
σ2(X, β, z)|z=g0β(U)(gβ − g0β)(U)

∂

∂β
σ2(X, β, g0β)

]

+ E

[

w0(X)
{

σ2(X, β0, g0)− σ2(X, β, g0β)
}

×
{

∂

∂z1
σ2
β(X, β, z1, g

′
0β)|z1=g0β(U)(gβ − g0β)(U)

+
∂

∂z2
σ2
β(X, β, g0β , z2)|z2=g′

0β
(U)(kβ − g′0β)(U)

}]

.

Note that the second term above equals zero. Hence, the first part of (2.3) follows
easily from condition (C3) and (C4). For the second part, note that it follows
from the proof of Theorem 2 in CLV that it suffices to show that

‖Γ(β, g0,m0, w0, g
′
0)[ĝ − g0, m̂−m0, ŵ − w0, ĝ

′ − g′0]

− Γ(β0, g0,m0, w0, g
′
0)[ĝ − g0, m̂−m0, ŵ − w0, ĝ

′ − g′0]‖
= oP (1)‖β − β0‖+OP (n

−1/2)

for all β with ‖β− β0‖ = o(1), and this follows easily from conditions (A1) and
(A4). For (2.4), use condition (A1), (A2), (B1) and (B2) for the estimators ĝ,
ĝ′ and m̂. For ŵ, we showed above that ‖ŵ − w0‖∞ = oP (n

−1/4). Choosing
W = {x → σ−4(x, β, g) : β ∈ B, g ∈ G}, it follows from assumption (A2) that
P (ŵ ∈ W) → 1 as n tends to ∞. Next, we consider (2.5). This condition can be
checked by verifying the conditions of Theorem 3 in CLV. These follow from the
Lipschitz continuity of the criterion function h, and from conditions (A2) and
(B2). Moreover, using the differentiability of σ(x, β, z) with respect to β and z,
it is easily seen that the covering number of W is of the same order as that of
B×G. Finally, for condition (2.6) note that when β = β0 all terms in the above
calculation of the functional derivative cancel, except the third one. By inserting
the expansion for ĝ0 − g0 given in condition (A3) into this third term, and by
using the notation T (u) = E{w0(X) ∂

∂zσ
2(X, β0, z)|z=g0(u)

∂
∂βσ

2(X, β0, g0) |U0 =

u}, we get:

Γ(β0, g0,m0, w0, g
′
0)[ĝ0 − g0, m̂−m0, ŵ − w0, ĝ

′
0 − g′0]

= −(nan)
−1

n
∑

i=1

E

[

w0(X)
∂

∂z
σ2(X, β0, z)|z=g0(U0)

∂

∂β
σ2(X, β0, g0)

×K1

(

U0 − U0i

an

)]

η(Xi, Yi) + oP (n
−1/2)

= −(nan)
−1

n
∑

i=1

E

[

T (U0)K1

(

U0 − U0i

an

)]

η(Xi, Yi) + oP (n
−1/2)

= −n−1
n
∑

i=1

T (U0i)fU0(U0i)η(Xi, Yi) + oP (n
−1/2),

where the latter equality follows from a Taylor expansion of order q.
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Proof of Theorem 3.2. Write

σ̂2(x) − σ2(x, β0, g0)

= σ2(x, β0, ĝβ̂)− σ2(x, β0, g0) +OP (n
−1/2)

=
∂

∂z
σ2(x, β0, z)|z=g0(u(x,β0))

(

ĝβ̂ − g0
)(

u(x, β0)
)

{1 + oP (1)}+OP (n
−1/2)

=
∂

∂z
σ2(x, β0, z)|z=g0(u(x,β0))

{

(g0β̂ − g0)− (ĝ0 − g0)
}

(

u(x, β0)
)

{1 + oP (1)}

+OP (n
−1/2),

where the latter equality follows from condition (A4). The result now follows
from the representation for (ĝ0 − g0)(u) given in condition (A3) and from The-
orem 3.1.

Proof of Theorem 3.3. The proof is quite similar to that of Theorem 3.1. We
focus here on the calculation of the derivative of H(β, g0β ,m0, w0) with respect
to β and with respect to the nuisance functions, and on the verification of
condition (2.5) in Chen, Linton and Van Keilegom (2003) (CLV). First, consider

H(β, g0β ,m0, w0, g
′
0β)

= E

[

w0(X)
{

2P (|Y −m0(X)| ≥ σ(X, β, g0β) |X)− 1
} ∂

∂β
σ(X, β, g0β)

]

= E

[

w0(X)
{

1− 2F (eβ(X, 1)|X) + 2F (eβ(X,−1)|X)
} ∂

∂β
σ(X, β, g0β)

]

,

where F (y|x) = P (Y ≤ y|X = x) and eβ(x, y) = m0(x) + σ(x, β, g0β)y, and
hence

d

dβT
H(β, g0β,m0, w0, g

′
0β)

= E

[

w0(X)
{

− 2f(eβ(X, 1)|X)− 2f(eβ(X,−1)|X)
}

× ∂

∂β
σ(X, β, g0β)

d

dβT
σ(X, β, g0β)

]

+ E

[

w0(X)
{

1− 2F (eβ(X, 1)|X) + 2F (eβ(X,−1)|X)
} d

dβT

∂

∂β
σ(X, β, g0β)

]

.

When β = β0, the second term equals zero and we find the matrix Λ defined in
the statement of the theorem. On the other hand,

Γ(β, g0,m0, w0, g
′
0)[g − g0,m−m0, w − w0, k − g′0]

= E

[

(w − w0)(X)
{

1− 2F (eβ(X, 1)|X) + 2F (eβ(X,−1)|X)
} ∂

∂β
σ(X, β, g0β)

]

+ E

[

w0(X)
{

− 2f(eβ(X, 1)|X) + 2f(eβ(X,−1)|X)
}
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× (m−m0)(X)
∂

∂β
σ(X, β, g0β)

]

+ E

[

w0(X)
{

− 2f(eβ(X, 1)|X)− 2f(eβ(X,−1)|X)
} ∂

∂z
σ(X, β, z)|z=g0β(U)

× (gβ − g0β)(U)
∂

∂β
σ(X, β, g0β)

]

+ E

[

w0(X)
{

1− 2F (eβ(X, 1)|X) + 2F (eβ(X,−1)|X)
}

×
{

∂

∂z1
σβ(X, β, z1, g

′
0β)|z1=g0β(U)(gβ − g0β)(U)

+
∂

∂z2
σβ(X, β, g0β, z2)|z2=g′

0β(U)(kβ − g′0β)(U)

}]

.

Note that the first and fourth term above equal zero when β = β0. Finally, we
consider the verification of condition (2.5) in CLV, for which we use Theorem
3 in that paper. To prove condition (3.2) in that theorem, we focus on the
indicator in the criterion function h(x, y, β, g,m,w, k), the other components
(namely w(x) and ∂

∂βσ(x, β, g)) being much easier to deal with. Consider for any

(β, g,m) (where sup∗ denotes the supremum over all ‖β̃−β‖ ≤ δ, ‖g̃−g‖∞ ≤ δ,
‖m̃−m‖∞ ≤ δ),

E
[

sup∗
∣

∣

∣
I
(

|Y −m(X)| − σ(X, β, g) ≥ 0
)

− I
(

|Y − m̃(X)| − σ(X, β̃, g̃) ≥ 0
)

∣

∣

∣

2]

≤ sup
x

[

F
(

m(x) + σ(x, β, g) + δ + α|x
)

− F
(

m(x) + σ(x, β, g)− δ − α|x
)

]

+ sup
x

[

F
(

m(x) − σ(x, β, g) + δ + α|x
)

− F
(

m(x) − σ(x, β, g)− δ − α|x
)

]

≤ 4 sup
x,y

f(y|x)(δ + α),

where

α := sup∗ sup
x

|σ(x, β, g)− σ(x, β̃, g̃)| ≤ sup∗{K1‖β − β̃‖+K2‖g − g̃‖∞}

≤ (K1 +K2)δ,

for some 0 < K1,K2 < ∞. Hence, condition (3.2) is satisfied for r = 2 and
sj = 1/2 (using the notation of CLV). Condition (3.3) in CLV follows easily from
assumptions (A2), (B2) and (C3), where we choose W = {x → σ−1(x, β, g) :
β ∈ B, g ∈ G}. The rest of the proof is similar to the one of Theorem 3.1 and is
therefore omitted.
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