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Abstract: We consider a statistical experiment where two types of con-
taminated data are observed. Therein, both data sets are affected by addi-
tive measurement errors but the scaling factors of the error density may be
different and/or the observations have been averaged over different numbers
of independent replicates. That kind of heteroscedasticity of the data al-
lows us to identify the target density although the error density is unknown
and we can allow that the characteristic function of the error variables may
have zeros. We introduce a novel nonparametric procedure which estimates
the target density with nearly optimal convergence rates. The main goal
in this paper is to derive the upper and lower bounds for the convergence
rates. A small simulation study addresses the finite sample properties of
the procedure.
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1. Introduction, model and applications

We consider nonparametric density estimation based on data which are affected
by additive independent measurement error and hence a deconvolution problem
occurs. The basic approaches to tackle this situation go back to the papers of
Stefanski and Carroll (1990), Carroll and Hall (1988), Fan (1991) and others.
In the recent years, this field of statistics has attracted an increasing number of
researchers. See e.g. the book of Meister (2009) for a comprehensive and recent
review on nonparametric deconvolution problems.
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A major drawback of the usual deconvolution techniques is the fact that the
error density is required to be known. Otherwise, one faces heavy problems of
non-identifiability, which is rather intuitive: Suppose we would like to estimate
a density function fX while any empirical access is restricted to some indepen-
dent observations drawn from the density fX ∗ fε, the symmetry of convolution
makes it impossible to identify fX in the general case. Moreover, Meister (2004)
shows that misspecification of the error density in the standard deconvolution
kernel estimator as introduced in Stefanski and Carroll (1990) may have fatal
consequences on the asymptotic behavior of the estimator.

The fact that it is unrealistic to assume to know exactly the error density in
many applications has well been recognized in the statistical community. There-
fore, many authors have tried to relax that condition by various modifications
of the model. In order to have a situation where the measurement system can
somehow be calibrated one may assume the availability of additional indepen-
dent direct data from the error density, see Diggle and Hall (1993), Neumann
(1997), Efromovich (1997), Johannes (2009) for that framework. Another pop-
ular model where the error density also is not required to be perfectly known
in advance, uses replicated measurements of the same incorrupted random vari-
able with the density fX , see e.g. Horowitz and Markatou (1996), Li and Vuong
(1998), Hall and Yao (2003), Neumann (2007), Delaigle et al. (2008). In the re-
lated topic of errors-in-variables regression Schennach (2004a,b) consider re-
peated observation and instrumental variables models.

Other concepts making the error distribution accessible require more restric-
tive conditions on the target density fX . E.g. consider the standard experiment
where one observes the data Y1, . . . , Yn generated by

Yj = Xj + σεj , j = 1, . . . , n , (1.1)

where all X1, ε1, . . . , Xn, εn are independent; the Xj have the density fX to
be estimated; the error variables εj have the density fε and σ > 0 denotes a
scaling parameter. In the papers of Butucea and Matias (2005), Butucea et al.
(2008) and Meister (2006) this model is considered under the assumption that

the Fourier transform of fX , denoted by fft
X , has a specific known positive

lower bound. Then, σ can be estimated consistently, however, the density fε is
still assumed to be known so that fX is finally identifiable. Those models use
semiparametric approaches to the generic problem of “blind deconvolution”,
i.e. deconvolution with unknown or partly known noise density. Meister (2007)
establishes consistency in a model where fX is compactly supported, σ may
be put equal to one and fft

ε (t) has to be known on some bounded interval
t ∈ [−T, T ], T > 0 only.

In the present paper, we consider an observation scheme which allows for a
specific type of heteroscedasticity in the data. Some recent contributions address
the problem that the data may be contaminated by different error densities, e.g.
when the observations are drawn from two experiments with different measure-
ment systems; see Delaigle and Meister (2008) and Staudenmayer et al. (2008).
In our model, we are given the data Y1, . . . , Yn, Y

′
1 , . . . , Y

′
n , (n ∈ N) where for
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some fixed m ∈ N

Yj = Xj + εj ,

Y ′
j = X ′

j + σ

m
∑

k=1

ε′j,k . (1.2)

All the random variables X·, X ′
· , ε·, ε·,· are independent; the Xj and X ′

j have
the density fX ; the εj and the εj,k have the error density fε. We allow for both
fX and fε to be unknown; only the integer m > 0 and the scaling parameter
σ ∈ (0, 1) if m = 1 and σ ∈ (0, 1/m] if m ≥ 2 are supposed to be known. For
instance, in the replicated data model, the assumption of known σ located in this
given interval can be justified as σ = 1/m. We will focus on that model below.
Otherwise, if σ is unknown and e.g. m = 1, then the statistical model becomes
non-identifiable, in general. Note that e.g. Xj ∼ N(0, 3), εj ∼ N(0, 1), σ2 = 1/2
on the one hand and Xj ∼ N(0, 2), εj ∼ N(0, 2), σ2 = 3/4 on the other hand
lead to the same distribution of the observed data set; here N(µ, σ2) denotes
the normal density with the mean µ and the variance σ2. So we have to assume
prior knowledge on σ .

In addition some decay constraints will be imposed on fX , details will be
deferred to Section 3 due to their technical nature. Note that another scaling
parameter σ′ could be added in the first line of (1.2); however, this may be
absorbed by the error variable εj . Also, we mention that model (1.2) and our
estimation procedure as introduced in the following section are fully extendable
to the statistical experiment where the data

Yj = Xj +

m̃
∑

k=1

εj,k ,

Y ′
j = X ′

j + σ

m
∑

k=1

εj,k ,

are observed where m̃ < m, i.e. both data sets have cumulative noise structure.
Our method is applicable when putting εj =

∑m̃
k=1 εj,k and the m in the

estimator equal to the ratio of m and m̃ in the above model.
In the sequel, we will discuss two examples to which model (1.2) is applicable.

First, we consider the case of integer m > 1, σ = 1/m. As referred to above, we
have repeated measurements for the data in many real life applications. However,
in many cases only the averages of those replicates are reported; that problem
is mentioned in e.g. Linton and Whang (2002). A direct application of model
(1.2) occurs when for some observed individuals only one contaminated mea-
surement is reported while each of the other represent the average of a known
number of measurements of the same individual. Also see Morris et al. (1977)
and Thamerus (1996) for related data sets in the field of medical statistics.
Linton and Whang (2002) consider a grouped data model with an additional
error component. They mention that when at least two data aggregates with
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different size are available the error distribution is identifiable. The idea is sim-
ilar to the special case σ = 1/m of our model. A least square estimate of the
cumulant of the error is roughly suggested, which is completely different from
our methods. However, the properties of that estimator are not studied.

As a more specific example for the case of m = 1, σ ∈ (0, 1), we mention the
Consumer Expenditure Survey from the United States Department of Labor,
which is referred to in Nelson (1994) and analyzed by e.g. Schennach (2004a).
The goal is to estimate the log income of an individual while the empirical ac-
cess is restricted to the log expenditure of an individual. This latter quantity
can be modelled as the sum of the log income and the logarithm of a certain
independent random quantity δj , which may be interpreted as the readiness of
the individual to spend his earnings. Then, we have the standard additive mea-
surement error model while the original model (before applying the logarithm)
follows an independent multiplicative error scheme. We modify the model by
assuming that the readiness of spending money depends on the total wealth of
an individual rather than his income. The wealth is modelled by the income plus
an independent component. Then the observed expenditure of a person is equal
to his wealth multiplied by the independent random variable δj. Furthermore,
at some point in time the individuals’ income may be affected e.g. by some
change in the tax rate. For data surveyed after that change the random vari-
ables representing the income are multiplied with the known factor σ ∈ (0, 1).
Thus, the data can be split into two independent but non-identically distributed
data sets. If the distribution of δj is known or estimable by replicates one can
generate independent data from the estimated densities and hence obtain two
pseudo-data sets which approximately follow model (1.2).

The paper is organized as follows: In Section 2, we will describe our estimation
procedure; its asymptotic properties are investigated in Section 3. Numerical
simulations are given in Section 4, the proofs are deferred to Section 5.

2. Methodology

We begin with the definition of the classes for the target density fX and the
error density fε in model (1.2).

With respect to the target density fX , we assume that fX is β-fold continu-
ously differentiable for some integer β ≥ 1 and its derivatives satisfy

|f (j)
X (x)| ≤ C1 exp(−C2x

2), C2 > 1/4 , for all x ∈ R, j = 0, . . . , β . (2.1)

Furthermore, we impose that

∫

xfX(x)dx = 0 .

Those densities satisfying the conditions above are collected in the class F =
Fβ,C1,C2

. Note that all symmetric, sufficiently smooth and compactly supported
densities satisfy these conditions. Also when the error density is centered one
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could think of centering the data Xj in practice. On the other hand, normal
densities and some appropriate normal mixtures are also included in these con-
straints.

With respect to the error density fε, we assume that its Fourier transform
satisfies |fft

ε (t) − 1| ≤ T1|t| for all |t| ≤ T0 with T0, T1 > 0. Those densities fε
are summarized in the class G = GT0,T1

. Thus, our conditions on fε are rather
mild; Note that any density with finite first moment is included in G for T1

and T0 sufficiently large and small, respectively. But the Cauchy density, for
example, is also included in G. In particular, no restrictions about the set of all
zeros of fft

ε are required in contrary to the standard situation in deconvolution
problems.

Now we address the question how to reconstruct fft
X (t) on a compact interval.

By the conditions contained in fX ∈ F and the Taylor expansion of fft
X , we may

establish that

∣

∣fft
X (t)− 1

∣

∣ ≤ 1

2
t2
∫

|x|2fX(x)dx ≤ C1
√
π

4C
3/2
2

t2 , (2.2)

for all t ∈ R. This implies also the existence of a uniform positive lower bound
of |fft

X | and |fft
ε | on any compact interval [−T, T ] with

T < min{T0, 2C
3/4
2 C

−1/2
1 π−1/4} . (2.3)

That lower bound is essential as terms involving both |fft
X | and |fft

ε | will occur
in our estimators. Writing

Φ̃(t) =

K̄
∏

k=0

[

fft
X (σkt)

]mk

, Φ(t) =

K̄
∏

k=0

[

fft
X (σk+1t)

]mk+1

, t ∈ R ,

we deduce that

fft
X (t) /

[

fft
X (σK̄+1t)

](mK̄+1)
= Φ̃(t)/Φ(t) , (2.4)

holds true for all integer K̄ > 0 as the right side of (2.4) may be viewed as a
telescopic product. The integer parameter K̄ remains to be selected. A similar
technique has been used in Belomestny (2003) in the field of time series analysis;
while the author considers data from an autoregression model, assumes that the
target density is ordinary smooth and uses kernel regularisation.

Combining the condition σ ≤ 1/m and (2.2), we may conclude that limk→∞
[

fft
X (σkt)

](mk)
= 1, which will be made more precise in the proof of Theorem

3.1. On the other hand, we have

Φ̃(t)/Φ(t) =

K̄
∏

k=0

[

fft
X (σkt)

(

fft
ε (σk+1t)

)m]mk

[

fft
X (σk+1t)fft

ε (σk+1t)
]mk+1

=

K̄
∏

k=0

(

[

E exp(iσktY ′
j )
]

/
[

E exp(itσk+1Yj)
]m

)mk

, (2.5)
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so that the function Φ̃/Φ is uniquely determined by the characteristic func-

tions of Y ′
j and Yj . Combining that with (2.4), we notice that fft

X (t) is indeed
identifiable from the data in model (1.2).

We employ the empirical characteristic functions

ˆ̃Ψ(t) =
1

n

n
∑

j=1

exp(itY ′
j ) , Ψ̂(t) =

1

n

n
∑

j=1

exp(itYj) ,

where their true counterparts are denoted by Ψ̃(t) and Ψ(t), respectively, and
we propose

ˆ̃Φ(t) =

K̄
∏

k=0

[ ˆ̃Ψ(σkt)
]mk

, Φ̂(t) =

K̄
∏

k=0

[

Ψ̂(σk+1t)
]mk+1

,

as the estimators for Φ̃(t)hε(t) and Φ(t)hε(t), respectively, with the common

factor hε(t) = ΠK̄
k=1

(

fft
ε (σk+1t)

)mk+1

. Motivated by (2.4) and (2.5) we define,

utilizing some fixed 0 < ρ < 1, the following estimator for fft
X (t),

Ψ̂X(t) =
ˆ̃Φ(t) Φ̂(t)

max
{∣

∣Φ̂(t)
∣

∣

2
, ρ
}

=

∏K̄
k=0

[ ˆ̃Ψ(σkt)
]mk

∏K̄
k=0

[

Ψ̂(σk+1t)
]mk+1

max
{

∏K̄
k=0

∣

∣Ψ̂(σk+1t)
∣

∣

2mk+1

, ρ
} . (2.6)

Therein, a ridge parameter ρ ∈ (0, 1) is introduced in order to prevent the
denominator from being too close to zero due to some stochastic deviation.
Actually, the ridge parameter has only minor influence on the estimator as the
estimators use some shrinking interval on which Φ(t) tends to one.

In deconvolution problems it is common to assume that fft
ε (t) 6= 0, for all

t ∈ R. In order to derive convergence rates, even specific lower positive bounds
on |fft

ε | are required (see e.g. Fan (1991)). However, such conditions are of-
ten introduced for mathematical convenience; they are satisfied for normal or
Laplace densities but they are not valid for other important densities such as
the convolution of uniform densities with any other distribution. The case where
the error density has some periodic isolated zeros has been studied in the papers
of Hall and Meister (2007) and Meister (2008). By contrast, Meister (2007) in-

troduces a consistent estimator fX provided that fft
X (t) is compactly supported

so that fft
ε is permitted to vanish on an open non-void interval. Here, we do

not assume that fX is compactly supported but use a decay constraint which is
contained in the assertion fX ∈ F . The estimation procedure in Meister (2007)
is based on global polynomial extension in the Fourier domain and kernel regu-
larization. While that method achieves consistency its finite sample performance
suffers from Gibbs phenomenon. We introduce a novel procedure based on an
orthogonal series approach, which seems to be more appropriate. We consider
the orthogonal expansion in L2(R, exp(− ·2 /2)) of g(x) = f(x) exp(x2/2) with

respect to the normalized Hermite polynomials Hk(x)/
√√

2πk! , k ≥ 0 , i.e.,

g(x) =

∞
∑

k=0

ck
Hk(x)

√√
2πk!

with ck =

∫

g(x)
Hk(x)

√√
2πk!

exp(−x2/2) dx
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which is equivalent to

fX(x) =

∞
∑

k=0

1√
2πk!

∫

fX(y)Hk(y)dy ·Hk(x) exp(−x2/2) , (2.7)

where the infinite sum converges in the L2(R)-sense and pointwise. Therein the
space L2(R, exp(− ·2 /2)) denotes the Hilbert space consisting of all squared-
integrable functions with respect to the weight function exp(− ·2 /2). Note that
g ∈ L2(R, exp(− ·2 /2)) is guaranteed by f ∈ F .

We realize that the coefficients of this expansion are a linear composition of
the moments of the X1, which are accessible by the restriction of the Fourier
transform fft

X to a bounded domain. This will be made precise in the following
paragraph. This is a great advantage of the Hermite polynomial basis in the
current setting. Besides the fact that fft

ε may have non-isolated zeros another

aspect encourages us to apply an approach which uses an estimate of fft
X only

on a bounded interval. For large |t|, the impact of the ridge regularization of the
estimator Ψ̂X(t) in (2.6) will increase, what however adds non-negligible bias.
Here that phenomenon is even more critical than for usual deconvolution as the
denominator does not only depend on fft

ε but also on fft
X , yielding faster decay

of the unregularized denominator.
Furthermore, we have

dl

dtl
fft
X (t)

∣

∣

∣

t=0
= il

∫

xlfX(x)dx ,

for all integer l ≥ 0. Next for some K ∈ N we define the quantities c =
(c0, c1, . . . , cK)T ,

d =
(

(−i)0
d0

dt0
fft
X (t)

∣

∣

∣

t=0
, . . . , (−i)K

dK

dtK
fft
X (t)

∣

∣

∣

t=0

)T

,

and

(W)l,k =

{

1√
2πk!

∫

xlHk(x) exp(−x2/2)dx , for l ≥ k ,

0 , otherwise,

for l, k = 0, . . . ,K (note (W)l,k denotes the kth coefficient of the function ·l
with respect to the orthogonal basis generated by the Hermite polynomials).
We derive that with ej = (δj,k)k=0,...,K ,

∫

Hj(x)fX(x)dx = eTj W
−1d for j = 0, . . . ,K . (2.8)

Next, the vector d can be estimated via the characteristic function since by
integration by parts, we have for 0 ≤ l ≤ K

dl

dtl
fft
X (t)

∣

∣

∣

t=0
= lim

b↓0

∫

b−1ϕK(t/b)
dl

dtl
fft
X (t)dt

= (−1)l lim
b↓0

b−l−1

∫

ϕ
(l)
K (t/b)fft

X (t)dt ,
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where the function

ϕK(x) = 1[−1,1](x)·(1−x2)K+2
/(

∫ 1

−1

(1−y2)K+2dy
)

=
1[−1,1](x) · (1− x2)K+2

B(k + 3, 1/2)

is (K + 1)-fold continuously differentiable on the whole real line and supported
on [−1, 1] and B(., .) denotes the Beta-function. Thus we define

D̂l = ilb−l−1

∫

ϕ
(l)
K (t/b)Ψ̂X(t)dt

with Ψ̂X as in (2.6); and the vector

d̂ :=
(

D̂0, . . . , D̂K

)T
.

Therefore, combining the equations (2.7) and (2.8) motivates the final density
estimator

f̂X(x) =

K
∑

k=0

1√
2πk!

(

eTkW
−1d̂

)

·Hk(x) exp(−x2/2) , (2.9)

where the smoothing and ridge parameters K, b, ρ, K̄ are still to be selected.

3. Asymptotic properties

3.1. Convergence rates – upper bounds

Throughout this paper, we write ‖f‖p, p > 0, for the Lp(R
d)-norm of a function

f ∈ Lp(R
d) where d may be any integer larger or equal to 1. As the dimension

d of the domain of f is clear for any involved function we feel that there is no
need to include d in the notation of ‖ · ‖p.
Theorem 3.1. For n ∈ N we consider data drawn from the statistical model
(1.2) where σ ∈ (0, 1) ∩ (0, 1/m]. We select ρ ∈ (0, 1), K̄ = CK̄ logn, K =
CK(logn)(log logn)−1, b = (Cb logn)

−γ with some finite constants
CK̄ ∈

(

0, 1/(2 logm)
)

, Cb > 0, γ > max{1, (1+β)/4}, CK ∈
(

0,min{−CK̄ log σ

/(γ+1), (1−2CK̄ logm)/(2γ+2)}
)

. Then, for β ≥ 1, the estimator (2.9) satisfies

sup
fX∈F ,fε∈G

E‖f̂X − fX‖22 = O
(

(log n)−β(log logn)β
)

.

Thus, we give the convergence rates from a double-uniform asymptotic view,
i.e. the statistical risk is considered uniformly with respect to both fX ∈ F
and fε ∈ G. The logarithmic rates established for our estimator in Theorem
3.1 coincide with those derived for density deconvolution under known normal
error distributions (see Fan (1991)) up to some iterated logarithmic loss. As
in supersmooth deconvolution, we realize that the exact smoothness degree β
of the target density is not required to be known in advance in order to obtain
those rates by parameter selection.
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3.2. Convergence rates – lower bounds

As normal densities are included in our condition fε ∈ G, it is apparently im-
possible to significantly improve the result in Theorem 3.1 by getting faster
rates such as algebraic rates, for instance. At most, the iterated logarithmic
factor could be removed. Nevertheless, in the case of m = 1 we will establish
a logarithmic lower bound on the convergence rates with respect to an arbi-
trary estimator based on the given data structure (1.2); although we restrict
our consideration to a subclass G′ ⊆ G of admitted error densities whose Fourier
transform have a polynomial lower bound. Thus, the densities contained in G′

are ordinary smooth in the terminology of Fan (1991). Note that the smaller
the class G′ the stronger the results as we are considering lower bounds. There-
fore, if the error density fε ∈ G′ was known in model (1.2), then algebraic rates
could be achieved by e.g. the standard deconvolution kernel density estimator
as defined in Stefanski and Carroll (1990). This highlights the fact that the slow
convergence rates in Theorem 3.1 are not due to some fast decay of the Fourier
transform of the error density; but allowing for the error density to be unknown
really causes that remarkable deterioration of the rates from algebraic to loga-
rithmic under the given smoothness constraints on the target density fX . Hence,
the following Theorem 3.2 will establish nearly optimality of our estimator (2.9)
in the given setting.

On the other hand, assuming polynomial lower bounds on both fft
ε and on

fft
X , algebraic rates are attainable by a different estimation procedure, whose
applicability is restricted to the cases where the existence of those lower bounds
can be justified, see Wagner (2009).

Theorem 3.2. Consider the model (1.2) with m = 1. Assume that C1 and C2

are sufficiently large and small, respectively, and β ≥ 1. We put G′ equal to
the set of all fε ∈ G, which satisfy |fft

ε (t)| ≥ C(1 + |t|α)−1 for all t and some

fixed C > 0, α > 1/2. Any estimator f̂X of fX based on the data Y1, . . . , Yn and
Y ′
1 , . . . , Y

′
n satisfies

sup
fX∈F ,fε∈G′

E‖f̂X − fX‖22 ≥ const. · (logn)−β , for n sufficiently large .

Combining the Theorem 3.1 and 3.2, we conclude that our estimator (2.9)
attains nearly optimal convergence rates when m = 1; i.e. optimal up to some
iterated logarithmic factor.

4. Numerical simulations

The finite sample size performance of our estimator (2.9) is studied based on
some numerical simulations. We applied the estimator to data generated from
four different target densities fX : the normal density N(0, 1/4) (Figure 1, 2), the
bimodal normal mixture density 0.6 ·N(1, 1/4)+ 0.4 ·N(−2, 1/4) (Figure 3, 4),
the triangle density on [−2, 2] (Figure 5, 6) and the triangle density on [−0.5, 2.5]
(Figure 7, 8). In the Figures 1, 3, 5, 7 we consider the case of small sample size
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Fig 1. (N(0, 1/4), n = 100).
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Fig 2. (N(0, 1/4), n = 1000).

Table 1

(unimodal density)

n = 100 n = 1000
average 0.0221 0.0116
maximum 0.0723 0.0178
minimum 0.0077 0.0082
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Fig 3. (.6N(1, 1/4)+ .4N(−2, 1/4), n=100).
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Fig 4. (.6N(1, 1/4)+ .4N(−2, 1/4), n=1000).

Table 2

(bimodal density)

n = 100 n = 1000
average 0.0996 0.0239
maximum 0.6806 0.0751
minimum 0.0132 0.0124
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Fig 5. (∆(−2, 2), n = 100).
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Fig 6. (∆(−2, 2), n = 1000).

Table 3

(triangle density)

n = 100 n = 1000
average 0.0146 0.0023
maximum 0.0604 0.0073
minimum 0.0013 0.0011
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Fig 7. (∆(−.5, 2.5), n = 100).
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Fig 8. (∆(−.5, 2.5), n = 1000).

Table 4

(shifted triangle density)

n = 100 n = 1000
average 0.0175 0.0048
maximum 0.0809 0.0148
minimum 0.0023 0.0023
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(n = 100) while in the Figures 2, 4, 6, 8 the simulations are based on n = 1000
data. The error density fε is N(0, 1), σ = 0.5 and m = 1. We have run 100
independent replicates in each setting. The figures show five arbitrarily chosen
representatives of those replicates along with the true density, which is plotted as
a dotted curve. Furthermore, we have computed the integrated squared errors
(ISE) of the estimates; the average, the maximum and the minimum of the
ISE taken over these 100 simulations are provided in the tabulars below the
corresponding figures.

We choose the parameters b = 0.08, K = 6, ρ = 0.2 and K̄ = 6 in any
simulation. Further numerical inspection indicates that the specific parameter
selection of K̄ and ρ does not affect the outcome very much. Indeed in our
examples the protection of the denominator by the threshold parameter ρ was
redundant, i.e. putting ρ = 0 leads to the same result. The selection of the
parameters b and K is more critical. However, the simulations indicate that
the current choice seems reasonable for realistic sample sizes. In particular, one
should avoid to select K too large in order to avoid an explosion of the variance,
which is also supported by the theoretical aspect of the logarithmic convergence
rates. Also, a slight modification of the estimator (2.9) was carried out. The
function ϕK is appropriate for the theoretical purposes of this work; however,
its derivates show heavy oscillations near the support boundaries. Thus, the
numerical integration of these functions is highly unstable. Therefore, we have
replaced this function by a normal density, which is not compactly supported.
Still, it performs well due to its fast decay in the tails. As a disadvantage of
Hermite polynomials, the flexibility of the choice of the smoothing parameter is
limited as only integers are admitted. Nevertheless, kernel techniques as studied
in Wagner (2009) do not provide better simulation results than the current
Hermite polynomial approach in the considered setting.

Of course, we realize improvement with respect to the variance when increas-
ing the number n of the simulated data; in particular for the bimodal target
densities where some structural outliers cannot be avoided for n = 100. Nev-
ertheless, the results indicate that the basic structure of the target densities
are well detected by our estimator; although we certainly face a very difficult
estimation problem which does not admit estimation at algebraic convergence
rates.

5. Proofs

Proof of Theorem 3.1. Applying the decomposition (2.7) to fX , we obtain that

E‖f̂X − fX‖22

= E

∫

∣

∣

∣

∞
∑

k=0

1√
2πk!

(

eTkW
−1d̂ · χ[0,K](k)

−
∫

fX(y)Hk(y)dy
)

Hk(x)
∣

∣

∣

2

exp(−x2)dx
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≤
K
∑

k=0

1√
2πk!

E
∣

∣eTkW
−1

[

d̂− d
]∣

∣

2
+

∞
∑

k=K+1

1√
2πk!

∣

∣

∣

∫

fX(y)Hk(y)dy
∣

∣

∣

2

, (5.1)

where we have used the orthogonality of the Hermite polynomials with respect
to the inner product involving the weight function exp(−·2/2) and the inequality
exp(−x2) ≤ exp(−x2/2) for all x ∈ R.

The smoothness conditions contained in fX ∈ F must be exploited in order
to bound the last term in (5.1). Note that the Hermite polynomials based on
the weight exp(− ·2 /2) satisfy the relation H ′

k(x) = kHk−1(x). It follows by
integration by parts that

∫

f ′
X(x)Hk(x) dx = −

∫

fX(x)H ′
k(x) dx = −k

∫

fX(x)Hk−1(x) dx ,

and, hence, by induction that

∫

f
(j)
X (x)Hk(x) dx = (−1)j

k!

(k − j)!

∫

fX(x)Hk−j(x) dx ,

for all j = 0, . . . , β. Since fX ∈ F , the functions gj(x) = f
(j)
X (x) exp(x2/2)

are contained in L2(R, exp(− ·2 /2)) and the L2(R, exp(− ·2 /2))-norm of gj is
uniformly bounded with respect to fX ∈ F . By Parseval’s identity with respect
to the Hermite polynomial basis and by assumption (2.1), we derive that

C3 := sup
fX∈F

∞
∑

k=0

1√
2πk!

∣

∣

∣

∫

gj(x)Hk(x) exp(−x2/2)dx
∣

∣

∣

2

= sup
fX∈F

∞
∑

k=0

1√
2πk!

∣

∣

∣

∫

f
(j)
X (x)Hk(x)dx

∣

∣

∣

2

< ∞ .

Setting j = β we find for K ≥ 4(β − 1) and any fX ∈ F
∞
∑

k=K+1

1√
2πk!

∣

∣

∣

∫

fX(y)Hk(y)dy
∣

∣

∣

2

=

∞
∑

k=K+1+β

1√
2π(k − β)!

∣

∣

∣

∫

fX(x)Hk−β(x) dx
∣

∣

∣

2

=

∞
∑

k=K+1−β

(k − β)!√
2πk!2

∣

∣

∣

∫

f
(β)
X (x)Hk(x) dx

∣

∣

∣

2

≤ C32
β(K−β) . (5.2)

Thus, we have derived an upper bound on the bias term.
Now we focus on the first term in (5.1). As ϕK is compactly supported and

(K + 1)-fold continuously differentiable, its derivatives up to order K + 1 and,
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hence, their Fourier transforms ·lϕft
K lie in L2(R) for any l = 0, . . . ,K + 1; and

we have

ϕ
(l)
K (t) =

1

2π

∫

exp(−itx)(−ix)lϕft
K (x)dx ,

for almost all t ∈ R by simple Fourier inversion so that

D̂j =
1

2π

∫∫

exp(−itx)xjϕft
K (bx)dx Ψ̂X(t)dt .

Representing the functions ·l, l = 0, . . . ,K in the orthogonal basis formed by
the Hermite polynomials leads to

W−1
(

x0, . . . , xK
)T

=
(

H0(x), . . . , HK(x)
)T

, ∀x ∈ R ,

from what follows that

eTkW
−1

[

d̂− d
]

=
1

2π

∫∫

exp(−itx)Hk(x)ϕ
ft
K (bx)dx Ψ̂X(t)dt −

∫

fX(x)Hk(x)dx

=
1

2π

∫∫

exp(−itx)Hk(x)ϕ
ft
K (bx)dx [Ψ̂X(t)− fft

X (t)]dt

+

∫

Hk(x)
[

ϕft
K (bx)− 1

]

fX(x)dx ,

where the Plancherel isometry has been used yielding
∫

h(t)g(t)dt =
1

2π

∫

hft(t)gft(t)dt ,

for all g, h ∈ L2(R). In the sequel, we write const. for a generic constant which

depends on neither fX nor fε. As
∫

exp(−i · x)Hk(x)ϕ
ft
K (bx)dx is a linear com-

bination of finitely many derivatives of the function ϕK(·/b) which is supported
on [−b, b], we may conclude by the Cauchy-Schwarz inequality and Parseval’s
identity that

E
∣

∣eTkW
−1

[

d̂− d
]
∣

∣

2 ≤ 1

π

(

∫ b

−b

E
∣

∣Ψ̂X(t)− fft
X (t)

∣

∣

2
dt
)

∫

H2
k(x)

∣

∣ϕft
K (bx)

∣

∣

2
dx

+
1

2
b4 ·

(

∫

|Hk(x)|x2fX(x)dx
)2

≤ const. ·
(

∫ b

−b

E
∣

∣Ψ̂X(t)− fft
X (t)

∣

∣

2
dt

∫

H2
k(x)

∣

∣ϕft
K (bx)

∣

∣

2
dx + k!b4

)

, (5.3)

where we have used a second order Taylor approximation of ϕft
K taking into

account that ϕft
K (0) = 1 as ϕK is a density, [ϕft

K ]′(0) = 0 by the symmetry of
ϕK and

‖[ϕft
K ]′′‖∞ ≤

∫

x2ϕK(x)dx ≤ 1 .
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yielding |ϕft
K (bx)− 1| ≤ b2x2 and then

(

∫

|Hk(x)|x2fX(x)dx
)2

≤
∫

H2
k(x) exp(−x2/2) dx

∫

x4 exp(x2/2)f2
X(x) dx

≤
∫

H2
k(x) exp(−x2/2)dx

∫

x4 exp(−x2(4C2 − 1)/2) dx ≤ const. · k! .

The recursion relation for Hermite polynomials,

Hk+1(x) = xHk(x) − kHk−1(x) , for all x ∈ R ,

implies that

|Hk(x)| ≤
{

k! exp(1 + |x|) , for |x| ≤ k − 1 ,

(1 + |x|)k , otherwise ,

by induction and an estimate by the exponential series. These upper bounds
yield that

∫

H2
k(x)

∣

∣ϕft
K (bx)

∣

∣

2
dx

≤ const. ·
(

(k!)2 exp(const. · k) +

∫

x2k|ϕft
K (x)|2dx b−2k−1

)

≤ const. ·
(

exp(2k[log k + const.]) +

∫

|ϕ(k)
K (x)|2dx b−2k−1

)

≤ const. ·
(

exp(2k[log k + const.]) + const.K(K!)2 · b−2k−1
)

,

by the Fourier representation of the Sobolev norm. Moreover, we have used that

|ϕ(k)
K (x)| ≤ const.K

K+2
∑

j=⌈k/2⌉

(

K + 2

j

)(

2j

k

)

k! ≤ const.KK! ,

for any k = 0, . . . ,K and |x| ≤ 1. Inserting that inequality along with (5.2) into
(5.3) and then into (2.7), we obtain that

E‖f̂X − fX‖22

≤ const. · b−1 exp
(

2K[logK − log b+ const.]
)

∫ b

−b

E
∣

∣Ψ̂X(t)− fft
X (t)

∣

∣

2
dt

+ const. ·Kb4 + O(K−β) , (5.4)

Focussing on the term E
∣

∣Ψ̂X(t)− fft
X (t)

∣

∣

2
, we write Ψ and Ψ̃ for the expec-

tation of Ψ̂ and ˆ̃Ψ, respectively. Moreover, we introduce the notation

ΦD(t) =

K̄
∏

k=0

[

Ψ(σkt)
]mk

, Φ̃D(t) =

K̄
∏

k=0

[

Ψ̃(σkt)
]mk

.
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We find that

E
∣

∣Ψ̂X(t)− fft
X (t)

∣

∣

2

≤ const.

(

E

∣

∣

∣

∣

Ψ̂X(t)− Φ̃D(t)ΦD(t)
∣

∣ΦD(t)
∣

∣

2 ∨ ρ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

Φ̃D(t)ΦD(t)
∣

∣ΦD(t)
∣

∣

2 ∨ ρ
− fft

X (t)

∣

∣

∣

∣

2)

. (5.5)

For the first term we have

E

∣

∣

∣

∣

ˆ̃Φ(t)
(∣

∣ΦD(t)
∣

∣

2 ∨ ρ
)

Φ̂(t)− Φ̃D(t)
(∣

∣Φ̂(t)
∣

∣

2 ∨ ρ
)

ΦD(t)
(∣

∣Φ̂(t)
∣

∣

2 ∨ ρ
)(∣

∣ΦD(t)
∣

∣

2 ∨ ρ
)

∣

∣

∣

∣

2

≤ ρ−4 · const. ·E
(

∣

∣

ˆ̃Φ(t)− Φ̃D(t)
∣

∣

2
+
∣

∣

(
∣

∣Φ̂(t)
∣

∣

2 ∨ ρ
)

−
(∣

∣ΦD(t)
∣

∣

2 ∨ ρ
)∣

∣

2
+
∣

∣Φ̂(t)− ΦD(t)
∣

∣

2
)

.

As ‖Φ̂‖∞, ‖ΦD‖∞ ≤ 1 a.s., we have

∣

∣

(∣

∣Φ̂(t)
∣

∣

2 ∨ ρ
)

−
(∣

∣ΦD(t)
∣

∣

2 ∨ ρ
)∣

∣

2 ≤ 4
∣

∣Φ̂(t) − ΦD(t)
∣

∣

2
.

Hence, it suffices to bound E| ˆ̃Φ(t)− Φ̃D(t)|2 and E|Φ̂(t)−ΦD(t)|2. We restrict
our consideration to the first term as the second one can be treated analogously,

E| ˆ̃Φ(t)− Φ̃D(t)|2 = E

∣

∣

∣

∣

K̄
∏

k=0

[ ˆ̃Ψ(σkt)
]mk

−
K̄
∏

k=0

[

Ψ̃(σkt)
]mk

∣

∣

∣

∣

2

≤ E

( K̄
∑

k=0

∣

∣

[ ˆ̃Ψ(σkt)
]mk

−
[

Ψ̃(σkt)
]mk

∣

∣

)2

≤ K̄

K̄
∑

k=0

E
∣

∣

[ ˆ̃Ψ(σkt)
]mk

−
[

Ψ̃(σkt)
]mk

∣

∣

2

≤ K̄ m2K̄
K̄
∑

k=0

E
∣

∣

ˆ̃Ψ(σkt)− Ψ̃(σkt)
∣

∣

2
= O

(

K̄2m2K̄ / n
)

,

where we have applied the Cauchy-Schwarz inequality along with the inequality

ap − bp = (a − b)
∑p−1

j=0 a
jbp−1−j and ‖ ˆ̃Ψ‖∞, ‖Ψ̃‖∞ ≤ 1 a.s.. For the second

deterministic term in (5.5) we consider that, for |t| ≤ b,

∣

∣ΦD(t)
∣

∣ =

∣

∣

∣

∣

K̄
∏

k=0

[

Ψ(σk+1t)
]mk+1

∣

∣

∣

∣

= exp

( K̄
∑

k=0

mk+1 log
∣

∣Ψ(σk+1t)
∣

∣

)

= exp

( K̄
∑

k=0

mk+1 log
∣

∣Ψ(σk+1t)
∣

∣

∣

∣Ψ(σk+1t)
∣

∣− 1

(∣

∣Ψ(σk+1t)
∣

∣− 1
)

)

≥ exp

(

−const.

K̄
∑

k=0

mk+1
∣

∣Ψ(σk+1t)− 1
∣

∣

)

≥ exp

(

−const. · bK̄
)

→ 1

as b → 0 when using (2.2) combined with the assumption fε ∈ G and the

condition σ ≤ 1/m. Therein, note that Ψ(t) = fft
X (t)fft

ε (t). As an important
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result, the convergence of ΦD(t) to one takes place uniformly with respect to
|t| ≤ b, fX ∈ F and fε ∈ G.

Thus, for n sufficiently large, we have uniformly in |t| ≤ b that

Φ̃D(t)ΦD(t)
∣

∣ΦD(t)
∣

∣

2 ∨ ρ
=

Φ̃D(t)

ΦD(t)
=

Φ̃(t)

Φ(t)
=

fft
X (t)

[

fft
X (σK̄+1t)

]mK̄+1
.

Applying this formula to evaluate the second term in (5.5) we find that

∣

∣

∣

∣

Φ̃D(t)ΦD(t)
∣

∣ΦD(t)
∣

∣

2 ∨ ρ
− fft

X (t)

∣

∣

∣

∣

2

=

∣

∣fft
X (t)

∣

∣

2

∣

∣fft
X (σK̄+1t)

∣

∣

2mK̄+1

∣

∣1−
[

fft
X (σK̄+1t)

]mK̄+1
∣

∣

2

≤ const. ·m2K̄
∣

∣1− fft
X (σK̄+1t)

∣

∣

2
= O

(

b4σ2(K̄+1)
)

,

where, again, we have used (2.2) and the inequality σ ≤ 1/m. Again, O(· · · )
does not depend on fX or fε. Summarizing, we conclude that

E
∣

∣Ψ̂X(t)− fft
X (t)

∣

∣

2
= O

(

K̄2m2K̄n−1 + b4σ2K̄
)

,

uniformly over all |t| ≤ b. Applying that result to (5.4), we obtain that

E‖f̂X − fX‖22
≤ const. ·

{

exp
(

2K[logK − log b]
) (

K̄2m2K̄n−1 + b4σ2K̄
)

+ Kb4 + K−β
}

.

Inserting the parameter choice as requested in the theorem, we realize that all
terms except the last one are asymptotically negligible. Thus, we have a bias-
dominated problem; the order of the last term determines the convergence rate
stated in the theorem.

Proof of Theorem 3.2. As two density sequences competing to be the true den-
sity of the Xj, we define

fX,d(x) = [fN ∗ V ](x) + and cos((Kn + 1/2)πx)[fN ∗ V ](x) ,

where fN denotes the standard normal density; V denotes the uniform distribu-
tion on the set {−1, 1}; (an)n ↓ 0; (Kn)n ↑ ∞ is integer-valued; and d = d0, d1
with two constants d1 > d0 > 0. The specific choice of (an)n and (Kn)n is
deferred. We derive that

fft
X,d(t) = fft

N (t) cos(t) +
an
2
d(−1)Kn sin(t)

[

fft
N (t− (Kn + 1/2)π)

− fft
N (t+ (Kn + 1/2)π)

]

.

Under the selection an = caK
−β
n with an appropriate constant ca > 0, we can

verify that fX,d ∈ F for n sufficiently large. Also we are guaranteed that fX,d,
d = d0, d1, are density function as their nonnegativity and their membership in
L1(R) follow from the definition of fX,d (note that 1+and cos((Kn+1/2)πx) ≥ 0
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for all x and n large enough). Furthermore, these functions integrate to one as

fft
X,d(0) = 1.
With respect to the error density, we will also specify the two competing

density sequences fε,d, d = d0, d1. We define fε,d via its Fourier transform; we
put

fft
ε,d1

(t) = d1
(

|t|+ d
1/α′

1

)−α′

.

Therein, we choose α′ ∈ (1/2, α). The Fourier transform of fε,d0
coincides

with fft
ε,d1

on the interval [−ct,0Kn, ct,0Kn] and is equal to the function d0
(

| · |
+d

1/α′

1

)−α′

on R\[−ct,1Kn, ct,1Kn]. By appropriate selection of the terms ct,1 >

ct,0 > 0, the function fft
ε,d0

may be continued onto [−ct,1Kn,−ct,0Kn] and

[ct,0Kn, ct,1Kn] by the tangent lines of fft
ε,d1

taken at the points −ct,0Kn and

ct,0Kn, respectively, so that fft
ε,d0

is continuous on the whole real line. Therein,
we allow for ct,0 and ct,1 to depend on n but ct,0 is bounded away from zero
and ct,1 is bounded from above by a positive number smaller than σ. Those
conditions may be fixed by choosing ct,0 sufficiently small since those tangent

lines take the value 0 at tn = ±(1 + 1/α′)ct,0Kn ± d
1/α′

1 /α′; and we have
ct,1Kn ≤ |tn|. We realize that the competing error densities have the follow-

ing properties: fft
ε,d0

and fft
ε,d1

are symmetric; fft
ε,d0

(0) = fft
ε,d1

(0) = 1; they
are continuously differentiable on (0,∞) with finite right side derivatives at 0;
continuous on the whole of R; monotonously decreasing and convex on [0,∞];

limt→+∞ fft
ε,d0

(t) = limt→+∞ fft
ε,d0

(t) = 0. Hence, we learn from Polya’s crite-
rion (see e.g. Lukacs (1970), p.83, Theorem 4.3.1) that fε,d, d = d0, d1, are both
probability densities and contained in L2(R) where the latter properties follows

from the integrability of |fft
ε,d|2, d = d0, d1, by Parseval’s identity. One can easily

recognize that the polynomial lower bound on fft
ε,d is satisfied; as is the Lipschitz

condition on fft
ε,d contained in the definition of G. Therefore, we have verified

that fε,d ∈ G′ for d = d0, d1.

After constructing those densities, we write f̂X for an arbitrary estimator
of fX based on the given observation scheme. We use the following arguments
from statistical decision theory.

sup
fX∈F ,fε∈G′

E‖f̂X − fX‖22

≥ 1

2

(

∫

‖f̂X(y)− fX,d0
(y)‖22hd0,d1

(y)dy +

∫

‖f̂X(y)− fX,d1
(y)‖22hd1,d0

(y)dy
)

≥ 1

4
‖fX,d0

− fX,d1
‖22

∫

min
{

hd0,d1
(y), hd1,d0

(y)
}

dy

=
1

4
‖fX,d0

− fX,d1
‖22

(

1− 1

2
‖hd0,d1

− hd1,d0
‖1
)

, (5.6)

where hdθ,d1−θ
, θ ∈ {0, 1}, denotes the densities of the data set (Y1, Y

′
1 , . . . , Yn, Y

′
n)

when fX,dθ
and fε,d1−θ

are the true densities of X1 and ε1, respectively. By a
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telescopic sum argument, we derive that

‖hd0,d1
− hd1,d0

‖1 ≤ n
(

‖fX,d0
∗ fε,d1

− fX,d1
∗ fε,d0

‖1
+ ‖fX,d0

∗ σ−1fε,d1
(σ−1·)− fX,d1

∗ σ−1fε,d0
(σ−1·)‖1

)

, (5.7)

Now we consider the L1(R)-distance

‖fX,d0
∗ σ−1fε,d1

(σ−1·)− fX,d1
∗ σ−1fε,d0

(σ−1·)‖1

≤ const. ·
(

∫

(1 + x2)|[fX,d0
∗ σ−1fε,d1

(σ−1·)](x)

− [fX,d1
∗ σ−1fε,d0

(σ−1·)](x)|2dx
)1/2

≤ const. ·
(

∫

∣

∣fft
X,d0

(t)fft
ε,d1

(σt)− fft
X,d1

(t)fft
ε,d0

(σt)
∣

∣

2
dt

+

∫

∣

∣(fft
X,d0

)′(t)fft
ε,d1

(σt)− (fft
X,d1

)′(t)fft
ε,d0

(σt)
∣

∣

2
dt

+ σ2

∫

∣

∣fft
X,d0

(t)(fft
ε,d1

)′(σt) − fft
X,d1

(t)(fft
ε,d0

)′(σt)
∣

∣

2
dt
)1/2

,

(5.8)

by the Cauchy-Schwarz inequality and Parseval’s identity. The analogous upper
bound holds true for the first L1(R)-distance occurring on the right side of

(5.7) when setting σ = 1. Note that the derivatives of fft
ε,d0

and fft
ε,d1

are to be

understood in the weak Sobolev sense. For |t| ≥ σ−1ct,1Kn, we derive that

[fft
ε,d0

](l)(σkt) = (d0/d1) [f
ft
ε,d1

](l)(σkt) ,

[fft
X,d1

](l
′)(t) = (d1/d0)[f

ft
X,d0

](l
′)(t) +

[

1− d1/d0
]{

[fft
N ](l

′)(t) cos(t)

− χ{1}(l
′)fft

N (t) sin(t)
}

,

for k, l, l′ = 0, 1. Thus, we obtain that

∫

|t|≥σ−1ct,1Kn

∣

∣[fft
ε,d0

](l)(σkt)[fft
X,d1

](l
′)(t)− [fft

ε,d1
](l)(σkt)[fft

X,d0
](l

′)(t)
∣

∣

2
dt

≤ const. ·
∫

|t|≥σ−1ct,1Kn

∣

∣[fft
ε,d1

](l)(σkt)
∣

∣

2[|[fft
N ]′(t)|+ |fft

N (t)|
]2
dt .

(5.9)

From the definition of fft
ε,d1

, we easily derive that its first weak derivative is
bounded (with a jump discontinuity at t = 0) while the function itself is bounded

by 1. Due to the specific exponential tails of fft
N (t) and its derivative, we obtain

that (5.9) has the upper bound O
(

K3
n exp(−const.K2

n)
)

. This bound affects all
partial integrals taken over |t| ≥ σ−1ct,1Kn in (5.8).

Now we consider those partial integrals taken over |t| ≤ ct,0Kn. Note that, on

this domain, we have coincidence of fft
ε,d0

and fft
ε,d1

on the one hand and fft
ε,d0

(σ·)
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and fft
ε,d1

(σ·) on the other hand and, hence, their weak derivatives coincides on

that interval, too. As fft
ε,d, d = d0, d1 and their weak derivatives are bounded,

those partial integrals have the upper bound

const. ·max
l=0,1

∫

|t|≤ct,0Kn

∣

∣[fft
X,d0

](l)(t)− [fft
X,d1

](l)(t)
∣

∣

2
dt

= O(a2n)

∫

|t|≤ct,0Kn

(∣

∣[fft
N ]′(t− (Kn + 1/2)π)

∣

∣

2
+
∣

∣fft
N (t− (Kn + 1/2)π)

∣

∣

2)
dt .

Again, we obtain the upper bound O
(

K3
n exp(−const.K2

n)
)

.
The partial integrals in (5.8) taken over σ−1ct,1Kn ≥ |t| ≥ ct,0Kn remain to

be studied. These integrals are bounded from above by

const. · max
d=d0,d1

max
l=0,1

∫

σ−1ct,1Kn≥|t|≥ct,0Kn

∣

∣[fft
X,d]

(l)(t)
∣

∣

2
dt .

As ct,1 < σ and ct,0 is bounded away from zero the explicit expression for fft
X,d

and its derivative provides the upper bound O
(

K3
n exp(−const.K2

n)
)

in this case,
too.

Summarizing, (5.8) is bounded above by O
(

K
3/2
n exp(−const.K2

n)
)

. Selecting

Kn = CK(logn)1/2 with a constant CK > 0 sufficiently large, the right side of
(5.7) converges to zero. Then, we conclude from (5.6) and Parseval’s identity
that

sup
fX∈F ,fε∈G′

E‖f̂X − fX‖22 ≥ const. · ‖fft
X,d0

− fft
X,d1

‖22

≥ const. · a2n
∫

cos2(t)|fft
N (t)|2dt ≍ a2n ≍ K−2β

n ≍ (logn)−β ,

by using simple trigonometric relations. Thus, we have established the desired
asymptotic lower bound on the risk.
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