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Abstract: This paper presents asymptotic properties of the maximum
pseudo-likelihood estimator of a vector parameterizing a stationary Gibbs
point process. Sufficient conditions, expressed in terms of the local energy
function defining a Gibbs point process, to establish strong consistency and
asymptotic normality results of this estimator depending on a single real-
ization, are presented. These results are general enough to no longer require
the local stability and the linearity in terms of the parameters of the local
energy function. We consider characteristic examples of such models, the
Lennard-Jones and the finite range Lennard-Jones models. We show that
the different assumptions ensuring the consistency are satisfied for both
models whereas the assumptions ensuring the asymptotic normality are
fulfilled only for the finite range Lennard-Jones model.
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This paper studies a method to estimate the parameters governing the distri-
bution of a stationary marked Gibbs point process.

1. Introduction

These last years, much attention has been paid to spatial point pattern data,
and especially to models and methodologies to fit them, see Møller (2008) for
a recent overview of this topic and Daley and Vere-Jones (1988), Stoyan et al.
(1987) Møller and Waagepetersen (2003) or Illian et al. (2008) for more general
information. For spatial point pattern data, the reference model is the Poisson
point process modelling a random configuration of points with no interaction
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between points. In particular, this leads to the independence of any two random
sub-configurations lying in two non-overlapping domains. A way to introduce
dependence is to consider the class of Gibbs models. In a bounded domain,
a Gibbs point process is defined by its probability measure whose density with
respect to a Poisson point process measure is proportional to e−V (ϕ) where V (ϕ)
corresponds to the energy function (i.e. a cost function expressed in terms of
interactions) of the configuration of points ϕ.

In the framework of parametric Gibbs models, when interested in asymptotic
properties of estimators, it is essential to extend the definition of Gibbs models
to R

d. The probability measure of a Gibbs point process in R
d has to be defined

by specifying its conditional density (indirectly expressed in terms of the energy
function V (ϕ)), see e.g. Preston (1976) or Section 2 for more details.

The class of Gibbs point processes is extremely rich. The energy function
can penalize points, pairs or triplets of points (see e.g. Baddeley and Turner
(2000)). More sophisticated models can also be obtained by considering inter-
actions based on the Delaunay or the k−nearest neighbor graphs (Bertin et al.
(1999c,b)), Voronöı tessellations (Dereudre and Lavancier (2009)) or random
sets (Kendall et al. (1999), Dereudre (2009)).

Following the definition of a parametric Gibbs point process, the natural
question of efficiently estimating the parameters arises. Many proposals have
tried to estimate the energy function from an available point pattern data.
The most well-known method is the use of the likelihood function, see e.g.
Møller and Waagepetersen (2003) and the references therein. The main draw-
back of this approach is that the likelihood function contains an unknown scal-
ing factor whose value depends on the parameters. This parametric normalizing
constant is difficult to calculate from a practical point of view. From a theo-
retical one, it also makes asymptotic results more complicated to obtain. An
alternative approach relies on the use of the pseudo-likelihood function. The
idea originated from Besag (1974) in the study of lattice processes. Besag et al.
(1982) further considered this method for pairwise interaction point processes,
and Jensen and Møller (1991) extended the definition of the pseudo-likelihood
function to the general class of marked Gibbs point processes. The construction
of the pseudo-likelihood function is based on the conditional densities which
spare the computation of the scaling factor.

Our paper deals with asymptotic properties of the maximum pseudo-likelihood
estimator. In order to underline our theoretical improvements, let us discuss the
two main different papers discussing this topic:

• In Billiot et al. (2008), we obtain consistency and asymptotic normality
for exponential family models of Gibbs point processes, that is, on models
with energy functions that are linear in terms of the parameters. More-
over, we concentrate on models such that the local energy function is local
and stable. The locality of the local energy expresses that the energy to
insert a point x into ϕ, that is, V (x|ϕ) = V (ϕ ∪ x) − V (ϕ), depends only
on the points of ϕ falling into some ball with a fixed radius whereas the
stability of the local energy (property referred as the local stability) asserts
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that V (x|ϕ) is bounded from below by a finite negative constant. The pa-
per Billiot et al. (2008) extends several papers (Jensen and Møller (1991),
Jensen and Künsch (1994)) and includes a large class of examples of prac-
tical interest: area-interaction point process, Multi-Strauss marked point
process based on the complete graph or the k-nearest-neighbors graph, or
the Geyer’s triplet point process to name a few.

• Another work has been undertaken by Mase. The consistency for non
necessarily stable local energy functions (actually for superstable and lower
regular ones introduced by Ruelle (1970)) is obtained in Mase (1995) for
specific models with only two parameters -the chemical potential and the
inverse temperature- which can be viewed as particular exponential family
models. Mase (2000) extended his work to the context of marked point
processes and provided asymptotic normality by adding the assumption
of finite range.

Based on this literature, the main goal of this paper is to derive asymptotic
properties similar to the ones presented before (consistency and asymptotic
normality) but in a more general framework. We provide asymptotic results for
general Gibbs point processes with non (necessarily) linear and non (necessarily)
stable local energy functions. The characteristic example we have in mind is
the Lennard-Jones model. This model, from statistical physics, is a stationary
pairwise interaction Gibbs point process where the local energy to insert a point
x into a configuration ϕ is parameterized as follows: for θ = (θ1, θ2, θ3) ∈ R

3

with θ2, θ3 > 0

V LJ (x|ϕ; θ) := θ1 + 4θ2
∑

y∈ϕ

((
θ3

‖y − x‖

)12

−
(

θ3
‖y − x‖

)6
)
.

Let us notice that Mase (1995) could only propose the estimation of θ1 and θ2
with known θ3. The Lennard-Jones model is of great interest from several points
of view. From a physical point of view, this model arises when theoretically
modelling a pair of neutral atoms or molecules subject to two distinct forces
in the limit of large separation and small separation: an attractive force at
long ranges (van der Waals force, or dispersion force) and a repulsive force at
short ranges (the result of overlapping electron orbitals, referred to as a Pauli
repulsion from the Pauli exclusion principle). In this literature, the parameters
θ2 and θ3 are often referred to as the depth potential and the (finite) distance at
which the interparticle potential is zero. From a probabilistic point of view, this
model constitutes the main example of superstable, regular and lower regular
energies studied in Ruelle (1970) where the author proves the existence of ergodic
measures for such models. Finally, from a statistical point of view, this model
has been considered by several authors, see e.g. Ogata and Tanemura (1981),
Goulard et al. (1996) for fitting spatial point patterns arising in forestry. In
particular, let us note that, in Goulard et al. (1996), the model is fitted by using
the maximum pseudo-likelihood method. As the authors do not endeavour to
justify the theoretical performances of the procedure, the result proposed in
Section 3.4 of this paper fills this gap.
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The rest of the paper is organized as follows. Section 2 introduces some back-
ground and notation on Gibbs point processes (general definitions, examples).
The maximum pseudo-likelihood method and asymptotic results of the derived
estimator are proposed in Section 3. For general Gibbs point processes, sufficient
conditions, expressed in terms of the local energy function to establish strong
consistency and asymptotic normality results of this estimator are presented.
While no general condition on the model is assumed to obtain the consistency,
the characteristic finite range of the local energy function is required to establish
the asymptotic normality. For the sake of simplicity, Section 3 (and the resulting
proofs) would concentrate on non-marked Gibbs point processes. However, as
we have shown in our paper Billiot et al. (2008), no real mathematical difficulty
occurs with the introduction of marks. At end the end of Section 3, we apply
the results to Lennard-Jones models. Proofs have been postponed until Appen-
dices A (for the general results) and B (for the verifications of the different
assumptions for Lennard-Jones models).

2. Background and notation

For the sake of simplicity, we consider Gibbs point processes in dimension d = 2.

2.1. General notation, configuration space

Subregions of R2 will typically be denoted by Λ or ∆ and will always be assumed
to be Borel with positive Lebesgue measure. We write Λ ⋐ R

2 if Λ is bounded.
Λc denotes the complementary set of Λ inside R

2. The notation |.| will be used
without ambiguity for different kind of objects. For a countable set J , |J |
represents the number of elements belonging to J ; For Λ ⋐ R

2, |Λ| is the
volume of Λ; For a vector x ∈ R

2, |x| corresponds to its uniform norm while ‖x‖
is simply its euclidean norm. For all x ∈ R

2, ρ > 0 and i ∈ Z
2, let B(x, ρ) :=

{y ∈ R
2, |y − x| < ρ} and B(i, ρ) := B(i, ρ) ∩ Z

2.
A configuration is a subset ϕ of R

2 which is locally finite in that ϕΛ :=
ϕ ∩ Λ has finite cardinality NΛ(ϕ) := |ϕΛ| for all Λ ⋐ R

2. The space Ω of
all configurations is equipped with the σ-algebra F that is generated by the
counting variables NΛ(ϕ) with Λ ⋐ R

2. Finally, let T = (τx)x∈R2 be the shift
group, where τx : Ω → Ω is the translation by the vector −x ∈ R

2.

2.2. Gibbs point processes

Our results will be expressed for general stationary Gibbs point processes. Since
we are interested in asymptotic properties, we have to consider these point
processes acting on the infinite volume R

2. Let us briefly recall their definition.
A point process Φ is a Ω-valued random variable, with probability distribution

P on (Ω,F). The most prominent point process is the (homogeneous) Poisson
process with intensity z > 0. Recall that its probability measure πz is the unique
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probability measure on (Ω,F) such that the following holds for Λ ⋐ R
2: (i) NΛ

is Poisson distributed with parameter z|Λ|, and (ii) conditionally to NΛ = n, the
n points in Λ are independent with uniform distribution on Λ, for each interger
n ≥ 1. For Λ ⋐ R

2, let us denote by πzΛ the marginal probability measure in Λ
of the Poisson process with intensity z.

Let θ ∈ R
p (for some p ≥ 1). For any Λ ⋐ R

2, let us consider the parametric
function VΛ(.; θ) from Ω into R∪{+∞}. From a physical point of view, VΛ(ϕ; θ)
is the energy of ϕΛ in Λ given the outside configuration ϕΛc .

In this article, we focus on stationary point processes on R
2, i.e. with T -

invariant probability measure. For any Λ ⋐ R
2, we therefore consider VΛ(.; θ))

to be T -invariant, i.e. VΛ(τxϕ; θ) = VΛ(ϕ; θ) for any x ∈ R
2. Furthermore,

we assume that the family of energies is hereditary, which means that for any
Λ ⋐ R

2, ϕ ∈ Ω, and x ∈ Λ: VΛ(ϕ; θ)) = +∞ ⇒ VΛ(ϕ ∪ {x}; θ)) = +∞.
In such a context, a Gibbs measure is usually defined as follows (see Preston

(1976)).

Definition 1. A probability measure Pθ on Ω is a Gibbs measure for the family
of energies (VΛ(.; θ))Λ⋐R2 if for every Λ ⋐ R

2, for Pθ-almost every outside
configuration ϕΛc , the law of Pθ given ϕΛc admits the following density with
respect to πzΛ:

fΛ(ϕΛ|ϕΛc ; θ) =
1

ZΛ(ϕΛc ; θ)
e−VΛ(ϕ;θ),

where ZΛ(ϕΛc ; θ) :=
∫
ΩΛ
e−VΛ(ϕΛ∪ϕΛc ;θ)πzΛ(dϕΛ) is called the partition function.

Without loss of generality, the intensity of the Poisson process, z is fixed
to 1 and we simply write π and πΛ in place of π1 and π1

Λ. In the previous
definition, we implicitly assume the consistency of the family (fΛ(.|.; θ))Λ⋐R2 :
for any ∆ ⊂ Λ ⋐ R

2

f∆(ϕ∆|ϕ∆c ; θ) =
fΛ(ϕ∆ ∪ ϕΛ\∆|ϕΛc ; θ)

fΛ(ϕΛ\∆|ϕΛc ; θ)
=

fΛ(ϕ∆ ∪ ϕΛ\∆|ϕΛc ; θ)∫
Ω∆

fΛ(ψ∆ ∪ ϕΛ\∆|ϕΛc ; θ)π∆(dψ∆)
.

A sufficient condition to directly fulfill this basic ingredient is to assume the
compatibility of the family (VΛ(.))Λ⋐R2 : for every ∆ ⊂ Λ ⋐ R

2, the function
ϕ→ VΛ(ϕ; θ)−V∆(ϕ; θ) from Ω into R∪{+∞} is measurable and only depends
on ϕΛc .

The existence of a Gibbs measure on Ω which satisfies these conditional spec-
ifications is a difficult issue. We refer the interested reader to Ruelle (1969);
Preston (1976); Bertin et al. (1999a); Dereudre (2005); Dereudre et al. (2010)
for the technical and mathematical development of the existence problem. The
minimal assumption of our paper is then:

[Mod-E]: Our data consist in the realization of a point process Φ with

Gibbs measure Pθ⋆ , where θ
⋆ ∈ Θ̊, Θ is a compact subset of Rp and,

for any θ ∈ Θ, there exists a stationary Gibbs measure Pθ for the family
(VΛ(.; θ))Λ⋐R2 .
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In the rest of this paper, the reader has mainly to keep in mind the con-
cept of local energy defined as the energy required to insert a point x into the
configuration ϕ and expressed for any Λ ∋ x by

V (x|ϕ; θ) := VΛ(ϕ ∪ {x})− VΛ(ϕ).

From the compatibility of the family of energies, the local energy does not
depend on Λ.

Our asymptotic normality result will require the following locality property
assumption.

[Mod-L]: There exists D ≥ 0 such that for all ϕ ∈ Ω

V (0|ϕ; θ) = V
(
0|ϕB(0,D); θ

)
.

2.3. Example: Lennard-Jones models

Let us present the main example studied in this paper. We call LJ-type model
the stationary pairwise interaction point process defined for some D ∈]0,+∞]
by

V LJΛ (ϕ; θ) := θ1|ϕΛ|+HLJ
Λ (ϕ; θ) with HLJ

Λ (ϕ; θ) :=
∑

x1∈ϕΛ
x2∈ϕΛc

gLJ(||x1 − x2||; θ)

and

gLJ(r; θ) := 4θ2

((
θ3
r

)12

−
(
θ3
r

)6
)
1[0,D](r).

As a direct consequence, the local energy function is expressed as

V LJ (x|ϕ; θ) := θ1 +HLJ (x|ϕ; θ) with HLJ (x|ϕ; θ) :=
∑

y∈ϕ

gLJ(||x− y||; θ).

where θ = (θ1, θ2, θ3) ∈ R × (R+)2. The cases D = +∞ and D < +∞ respec-
tively correpond to the Lennard-Jones model (briefly presented in the introduc-
tion) and the Lennard-Jones model with finite range.

Ruelle (1970) has proved the existence of an ergodic measure for superstable,
regular and lower regular potentials. The Lennard-Jones model (including the
finite range one) is known to be the characteristic example of such a family of
models for which Ruelle managed to prove the existence of ergodic measures for
any θ ∈ R × (R+)2. In order to ensure [Mod-E], it is required to assume that
θ⋆2 , θ

⋆
3 > 0. Finally, [Mod-L] is satisfied for the LJ-type model with D < +∞

since the parameter D corresponds for pairwise interaction point processes to
the range of the Gibbs point process.
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3. Asymptotic results of the maximum pseudo-likelihood estimator

3.1. Maximum pseudo-likelihood method

The idea of maximum pseudo-likelihood is due to Besag (1974) who first intro-
duced the concept for Markov random fields in order to avoid the normalizing
constant. This work was then widely extended and Jensen and Møller (1991)
(Theorem 2.2) obtained a general expression for Gibbs point processes. Using
our notation and up to a scalar factor, the pseudo-likelihood defined for a con-
figuration ϕ and a domain of observation Λ is denoted by PLΛ (ϕ; θ) and given
by

PLΛ (ϕ; θ) = exp

(
−
∫

Λ

e−V (x|ϕ;θ)dx

) ∏

x∈ϕΛ

e−V (x|ϕ\x;θ). (1)

It is more convenient to define and work with the log-pseudo-likelihood, denoted
by LPLΛ (ϕ; θ)

LPLΛ (ϕ; θ) = −
∫

Λ

e−V (x|ϕ;θ)dx −
∑

x∈ϕΛ

V (x|ϕ \ x; θ) . (2)

The point process is assumed to be observed in a domain Λn⊕D̃ = ∪x∈Λn
B(x, D̃)

for some D̃ < +∞. For the asymptotic normality result, it is also assumed that
D̃ ≥ D and that Λn ⊂ R

2 can be decomposed into ∪i∈In∆i where In = B (0, n)

and for i ∈ Z
2, ∆i = ∆i(D̃) is the square centered at i with side-length D̃. As

a consequence, as n→ +∞, Λn → R
2 such that |Λn| → +∞ and |∂Λn|

|Λn|
→ 0.

Define for any configuration ϕ, Un (ϕ; θ) = − 1
|Λn|

LPLΛn
(ϕ; θ). The max-

imum pseudo-likelihood estimate (MPLE), denoted by θ̂n(ϕ), is then defined
by

θ̂n(ϕ) = argmax
θ∈Θ

LPLΛn
(ϕ; θ) = argmin

θ∈Θ

Un (ϕ; θ) .

The following basic notation are introduced: for j, k = 1, . . . , p and Λ ⋐ R
2

• Gradient vector of Un: U
(1)
n (ϕ; θ) := −|Λn|−1LPL

(1)
Λn

(ϕ; θ) where

(
LPL

(1)
Λ (ϕ; θ)

)
j
=

∫

Λ

∂V

∂θj
(x|ϕ; θ) e−V (x|ϕ;θ)dx−

∑

x∈ϕΛ

∂V

∂θj
(x|ϕ \ x; θ) .

• Hessian matrix of Un: U
(2)
n (ϕ; θ) := −|Λn|−1LPL

(2)
Λn

(ϕ; θ)

(
LPL

(2)
Λ (ϕ; θ)

)
j,k

=

∫

Λ

(
∂2V

∂θj∂θk
(x|ϕ; θ) − ∂V

∂θj
(x|ϕ; θ) ∂V

∂θk
(x|ϕ; θ)

)
e−V (x|ϕ;θ)dx

+
∑

x∈ϕΛ

∂V

∂θj
(x|ϕ \ x; θ) ∂V

∂θk
(x|ϕ \ x; θ) .
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Finally, note that from the decomposition of the observation domain Λn, one
has

U(1)
n (ϕ; θ) = −|Λn|−1

∑

i∈In

LPL
(1)
∆i

(ϕ; θ)

and
U(2)
n (ϕ; θ) = −|Λn|−1

∑

i∈In

LPL
(2)
∆i

(ϕ; θ) .

3.2. Consistency of the MPLE

The assumption [C] gathers the following four assumptions:

[C1] For all θ ∈ Θ,

E
(
e−V (0|Φ;θ)

)
< +∞ and E

(
|V (0|Φ; θ)| e−V (0|Φ;θ⋆)

)
< +∞.

[C2] Identifiability condition : there exists A1, . . . , Aℓ, ℓ ≥ p events in Ω such
that:

– the ℓ events Ai are disjoint and satisfy Pθ⋆(Bi) > 0

– for all (ϕ1, . . . , ϕℓ) ∈ A1 × · · · ×Aℓ
{
D(0|ϕi; θ) = 0
i = 1 . . . , ℓ

⇒ θ = θ⋆

where D(0|ϕi; θ) := V (0|ϕi; θ)− V (0|ϕi; θ⋆)
[C3] The function Un(ϕ; ·) is continuous for Pθ⋆−a.e. ϕ.
[C4] For all ϕ ∈ Ω, V (0|ϕ; θ) is continuously differentiable in θ and for all

j = 1, . . . , p

E

(
max
θ∈Θ

(∣∣∣∣
∂V

∂θj
(0|Φ; θ)

∣∣∣∣ e
−V (0|Φ;θ)

)2
)

< +∞.

Theorem 1. Under the assumptions [Mod-E] and [C], for Pθ⋆−almost every

ϕ, the maximum pseudo-likelihood estimate θ̂n(ϕ) converges towards θ⋆ as n
tends to infinity.

3.3. Asymptotic normality of the MPLE

For establishing the asymptotic normality of the MPLE we need to assume the
four additional following assumptions:

[N1] For all ϕ ∈ Ω, V (0|ϕ; θ) is differentiable in θ = θ⋆. For all k = 1, . . . , 3

and for all λ1, . . . , λk, k positive integers such that
∑k

i=1 λi = 3 and for
∆ ⋐ R

2

E

(∫

∆k

k∏

i=1

∣∣∣∣
∂V

∂θj

(
0M |Φ; θ⋆

)∣∣∣∣
λi

e−V ({x1,...,xk}|Φ;θ⋆)dx1 . . . dxk

)
< +∞.
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[N2] There exists a neighbourhood V(θ⋆) of θ⋆ such that for all ϕ ∈ Ω, V (0|ϕ; θ)
is twice continuously differentiable in θ ∈ V and, for all j, k = 1, . . . , p and
θ ∈ V(θ⋆),

E

(∣∣∣∣
∂2V

∂θj∂θk
(0|Φ; θ)

∣∣∣∣ e
−V (0|Φ;θ′)

)
< +∞, for θ′ = θ, θ⋆

and

E

((∣∣∣∣
∂V

∂θj
(0|Φ; θ)

∣∣∣∣ e
−V (0|Φ;θ)

)2
)
< +∞.

[N3] There exists A1, . . . , Aℓ, ℓ ≥ p events in Ω such that:

– the ℓ events Ai are disjoint and satisfy Pθ⋆(Ai) > 0

– for all (ϕ1, . . . , ϕℓ) ∈ A1 × · · · × Aℓ the (ℓ, p) matrix with entries
∂V
∂θj

(0|ϕi; θ⋆) is injective.
[N4] There exists A0, . . . , Aℓ, ℓ ≥ p disjoint sub-events of

Ω := {ϕ ∈ Ω : ϕ∆i
= ∅, 1 ≤ |i| ≤ 2} such that

– for j = 0, . . . , ℓ, Pθ⋆(Aj) > 0.

– for all (ϕ0, . . . , ϕℓ) ∈ A0 × · · · × Aℓ the (ℓ, p) matrix with entries(
LPL

(1)

Λ
(ϕi; θ

⋆)
)
j
−
(
LPL

(1)

Λ
(ϕ0; θ

⋆)
)
j
is injective, with Λ :=∪i∈B(0,1).

The assumptions [N3] and [N4] will ensure (see Section A for more details)

that the matrices U(2)(θ⋆) and Σ(D̃, θ⋆) respectively defined by

(
U(2)(θ⋆)

)
j,k

:= E

(
∂V

∂θj
(0|Φ; θ⋆) ∂V

∂θk
(0|Φ; θ⋆) e−V (0|Φ;θ⋆)

)
(3)

and

Σ(D̃, θ⋆) = D̃−2
∑

i∈B(0,1)

E

(
LPL

(1)
∆0

(Φ; θ⋆)LPL
(1)
∆i

(Φ; θ⋆)
T
)
, (4)

are definite positive.
Observe that, when the energy function is linear, the expressions of the as-

sumptions [N1] and [N2] are clearly simpler (see Billiot et al. (2008)) and that
[C2] and [N3] are similar.

Theorem 2. Under the assumptions [Mod], [C], [N1], [N2] and [N3], we
have the following convergence in distribution as n→ +∞

|Λn|1/2 U(2)(θ⋆)
(
θ̂n(Φ)− θ⋆

)
→ N

(
0,Σ(D̃, θ⋆)

)
, (5)

where Σ(D̃, θ⋆) is defined by (4). In addition under the assumption [N4]

|Λn|1/2 Σ̂n(Φ; θ̂n(Φ))
−1/2 U(2)

n (Φ; θ̂n(Φ))
(
θ̂n(Φ)− θ⋆

)
→ N

(
0, Ip

)
, (6)

where for some θ and any configuration ϕ, the matrix Σ̂n(ϕ; θ) is defined by

Σ̂n(ϕ; θ) = |Λn|−1
∑

i∈In

∑

j∈B(i,1)∩In

LPL
(1)
∆i

(ϕ; θ)LPL
(1)
∆j

(ϕ; θ)
T
. (7)
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In the following the assumption [N] will stand for the assumptions [N1], [N2],
[N3] and [N4].

3.4. Applications to Lennard-Jones models

The following proposition holds for the LJ-type model presented in Section 2.3.

Proposition 3.
(i) Theorem 1 holds for the LJ-type model (with D ∈]0,+∞]), that is for the
Lennard-Jones and the finite-range Lennard-Jones model.
(ii) Theorem 2 holds only for the finite-range Lennard-Jones model.

The proof of Proposition 3 consists in verifying Assumptions [C] for the LJ-
type model and [N] only for the finite range Lennard-Jones model. Two types
of assumptions are distinguished:

• Integrabilility type assumptions, i.e. Assumptions [C1], [C4], [N1] and
[N2].

• Identifiability type assumptions, i.e. Assumptions [C2], [N3] and [N4].

Note that [C3] is obvious since gLJ(r, ·) is continuous. The proofs are some-
what technical and are postponed until Section B. For the integrability type
assumptions, the following Lemma constitutes the main ingredient.

Lemma 4. Let Φ be a stationary pairwise interaction Gibbs point process as-
sumed to be superstable, regular and lower regular. For i = 1, 2, define Hi (x|ϕ) =∑
y∈ϕ gi(||x− y||) with gi a continuous function. Assume that there exists ε > 0

such that there exists a positive and decreasing function g(·) such that gε(r) :=

g2(r) − ε|g1(r)| ≥ −g(r) for all r > 0 and
∫ +∞

0 rg(r)dr < +∞. Then for all
k ≥ 0,

E
(
|H1 (0|Φ)|k e−H2(0|Φ)

)
< +∞.

Proof. For all finite configuration ϕ

|H1 (0|ϕ)|k e−H2(0|ϕ) = |H1 (0|ϕ)|k e−ε|H1(0|ϕ)| e−(H2(0|ϕ)−εH1(0|ϕ))

≤ c(ε, k)e−(H2(0|ϕ)−εH1(0|ϕ)), with c(ε, k) =

(
k

εe

)k

≤ c(ε, k)e−Hε(0|ϕ),

where
Hε (0|ϕ) :=

∑

x∈ϕ

gε(||x||).

Now, the assumptions ensure that gε is lower regular in the Ruelle sense. We
may now apply the same argument as in Lemma 3 of Mase (1995) to prove the
integrability of the random variable e−Hε(0|Φ).
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Appendix A: Proofs of Theorems 1 and 2

Let us start by presenting a particular case of the Campbell Theorem combined
with the Glötz Theorem that is widely used in our future proofs.

Corollary 5. Assume that the point process Φ with probability measure P is
stationary. Let Λ ⋐ R

2, ϕ ∈ Ω and let g be a function satisfying g(x, ϕ) =
g(0, τxϕ) for all x ∈ R

2. Define f(ϕ) = g(0, ϕ)e−V (0|ϕ) and assume that f ∈
L1(P ). Then,

E

(
∑

x∈ΦΛ

g(x,Φ \ x)
)

= E

(∫

Λ

g(x,Φ)e−V (x|Φ)dx

)
= |Λ| E

(
g (0,Φ) e−V (0|Φ)

)

(8)

Proof. see Corollary 3 of Billiot et al. (2008)
Let us now present a version of an ergodic theorem obtained by Nguyen and

Zessin (1979) and widely used in this paper. Let ∆0 be a fixed bounded domain

Theorem 6 (Nguyen and Zessin (1979)). Let {HG, G ∈ Bb} be a family of
random variables, which is covariant, that is for all x ∈ R

2,

HτxG(τxϕ) = HG(ϕ), for a.e. ϕ

and additive, that is for every disjoint G1, G2 ∈ Bb,

HG1∪G2 = HG1 +HG2 , a.s.

Let I be the sub-σ-algebra of F consisting of translation invariant (with proba-
bility 1) sets. Assume there exists a nonnegative and integrable random variable
Y such that |HG| ≤ Y a.s. for every convex G ⊂ ∆0. Then,

lim
n→+∞

1

|Gn|
HGn

=
1

|∆0|
E(H∆0 |I), a.s.

for each regular sequence Gn → R
2.

A.1. Proof of Theorem 1

Due to the decomposition of stationary measures as a mixture of ergodic mea-
sures (see Preston (1976)), one only needs to prove Theorem 1 by assuming
that Pθ⋆ is ergodic. From now on, Pθ⋆ is assumed to be ergodic. The tool used
to obtain the almost sure convergence is a convergence theorem for minimum
contrast estimators established by Guyon (1992).
We proceed in three stages.
Step 1. Convergence of Un(Φ; θ).

Decompose Un(ϕ; θ) =
1

|Λn|
(H1,Λn

(ϕ) +H2,Λn
(ϕ)) with

H1,Λn
(ϕ) =

∫

Λn

e−V (x|ϕ;θ)dx and H2,Λn
(ϕ) =

∑

x∈ΦΛn

V (x|ϕ \ x; θ) .
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Under the assumption [C1], one can apply Theorem 6 (Nguyen and Zessin
(1979)) to the process H1,Λn

. And from Corollary 5, we obtain Pθ⋆−almost
surely as n→ +∞

1

|Λn|
H1,Λn

(Φ) → E
(
e−V (0|Φ;θ)

)
. (9)

Now, let G ⊂ ∆0, we clearly have

|H2,G(ϕ)| ≤
∑

x∈ϕG

|V (x|ϕ \ x; θ) | ≤
∑

x∈ϕ∆0

|V (x|ϕ \ x; θ) |.

Under the assumption [Mod] and from Corollary 5, we have

E


 ∑

x∈Φ∆0

|V (x|Φ \ x; θ) |


 = |∆0|E

(
|V (0|Φ; θ) |e−V (0|Φ;θ⋆)

)
< +∞

This means that for all G ⊂ ∆0, there exists a random variable Y ∈ L1(Pθ⋆)
such that |H2,G(Φ)| ≤ Y . Thus, under the assumption [C1] and from Theorem 6
(Nguyen and Zessin (1979)) and from Corollary 5, we have Pθ⋆−almost surely

1

|Λn|
H2,Λn

(Φ) → 1

|∆0|
E
( ∑

x∈Φ∆0

V (x|Φ \ x; θ)
)
= E

(
V (0|Φ; θ) e−V (0|Φ;θ⋆)

)
.

(10)
We have the result by combining (9) and (10): Pθ⋆−almost surely

Un(Φ; θ) → U(θ) = E
(
e−V (0|Φ;θ) + V (0|Φ; θ) e−V (0|Φ;θ⋆)

)
(11)

Step 2. Un(·; θ) is a contrast function
Recall that Un(·; θ) is a contrast function if there exists a functionK(·, θ⋆) (i.e.

nonnegative function equal to zero if and only if θ = θ⋆) such that Pθ⋆−almost
surely Un(Φ; θ)− Un(Φ; θ

⋆) → K(θ, θ⋆). From Step 1, we have

K(θ, θ⋆)=E
(
e−V (0|Φ;θ⋆)

(
eV (0|Φ;θ)−V (0|Φ;θ⋆) −

(
1 + V (0|Φ; θ)− V (0|Φ; θ⋆)

)))
.

(12)
Since the function t 7→ et − (1 + t) is nonnegative and is equal to zero if and
only if t = 0, K(θ, θ⋆) ≥ 0 and

K(θ, θ⋆) = 0 ⇔ eV (0|ϕ;θ)−V (0|ϕ;θ⋆) −
(
1 + V (0|ϕ; θ)− V (0|ϕ; θ⋆)

)
= 0

⇔ D (0|ϕ; θ) := V (0|ϕ; θ)− V (0|ϕ; θ⋆) = 0

for Pθ⋆ − a.e. ϕ. Let us consider the ℓ events Aj (j = 1, . . . , ℓ) defined in As-
sumption [C2]. The previous equation is at least true for ϕj ∈ Aj , which leads
under Assumption [C2] to θ = θ⋆. Therefore, K(θ, θ⋆) = 0 ⇒ θ = θ⋆. The
converse is trivial.

Before ending this step, note that the assumption [C3] asserts that for any
ϕ, Un(ϕ; ·) and K(·, θ⋆) are continuous functions.
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Step 3. Modulus of continuity.
The modulus of continuity of the contrast process defined for all ϕ ∈ Ω and

all η > 0 by

Wn(ϕ, η) = sup
{∣∣∣Un(ϕ; θ) − Un(ϕ; θ

′)
∣∣∣ : θ, θ′ ∈ Θ, ||θ − θ′|| ≤ η

}

is such that there exists a sequence (εk)k≥1, with εk → 0 as k → +∞ such that
for all k ≥ 1

P

(
lim sup
n→+∞

(
Wn

(
Φ,

1

k

)
≥ εk

))
= 0. (13)

Let us start to write Wn

(
ϕ, 1k

)
≤W1,n

(
ϕ, 1k

)
+W2,n

(
ϕ, 1k

)
with

W1,n

(
ϕ,

1

k

)
:= sup

{
W ′

1,Λn
(ϕ; θ, θ′) : θ, θ′ ∈ Θ, ||θ − θ′|| ≤ 1

k

}

W2,n

(
ϕ,

1

k

)
:= sup

{
W ′

2,Λn
(ϕ; θ, θ′) : θ, θ′ ∈ Θ, ||θ − θ′|| ≤ 1

k

}
.

and

W ′
1,Λn

(ϕ; θ, θ′) :=
1

|Λn|

∫

Λn

∣∣∣e−V (x|ϕ;θ) − e−V (x|ϕ;θ
′)
∣∣∣dx

W ′
2,Λn

(ϕ; θ, θ′) :=
1

|Λn|
∑

x∈ϕΛn

∣∣∣V (x|ϕ \ x; θ)− V (x|ϕ \ x; θ′)
∣∣∣.

Let k ≥ 1 and let θ, θ′ ∈ Θ such that ||θ − θ′|| ≤ 1
k , then under the assumption

[C1] and from Theorem 6 and Corollary 5, we have Pθ⋆−almost surely as n→
+∞

W ′
1,Λn

(Φ; θ, θ′) −→ E
(∣∣∣e−V (0|Φ;θ) − e−V (0|Φ;θ′)

∣∣∣
)

W ′
2,Λn

(Φ; θ, θ′) −→ E
(
|V (0|Φ; θ)− V (0|Φ; θ′)| e−V (0|Φ;θ⋆)

)

Under Assumption [C4], one may apply the mean value theorem in R
p as fol-

lows: there exist ξ(1), . . . , ξ(p) ∈ ∏p
j=1

[
min(θj , θ

′
j),max(θj , θ

′
j)
]
such that for all

ϕ ∈ Ω

e−V (0|ϕ;θ) − e−V (0|ϕ;θ
′) =

p∑

j=1

(
θj − θ′j

) ∂V
∂θj

(
0|ϕ; ξ(j)

)
e−V (0|ϕ;ξ

(j)).

This leads, under Assumption [C4], to the following inequality

E
(∣∣∣e−V (0|Φ;θ) − e−V (0|Φ;θ′)

∣∣∣
)2

≤ E

(∣∣∣e−V (0|Φ;θ) − e−V (0|Φ;θ′)
∣∣∣
2
)
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≤ E


||θ − θ′||2

p∑

j=1

∣∣∣∣
∂V

∂θj

(
0|Φ; ξ(j)

)
e−V (0|Φ;ξ(j))

∣∣∣∣
2

.




≤
(
1

k

)2

γ21 ,

with γ1 := E
(∑p

j=1 maxθ∈Θ

∣∣ ∂V
∂θj

(0|Φ; θ) e−V (0|Φ;θ)
∣∣2
)
< +∞. In such a way,

one may also prove that

E
(
|V (0|Φ; θ)− V (0|Φ; θ′)| e−V (0|Φ;θ⋆)

)2
≤
(
1

k

)2

γ22 ,

with γ2 := E
(∑p

j=1 maxθ∈Θ

∣∣ ∂V
∂θj

(0|Φ; θ) e−V (0|Φ;θ⋆)
∣∣2
)
. Hence, for all k ≥ 1

and for all θ, θ′ ∈ Θ such that ||θ− θ′|| ≤ 1
k there exists n0(k) ≥ 1 such that for

all n ≥ n0(k), we have

W ′
1,Λn

(ϕ; θ, θ′) ≤ 2

k
γ1 and W ′

2,Λn
(ϕ; θ, θ′) ≤ 2

k
γ2, for Pθ⋆ − a.e. ϕ.

Since γ1 and γ2 are independent of θ and θ′, we have for all n ≥ n0(k)

Wn

(
ϕ,

1

k

)
≤W1,n

(
ϕ,

1

k

)
+W2,n

(
ϕ,

1

k

)
≤ 2

k
(γ1 + γ2) :=

c

k
, for Pθ⋆−a.e. ϕ.

Finally, since

lim sup
n→+∞

{
Wn

(
ϕ,

1

k

)
≥ c

k

}
=

⋂

m∈N

⋃

n≥m

{
Wn

(
ϕ,

1

k

)
≥ c

k

}

⊂
⋃

n≥n0(k)

{
Wn

(
ϕ,

1

k

)
≥ c

k

}

for Pθ⋆−a.e. ϕ, the expected result (13) is proved.
Conclusion step. The Steps 1, 2 and 3 ensure the fact that we can apply Property
3.6 of Guyon (1992) which asserts the almost sure convergence for minimum
contrast estimators.

A.2. Proof of Theorem 2

Step 1. Asymptotic normality of U
(1)
n (Φ; θ⋆)

The aim is to prove the following convergence in distribution as n→ +∞

|Λn|1/2 U(1)
n (Φ; θ⋆) → N

(
0,Σ(D̃, θ⋆)

)
(14)

where the matrix Σ(D̃, θ⋆) is defined by (4).

The idea is to apply to U
(1)
n (Φ; θ⋆) a central limit theorem obtained by

Jensen and Künsch (1994), Theorem 2.1. The following conditions have to be
fulfilled to apply this result. For all j = 1, . . . , p
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(i) For all i ∈ Z
2, E

((
LPL

(1)
∆i

(Φ; θ⋆)
)
j
|Φ∆c

i

)
= 0.

(ii) For all i ∈ Z
2, E

(∣∣(LPL
(1)
∆i

(Φ; θ⋆)
)
j

∣∣3
)
< +∞.

(iii) The matrix Var
(
|Λn|1/2U(1)

n (Φ; θ⋆)
)
converges to the matrix Σ(D̃, θ⋆).

Condition (i) : From the stationarity of the process, it is sufficient to prove that

E

((
LPL

(1)
∆0

(Φ; θ⋆)
)
j
|Φ∆c

0

)
= 0.

Recall that for any configuration ϕ

(
LPL

(1)
∆0

(ϕ; θ⋆)
)
j

= −
∫

∆0

∂V

∂θj
(x|ϕ; θ⋆) e−V (x|ϕ;θ⋆)dx

+

∫

∆0

∂V

∂θj
(x|ϕ \ x; θ⋆)ϕ(dx). (15)

Denote respectively by G1(ϕ) and G2(ϕ) the first and the second right-hand
term of (15) and by Ei = E

(
Gi(Φ)|Φ∆c

0
= ϕ∆c

0

)
. Let us define for any ϕ, the

measure µϕ :=
∑
x∈ϕ δx. From the definition of Gibbs point processes,

E2 =
1

Z∆0(ϕ∆c
0
)

∫

Ω∆0

π∆0(dϕ∆0)

∫

R2

µϕ∆0
(dx)1∆0(x)

∂V

∂θj
(x|ϕ \ x; θ⋆) e−V∆0(ϕ;θ

⋆).

Since π is a Poisson process,

∫

Ω∆0

π∆0(dϕ∆0)f(ϕ) =

∫

Ω∆0

π∆0(dϕ∆0)

∫

Ω∆c
0

π∆c
0
(dϕ′

∆c
0
)f(ϕ)

and therefore, by introducing ψ := ϕ∆0 ∪ ϕ′
∆c

0

E2 =
1

Z∆0(ϕ∆c
0
)

∫

Ω

π(dψ)

∫

R2

µψ(dx)1∆0(x)
∂V

∂θj

(
x|ψ∆0 ∪ ϕ∆c

0
\ x; θ⋆

)
×

e
−V∆0

(
ψ∆0∪ϕ∆c

0
;θ⋆

)

.

Now, from Campbell Theorem (applied to the Poisson measure π)

E2 =
1

Z∆0(ϕ∆c
0
)

∫

∆0

dx

∫

Ω

π!
x(dψ)

∂V

∂θj

(
x|ψ∆0 ∪ ϕ∆c

0
; θ⋆
)
e
−V∆0

(
x∪ψ∆0∪ϕ∆c

0
;θ⋆

)

,

where π!
x stands for the reduced Palm distribution of the Poisson point pro-

cess. Since from Slivnyak-Mecke Theorem (see e.g. Møller and Waagepetersen
(2003)), π = π!

x, one can obtain

E2 =
1

Z∆0(ϕ∆c
0
)

∫

Ω

π(dψ)

∫

∆0

dx
∂V

∂θj

(
x|ψ∆0 ∪ ϕ∆c

0
; θ⋆
)
e
−V∆0

(
x∪ψ∆0∪ϕ∆c

0
;θ⋆

)
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=
1

Z∆0(ϕ∆c
0
)

∫

Ω∆0

π∆0(dϕ∆0)

∫

∆0

dx
∂V

∂θj
(x|ϕ; θ⋆) e−V (x|ϕ;θ⋆)e−V∆0(ϕ;θ

⋆)

= −E1

Condition (ii) : For any bounded domain ∆ one may write for j = 1, . . . , p

∣∣∣∣
(
LPL

(1)
∆ (Φ; θ⋆)

)
j

∣∣∣∣
3

≤ 4

∣∣∣∣
∫

∆

∂V

∂θj
(x|Φ; θ⋆) e−V (x|Φ;θ⋆)dx

∣∣∣∣
3

+ 4

∣∣∣∣∣
∑

x∈ϕ∆

∂V

∂θj
(x|Φ \ x; θ⋆)

∣∣∣∣∣

3

.

The assumption [N1] ensures the integrability of the first right-hand term. For
the second one, note that

T2 :=

∣∣∣∣∣
∑

x∈Φ∆

∂V

∂θj
(x|ϕ \ x; θ⋆)

∣∣∣∣∣

3

≤
∑

x1,x2,x3∈ϕ∆

x1 6=x1,x2 6=x3,x2 6=x3

∣∣∣∣
∂V

∂θj
(x1|ϕ \ x1; θ⋆)

∣∣∣∣
∣∣∣∣
∂V

∂θj
(x2|ϕ \ x2; θ⋆)

∣∣∣∣
∣∣∣∣
∂V

∂θj
(x3|ϕ \ x3; θ⋆)

∣∣∣∣

+ 3
∑

x1,x2∈ϕ∆,x1 6=x2

∣∣∣∣
∂V

∂θj
(x1|ϕ \ x1; θ⋆)

∣∣∣∣
2 ∣∣∣∣
∂V

∂θj
(x2|ϕ \ x2; θ⋆)

∣∣∣∣

+
∑

x1∈ϕ∆

∣∣∣∣
∂V

∂θj
(x2|ϕ \ x1; θ⋆)

∣∣∣∣
3

.

The result is obtained by using the assumption [N1] and iterated versions of
Corollary 5.

Condition (iii): let us start by noting that from the assumption [Mod-L],

the vector LPL
(1)
∆i

(ϕ; θ⋆) depends only on ϕ∆j
for j ∈ B (i, 1). Let Ei,j :=

E
(
LPL

(1)
∆i

(Φ; θ⋆)LPL
(1)
∆j

(Φ; θ⋆)
T)

. Based on our definitions, we have

Var
(
|Λn|1/2U(1)

n (Φ; θ⋆)
)

= |Λn|−1
Var

(
∑

i∈In

LPL
(1)
∆i

(Φ; θ⋆)

)

= |Λn|−1
∑

i,j∈In

Ei,j

= |Λn|−1
∑

i∈In




∑

j∈In∩B(i,1)

Ei,j +
∑

j∈In∩B(i,1)c

Ei,j


 .

Let j ∈ In ∩B (i, 1)c, since LPL
(1)
∆i

(ϕ; θ⋆) is a measurable function of ϕ∆c
i
, we

have by using condition (i):
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E

(
LPL

(1)
∆i

(Φ; θ⋆)LPL
(1)
∆j

(Φ; θ⋆)
T
)

= E

(
E

(
LPL

(1)
∆i

(Φ; θ⋆)LPL
(1)
∆j

(Φ; θ⋆)
T
|Φ∆c

i

))

= E

(
E
(
LPL

(1)
∆i

(Φ; θ⋆) |Φ∆c
i

)
LPL

(1)
∆j

(Φ; θ⋆)
T
)

= 0

Denote by Ĩn the following set

Ĩn = In ∩ (∪i∈∂InB (i, 1)) .

We now obtain

Var
(
|Λn|1/2U(1)

n (Φ; θ⋆)
)

= |Λn|−1
∑

i∈In

∑

j∈In∩B(i,1)

Ei,j

= |Λn|−1




∑

i∈In\Ĩn

∑

j∈In∩B(i,1)

Ei,j +
∑

i∈Ĩn

∑

j∈In∩B(i,1)

Ei,j




Using the stationarity and the definition of the domain Λn, one obtains

|Λn|−1
∑

i∈In\Ĩn

∑

j∈In∩B(i,1)

Ei,j = |Λn|−1|In \ Ĩn|
∑

j∈B(0,1)

E0,j → Σ(D̃, θ⋆),

as n→ +∞, and

|Λn|−1

∣∣∣∣∣∣∣

∑

i∈Ĩn

∑

j∈In∩B(i,⌈D

D̃
⌉)
Ei,j

∣∣∣∣∣∣∣
≤ |Λn|−1|Ĩn|

∑

j∈B(0,1)

|E0,j | → 0 as n→ +∞.

Hence as n→ +∞

Var
(
|Λn|1/2U(1)

n (Φ; θ⋆)
)

= |Λn|−1
∑

i∈In

∑

j∈In∩B(i,1)

Ei,j

n→+∞−→ |In||Λn|−1

︸ ︷︷ ︸
D̃−2

∑

k∈B(0,1)

E0,k = Σ(D̃, θ⋆).(16)

Step 2. Domination of U(2)
n (Φ; θ) in a neighborhood of θ⋆ and convergence of

U(2)
n (Φ; θ⋆) Let j, k = 1, . . . , p, recall that

(
U(2)
n (ϕ; θ)

)
j,k

is defined in a neigh-

borhood V(θ⋆) of θ⋆ for any configuration ϕ by

(
U(2)
n (ϕ; θ)

)
j,k

= − 1

|Λn|

∫

Λn

∂2V

∂θj∂θk
(x|ϕ; θ) exp (−V (x|ϕ; θ)) dx

+
1

|Λn|

∫

Λn

∂V

∂θj
(x|ϕ; θ) ∂V

∂θk
(x|ϕ; θ) exp (−V (x|ϕ; θ)) dx
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+
1

|Λn|
∑

x∈ϕΛn

∂2V

∂θj∂θk
(x|ϕ \ x; θ) . (17)

Under the assumption [N1] and [N2], from Theorem 6 (Nguyen and Zessin
(1979)) and from Corollary 5, there exists n0 ∈ N such that for all n ≥ n0

∣∣∣∣
(
U(2)
n (ϕ; θ)

)
j,k

∣∣∣∣

≤ 2E

((∣∣∣∣
∂2V

∂θj∂θk
(0|Φ; θ)

∣∣∣∣+
∣∣∣∣
∂V

∂θj
(0|Φ; θ) ∂V

∂θk
(0|Φ; θ)

∣∣∣∣
)
e−V (0|Φ;θ)

)

+ 2×E

(∣∣∣∣
∂2V

∂θj∂θk
(0|Φ; θ)

∣∣∣∣ e
−V (0|Φ;θ⋆)

)

Note that from Theorem 6 (Nguyen and Zessin (1979)), U(2)
n (·; θ⋆) converges

almost surely as n → +∞ towards U(2)(θ⋆) defined by (3). Note that U(2)(θ⋆)
is a symmetric positive matrix since for all y ∈ R

p

yTU(2)(θ⋆)y = E

((
yTV(1)(0|Φ; θ⋆)

)2
e−V (0|Φ;θ⋆)

)
≥ 0,

where for j = 1, . . . , p, ϕ ∈ Ω and for θ ∈ V(θ⋆)
(
V(1)(x|ϕ; θ⋆)

)
j
:= ∂V

∂θj
(x|ϕ; θ)

and it is a definite matrix under the assumption [N3].
Conclusion Step Under the assumptions [Mod] and [Ident], and using Steps
1 and 2, one can apply a classical result concerning asymptotic normality for
minimum contrast estimators e.g. Proposition 3.7 of Guyon (1992) in order to
obtain (5).

It remains to prove (6). This may de done in two different steps. The first

one consists in verifying the positive definiteness of the matrix Σ(D̃, θ⋆). The
proof is strictly similar to the one of Billiot et al. (2008) (p. 261) except that the
assumption [SDP] is now simply replaced by the more general one assumption

[N4]. Now, the convergence in probability of Σ̂n(Φ; θ̂n(Φ)) towards Σ(D̃, θ⋆) is
obtained by applying Proposition 9 of Coeurjolly and Lavancier (2010).

Appendix B: Verifications of Assumptions [C] and [N] for LJ-type
models

Before verifying the different assumptions, let us denote by

θinfi := inf
θ∈Θ

θi, θsupi := sup
θ∈Θ

θi,

θinf := min(θinf2 , θinf3 ) and θsup := max(θsup2 , θsup3 ).

Since Θ is a compact set of R × (]0,+∞[)2, then θinf > 0 and θsup < +∞.
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B.1. Assumptions [C]

B.1.1. Assumption [C1]

The first part is a direct application of Lemma 4. For the second part, one has
to prove that for all θ ∈ Θ

E
(
|HLJ (0|Φ; θ) |e−HLJ (0|Φ;θ⋆)

)
< +∞

Let gε(r) = gLJ(r; θ⋆)− ε|gLJ(r; θ)|. We have

gε(r) :=





4θ⋆2

(
(θ⋆3)

12−ε
θ2
θ⋆
2
θ123

r12 −
(θ⋆3)

6−ε
θ2
θ⋆
2
θ63

r6

)
if r ≤ θ3

4θ⋆2

(
(θ⋆3)

12+ε
θ2
θ⋆2
θ123

r12 −
(θ⋆3)

6+ε
θ2
θ⋆2
θ63

r6

)
if r ≥ θ3

which satisfies the assumptions of Lemma 4 as soon as ε <
( θ⋆3
θ3

)12 θ⋆2
θ2
, that is, as

soon as ε <
( θinf
θsup

)13
.

B.1.2. Assumption [C2]

Let us denote for n ≥ 1, Cn = B(0, n) \ B(0, n− 1) and define for m,n ≥ 1 the
following configuration sets

Um,n = {ϕ ∈ Ω : |ϕCn
| ≤ m|Cn|}

Um = ∩n≥1Um,n.

In order to prove [C2], we need the following Lemma.

Lemma 7. Let R ∈ R
+, θ ∈ Θ and ϕ ∈ Um, let us denote by

Z(ϕ,R; θ) :=
∑

x∈ϕB(0,R)c

gLJ(||x||; θ),

then for all δ > 0 there exists R0 such that for all R ≥ R0, |Z(ϕ,R; θ)| ≤ δ.

Proof.

Z(ϕ,R; θ) =

∣∣∣∣∣
∑

x∈ϕB(0,R)c

gLJ(||x||; θ)
∣∣∣∣∣ ≤

∑

n≥⌈R⌉

∑

x∈ϕCn

∣∣gLJ(||x||; θ)
∣∣

≤
∑

n≥⌈R⌉

|ϕCn
| × sup

x∈Cn

∣∣gLJ(||x||; θ⋆)
∣∣ .

There exists a constant k = k(R) such that for all n ≥ ⌈R⌉,

sup
x∈Cn

∣∣gLJ(||x||; θ⋆)
∣∣ ≤ kn−6.
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Therefore,

∣∣∣∣∣
∑

x∈ϕB(0,R)c

gLJ(||x||; θ)
∣∣∣∣∣ ≤ km

∑

n≥⌈R⌉

|Cn| × n−6 = O


 ∑

n≥⌈R⌉

n−5


 ,

which leads to the result since the previous series is convergent.
Let θ ∈ Θ \ θ⋆ and consider the following configuration sets defined for k ≥ 1

and for η small enough by

A0 = {ϕ ∈ Ω : |ϕ ∩ B(0, D)| = 0} (18)

Ak(η) =
{
ϕ ∈ Ω : |ϕ ∩ B(0, D)| = |ϕ ∩ B((0, Dk−1/12), η)| = 1

}
, (19)

where D is any positive real for the Lennard-Jones model and corresponds to
the range of the function gLJ(·) for the finite range Lennard-Jones model. There
exists m ≥ 1 such that for all η > 0 and for k = 2, 4

Pθ⋆ (A0 ∩ Um) > 0 and Pθ⋆ (Ak(η) ∩ Um) > 0.

Now, let ϕ0 ∈ A0 ∩ Um, ϕ2 ∈ A2(η) ∩ Um and ϕ4 ∈ A4(η) ∩ Um. First,

D(0|ϕ0; θ) = θ1 − θ⋆1 + Z(ϕ0, D; θ)− Z(ϕ0, D; θ⋆) = 0.

For the Lennard-Jones model, according to Lemma 7 one has, for D large
enough,

|Z(ϕ0, D; θ)− Z(ϕ0, D; θ⋆)| ≤ 1

2
|θ1 − θ⋆1 | .

Hence for η small enough, and for both models

0 = |D(0|ϕ0; θ)|
≥ |θ1 − θ⋆1 | − |Z(ϕ0, D; θ)− Z(ϕ0, D; θ⋆)|

≥ 1

2
|θ1 − θ⋆1 |,

which leads to θ1 = θ⋆1 . Moreover,

D(0|ϕ2; θ) = 4θ2

(
2

(
θ3
D

)12

−
√
2

(
θ3
D

)6
)

− 4θ⋆2

(
2

(
θ⋆3
D

)12

−
√
2

(
θ⋆3
D

)6
)

+ f2(ϕ2) + Z (ϕ2, D; θ)− Z (ϕ2, D; θ⋆)

D(0|ϕ4; θ) = 4θ2

(
4

(
θ3
D

)12

− 2

(
θ3
D

)6
)

− 4θ⋆2

(
4

(
θ⋆3
D

)12

− 2

(
θ⋆3
D

)6
)

+ f4(ϕ4) + Z (ϕ4, D; θ)− Z (ϕ4, D; θ⋆) ,

where for any ϕk ∈ Ak(η) (k = 2, 4), there exists a positive function f̃k(η)

converging towards zero as η → 0 such that |fk(ϕk)| is bounded by f̃k(η). Now,
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we have

2D(0|ϕ2; θ)−D(0|ϕ4; θ) =
4(2− 2

√
2)

D6

(
θ2θ

6
3 − θ⋆2θ

⋆
3
6
)
+ 2f(ϕ2)− f4(ϕ4)

+ Z ′(ϕ2, ϕ4, D; θ, θ⋆)

= 0

with

Z ′(ϕ2, ϕ4, D; θ, θ⋆) :=2 (Z(ϕ2, D; θ)−Z(ϕ2, D; θ⋆))−(Z(ϕ4, D; θ)−Z(ϕ4, D; θ⋆)) .

For η small enough, we have, for any ϕk ∈ Ak(η) (k = 2, 4),

|2f(ϕ2)− f4(ϕ4)| ≤ 2f̃2(η) + f̃4(η) ≤
1

4

∣∣∣∣∣
4(2− 2

√
2)

D6

∣∣∣∣∣ |θ2θ
6
3 − θ⋆2θ

⋆
3
6|.

For the finite range Lennard-Jones model, Z ′(ϕ2, ϕ4, D; θ, θ⋆) = 0. For the
Lennard-Jones model, according to Lemma 7, one has for D large enough

|Z ′(ϕ2, ϕ4, D; θ, θ⋆)| ≤ 1

4

∣∣∣∣∣
4(2− 2

√
2)

D6

∣∣∣∣∣ |θ2θ
6
3 − θ⋆2θ

⋆
3
6|.

Hence for η small enough, and for both models

0 =

∣∣∣∣∣
4(2− 2

√
2)

D6

(
θ2θ

6
3 − θ⋆2θ

⋆
3
6
)
+ 2f(ϕ2)− f4(ϕ4) + Z ′(ϕ2, ϕ4, D; θ, θ⋆)

∣∣∣∣∣

≥
∣∣∣∣∣
4(2− 2

√
2)

D6

∣∣∣∣∣ |θ2θ
6
3 − θ⋆2θ

⋆
3
6| − |2f(ϕ2)− f4(ϕ4)| − |Z ′(ϕ2, ϕ4, D; θ, θ⋆)|

≥ 1

2

∣∣∣∣∣
4(2− 2

√
2)

D6

∣∣∣∣∣ |θ2θ
6
3 − θ⋆2θ

⋆
3
6|

leading to θ2θ
6
3 = θ⋆2θ

⋆
3
6. By considering the combination

√
2D(0|ϕ2; θ)−D(0|ϕ4; θ)

and using similar arguments as previously, one obtains: θ2θ
12
3 = θ⋆2θ

⋆
3
12. By com-

puting the ratio of the two last equations, one obtains θ3 = θ⋆3 and then θ2 = θ⋆2 .

B.1.3. Assumption [C4]

For all ϕ ∈ Ω and for any θ ∈ Θ, V LJ (0|ϕ; θ) is clearly differentiable in θ. First,
note that [C4] is trivial for j = 1. For j = 2, 3, let us define:

Xj(ϕ; θ) :=
∣∣∣∂V LJ

∂θj
(0|ϕ; θ)

∣∣∣ e−V LJ (0|ϕ;θ).

Our aim will be to prove that for j = 2, 3 and for all k > 0

E

(
max
θ∈Θ

Xj(Φ; θ)
k

)
< +∞. (20)
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In particular, the Assumption [C4] corresponds to (20) with k = 2. Let us notice
that for all ϕ ∈ Ω and for all θ ∈ Θ

V LJ (0|ϕ; θ) ≥ V inf(0|ϕ) := θinf +
∑

x∈ϕ

ginf(||x||),

with for some r > 0, ginf(r) := 4θinf
(
(θinf )12

r12 − (θsup)6

r6

)
. Let us also underline

that for j = 2, 3

∂gLJ

∂θj
(r; θ) ≥ g̃infj (r) with g̃infj (r) :=





4

(
(θinf )

12

r12 − (θsup)6

r6

)
if j = 2,

4m

(
12(θinf )

11

r12 − 6(θsup)5

r6

)
if j = 3.

Therefore, by defining Ṽ inf
j (0|ϕ) := ∑x∈ϕ g̃

inf
j (||x||), the result (20) will be en-

sured by proving

E
(
Ṽ inf
j (0|Φ)e−V inf (0|Φ)

)
< +∞.

According to Lemma 4, in order to prove this, let us denote by gj,ε(·) the function
defined for j = 2, 3, for some ε > 0 and for r > 0 by gj,ε(r) = g̃infj (r)−ε

∣∣ginf(r)
∣∣.

On the one hand, one has

g2,ε(r) =





4

(
(θinf )

13
−ε(θinf )

12

r12 − θinf (θsup)6−ε(θsup)6

r6

)
if r ≤ (θinf )

2

θsup ,

4

(
(θinf )

13
+ε(θinf )

12

r12 − θinf (θsup)6+ε(θsup)6

r6

)
if r ≥ (θinf )

2

θsup ,

which satisfies the assumptions of Lemma 4 as soon as ε < θinf . On the other
hand

g3,ε(r)=





4θinf
(
(θinf )12−12ε(θinf )11

r12 − (θsup)6−6ε(θsup)5

r6

)
if r ≤

(
2
(θinf )11

(θsup)5

)1/6

4θinf
(
(θinf )12+12ε(θinf )11

r12 − (θsup)6+6ε(θsup)5

r6

)
if r ≥

(
2
(θinf )11

(θsup)5

)1/6

,

which satisfies the assumptions of Lemma 4 as soon as ε < θinf /12, which ends
the proof.

B.2. Assumptions [N]

B.2.1. Assumption [N1]

Let us present two auxiliary lemmas.
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Lemma 8. Let ϕ be the realization of a stationary pairwise interaction point
process with local energy function defined by

V (x|ϕ; θ) = θ1 +H (x|ϕ; θ) with H (x|ϕ; θ) =
∑

y∈ϕ

g(||y − x||; θ).

Let K < +∞ and let x1, . . . , xK ∈ R
2 \ ϕ, xi 6= xj for i, j = 1, . . . ,K (where

K < +∞), then

H ({x1, . . . , xK}|ϕ; θ) =
K∑

k=1

H (xk|ϕ; θ) +H ({x1, . . . , xK}; θ)

V ({x1, . . . , xK}|ϕ; θ) =

K∑

k=1

V (xk|ϕ; θ) +H ({x1, . . . , xK}; θ)

This result comes from the definition of the local energy.

Lemma 9. Using the same notation and under the same assumptions of Lemma 8,
assume that there exists gmin such that for all r > 0 and any θ ∈ Θ, g(r; θ) ≥
gmin, then

e−V ({x1,...,xK}|ϕ;θ) ≤ cK

K∏

k=1

e−V (xk|ϕ;θ) with cK = e−
K(K−1)

2 gmin

Proof. The proof is immediate since

H ({x1, . . . , xK}; θ) =
∑

i<j

g(||xi − xj ||; θ) ≥
K(K − 1)

2
gmin.

Let k = 1, . . . , 3 and let λ1, . . . , λk, k positive integers such that
∑k
i=1 λi = 3

and define the random variable

A(Φ) :=

∫

∆k

k∏

i=1

∣∣∣∣
∂V

∂θj
(xi|Φ; θ⋆)

∣∣∣∣
λi

e−V ({x1,...,xk}|Φ;θ⋆)dxi.

From Lemma 9, we have

E (A(Φ)) ≤ E

(
ck

∫

∆k

k∏

i=1

∣∣∣∣
∂V

∂θj
(xi|Φ; θ⋆)

∣∣∣∣
λi

e−V (xi|Φ;θ⋆)dxi

)

= ck

∫

∆k

E

(
k∏

i=1

∣∣∣∣
∂V

∂θj
(xi|Φ; θ⋆)

∣∣∣∣
λi

e−V (xi|Φ;θ⋆)

)
dx1 . . . dxk

≤ ck

∫

∆k

k∏

i=1

E

(∣∣∣∣
∂V

∂θj
(xi|Φ; θ⋆)

∣∣∣∣
k

e
− k

λi
V (xi|Φ;θ⋆)

)1/k

dx1 . . . dxk



J.-F. Coeurjolly and R. Drouilhet/MPLE for Gibbs point processes 700

= ck

k∏

i=1

∫

∆

E

(∣∣∣∣
∂V

∂θj
(xi|Φ; θ⋆)

∣∣∣∣
k

e
− k

λi
V (xi|Φ;θ⋆)

)1/k

dxi

= ck|∆|k
k∏

i=1

E

(∣∣∣∣
∂V

∂θj
(0|Φ; θ⋆)

∣∣∣∣
k

e
− k

λi
V (0|Φ;θ⋆)

)1/k

by using Hölder’s inequality and the stationarity of the process. The result is
then a simple consequence of (20) and Lemma 4.

B.2.2. Assumption [N2]

For all ϕ ∈ Ω, it is clear that for all θ ∈ Θ, V (0|ϕ; θ) is twice continuously
differentiable in θ. According to Lemma 4 and the fact that [N1] is satisfied, it
is sufficient to prove that for all j, k = 1, 2, 3

E

(∣∣∣∣
∂2V LJ

∂θj∂θk
(0|Φ; θ)

∣∣∣∣ e
−V LJ (0|Φ;θ)

)
< +∞.

This is obvious when either j or k equals 1 and when j = k = 2 (since
∂2gLJ

(∂θ2)2
(r; ·) = 0). Now, for the other cases, define for θ ∈ Θ gj,k,ε(r) := gLJ(r; θ)−

ε
∣∣∣ ∂

2gLJ

∂θj∂θk
(r; θ)

∣∣∣. We have

g2,3,ε(r) = g3,2,ε(r) =





4
(
θ2θ

12
3 −12εθ113
r12 − θ63−6εθ53

r6

)
if r ≤ 21/6

4
(
θ2θ

12
3 +12εθ113
r12 − θ63+6εθ53

r6

)
otherwise

which satisfies the assumptions of Lemma 4 as soon as ε < θ2θ3
12 , that is, as soon

as ε <
(θinf )2

12 . Finally,

g3,3,ε(r) =





4
(
θ2θ

12
3 −132εθ103
r12 − θ2θ

6
3−30εθ43
r6

)
if r ≤

(
132
30

)1/6
θ3

4
(
θ2θ

12
3 +132εθ103
r12 − θ2θ

6
3+30εθ43
r6

)
otherwise

which satisfies the assumptions of Lemma 4 as soon as ε <
θ2θ

2
3

132 , that is, as soon

as ε <
(θinf )

3

132 .

B.2.3. Assumption [N3]

Let y = (y1, y2, y3) ∈ R
3 and g(y, ϕ) := yTV

(1)
LJ (0|ϕ; θ⋆). Let ϕ0 ∈ A0 and

ϕk(η) ∈ Ak(η) (k = 2, 4) where A0 and Ak(η) are defined by (18) and (19).
Assume g(y, ϕk) = 0 for k = 0, 2, 4. Since, g(y, ϕ0) = y1, we have y1 = 0. Now,

g(y, ϕ2) = 4y2

(
2

(
θ⋆3
D

)12

−
√
2

(
θ⋆3
D

)6
)

+ 4y3θ
⋆
2

(
2
12θ⋆3

11

D12
−
√
2
6θ⋆3

5

D6

)
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+ f2(y, ϕ2)

g(y, ϕ4) = 4y2

(
4

(
θ⋆3
D

)12

− 2

(
θ⋆3
D

)6
)

+ 4y3θ
⋆
2

(
4
12θ⋆3

11

D12
− 2

6θ⋆3
5

D6

)

+ f4(y, ϕ4),

where for any ϕk ∈ Ak(η) (k = 2, 4), there exists a positive function f̃k(y, η)

converging towards zero as η → 0 such that |fk(y, ϕk)| is bounded by f̃k(y, η).
Now, we have

2g(y, ϕ2)−g(y, ϕ4) = 4(2−2
√
2))

θ⋆3
5

D6
(θ⋆3y2 + 6θ⋆2y3)+2f2(y, ϕ2)−f4(y, ϕ4) = 0.

For η small enough, we have, for any ϕk ∈ Ak(η) (k = 2, 4),

|2f(y, ϕ2)− f4(y, ϕ4)| ≤ 2|f̃2(y, η)| + |f̃4(y, η)|

≤ 1

2

∣∣∣∣4(2− 2
√
2)
θ⋆3

5

D6
(θ⋆3y2 + 6θ⋆2y3)

∣∣∣∣ .

Hence for η small enough,

0 = |2g(y, ϕ2)− g(y, ϕ4)| ≥
1

2

∣∣∣∣4(2− 2
√
2)
θ⋆3

5

D6
(θ⋆3y2 + 6θ⋆2y3)

∣∣∣∣ ,

leading to the equation θ⋆3y2+6θ⋆2y3 = 0. By considering the linear combination√
2g(y, ϕ2) − g(y, ϕ4), we may obtain the equation θ⋆3y2 + 12θ⋆2y3 = 0 with

similar arguments. Both equations lead to y2 = y3 = 0.

B.2.4. Assumption [N4]

The assumption [N4] may be rewritten for all k = 1, . . . , ℓ and for all ϕk ∈ Ak
and ϕ0 ∈ A0: ∀y ∈ R

3

(

y
T
(

LPL
(1)

Λ
(ϕk; θ

⋆)− LPL
(1)

Λ
(ϕ0; θ

⋆)
)

= y
T (L(ϕk; θ

⋆)−R(ϕk; θ
⋆)) = 0

)

=⇒ y = 0.

where for any configuration ϕ ∈ Ω and ϕ0 ∈ A0

L(ϕ; θ⋆) :=

∫

Λ

V
(1)
LJ (x|ϕ; θ⋆) e−V LJ(x|ϕ;θ⋆)dx−

∫

Λ

V
(1)
LJ (x|ϕ0; θ

⋆) e−V LJ(x|ϕ0;θ
⋆)dx

R(ϕ; θ⋆) :=
∑

x∈ϕ∩Λ

V
(1)
LJ (x|ϕ \ x; θ⋆)−

∑

x∈ϕ0∩Λ

V
(1)
LJ (x|ϕ0 \ x; θ

⋆) .

Concerning this assumption, we choose ϕ0 ∈ A0 =
{
ϕ ∈ Ω : ϕ∆0 = ∅

}
. Let

y ∈ R
3 then

∫

Λ

yTV
(1)
LJ (x|ϕ0; θ

⋆) e−V
LJ (x|ϕ0;θ

⋆)dx = y1e
−θ⋆1

∣∣Λ
∣∣
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and ∑

x∈ϕ0∩Λ

yTV
(1)
LJ (x|ϕ0 \ x; θ⋆) = 0.

Consider the following configuration set, defined for η, ε > 0, by

A2(η, ε) =
{
ϕ ∈ Ω : ϕ∆0 = {z1, z2} where z1 ∈ B(0, η), z2 ∈ B((0, 2η + ε), η)

}
.

Note that for z1 ∈ B(0, η), z2 ∈ B((0, 2η + ε), η), ε ≤ ||z2 − z1|| ≤ ε + 4η. Let
ϕ2 ∈ A2(η, ε) and x ∈ Λ, then one may prove that for j = 2, 3

V LJ (x|ϕ2; θ
⋆) = θ⋆1 + 2gLJ(||x||; θ⋆) + f(x, η, ε)

∂V LJ

∂θj
(x|ϕ2; θ

⋆) = 2
∂gLJ

∂θj
(||x||; θ⋆) + fj(x, η, ε)

where f(x, η, ε) and fj(x, η, ε) are such that

lim
(η,ε)→(0,0)

f(x, η, ε) = lim
(η,ε)→(0,0)

fj(x, η, ε) = 0.

On the one hand, one may prove that there exists a function fL(y, η, ε) such
that
lim(η,ε)→(0,0) fL(y, η, ε) = 0 and such that

yTL(ϕ2; θ
⋆) = yT I− y1e

−θ⋆1 |Λ|+ fL(y, η, ε)

where

I :=

∫

Λ

h(||x||; θ⋆)e−θ⋆1−2gLJ (||x||;θ⋆)dx

and

h(r; θ⋆) :=

(
1, 2

∂gLJ

∂θ2
(r; θ⋆), 2

∂gLJ

∂θ3
(r; θ⋆)

)T
.

On the other hand, there exists a function fR(y, η, ε) such that limη→0 fR(y, η, ε) =
0

y
T
R(ϕ2; θ

⋆) = 2y1+2y24

(

(

θ⋆3
ε

)12

−

(

θ⋆3
ε

)6
)

+2y34θ
⋆
2

(

12θ⋆3
11

ε12
−

6θ⋆3
5

ε6

)

+fR(y, η, ε).

Since

ε
12
y
T (L(ϕ2; θ

⋆)−R(ϕ2; θ
⋆)) = ε

12
(

y
T
I− y1e

−θ⋆1 |Λ|+ fL(y, η, ε)− fR(y, η, ε)
)

−ε
6
(

2y24θ
⋆
3
6
+ 2y34θ

⋆
26θ

⋆
35
)

+ 2y24θ
⋆
3
12

+ 2y34θ
⋆
212θ

⋆
3
11
.

For η and ε chosen small enough, one may prove that

0 =
∣∣ε12yT (L(ϕ2; θ

⋆)−R(ϕ2; θ
⋆))
∣∣ ≥ 1

2

∣∣∣2y24θ⋆3
12 + 2y34θ

⋆
212θ

⋆
3
11
∣∣∣
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leading to

2y24θ
⋆
3
12 + 2y34θ

⋆
212θ

⋆
3
11 = 0 ⇔ θ⋆3y2 + 12θ⋆2y3 = 0. (21)

This means that

yTR(ϕ2; θ
⋆) = 2y1 −

1

ε6

(
2y24θ

⋆
3
6 + 2y34θ

⋆
26θ

⋆
3
5
)
+ fR(y, η, ε).

With similar arguments, we obtain that

2y24θ
⋆
3
6 + 2y34θ

⋆
26θ

⋆
3
5 = 0 ⇔ θ⋆3y2 + 6θ⋆2y3 = 0. (22)

Equations (21) and (22) lead to y2 = y3 = 0. Now consider the following con-
figuration set defined for some k ≥ 1 and η > 0

Ak(η) =
{
ϕ ∈ Ω : ϕ∆0 = |ϕ ∩ B(0, η)| = k

}

and let ϕk ∈ Ak(η). Then, one may prove that there exists a function f̃L(y, η)

such that limη→0 f̃L(y, η) = 0 and such that

yT (L(ϕk; θ
⋆)−R(ϕk; θ

⋆)) = y1

∫

Λ

e−θ
⋆
1

(
e−kg

LJ (||x||;θ⋆) − 1
)
dx− ky1

+ f̃L(y, η)

= 0

Let us denote by Λ1 := B(0,min(θ⋆3 , D)) and Λ2 := B(0, D) \ Λ1 Now let us
consider two cases.
Case 1: θ⋆3 ≤ D. First note that for all x ∈ Λ, gLJ(||x||; θ⋆) ≥ 0. Then, for k
large enough and for η small enough, we have

∣∣∣∣
1

k

∫

Λ1

e−θ
⋆
1

(
e−kg

LJ (||x||;θ⋆) − 1
)
dx

∣∣∣∣ ≤
|Λ1|
k
e−θ

⋆
1 ≤ 1

4
and

∣∣∣∣
1

k
f̃L(y, η)

∣∣∣∣ ≤
|y1|
4
.

Hence for k large enough and for η small enough, we may obtain

0 =
1

k

∣∣yT (L(ϕk; θ
⋆)−R(ϕk; θ

⋆))
∣∣

≥ |y1| −
∣∣∣∣y1

1

k

∫

Λ1

e−θ
⋆
1

(
e−kg

LJ (||x||;θ⋆) − 1
)
dx+

1

k
f̃L(y, η)

∣∣∣∣

≥ |y1| −
|y1|
4

− |y1|
4

=
|y1|
2
,

which leads to y1 = 0.
Case 2: θ⋆3 ≥ D. First note that for all x ∈ Λ2,

gLJ(||x||; θ⋆) ≤ gm := gLJ(D; θ⋆) = 4θ⋆2

((
θ⋆3
D

)12

−
(
θ⋆3
D

)6
)
< 0.
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On the one hand, for k large enough and for η small enough, we may have
∣∣∣∣
1

k
y1

∫

Λ1

e−θ
⋆
1

(
e−kg

LJ (||x||;θ⋆) − 1
)
dx+

1

k
f̃L(y, η) − y1

∣∣∣∣ ≤
|y1|
2

+ |y1| ≤
3

2
|y1|.

On the other hand, we have for k large enough

1

k

∣∣∣∣y1
∫

Λ2

e−θ
⋆
1

(
e−kg

LJ (||x||;θ⋆) − 1
)
dx

∣∣∣∣ =
|y1|
k

∫

Λ2

e−θ
⋆
1

(
e−kg

LJ (||x||;θ⋆) − 1
)
dx

≥ |y1|
k
e−θ

⋆
1 |Λ2|

(
e−kgm − 1

)

= |y1|e−θ
⋆
1
ek|gm| − 1

k
≥ 2|y1|.

Therefore for k large enough and for η small enough, we have

0 =
1

k

∣∣yT (L(ϕk; θ
⋆)−R(ϕk; θ

⋆))
∣∣ ≥ 2|y1| −

3

2
|y1| =

|y1|
2
,

which leads to y1 = 0.
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