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Abstract: We study the problem of fitting circles (or circular arcs) to data
points observed with errors in both variables. A detailed error analysis
for all popular circle fitting methods – geometric fit, K̊asa fit, Pratt fit,
and Taubin fit – is presented. Our error analysis goes deeper than the
traditional expansion to the leading order. We obtain higher order terms,
which show exactly why and by how much circle fits differ from each other.
Our analysis allows us to construct a new algebraic (non-iterative) circle
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(previously regarded as unbeatable) geometric fit.
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1. Introduction

Fitting circles and circular arcs to observed points is one of the basic tasks
in pattern recognition and computer vision, nuclear physics, and other areas

∗First supporter of the project.
†Second supporter of the project.

886

http://www.i-journals.org/ejs
http://dx.doi.org/10.1214/09-EJS419
mailto:alsha1aa@uab.edu
mailto:chernov@math.uab.edu


A. Al-Sharadqah and N. Chernov/Error analysis for circle fitting algorithms 887

[5, 9, 11, 23, 24, 27, 30, 32]. Many algorithms have been developed that fit
circles to data. Some minimize the geometric distances from the circle to the data
points (we call them geometric fits). Others minimize various approximate (or
‘algebraic’) distances, they are called algebraic fits. We overview most popular
algorithms in Sections 3–4.

Geometric fit is commonly regarded as the most accurate, but it can only
be implemented by iterative schemes that are computationally intensive and
subject to occasional divergence. Algebraic fits are faster but presumably less
precise. At the same time the assessments on their accuracy are solely based on
practical experience, no one has performed a detailed theoretical comparison of
the accuracy of various circle fits. It was shown in [8] that all the circle fits have
the same covariance matrix, to the leading order, in the small-noise limit. Thus
the differences between various fits can only be revealed by a higher-order error
analysis.

The purpose of this paper is to do just that. We employ higher-order error
analysis (a similar analysis was used by Kanatani [22] in the context of more
general quadratic models) and show exactly why and by how much the geometric
circle fit outperforms the algebraic circle fits in accuracy; we also compare the
precision of different algebraic fits. Section 5 presents our error analysis in a
general form, which can be readily applied to other curve fitting problems.

Finally, our analysis allows us to develop a new algebraic fit whose accuracy
exceeds that of the geometric fit. Its superiority is demonstrated by numerical
experiments.

2. Statistical model

We adopt a standard functional model in which data points (x1, y1), . . . , (xn, yn)
are noisy observations of some true points (x̃1, ỹ1), . . . , (x̃n, ỹn), i.e.

xi = x̃i + δi, yi = ỹi + εi, i = 1, . . . , n, (2.1)

where (δi, εi) represent isotropic Gaussian noise. Precisely, δi’s and εi’s are i.i.d.
normal random variables with mean zero and variance σ2.

The true points (x̃i, ỹi) are supposed to lie on a ‘true circle’, i.e. satisfy

(x̃i − ã)2 + (ỹi − b̃)2 = R̃2, i = 1, . . . , n, (2.2)

where (ã, b̃, R̃) denote the ‘true’ (unknown) parameters. Therefore

x̃i = ã + R̃ cosϕi, ỹi = b̃ + R̃ sin ϕi, (2.3)

where ϕ1, . . . , ϕn specify the locations of the true points on the true circle.
The angles ϕ1, . . . , ϕn are regarded as fixed unknowns and treated as additional
parameters of the model (called incidental or latent parameters). For brevity we
denote

ũi = cosϕi = (x̃i − ã)/R̃, ṽi = sinϕi = (ỹi − b̃)/R̃. (2.4)

Note that ũ2
i + ṽ2

i = 1 for every i.
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Remark. In our paper δi and εi have common variance σ2, i.e. our noise is
homoscedastic. In many studies the noise is heteroscedastic [25, 35], i.e. the
normal vector (δi, εi) has point-dependent covariance matrix σ2Ci, where Ci is
known and depends on i, and σ2 is an unknown factor. Our analysis can be
extended to this case, too, but the resulting formulas will be somewhat more
complex, so we leave it out.

3. Geometric circle fits

A standard approach to fitting circles to 2D data is based on orthogonal least
squares, it is also called geometric fit, or orthogonal distance regression (ODR).
It minimizes the function

F(a, b, R) =
∑

d2
i , (3.1)

where di stands for the distance from (xi, yi) to the circle, i.e.

di = ri − R, ri =
√

(xi − a)2 + (yi − b)2, (3.2)

where (a, b) denotes the center, and R the radius of the circle.
In the context of the functional model, the geometric fit returns the maximum

likelihood estimates (MLE) of the circle parameters [6], i.e.

(âMLE, b̂MLE, R̂MLE) = argminF(a, b, R). (3.3)

A major concern with the geometric fit is that the above minimization prob-
lem has no closed form solution. All practical algorithms of minimizing F
are iterative; some implement a general Gauss-Newton [6, 15] or Levenberg-
Marquardt [9] schemes, others use circle-specific methods proposed by Landau
[24] and Späth [30]. The performance of iterative algorithms heavily depends on
the choice of the initial guess. They often take dozens or hundreds of iterations
to converge, and there is always a chance that they would be trapped in a local
minimum of F or diverge entirely. These issues are explored in [9].

A peculiar feature of the maximum likelihood estimates (â, b̂, R̂) of the circle
parameters is that they have infinite moments [7], i.e.

E(|â|) = E(|b̂|) = E(R̂) = ∞ (3.4)

for any set of true values (ã, b̃, R̃); here E denotes the mean value. This happens
because the distributions of these estimates have somewhat heavy tails, even
though those tails barely affect the practical performance of the MLE (the same
happens when one fits straight lines to data with errors in both variables [2, 3]).

To ensure the existence of moments one can adopt a different parameter
scheme. An elegant scheme was proposed by Pratt [27] and others [13], which
describes circles by an algebraic equation

A(x2 + y2) + Bx + Cy + D = 0 (3.5)
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with an obvious constraint A 6= 0 (otherwise this equation describes a line) and
a less obvious constraint B2 + C2 − 4AD > 0. The necessity of the latter can
be seen if one rewrites equation (3.5) as

(

x − B

2A

)2

+

(

y − C

2A

)2

− B2 + C2 − 4AD

4A2
= 0. (3.6)

It is clear now that (3.5) defines a circle if and only if B2 + C2 − 4AD > 0.
As the parameters (A, B, C, D) only need to be determined up to a scalar

multiple, it is natural to impose a constraint

B2 + C2 − 4AD = 1, (3.7)

because it automatically ensures B2 + C2 − 4AD > 0. The constraint (3.7) was
first proposed by Pratt [27]. Under this constraint, the parameters A, B, C, D
are essentially bounded, see [9], and their maximum likelihood estimates can be
shown to have finite moments.

The equation (3.5), under the constraint (3.7), conveniently describes all
circles and lines (the latter are obtained when A = 0); the inclusion of lines is
necessary to ensure the existence of the least squares solution [9, 26, 37].

After one estimates the algebraic circle parameters A, B, C, D, they can be
converted to the natural parameters via

a = − B

2A
, b = − C

2A
, R2 =

B2 + C2 − 4AD

4A2
. (3.8)

4. Algebraic circle fits

An alternative to the complicated geometric fit is made by fast non-iterative
procedures called algebraic fits. We describe three most popular algebraic circle
fits below.

K̊asa fit. One can find a circle by minimizing the function

FK =
∑

(r2
i − R2)2

=
∑

(x2
i + y2

i − 2axi − 2byi + a2 + b2 − R2)2. (4.1)

In other words, one minimizes FK =
∑

f2
i , where fi = r2

i − R2 is the so called
algebraic distance from the point (xi, yi) to the circle. A change of parameters
B = −2a, C = −2b, D = a2 + b2 −R2 transforms (4.1) to a linear least squares
problem minimizing

FK =
∑

(zi + Bxi + Cyi + D)2, (4.2)

where we denote zi = x2
i + y2

i for brevity (we intentionally omit symbol A here
to make our formulas consistent with the subsequent ones). Now the problem re-
duces to a system of linear equations (normal equations) with respect to B, C, D
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that can be easily solved, and then one recovers the natural circle parameters
a, b, R via (3.8).

This method was introduced in the 1970s by Delogne [11] and K̊asa [23], and
then rediscovered and published independently by many authors, see references
in [9]. It remains popular in practice. We call it K̊asa fit.

The K̊asa method is perhaps the fastest circle fit, but its accuracy suffers
when one observes incomplete circular arcs (partially occluded circles); then the
K̊asa fit is known to be heavily biased toward small circles [9]. The reason for
the bias is that the algebraic distances fi provide a poor approximation to the
geometric distances di; in fact,

fi = (ri − R)(ri + R) = di(2R + di) ≈ 2Rdi, (4.3)

hence the K̊asa fit minimizes FK ≈ 2R2
∑

d2
i , and it often favors smaller circles

minimizing R2 rather than the distances di.

Pratt fit. To improve the performance of the K̊asa method one can minimize
another function, F = 1

4R2FK, which provides a better approximation to
∑

d2
i .

This new function, expressed in terms of A, B, C, D reads

FP =
∑ [Azi + Bxi + Cyi + D]2

B2 + C2 − 4AD
, (4.4)

due to (3.8). Equivalently, one can minimize

F(A, B, C, D) =
∑

[Azi + Bxi + Cyi + D]2 (4.5)

subject to the constraint (3.7). This method was proposed by Pratt [27].

Taubin fit. A slightly different method was proposed by Taubin [32] who min-
imizes the function

FT =

∑
[

(xi − a)2 + (yi − b)2 − R2
]2

4n−1
∑

[

(xi − a)2 + (yi − b)2
] . (4.6)

Expressing it in terms of A, B, C, D gives

FT =
∑ [Azi + Bxi + Cyi + D]2

n−1
∑

[4A2zi + 4ABxi + 4ACyi + B2 + C2]
. (4.7)

Equivalently, one can minimize (4.5) subject to a new constraint

4A2z̄ + 4ABx̄ + 4ACȳ + B2 + C2 = 1. (4.8)

Here we use standard ‘sample means’ notation: x̄ = 1
n

∑

xi, etc.

General remarks. Note that the minimization of (4.5) must use some con-
straint, to avoid a trivial solution A = B = C = D = 0. Pratt and Taubin fits
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utilize constraints (3.7) and (4.8), respectively. K̊asa fit also minimizes (4.5),
but subject to constraint A = 1.

While the Pratt and Taubin estimates of the parameters A, B, C, D have
finite moments, the corresponding estimates of a, b, R have infinite moments,
just like the MLE (3.4). On the other hand, K̊asa’s estimates of a, b, R have
finite moments whenever n ≥ 4; see [37].

All the above circle fits have an important property – they are independent
of the choice of the coordinate system, i.e. their results are invariant under
translations and rotations; see a proof in [14].

Practical experience shows that the Pratt and Taubin fits are more stable
and accurate than the K̊asa fit, and they perform nearly equally well, see [9].
Taubin [32] intended to compare his fit to Pratt’s theoretically, but no such
analysis was ever published. We make such a comparison below.

There are many other approaches to the circle fitting problem in the modern
literature [4, 10, 35, 28, 29, 31, 33, 36, 38], but most of them are either quite
slow or can be reduced to one of the algebraic fits [14, Chapter 8].

Matrix representation. We can represent the above three algebraic fits in
matrix form. Let A = (A, B, C, D) denote the parameter vector,

Z
def
=







z1 x1 y1 1
...

...
...

...
zn xn yn 1






(4.9)

the ‘data matrix’ (recall that zi = x2
i + y2

i ) and

M
def
=

1

n
ZTZ =









zz zx zy z̄
zx xx xy x̄
zy xy yy ȳ
z̄ x̄ ȳ 1









(4.10)

the ‘matrix of moments’. All the algebraic circle fits minimize the same objective
function F(A) = ATMA, cf. (4.5), subject to a constraint ATNA = 1, where
the matrix N corresponds to the fit. The Pratt fit uses

N = P
def
=









0 0 0 −2
0 1 0 0
0 0 1 0

−2 0 0 0









, (4.11)

the Taubin fit uses

N = T
def
=









4z̄ 2x̄ 2ȳ 0
2x̄ 1 0 0
2ȳ 0 1 0
0 0 0 0









, (4.12)

and the K̊asa uses N = K
def
= e1e

T
1 , where e1 = (1, 0, 0, 0)T .
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Reduction to a generalized eigenvalue problem. To solve the above con-
strained minimization problem one uses a Lagrange multiplier η and reduces it
to an unconstrained minimization of the function

G(A, η) = AT MA− η(ATNA − 1). (4.13)

Differentiating with respect to A and η gives

MA = ηNA (4.14)

and
ATNA = 1, (4.15)

thus A must be a generalized eigenvector for the matrix pair (M, N), which also
satisfies ATNA = 1. The problem (4.14)–(4.15) may have several solutions. To
choose the right one we note that for each solution (η, A)

ATMA = ηATNA = η, (4.16)

thus for the purpose of minimizing ATMA we should choose the solution of
(4.14)–(4.15) with the smallest η. Note that η is automatically non-negative,
since M = 1

n
ZTZ is a positive semi-definite matrix.

Since multiplying A by a scalar does not change the circle it represents, it
is common in practical applications to require that ‖A‖ = 1, and accordingly
one needs to replace the constraint (4.15) with ATNA > 0; the latter can be
further relaxed as follows.

For generic data sets, M is positive definite. Thus if (η, A) is any solution of
the generalized eigenvalue problem (4.14), then AT MA > 0. In that case, due
to (4.16), we have ATNA > 0 if and only if η > 0. Thus it is enough to solve
the problem (4.14) and choose the smallest positive η and the corresponding
unit vector A.

The singular case and summary. The matrix M is singular if and only
if the observed points lie on a circle (or a line); in this case the eigenvector
A0 corresponding to η = 0 satisfies ZA0 = 0, i.e. it gives the interpolating
circle (line), which is obviously the best possible fit. However it may happen
that for some (poorly chosen) matrices N we have AT

0 NA0 < 0, so that the
geometrically perfect solution has to be rejected. Such algebraic fits are not
worth considering. For all constraint matrices N in this paper we have ATNA ≥
0 whenever AT MA = 0 (the reader can verify this directly).

Summarizing, we conclude that each algebraic circle fit can be computed in
two steps: first we find all solutions (η, A) of the generalized eigenvalue problem
(4.14), and then we pick the one with the minimal non-negative η.

5. Error analysis: a general scheme

We employ an error analysis scheme based on a ‘small noise’ assumption. That
is, we assume that the errors δi and εi (Section 2) are small and treat their
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standard deviation σ as a small parameter. The sample size n is fixed, though
it is not very small.

This approach goes back to Kadane [16] and was employed by Anderson [2]
and other statisticians [3]. More recently it has been used by Kanatani [19, 22] in
image processing applications, who argued that the ‘small noise’ model, where
σ → 0 while the sample size n is kept fixed, is more appropriate than the
traditional statistical ‘large sample’ approach, where n → ∞ while σ > 0 is
kept fixed. We use a combination of these two models: our main assumption is
σ → 0, but n is regarded as a slowly increasing parameter; more precisely we
assume n ≪ σ−2.

Suppose one is fitting curves defined by an implicit equation

P (x, y; Θ) = 0, (5.1)

where Θ = (θ1 , . . . , θk)T denotes a vector of unknown parameters to be esti-
mated. Let Θ̃ = (θ̃1, . . . , θ̃k)T be the ’true’ parameter vector corresponding to
the ‘true’ curve P (x, y; Θ̃) = 0. As in Section 2 let (x̃i, ỹi), i = 1, . . . , n, denote
true points, which lie on the true curve, and (xi, yi) observed points satisfying

(2.1). Let Θ̂(x1, y1, . . . , xn, yn) be an estimator. We assume that Θ̂ is a regular
(at least four times differentiable) function of observations (xi, yi). The existence

of the derivatives of Θ̂ is only required at the true points (xi, yi) = (x̃i, ỹi), and
it follows from the implicit function theorem under general assumptions pro-
vided P (x, y; Θ) in (5.1) is differentiable (in most cases P is a polynomial in all
its variables); we omit the proof.

For brevity we denote by X = (x1, y1, . . . , xn, yn)T the vector of all observa-
tions, so that X = X̃ + E, where X̃ = (x̃1, ỹ1, . . . , x̃n, ỹn)T is the vector of the
true coordinates and E = (δ1, ε1, . . . , δn, εn)T is the ‘noise vector’; the compo-
nents of E are i.i.d. normal random variables with mean zero and variance σ2.

We use Taylor expansion to the second order terms. To keep our notation
simple, we work with each scalar parameter θm of the vector Θ separately:

θ̂m(X) = θ̂m(X̃) + GT
mE + 1

2
ETHmE + OP (σ3). (5.2)

Here Gm = ∇θ̂m and Hm = ∇2θ̂m denote the gradient (the vector of the first
order partial derivatives) and the Hessian matrix of the second order partial

derivatives of θ̂m, respectively, taken at the true vector X̃. The remainder term
OP (σ3) in (5.2) is a random variable R such that σ−3R is bounded in proba-
bility.

Expansion (5.2) shows that Θ̂(X) → Θ̂(X̃) in probability, as σ → 0. It is
convenient to assume that

Θ̂(X̃) = Θ̃. (5.3)

Precisely (5.3) means that whenever σ = 0, i.e. when the true points are observed
without noise, then the estimator returns the true parameter vector, i.e. finds
the true curve. Geometrically, it means that if there is a model curve that
interpolates the data points, then the algorithm finds it.
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With some degree of informality, one can assert that whenever (5.3) holds,

the estimate Θ̂ is consistent in the limit σ → 0. This is regarded as a minimal re-
quirement for any sensible fitting algorithm. For example, if the observed points
lie on one circle, then every circle fitting algorithm finds that circle uniquely.
Kanatani [20] remarks that algorithms which fail to follow this property “are
not worth considering”.

Under the assumption (5.3) we rewrite (5.2) as

∆θ̂m(X) = GT
mE + 1

2
ETHmE + OP (σ3), (5.4)

where ∆θ̂m(X) = θ̂m(X)− θ̃m is the statistical error of the parameter estimate.

The accuracy of an estimator θ̂ in statistics is characterized by its Mean
Squared Error (MSE)

E
[

(θ̂ − θ̃)2
]

= Var(θ̂)+
[

bias(θ̂)
]2

, (5.5)

where bias(θ̂) = E(θ̂)−θ̃. But it often happens that exact (or even approximate)

values of E(θ̂) and Var(θ̂) are unavailable because the probability distribution

of θ̂ is overly complicated, which is common in curve fitting problems, even if
one fits straight lines to data points; see [2, 3]. There are also cases where the
estimates have theoretically infinite moments because of somewhat heavy tails,
which on the other hand barely affect their practical performance. Thus their
accuracy should not be characterized by the theoretical moments which happen
to be affected by heavy tails; see also [2]. In all such cases one usually constructs

a good approximate probability distribution for θ̂ and judges the quality of θ̂
by the moments of that distribution.

It is standard [1–3, 12, 34] to construct a normal approximation to θ̂ and

treat its variance as an ‘approximative’ MSE of θ̂. The normal approximation is
usually based on the leading term in the Taylor expansion, like GT

mE in (5.4).
For circle fitting algorithms, the resulting variance (see below) will be the same
for all known methods, so we will go one step further and use the second order
term. This gives us a better approximative distribution and allows us to compare
circle fitting methods. In our formulas, E(θ̂m) and Var(θ̂m) denote the mean and
variance of the resulting approximative distribution.

The first term in (5.4) is a linear combination of i.i.d. normal random variables
that have zero mean, hence it is itself a normal random variable with zero mean.
The second term is a quadratic form of i.i.d. normal variables. Since Hm is a
symmetric matrix, we have Hm = QT

mDmQm, where Qm is an orthogonal
matrix and Dm = diag{d1, . . . , d2n} is a diagonal matrix. The vector Em =
QmE has the same distribution as E does, i.e. its components are i.i.d. normal
random variables with mean zero and variance σ2. Thus

ETHmE = ET
mDmEm = σ2

∑

diZ
2
i , (5.6)

where the Zi’s are i.i.d. standard normal random variables, and the mean value
of (5.6) is

E
(

ETHmE
)

= σ2 trDm = σ2 trHm. (5.7)
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Therefore, taking the mean value in (5.4) gives

bias(θ̂m) = E(∆θ̂m) = 1
2

σ2 trHm + O(σ4). (5.8)

Note that the expectations of all third order terms vanish, because the compo-
nents of E are independent and their first and third moments are zero; thus the
remainder term is of order σ4.

Squaring (5.4) and again using (5.6) give the mean squared error (MSE)

E
(

[∆θ̂m]2
)

= σ2GT
mGm + 1

4
σ4

(

[trHm]2 + 2‖Hm‖2
F

)

+ R, (5.9)

where ‖Hm‖2
F = trH2

m is the Frobenius norm (note that ‖Hm‖2
F = ‖Dm‖2

F =
tr D2

m). The remainder R includes terms of order σ6, as well as some terms

of order σ4 that contain third order partial derivatives, such as ∂3θ̂m/∂x3
i and

∂3θ̂m/∂x2
i ∂xj. A similar expression can be derived for E

(

∆θ̂m∆θ̂m′

)

for m 6= m′,
we omit it and only give the final formula below.

Classification of higher order terms. In the MSE expansion (5.9), the lead-
ing term σ2GT

mGm is the most significant. The terms of order σ4 are often given
by long complicated formulas. Even the expression for the bias (5.8) may con-
tain several terms of order σ2, as we will see below. Fortunately, it is possible
to sort them out keeping only the most significant ones, see next.

Kanatani [22] recently derived formulas for the bias of certain ellipse fitting
algorithms. First he found all the terms of order σ2, but in the end he noticed
that some terms were of order σ2 (independent of n), while the others of order
σ2/n. The magnitude of the former was clearly larger than that of the latter,
and when Kanatani made his conclusions he ignored the terms of order σ2/n.
Here we formalize Kanatani’s classification of higher order terms as follows:
– In the expression for the bias (5.8) we keep terms of order σ2 (independent of
n) and ignore terms of order σ2/n.
– In the expression for the mean squared error (5.9) we keep terms of order σ4

(independent of n) and ignore terms of order σ4/n.
These rules agree with our assumption that not only σ → 0, but also n → ∞,

although n increases rather slowly (n ≪ 1/σ2). Such models were studied by
Amemiya, Fuller and Wolter [1, 34] who made a more rigid assumption that
n ∼ σ−a for some 0 < a < 2.

Now it turns out (we omit detailed proofs; see [14]) that the main term
σ2GT

mGm in our expression for the MSE (5.9) is of order σ2/n; so it will never
be ignored. Of the fourth order terms, 1

2
σ4‖Hm‖2

F is of order σ4/n, hence it
will be discarded, and the same applies to all the terms involving third order
partial derivatives mentioned above.

The bias σ2 tr Hm in (5.8) is, generally, of order σ2 (independent of n), thus
its contribution to the mean squared error (5.9) is significant. However the full
expression for the bias may contain terms of order σ2 and of order σ2/n, of
which the latter will be ignored; see below.

Now the terms in (5.9) have the following orders of magnitude:

E
(

[∆θ̂m]2
)

= O(σ2/n) + O(σ4) + O(σ4/n) + O(σ6), (5.10)
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Table 1

The order of magnitude of the four terms in (5.9)

σ2/n σ4 σ4/n σ6

small samples (n ∼ 1/σ) σ3 σ4 σ5 σ6

large samples (n ∼ 1/σ2) σ4 σ4 σ6 σ6

where each big-O simply indicates the order of the corresponding term in (5.9).
It is interesting to roughly compare their values numerically. In typical computer
vision applications, σ does not exceed 0.05; see [5]. The number of data points
normally varies between 10-20 (on the low end) and a few hundred (on the high
end). For simplicity, we can set n ∼ 1/σ for smaller samples and n ∼ 1/σ2 for
larger samples. Then Table 1 presents the corresponding typical magnitudes of
each of the four terms in (5.9).

We see that for larger samples the fourth order term coming from the bias
may be just as big as the leading second-order term, hence it would be unwise
to ignore it. Earlier studies, see e.g. [5, 8, 17], usually focused on the leading,
i.e. second-order, terms only, disregarding all the fourth-order terms, and this
is where our analysis is different. We make one step further – we keep all the
terms of order O(σ2/n) and O(σ4). The less significant terms of order O(σ4/n)
and O(σ6) would be discarded.

Now combining all our results gives a matrix formula for the (total) mean
squared error (MSE)

E
[

(∆Θ̂)(∆Θ̂)T
]

= σ2GGT + σ4BBT + · · · , (5.11)

where G is the k × 2n matrix of first order partial derivatives of Θ̂(X), its
rows are GT

m, 1 ≤ m ≤ k, and B = 1
2
[ trH1, . . . tr Hk]T is the k-vector that

represents the leading term of the bias of Θ̂, cf. (5.8). The trailing dots in (5.11)
stand for all insignificant terms (those of order σ4/n and σ6).

We call the first (main) term σ2GGT in (5.11) the variance term, as it char-
acterizes the variance (more precisely, the covariance matrix) of the estimator

Θ̂, to the leading order. For brevity we denote V = GGT . The second term
σ4BBT is the ‘tensor square’ of the bias σ2B of the estimator, again to the
leading order. When we deal with particular estimators in the next sections, we
will see that the actual expression for the bias is a sum of terms of two types:
some of them are of order O(σ2) and some others are of order O(σ2/n), i.e.

E(∆Θ̂) = σ2B + O(σ4) = σ2B1 + σ2B2 + O(σ4), (5.12)

where B1 = O(1) and B2 = O(1/n). We call σ2B1 the essential bias of the

estimator Θ̂. This is its bias to the leading order, σ2. The other terms, i.e.
σ2B2, and O(σ4), constitute non-essential bias; they can be discarded. Now
(5.11) can be written as

E
[

(∆Θ̂)(∆Θ̂)T
]

= σ2V + σ4B1B
T
1 + · · · , (5.13)

where we only keep significant terms of order σ2/n and σ4 and drop the rest.
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KCR lower bound. The matrix V representing the leading terms of the vari-
ance has a natural lower bound (an analogue of the Cramer-Rao bound): for
every curve family (5.1) there is a symmetric positive semi-definite matrix Vmin

such that for every estimator satisfying (5.3)

V ≥ Vmin =

(

∑ PΘi P T
Θi

‖Pxi‖2

)−1

, (5.14)

in the sense that V −Vmin is a positive semi-definite matrix. Here

PΘi =
(

∂P (x̃i; Θ̃)/∂θ1 , . . . , ∂P (x̃i; Θ̃)/∂θk

)T

(5.15)

stands for the gradient of P with respect to the model parameters θ1, . . . , θk

and

Pxi =
(

∂P (x̃i; Θ̃)/∂x, ∂P (x̃i; Θ̃)/∂y
)T

(5.16)

for the gradient with respect to the planar variables x and y; both gradients are
taken at the true point x̃i = (x̃i, ỹi). For example in the case of fitting circles
defined by P = (x − a)2 + (y − b)2 − R2, we have

PΘi = −2
(

(x̃i − ã), (ỹi − b̃), R̃
)T

, Pxi = 2
(

(x̃i − ã), (ỹi − b̃)
)T

. (5.17)

Therefore,
Vmin = (WT W)−1, (5.18)

where

W
def
=







ũ1 ṽ1 1
...

...
...

ũn ṽn 1






(5.19)

and ũi, ṽi are given by (2.4).
The general inequality (5.14) was proved by Kanatani [17, 18] for unbiased

estimators Θ̂ and then extended by Chernov and Lesort [8] to all estimators
satisfying (5.3). The geometric fit (which minimizes orthogonal distances) always
satisfies (5.3) and attains the lower bound Vmin; this was proved by Fuller
(Theorem 3.2.1 in [12]) and independently by Chernov and Lesort [8], who
named the inequality (5.14) Kanatani-Cramer-Rao (KCR) lower bound. See
also survey [25] for the more general case of heteroscedastic noise.

Assessing the quality of estimators. Our analysis dictates the following
strategy of assessing the quality of an estimator Θ̂: first of all, its accuracy is
characterized by the matrix V, which must be compared to the KCR lower
bound Vmin. We will see that for all the circle fitting algorithms the matrix V

actually achieves its lower bound Vmin, i.e. we have V = Vmin, hence these
algorithms are optimal to the leading order.

Next, once the factor V is already at its natural minimum, the accuracy of an
estimator should be characterized by the vector B1 representing the essential
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bias – better estimates should have smaller essential biases. It appears that
there is no natural minimum for ‖B1‖, in fact there exist estimators which have
a minimum variance V = Vmin and a zero essential bias, i.e. B1 = 0. We will
construct such an estimator in Section 7.

6. Error analysis of geometric circle fit

Here we apply the general method of the previous section to the geometric circle
fit, i.e. to the estimator Θ̂ = (â, b̂, R̂) of the circle parameters minimizing the
sum

∑

d2
i of orthogonal (geometric) distances from the data points to the fitted

circle.

Variance of the geometric circle fit. We start with the main part of our
error analysis – the variance term represented by σ2V in (5.13). The distances
di = ri − R can be expanded as

di =

√

[

(x̃i + δi) − (ã + ∆a)]2 +
[

(ỹi + εi) − (b̃ + ∆b)]2 − R̃ − ∆R

=

√

R̃2 + 2R̃ũi(δi − ∆a) + 2R̃ṽi(εi − ∆b) + OP (σ2) − R̃ − ∆R

= ũi(δi − ∆a) + ṽi(εi − ∆b) − ∆R + OP (σ2), (6.1)

see (2.4). Minimizing
∑

d2
i to the first order is equivalent to minimizing

∑

(ũi ∆a + ṽi ∆b + ∆R− ũiδi − ṽiεi)
2. (6.2)

This is a classical least squares problem that can also be written as

W ∆Θ ≈ Ũδ + Ṽε, (6.3)

where W is given by (5.19), Θ = (a, b, R)T , as well as δ = (δ1, . . . , δn)T and
ε = (ε1, . . . , εn)T , while Ũ = diag(ũ1, . . . , ũn) and Ṽ = diag(ṽ1, . . . , ṽn). The
solution of the least squares problem (6.3) is

∆Θ̂ = (WTW)−1WT (Ũδ + Ṽε), (6.4)

of course this does not include the OP (σ2) terms. Thus the variance of our
estimator, to the leading order, is

E
[

(∆Θ̂)(∆Θ̂)T
]

= (WT W)−1WT
E

[

(Ũδ + Ṽε)(δT Ũ + ε
T Ṽ)

]

W(WTW)−1.
(6.5)

Now observe that E(δεT ) = E(εδ
T ) = 0, as well as E(δδ

T ) = E(εεT ) = σ2I,
and we have Ũ2 + Ṽ2 = I. Thus to the leading order

E
[

(∆Θ̂)(∆Θ̂)T
]

= σ2(WTW)−1WTW(WTW)−1 = σ2(WTW)−1, (6.6)

where the higher order (of σ4) terms are not included. Comparing this to (5.18)
confirms that the geometric fit attains the minimal possible covariance matrix V.
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Bias of the geometric circle fit. Now we do a second-order error analysis,
which has not been previously done in the literature. According to a general
formula (5.2), we put

a = ã + ∆1a + ∆2a + OP (σ3),

b = b̃ + ∆1b + ∆2b + OP (σ3),

R = R̃ + ∆1R + ∆2R + OP (σ3).

(6.7)

Here ∆1a, ∆1b, ∆1R are linear combinations of εi’s and δi’s, which were found
above, in (6.4), and ∆2a, ∆2b, ∆2R are quadratic forms of εi’s and δi’s to be
determined next.

Expanding the distances di to the second order terms gives

di = ũi(δi − ∆1a) + ṽi(εi − ∆1b) − ∆1R

− ũi ∆2a − ṽi ∆2b − ∆2R +
ṽ2

i

2R̃
(δi − ∆1a)2 +

ũ2

i

2R̃
(εi − ∆1b)

2

− ũiṽi

R̃
(δi − ∆1a)(εi − ∆1b). (6.8)

Since we already found ∆1a, ∆1b, ∆1R, the only unknowns are ∆2a, ∆2b, ∆2R.
Minimizing

∑

d2
i is now equivalent to minimizing

∑

(ũi ∆2a + ṽi ∆2b + ∆2R − fi)
2, (6.9)

where

fi =ũi(δi − ∆1a) + ṽi(εi − ∆1b) − ∆1R

+
ṽ2

i

2R
(δi − ∆1a)2 +

ũ2

i

2R
(εi − ∆1b)

2 − ũiṽi

R
(δi − ∆1a)(εi − ∆1b). (6.10)

This is another least squares problem, and its solution is

∆2Θ̂ = (WTW)−1WTF, (6.11)

where F = (f1, . . . , fn)T ; of course this is a quadratic approximation which does
not include OP (σ3) terms. In fact, the contribution from the first three (linear)
terms in (6.10) vanishes, quite predictably; thus only the last two (quadratic)
terms matter.

Taking the mean value gives, to the leading order,

E(∆Θ̂) = E(∆2Θ̂) =
σ2

2R

[

(WT W)−1WT1 + (WT W)−1WTS
]

, (6.12)

where 1 = (1, 1, . . . , 1)T and S = (s1 , . . . , sn)T , here si is a scalar

si = [−ṽi, ũi, 0](WTW)−1[−ṽi, ũi, 0]T . (6.13)

The second term in (6.12) is of order O(σ2/n), thus the essential bias is
given by the first term only, and it can be simplified. Since the last column of
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the matrix WTW coincides with the vector WT1, we have (WTW)−1WT1 =
[0, 0, 1]T , hence the essential bias of the geometric circle fit is

E(∆Θ̂)
ess
=

σ2

2R̃

[

0, 0, 1
]T

. (6.14)

Thus the estimates of the circle center, â and b̂, have no essential bias, while
the estimate of the radius has essential bias

E(∆R̂)
ess
=

σ2

2R̃
, (6.15)

which is independent of the number and location of the true points. These facts
are consistent with the results obtained by Berman [5] under the assumptions
that σ > 0 is fixed and n → ∞.

7. Error analysis of algebraic circle fits

Here we analyze algebraic circle fits using their matrix representation. We re-
call that A is a solution of the generalized eigenvalue problem MA = ηNA

corresponding to the smallest non-negative η. We also require ‖A‖ = 1.

Matrix perturbation method. For every random variable, matrix or vector,
L, we write

L = L̃ + ∆1L + ∆2L + OP (σ3), (7.1)

where L̃ is its ‘true’, nonrandom, value (achieved when σ = 0), ∆1L is a linear
combination of δi’s and εi’s, and ∆2L is a quadratic form of δi’s and εi’s; all
the higher order terms (cubic etc.) are represented by OP (σ3). For brevity, we
drop the OP (σ3) terms in our formulas. Therefore A = Ã + ∆1A + ∆2A and
M = M̃ + ∆1M + ∆2M, and (4.10) implies

∆1M = n−1(Z̃T ∆1Z + ∆1Z
T Z̃), (7.2)

∆2M = n−1(∆1Z
T ∆1Z + Z̃T ∆2Z + ∆2Z

T Z̃). (7.3)

Since the true points lie on the true circle, Z̃Ã = 0, as well as M̃Ã = 0 (hence
M̃ is a singular matrix). Therefore

ÃT ∆1MÃ = n−1ÃT
(

Z̃T ∆1Z + ∆1Z
T Z̃

)

Ã = 0, (7.4)

hence ATMA = OP (σ2), and premultiplying (4.14) by AT yields η = OP (σ2).
Next, substituting the expansions of M, A, and N into (4.14) gives

(M̃ + ∆1M + ∆2M)(Ã + ∆1A + ∆2A) = ηÑÃ (7.5)

(recall that N is data-dependent for the Taubin method, but only its ‘true’
value Ñ matters, as η = OP (σ2), hence the use of the observed values only adds
higher order terms). Now using M̃Ã = 0 yields

(M̃∆1A + ∆1MÃ) + (M̃∆2A + ∆1M∆1A + ∆2MÃ) = ηÑÃ (7.6)
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The left hand side of (7.6) consists of a linear part (M̃ ∆1A + ∆1MÃ) and a
quadratic part (M̃ ∆2A + ∆1M∆1A + ∆2MÃ). Separating them gives

M̃∆1A + n−1Z̃T ∆1ZÃ = 0 (7.7)

(where we used (7.2) and Z̃Ã = 0) and

M̃∆2A + ∆1M∆1A + ∆2MÃ = ηÑÃ. (7.8)

Note that M̃ is a singular matrix (because M̃Ã = 0), but whenever there are
at least three distinct true points, they determine a unique true circle, thus the
kernel of M̃ is one-dimensional, and it coincides with span(Ã). Also, we set
‖A‖ = 1, hence ∆1A is orthogonal to Ã, and we can write

∆1A = −n−1M̃−Z̃T ∆1ZÃ, (7.9)

where M̃− denotes the Moore-Penrose pseudoinverse. Now one can easily check
that E(∆1M∆1A) = O(σ2/n) and E(∆1A) = 0; these facts will be useful in
the upcoming analysis.

Variance of algebraic circle fits. From (7.9) we conclude that

E
[

(∆1A)(∆1A)T
]

= n−2M̃−
E(Z̃T ∆1ZÃÃT ∆1Z

T Z̃)M̃−

= n−2M̃−
E

[(

∑

i

Z̃i ∆1Z
T
i

)

ÃÃT
(

∑

j

∆1Z
T
j Z̃T

j

)]

M̃−,

(7.10)

where

Z̃i
def
=









z̃i

x̃i

ỹi

1









and ∆1Zi =









2x̃iδi + 2ỹiεi

δi

εi

0









(7.11)

denote the columns of the matrices Z̃T and ∆1Z
T , respectively. Next,

E
[

(∆1Zi)(∆1Zj)
T
]

=

{

0 whenever i 6= j

σ2T̃i whenever i = j
(7.12)

where

T̃i
def
=









4z̃i 2x̃i 2ỹi 0
2x̃i 1 0 0
2ỹi 0 1 0
0 0 0 0









. (7.13)

Note n−1
∑

T̃i = T̃ and ÃT T̃iÃ = ÃTPÃ = B̃2 + C̃2 − 4ÃD̃ for each i; recall
(4.11) and (4.12). Hence

∑

Z̃iÃ
T T̃iÃZ̃T

i =
∑

(ÃT PÃ)Z̃iZ̃
T
i = n(ÃT PÃ)M̃. (7.14)
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Combining the above formulas gives

E
[

(∆1A)(∆1A)T
]

= n−2M̃−
[

∑

i,j

Z̃iÃ
T

E
(

∆1Z
T
i ∆1Z

T
j

)

ÃZ̃T
j

]

M̃−

= n−2σ2M̃−
[

∑

Z̃iÃ
T T̃iÃZ̃T

i

]

M̃−

= n−1σ2M̃−(ÃT PÃ). (7.15)

Remarkably, the variance of algebraic fits does not depend on the constraint
matrix N, hence all algebraic fits have the same variance (to the leading order).
In the next section we will derive the variance of algebraic fits in the natural
circle parameters (a, b, R) and see that it coincides with the variance of the
geometric fit (6.6).

Bias of algebraic circle fits. Since E(∆1A) = 0, it will be enough to find
E(∆2A). Premultiplying (7.8) by ÃT yields

η =
ÃTMA

ÃTNA
=

ÃT ∆2MÃ + ÃT ∆1M∆1A

ÃT ÑÃ
+ OP (σ2/n). (7.16)

Recall that E(∆1M∆1A) = O(σ2/n), thus this term will not affect the essential
bias and we drop it. Taking the mean value and using (7.9) gives

E(η) =
ÃT

E(∆2M)Ã

ÃT ÑÃ
+ O(σ2/n), (7.17)

We substitute (7.3) into (7.16), use Z̃Ã = 0, then observe that

E(∆1Z
T ∆1ZÃ) = σ2

∑

T̃iÃ = 2Ãσ2
∑

Z̃i + nσ2PÃ (7.18)

(here Ã is the first component of the vector Ã). Then, note that ∆2Zi = (δ2
i +

ε2
i , 0, 0, 0)T , and so

E(Z̃T ∆2Z)Ã = 2Ãσ2
∑

Z̃i. (7.19)

Therefore the essential bias is given by

E(∆2A)
ess
= −σ2M̃−

[

4Ãn−1
∑

Z̃i + PÃ− ÃTPÃ

ÃT ÑÃ
ÑÃ

]

. (7.20)

A more detailed analysis (which we omit) gives the following expression con-
taining all the O(σ2) and O(σ2/n) terms:

E(∆2A) = −σ2M̃−
[

4Ãn−1
∑

Z̃i +
(

1 − 4
n

)

PÃ− (1 − 3
n
)(ÃTPÃ)

ÃT ÑÃ
ÑÃ

− 4Ãn−2
∑

(Z̃T
i M̃−Z̃i)Z̃i

]

+ O(σ4). (7.21)
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This expression demonstrates that the terms of order σ2/n (the non-essential
bias) only add a small correction, which is negligible when n is large.

The expressions (7.20) and (7.21) can be simplified. Note that the vector
n−1

∑

Z̃i coincides with the last column of the matrix M̃, hence

−σ2M̃−
[

4Ãn−1
∑

Z̃i

]

= −4σ2Ã [0, 0, 0, 1]T. (7.22)

In fact, this term will play the key role in the subsequent analysis.

8. Comparison of various circle fits

Bias of the Pratt and Taubin fits. We have seen that all the algebraic fits
have the same main characteristic – the variance (7.15), to the leading order.
We will see below that their variance coincides with that of the geometric circle
fit. Thus the difference between all our circle fits should be traced to the higher
order terms, especially to their essential biases.

First we compare the Pratt and Taubin fits. For the Pratt fit, the constraint
matrix is N = Ñ = P, hence its essential bias (7.20) becomes

E(∆2APratt)
ess
= −4σ2Ã [0, 0, 0, 1]T . (8.1)

In other words, the Pratt constraint N = P cancels the second (middle) term
in (7.20); it leaves the first term intact.

For the Taubin fit, the constraint matrix is N = T and its ‘true’ value is
Ñ = T̃ = 1

n

∑

T̃i; also note that T̃iÃ = 2ÃZ̃i + PÃ for every i. Hence the
Taubin’s bias is

E(∆2ATaubin)
ess
= −2σ2Ã [0, 0, 0, 1]T . (8.2)

Thus, the Taubin constraint N = T cancels the second term in (7.20) and a
half of the first term; it leaves only a half of the first term in place.

As a result, the Taubin fit’s essential bias is twice as small as that of the Pratt
fit. Given that their main terms (variances) are equal, we see that the Taubin fit
is statistically more accurate than that of Pratt. We believe our analysis answers
the question posed by Taubin [32] who intended to compare his fit to Pratt’s.

‘Hyperaccurate’ algebraic fit. Our error analysis leads to another stunning
discovery – an algebraic fit that has no essential bias at all. To our knowledge,
this is the first such algorithm for curve fitting problems.

Let us set the constraint matrix to

N = H
def
= 2T −P =









8z̄ 4x̄ 4ȳ 2
4x̄ 1 0 0
4ȳ 0 1 0
2 0 0 0









. (8.3)

Then one can easily see that HÃ = 4Ã 1
n

∑

Z̃i + PÃ, as well as ÃT HÃ =

ÃT PÃ, hence all the terms in (7.20) cancel out! The resulting essential bias
vanishes:

E(∆2AHyper)
ess
= 0. (8.4)
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We call this fit hyperaccurate, or ‘Hyper’ for short. The term hyperaccuracy was
introduced by Kanatani [21, 22] who was first to employ Taylor expansion up
to the terms of order σ4 for the purpose of comparing various algebraic fits and
designing better fits.

We note that the Hyper fit is invariant under translations and rotations
because its constraint matrix H is a linear combination of two others, T and P,
that satisfy the invariance requirements; see a proof in [14].

As any other algebraic circle fit, the Hyper fit minimizes the function F(A) =
AT MA subject to the constraint AT NA = 1 (with N = H), hence we need to
solve the generalized eigenvalue problem MA = ηHA and choose the solution
with the smallest non-negative eigenvalue η (see the end of Section 4).

We note that the matrix H is not singular, three of its eigenvalues are positive
and one is negative (these facts can be easily derived from the following simple
observations: detH = −4, traceH = 8z̄ + 2 > 1, and λ = 1 is one of its
eigenvalues). If M is positive definite, then by Sylvester’s law of inertia the
matrix H−1M has the same signature as H does, i.e. the eigenvalues η of H−1M

are all real, exactly three of them are positive and one is negative. In this sense
the Hyper fit is similar to the Pratt fit, as the constraint matrix P also has three
positive and one negative eigenvalues.

The Hyper fit can be computed by a numerically stable procedure involv-
ing singular value decomposition (SVD). First, we compute the (short) SVD,
Z = UΣVT , of the matrix Z. If its smallest singular value, σ4, is less than
a predefined tolerance ε (we suggest ε = 10−12), then A is the corresponding
right singular vector, i.e. the fourth column of the V matrix. In the regular
case (σ4 ≥ ε), one forms Y = VΣVT and finds the eigenpairs of the symmet-
ric matrix YH−1Y. Selecting the eigenpair (η, A∗) with the smallest positive
eigenvalue and computing A = Y−1A∗ completes the solution. The prior trans-
lation of the coordinate system to the centroid of the data set (which ensures
that x̄ = ȳ = 0) makes the computation of H−1 particularly simple. The corre-
sponding MATLAB code is available from our web page [14].

Transition between parameter schemes. Our next goal is to express the
covariance and the essential bias of the algebraic circle fits in terms of the
natural parameters Θ = (a, b, R)T . Taking partial derivatives in (3.8) gives a
3 × 4 ‘Jacobian’ matrix

J
def
=







B2

2A2 − 1
2A

0 0

C2

2A2 0 − 1
2A

0

−R
A
− D

2A2R
B

4A2R
C

4A2R
− 1

2AR






. (8.5)

Thus we have

∆1Θ = J̃∆1A and ∆2Θ = J̃∆2A + OP (σ2/n), (8.6)

where J̃ denotes the matrix J at the true parameters (Ã, B̃, C̃, D̃). The remain-
der term OP (σ2/n) comes from the second order partial derivatives, for example

∆2a = (∇a)T (∆2A) + 1
2
(∆1A)T (∇2a)(∆1A), (8.7)
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where ∇2a is the Hessian matrix of the second order partial derivatives of a
with respect to (A, B, C, D). The last term in (8.7) can be actually discarded,
as it is of order OP (σ2/n) because ∆1A = OP (σ/

√
n). We collect all such terms

in the remainder term OP (σ2/n) in (8.6).
Next we need a useful fact. Suppose a point (x0, y0) lies on the true circle

(ã, b̃, R̃), i.e.
(x0 − ã)2 + (y0 − b̃)2 = R̃2. (8.8)

In accordance with our early notation we denote z0 = x2
0 + y2

0 and Z0 =
(z0, x0, y0, 1)T . We also put u0 = (x0 − ã)/R̃ and v0 = (y0 − b̃)/R̃, and con-
sider the vector W0 = (u0, v0, 1)T . The following formula will be useful:

2ÃR̃J̃M̃−Z0 = −n(WT W)−1W0, (8.9)

where the matrix (WTW)−1 appears in (6.12) and the matrix M̃− appears in
(7.15). The identity (8.9) is easy to verify directly for the unit circle ã = b̃ = 0
and R̃ = 1, and then one can check that it remains valid under translations and
similarities.

Equation (8.9) implies that for every true point (x̃i, ỹi)

4Ã2R̃2J̃M̃−Z̃iZ̃
T
i M̃−J̃T = n2(WTW)−1WiW

T
i (WT W)−1, (8.10)

where Wi = (ũi, ṽi, 1)T denote the columns of the matrix W, cf. (5.19). Sum-
ming up over i gives

4Ã2R̃2J̃M̃−J̃T = n(WTW)−1. (8.11)

Variance and bias of algebraic circle fits in the natural parameters.

Now we can compute the variance (to the leading order) of the algebraic fits in
the natural geometric parameters. Notice that the third relation in (3.8) implies
ÃT PÃ = B̃2 + C̃2 − 4ÃD̃ = 4Ã2R̃2. Thus using (8.11) gives

E
[

(∆1Θ)(∆1Θ)T
]

= E
[

J(∆1A)(∆1A)TJT
]

= n−1σ2(ÃT PÃ)(JM̃−JT )

= σ2(4Ã2R̃2n−1JM̃−JT )

= σ2(WTW)−1. (8.12)

Thus the variance of all the algebraic circle fits (to the leading order) coincides
with that of the geometric circle fit, cf. (6.6). Therefore the difference between
all the circle fits should be then characterized in terms of their biases, which we
do next.

The essential bias of the Pratt fit is, due to (8.1),

E(∆2Θ̂Pratt)
ess
= 2σ2R̃−1

[

0, 0, 1
]T

. (8.13)

Observe that the estimates of the circle center are essentially unbiased, and
the essential bias of the radius estimate is 2σ2/R̃, which is independent of the
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θ

Fig 1. The arc containing the true points.

number and location of the true points. We know that the essential bias of the
Taubin fit is twice as small, hence

E(∆2Θ̂Taubin)
ess
= σ2R̃−1

[

0, 0, 1
]T

. (8.14)

Comparing to (6.14) shows that the geometric fit has an essential bias that is
twice as small as that of Taubin and four times smaller than that of Pratt.
Therefore, the geometric fit has the smallest bias among all the popular circle
fits, i.e. it is statistically most accurate.

The formulas for the bias of the K̊asa fit can be derived, too, but in gen-
eral they are complicated. However recall that all our fits, including K̊asa, are
independent of the choice of the coordinate system, hence we can choose it
so that the true circle has center at (0, 0) and radius R̃ = 1. For this circle
Ã = 1√

2
[1, 0, 0,−1]T, hence PÃ = 2Ã and so M̃−PÃ = 0, i.e. the middle term

in (7.20) is gone. Also note that ÃT PÃ = 2, hence the last term in parentheses
in (7.20) is 2

√
2 [1, 0, 0, 0]T.

Next, assume for simplicity that the true points are equally spaced on an
arc of size θ (a typical arrangement in many studies). Choosing the coordinate
system so that the east pole (1, 0) is at the center of that arc (see Figure 1)
ensures ȳ = xy = 0. It is not hard to see now that

M̃−[1, 0, 0, 0]T = 1
4
(xx − x̄2)−1[xx,−2x̄, 0, xx]T . (8.15)

Using the formula (8.6) we obtain (omitting details as they are not so relevant)
the essential bias of the K̊asa fit in the natural parameters (a, b, R):

E(∆2Θ̂Kasa)
ess
= 2σ2

[

0, 0, 1
]T − σ2

xx − x̄2

[

−x̄, 0, xx
]T

. (8.16)

The first term here is the same as in (8.13) (recall that R̃ = 1), but it is
the second term above that causes serious trouble: it grows to infinity because
xx − x̄2 → 0 as θ → 0. This explains why the K̊asa fit develops a heavy bias
toward smaller circles when data points are sampled from a small arc.
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Table 2

Mean square error (and its components) for four circle fits (104
×values are shown). In this

test n = 100 points are placed (equally spaced) along a semicircle of radius R = 1 and the
noise level is σ = 0.05

total MSE = variance + (ess. bias)2 + rest of MSE

Pratt 1.5164 1.2647 0.2500 0.0017

Taubin 1.3451 1.2647 0.0625 0.0117

Geom. 1.2952 1.2647 0.0156 0.0149

Hyper. 1.2892 1.2647 0.0000 0.0244

Table 3

Mean square error (and its components) for four circle fits (106
×values are shown). In this

test n = 10000 points are placed (equally spaced) along a semicircle of radius R = 1 and the
noise level is σ = 0.05

total MSE = variance + (ess. bias)2 + rest of MSE

Pratt 25.5520 1.3197 25.0000 -0.76784

Taubin 7.4385 1.3197 6.2500 -0.13126

Geom. 2.8635 1.3197 1.5625 -0.01876

Hyper. 1.3482 1.3197 0.0000 -0.02844

9. Experimental tests and conclusions

To illustrate our analysis of various circle fits we have run a few computer
experiments where we set n true points equally spaced along a semicircle of
radius R = 1. Then we generated random samples by adding a Gaussian noise
at level σ = 0.05 to each true point, and after that applied various circle fits to
estimate the parameters (a, b, R).

Table 2 summarizes the results of the first test, with n = 100 points; it shows
the mean square error (MSE) of the radius estimate R̂ for each circle fit (ob-
tained by averaging over 107 randomly generated samples). The table also gives
the breakdown of the MSE into three components. The first two are the vari-
ance (to the leading order) and the square of the essential bias, both computed
according to our theoretical formulas. These two components do not account
for the entire mean square error, due to higher order terms which our analysis
discarded. The remaining part of the MSE is shown in the last column, which is
relatively small. (We note that only the total MSE can be observed in practice;
all the other columns of this table are the results of our theoretical analysis.)

We see that all the circle fits have the same (leading) variance, which accounts
for the ‘bulk’ of the MSE. Their essential bias is different, it is highest for the
Pratt fit and smallest (zero) for the Hyper fit. Algorithms with smaller essential
biases perform overall better, i.e. have smaller mean square error. The Hyper fit
is the best in our experiment; it outperforms the (usually unbeatable) geometric
fit.

To highlight the superiority of the Hyper fit, we repeated our experiment
increasing the sample up to n = 10000, see Table 3 and Figure 2. We see that
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Fig 2. MSE for various circle fits (on the logarithmic scale) versus the sample size n (from
10 to 104).

when the number of points is high, the the Hyper fit becomes several times more
accurate than the geometric fit. Thus, our analysis disproves the popular belief
in the statistical community that there is nothing better than minimizing the
orthogonal distances.

Needless to say, the geometric fit involves iterative approximations, which
are computationally intensive and subject to occasional divergence, while our
Hyper fit is a fast non-iterative procedure, which is 100% reliable.

Summary. All the known circle fits (geometric and algebraic) have the same
variance, to the leading order. The relative difference between them can be
traced to higher order terms in the expansion for the mean square error. The
second leading term in that expansion is the essential bias, for which we have
derived explicit expressions. Circle fits with smaller essential bias perform better
overall. This explains a poor performance of the K̊asa fit, a moderate perfor-
mance of the Pratt fit, and a good performance of the Taubin and geometric
fits (in this order). We showed that while there is a natural lower bound on the
variance to the leading order (the KCR bound), there is no lower bound on the
essential bias. In fact there exists an algebraic fit with zero essential bias (the
Hyper fit), which outperforms the geometric fit in accuracy. We plan to perform
a similar analysis for ellipse fitting algorithms in the near future.
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