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Making the Cauchy work

Saralees Nadarajah
University of Manchester

Abstract. A truncated version of the Cauchy distribution is introduced. Un-
like the Cauchy distribution, this possesses finite moments of all orders and
could therefore be a better model for certain practical situations. More than 10
practical situations where the truncated distribution could be applied are dis-
cussed. Explicit expressions are derived for the moments, L moments, mean
deviations, moment generating function, characteristic function, convolution
properties, Bonferroni curve, Lorenz curve, entropies, order statistics and the
asymptotic distribution of the extreme order statistics. Estimation procedures
are detailed by the method of moments and the method of maximum likeli-
hood and expressions derived for the associated Fisher information matrix.
Simulation issues are discussed. Finally, an application is illustrated for con-
sumer price indices from the six major economics.

1 Introduction

The Cauchy distribution given by the probability density function (pdf):

f (x) = 1

πθ

{
1 +

(
x − μ

θ

)2}−1

(1.1)

(for −∞ < x < ∞, θ > 0 and −∞ < μ < ∞) has been studied in the mathe-
matical world for over three centuries. An excellent historical account of the dis-
tribution has been prepared by Stigler (1974). As he points out, (1.1) seems to
have appeared first in the works of Pierre de Fermat in the mid-17th century and
was subsequently studied by many including Sir Issac Newton, Gottfried Leibniz,
Christian Huygens, Guido Grandi, and Maria Agnesi. The parameters μ and θ

are the location and scale parameters, respectively. The distribution is symmetrical
about x = μ. The median is μ; the upper and lower quartiles are μ ± θ ; and, the
points of inflexion are at μ ± θ/

√
3.

The main weakness of (1.1) is that it has no moments. In this paper, we over-
come this weakness by introducing a truncated version. It has the pdf and cumula-
tive distribution function (cdf) specified by

f (x;A,B) = 1

θD

{
1 +

(
x − μ

θ

)2}−1

(1.2)
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and

F(x;A,B) = 1

D

{
arctan

(
x − μ

θ

)
− arctan

(
A − μ

θ

)}
, (1.3)

respectively, for −∞ ≤ A ≤ x ≤ B ≤ ∞, −∞ < μ < ∞ and θ > 0, where

D(A,B) = arctan(β) − arctan(α), (1.4)

where α = (A − μ)/θ and β = (B − μ)/θ . This distribution originally ap-
peared in Johnson and Kotz (1970) and Rohatgi (1976) in simpler forms. John-
son and Kotz (1970) derived the variance and discussed estimation issues for
the symmetric standard case given by A = −B , μ = 0 and θ = 1. Rohatgi
(1976) derived expressions for the first two moments for the standard case given
by μ = 0 and θ = 1. Note that (1.2) is unimodal. The mode is at x = μ if
A ≤ μ ≤ B . If B < μ then the mode is at x = B . If μ < A then the mode is at
x = A.

Because (1.2) is defined over a finite interval, the truncated Cauchy distribution
has all its moments. So, (1.2) may prove to be a better model for certain practical
situations than one based on just the Cauchy distribution. Below, we discuss more
than 10 such situations.

The Cauchy distribution given by (1.1) has been applied in the past as models
for depth map data, prices of speculative assets such as stock returns and the phase
derivative (random frequency of a narrow-band mobile channel) of air components
in an urban environment. For data of this kind, there is no reason to believe that
empirical moments of any order should be infinite. So, the choice of the Cauchy
distribution as a model is unrealistic since none of its moments are finite. The
alternative truncated Cauchy distribution given by (1.2) will be a more appropriate
model for the kind of data mentioned. The choice of the limits, A and B , could be
easily based on historical records.

A main problem with characterizing employment productivity distributions is
to find a reasonable measure of the minimal and maximal productivity. In both
ends of the distribution one is likely to find accumulations of measurement errors
due either to downright faulty data or time aggregation problems associated with,
for example, plant closures and new plants. With respect to Swedish employment
data, Forslund and Lindh (2004) took average wage costs as the measure of min-
imal sustainable productivity and 95th percentile productivity as a fairly reliable
indicator of maximal sustainable productivity. Forslund and Lindh (2004) found
that the empirical employment distribution between these two productivity values
was well described by a truncated Cauchy distribution.

Consider the truncated Cauchy distribution in (1.2) for A = 0, B = ∞, μ = 0
and θ = 1. So, we have f (x) = (2/π)(1 + x2)−1 for x > 0 with the asymptotic
tail f (x) ∼ (2/π)x−2 as x → ∞. Yablonsky (1985) established that (2/π)x−2

coincides with the classical Lotka distribution of scientific productivity (describing
the frequency of publication by authors in any given field) up to a normalizing
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constant. So, Lotka’s law is an approximate expression of the asymptotic form of
the truncated Cauchy distribution.

Pdfs of surface velocity and surface velocity gradients in the ocean provide
information about turbulence in a high-Reynolds-number geophysical flow. The
theoretical velocity pdfs are usually Gaussian. The velocity gradient pdfs are usu-
ally truncated Cauchy. See Jimenez (1996) for theoretical arguments supporting
these statements.

Mitra and Das (1989) use the truncated Cauchy distribution in the field of crys-
tallographic statistics. They state “. . . the Cauchy or Lorentzian distribution, hav-
ing no finite moment apart from above and the first—is looked upon with suspi-
cion. But one never works with a distribution function ranging between ±∞; the
function is cut off on the surface of the sphere of reflection. Thus we are actually
dealing with a truncated Cauchy distribution function for which second and higher
moments exist.”

The ionosphere is the uppermost part of the atmosphere, distinguished because
it is ionized by solar radiation. It plays an important part in atmospheric electricity
and forms the inner edge of the magnetosphere. There are different layers of ion-
ization. The most important of these is the Es layer characterized by small clouds
of intense ionization, which can support radio wave reflections from 25–225 MHz.
The appearance of abnormally large fluctuations in the electron density (ED) of
the Es layer is relatively frequent. Moiseev (1997) determined that distribution of
maximum values of the ED of the Es layer is close to the Cauchy distribution.
However, the Cauchy distribution permits negative values of ED and has no mo-
ments. To render the description more physical, one must impose boundary con-
ditions prohibiting the appearance of ED values below the background level and
above the maximum permissible level.

The packet size in many traffic models follows the truncated Cauchy distribu-
tion. For example, for the FUNET (Finnish University and Research Network)
model the packet size is distributed according to (1.2) with μ = 0.8, θ = 1, A = 0
and B = 10 kilobytes. See Ni (2001).

Truncated Cauchy distributions can be applied in numerous industrial settings
(Cho and Govindaluri, 2002; Jeang, 1997; Kapur and Cho, 1994, 1996; Phillips
and Cho, 1998, 2000). Final products are often subject to screening inspection
before being sent to the customer. The usual practice is that if a product’s perfor-
mance falls within certain tolerance limits, it is judged conforming and sent to the
customer. If it fails, a product is rejected and thus scrapped or reworked. In this
case, the actual distribution to the customer is truncated. Another example can be
found in a multistage production process, in which inspection is performed at each
production stage. If only conforming items are passed on to the next stage, the
actual distribution is a truncated distribution. Accelerated life testing with samples
censored is also a good example. In fact, the concept of a truncated distribution
plays a significant role in analyzing a variety of production processes, process op-
timization and quality improvement.
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Truncated Cauchy distributions can be used to model intensity statistics in the
study of atomic heterogeneity (Bhowmick et al., 2000). The justification being
that: (1) atomic heterogeneity led to the intensity statistics being modified from
Gaussian to near Gaussian forms (Shmueli, 1979; Shmueli and Wilson, 1981); and
(2) in reality, the structure factors or normalized structure factors do not range from
−∞ to ∞ but over a finite range.

Measurements on a high-performance Ethernet can match well a truncated
Cauchy distribution, with a much better fit over smaller file/request sizes than the
commonly used Pareto distribution. Field et al. (2004) showed that measured traf-
fic from three locations on a state-of-the-art switched Ethernet fit closely various
truncated Cauchy distributions.

Truncated Cauchy distributions have also been used to describe local magnetic
fields due to susceptibility differences in porous media; see Borgia et al. (1996)
and Fantazzini and Brown (2005).

Truncated Cauchy distributions also have use in Monte Carlo simulations. For
example, consider simulating from the Poisson (λ) distribution by the rejection
algorithm. One could choose the envelope density to be (1.2) with μ = λ, θ =√

2λ, A = 0 and B = ∞.
Truncated Cauchy distributions are also popular priors for Bayesian models es-

pecially with respect to economic data; see, for example, Bauwens et al. (1999).
The aim of this paper is to provide a comprehensive account of the mathemati-

cal properties of (1.2). The following properties are derived: moment properties as
well as a skewness-kurtosis chart (Section 2); L moments (Section 3); mean de-
viations (Section 4); moment generating and characteristic functions (Section 5);
convolution (Section 6); Bonferroni and Lorenz curves (Section 7); entropy mea-
sures (Section 8); order statistics (Section 9); the asymptotic distribution of the
extreme order statistics (Section 10); estimation procedures by the methods of
moments and maximum likelihood as well as the associated Fisher information
matrix (Section 11); and, simulation procedures (Section 12). Section 13 discusses
an application to consumer price indices from the six major economies.

The calculations of this paper use several special functions, including Euler’s
psi function defined by

ψ(x) = d log�(x)

dx
,

the exponential integral defined by

Ei(x) =
∫ x

−∞
exp(t)

t
dt

and the Gauss hypergeometric function defined by

2F1(a, b; c;x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k! ,
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where (z)k = z(z+1) · · · (z+k−1) denotes the ascending factorial. The properties
of these special functions can be found in Prudnikov et al. (1986) and Gradshteyn
and Ryzhik (2000).

2 Moments

Here, we discuss moments of a random variable X having the pdf (1.2). Some of
the results given have been reported earlier by Nadarajah and Kotz (2006). They
are reproduced here for completeness. Note that one can write the nth moment of
X as

E(Xn;A,B) = 1

θD

∫ B

A
xn

{
1 +

(
x − μ

θ

)2}−1

dx. (2.1)

Setting y = (x − μ)/θ and using the binomial expansion

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk,

one can rewrite (2.1) as

E(Xn;A,B) = 1

D

∫ β

α

(μ + θy)n

1 + y2 dy

= 1

D

n∑
k=0

(
n

k

)
μn−kθk

∫ β

α

yk

1 + y2 dy (2.2)

= 1

D

n∑
k=0

(
n

k

)
μn−kθk{Ik(β) − Ik(α)},

where

Ik(c) =
∫ c

0

yk

1 + y2 dy.

By equation (3.194.5) in Gradshteyn and Ryzhik (2000), one can calculate Ik(c)

as

Ik(c) = ck+1

k + 1
2F1

(
1,

k + 1

2
; k + 3

2
;−c2

)
. (2.3)

By combining (2.2) and (2.3) it follows that the nth moment of X is given by

E(Xn;A,B)

= μn

D

n∑
k=0

1

k + 1

(
n

k

)(
θ

μ

)k{
βk+1

2F1

(
1,

k + 1

2
;1 + k + 1

2
;−β2

)
(2.4)

− αk+1
2F1

(
1,

k + 1

2
;1 + k + 1

2
;−α2

)}
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for n ≥ 1. In the standard case μ = 0 and θ = 1, using standard properties of the
Gauss hypergeometric function, one can obtain the first four moments of X from
(2.4) as:

E(X;A,B) = {log(1 + B2) − log(1 + A2)}/(2D), (2.5)

E(X2;A,B) = {arctan(A) − arctan(B) − A + B}/D, (2.6)

E(X3;A,B) = {log(1 + A2) − log(1 + B2) − A2 + B2}/(2D) (2.7)

and

E(X4;A,B) = {3 arctan(B) − 3 arctan(A) − A3 + B3 + 3A − 3B}/(3D). (2.8)

The truncated Cauchy distribution given by (1.2) is much more flexible than
the Cauchy distribution in (1.1). This is illustrated by the skewness-kurtosis charts
[see, e.g., Dudewicz and Mishra (1988)] shown in Figure 1 for the case μ = 0 and
θ = 1. The skewness and kurtosis were computed using (2.5)–(2.8) over the grid of
values defined by A = −10,−9.9, . . . ,10 and B = A + 0.1,A + 0.2, . . . ,10. The
boundaries of the chart on left hand side of the figure (i.e., left of the line where

Figure 1 Skewness-kurtosis chart for the truncated Cauchy distribution given by (1.2) with μ = 0
and θ = 1.
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skewness is zero) correspond to large negative values of A and those on the right
of the figure correspond to large positive values of A.

3 L moments

L-moments are summary statistics for probability distributions and data samples
(Hoskings, 1990). They are analogous to ordinary moments but are computed from
linear combinations of the ordered data values. The nth L moment is defined by

λn =
n−1∑
j=0

(−1)n−1−j

(
n − 1

j

)(
n − 1 + j

j

)
βj , (3.1)

where

βr =
∫

x{F(x)}rf (x) dx.

The L moments have several advantages over ordinary moments: for example,
they apply for any distribution having finite mean; no higher-order moments need
be finite.

Suppose X is a truncated Cauchy random variable with its pdf specified by (1.2).
Assume without loss of generality that μ = 0 and θ = 1. Then the nth L moment
of X is given by (3.1), where

βr = D−r−1
r∑

i=0

(
r

i

)
(− arctan(A))r−i

∫ B

A
x(arctan(x))i(1 + x2)−1 dx. (3.2)

Using the series expansion

arctan(x) =
∞∑

k=0

(−1)kx2k+1

2k + 1
, (3.3)

one can calculate (3.2) as

βr = D−r
r∑

i=0

(
r

i

)
(− arctan(A))r−i

×
∞∑

k1=0

· · ·
∞∑

ki=0

(−1)k1+···+ki

(2k1 + 1) · · · (2ki + 1)
E

(
X2(k1+···+ki)+i+1;A,B

)
.

4 Mean deviations

The amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. These are known as the mean
deviation about the mean and the mean deviation about the median—defined by

δ1(X) =
∫ ∞

0
|x − μ|f (x) dx (4.1)
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and

δ2(X) =
∫ ∞

0
|x − M|f (x) dx, (4.2)

respectively, where μ = E(X) and M denotes the median. Let X be a random
variable with its pdf given by (1.2). Then the measure in (4.1) can be calculated as

δ1(X) =
∫ μ

A
(μ − x)f (x;A,B)dx

+
∫ B

μ
(x − μ)f (x;A,B)dx

= 2
{
μF(μ;A,B) −

∫ μ

A
xf (x;A,B)dx

}

= 2
{
μF(μ;A,B) − D(A,μ)E(X;A,μ)

D(A,B)

}
.

Similarly, the measure in (4.2) can be calculated as

δ2(X) =
∫ M

A
(M − x)f (x;A,B)dx +

∫ B

M
(x − M)f (x;A,B)dx

= E(X;A,B) − 2
∫ M

A
xf (x;A,B)dx

= E(X;A,B) − 2
D(A,M)E(X;A,M)

D(A,B)
.

5 MGF and CHF

Let X be a random variable with its pdf given by (1.2). Let i = √−1 denote the
imaginary unit. Then the mgf of X, M(t) = E[exp(tX)], can be expressed as

M(t) = 1

θD

∫ B

A
exp(tx)

{
1 +

(
x − μ

θ

)2}−1

dx

= exp(μt)

θD

∫ β

α
exp(θty)(1 + y2)−1 dy

= exp(μt)

2θDi

∫ β

α
exp(θty)(y + 1/i)−1 dy − exp(μt)

2θDi

×
∫ β

α
exp(θty)(y − 1/i)−1 dy

= exp(μt − θt/i)

2θDi

{
Ei

(
βθt + θt

i

)
− Ei

(
αθt + θt

i

)}
− exp(μt + θt/i)

2θDi

{
Ei

(
βθt − θt

i

)
− Ei

(
αθt − θt

i

)}
,
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where the last step follow by equation (3.352.1) in Gradshteyn and Ryzhik (2000).
It follows that the chf of X, φ(t) = E[exp(itX)], is

φ(t) = exp(μit − θt)

2θDi
{Ei(βθit + θt) − Ei(αθit + θt)}

− exp(μit + θt)

2θDi
{Ei(βθit − θt) − Ei(αθit − θt)}.

6 Convolution

If X1 and X2 are independent Cauchy random variables then it is well known that
their convolution, X1 + X2, is also a Cauchy random variable. It is natural to ask
whether this property holds for truncated Cauchy random variables. Suppose X1
and X2 are independent random variables with the pdf (1.2) for (μ, θ,A,B) =
(μ1, θ1,A1,B1) and (μ, θ,A,B) = (μ2, θ2,A2,B2), respectively. Let D1 and D2
denote that corresponding normalizing constants given by (1.4). Let S = X1 +X2.
Then the pdf of S can be written as

fS(s) = θ1θ2

D1D2

∫
dx

{(x − μ1)2 + θ2
1 }{(s − x − μ2)2 + θ2

2 }

= 1

4D1D2

∫ {
α1 − α3

x − μ1 + iθ1
+ α4 − α2

x − μ1 − iθ1
(6.1)

+ α2 − α1

x + μ2 − s − iθ2

α3 − α4

x + μ2 − s + iθ2

}
dx

by partial fractions, where i = √−1, α1 = (μ2 − s − iθ2 + μ1 − iθ1)
−1, α2 =

(μ2 − s − iθ2 + μ1 + iθ1)
−1, α3 = (μ2 − s + iθ2 + μ1 − iθ1)

−1 and α4 = (μ2 −
s + iθ2 + μ1 + iθ1)

−1. If B1 + A2 ≤ A1 + B2 then (6.1) can be reduced to

fS(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4D1D2

{
(α1 − α3) log s−A2−μ1+iθ1

A1−μ1+iθ1
+ (α4 − α2) log s−A2−μ1−iθ1

A1−μ1−iθ1

+ (α2 − α1) log s−A2+μ2−s−iθ2
A1+μ2−s−iθ2

+ (α3 − α4) log s−A2+μ2−s+iθ2
A1+μ2−s+iθ2

}
,

if A1 + A2 ≤ s ≤ B1 + A2,
1

4D1D2

{
(α1 − α3) log B1−μ1+iθ1

A1−μ1+iθ1
+ (α4 − α2) log B1−μ1−iθ1

A1−μ1−iθ1

+ (α2 − α1) log B1+μ2−s−iθ2
A1+μ2−s−iθ2

+ (α3 − α4) log B1+μ2−s+iθ2
A1+μ2−s+iθ2

}
,

if B1 + A2 ≤ s ≤ A1 + B2,
1

4D1D2

{
(α1 − α3) log B1−μ1+iθ1

s−B2−μ1+iθ1
+ (α4 − α2) log B1−μ1−iθ1

s−B2−μ1−iθ1

+ (α2 − α1) log B1+μ2−s−iθ2
s−B2+μ2−s−iθ2

+ (α3 − α4) log B1+μ2−s+iθ2
s−B2+μ2−s+iθ2

}
,

if A1 + B2 ≤ s ≤ B1 + B2.
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If B1 + A2 ≥ A1 + B2 then (6.1) can be reduced to

fS(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4D1D2

{
(α1 − α3) log s−A2−μ1+iθ1

A1−μ1+iθ1
+ (α4 − α2) log s−A2−μ1−iθ1

A1−μ1−iθ1

+ (α2 − α1) log s−A2+μ2−s−iθ2
A1+μ2−s−iθ2

+ (α3 − α4) log s−A2+μ2−s+iθ2
A1+μ2−s+iθ2

}
,

if A1 + A2 ≤ s ≤ A1 + B2,
1

4D1D2

{
(α1 − α3) log s−A2−μ1+iθ1

s−B2−μ1+iθ1
+ (α4 − α2) log s−A2−μ1−iθ1

s−B2−μ1−iθ1

+ (α2 − α1) log s−A2+μ2−s−iθ2
s−B2+μ2−s−iθ2

+ (α3 − α4) log s−A2+μ2−s+iθ2
s−B2+μ2−s+iθ2

}
,

if A1 + B2 ≤ s ≤ A2 + B1,
1

4D1D2

{
(α1 − α3) log B1−μ1+iθ1

s−B2−μ1+iθ1
+ (α4 − α2) log B1−μ1−iθ1

s−B2−μ1−iθ1

+ (α2 − α1) log B1+μ2−s−iθ2
s−B2+μ2−s−iθ2

+ (α3 − α4) log B1+μ2−s+iθ2
s−B2+μ2−s+iθ2

}
,

if A2 + B1 ≤ s ≤ B1 + B2.
It is clear that the convolution, X1 +X2, is not a truncated Cauchy random variable
of the type given by (1.2).

7 Bonferroni and Lorenz curves

Bonferroni and Lorenz curves (Bonferroni, 1930) have applications not only in
economics to study income and poverty, but also in other fields like reliability, de-
mography, insurance and medicine. For a random variable X with quantile function
F−1(·), they are defined by

B(p) = 1

pμ

∫ p

0
F−1(t) dt (7.1)

and

L(p) = 1

μ

∫ p

0
F−1(t) dt, (7.2)

respectively, where μ = E(X). Suppose X is a truncated Cauchy random variable
with its pdf specified by (1.2) for 0 ≤ A < B < ∞. Then F−1(t) = μ+θ tan(Dt +
arctan(α)) and∫ p

0
F−1(t) dt = pE(X;A,B) + θ

∫ p

0
tan

(
Dt + arctan(α)

)
dt

= pE(X;A,B) − θD log
∣∣∣∣cos(Dp + arctan(α))

cos(arctan(α))

∣∣∣∣.
So, (7.1) and (7.2) reduce to

B(p) = 1 − θD

pE(X;A,B)
log

∣∣∣∣cos(Dp + arctan(α))

cos(arctan(α))

∣∣∣∣
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and

L(p) = p − θD

E(X;A,B)
log

∣∣∣∣cos(Dp + arctan(α))

cos(arctan(α))

∣∣∣∣,
respectively.

8 Entropies

An entropy of a random variable X is a measure of variation of the uncertainty.
One of the popular entropy measure is the Rényi entropy defined by

JR(γ ) = 1

1 − γ
log

{∫
f γ (x) dx

}
, (8.1)

where γ > 0 and γ �= 1 (Rényi, 1961). For the pdf (1.2), it can be seen that∫
f γ (x) dx = C−γ

∫ B

A

{
1 +

(
x − μ

θ

)2}−γ

dx

(8.2)
= 2−1C−γ θ{J (β) − J (α)},

where C = θD, D = arctan(β) − arctan(α), α = (A − μ)/θ , β = (B − μ)/θ and

J (c) =
∫ c2

0

z−1/2

(1 + z)γ
dz.

By equation (3.194.1) in Gradshteyn and Ryzhik (2000), one can calculate J (c) as

J (c) = 2c2F1

(
1

2
, γ ; 3

2
;−c2

)
. (8.3)

By combining (8.2) and (8.3) it follows that the Rényi entropy (8.1) for the trun-
cated Cauchy distribution is given by

JR(γ ) = 1

1 − γ
log{C−γ θH(γ )}, (8.4)

where

H(γ ) = β2F1

(
1

2
, γ ; 3

2
;−β2

)
− α2F1

(
1

2
, γ ; 3

2
;−α2

)
.

Shannon entropy defined by E[− logf (X)] is the particular case of (8.1) for γ ↑ 1.
Limiting γ ↑ 1 in (8.4) and using L’Hospital’s rule and the facts

2F1

(
1

2
,1; 3

2
; z

)
= arctanh(

√
z)√

z

and

∂

∂b
2F1(a, b; c;x) =

∞∑
k=0

(a)k(b)kψ(b + k)

(c)k

xk

k! − ψ(b)2F1(a, b; c;x),



110 S. Nadarajah

one obtains

E[− logf (X)] = logC − δ − β

D

∞∑
k=0

(1/2)kψ(1 + k)

(3/2)k
(−β2)k

+ α

D

∞∑
k=0

(1/2)kψ(1 + k)

(3/2)k
(−α2)k,

where δ denotes Euler’s constant. Song (2001) observed that the gradient of the
Rényi entropy J ′

R(γ ) = (d/dγ )JR(γ ) is related to the loglikelihood by J ′
R(1) =

−(1/2)Var[log(f (X))]. This equality and the fact that the quantity −J ′
R(1) re-

mains invariant under location and scale transformations motivated Song to pro-
pose −2J ′

R(1) as a measure of the shape of a distribution. From (8.4), the first
derivative is

J ′
R(γ ) = (1 − γ )−1

{
− logC + 1

H(γ )

[
β

∂

∂γ
2F1

(
1

2
, γ ; 3

2
;−β2

)

− α
∂

∂γ
2F1

(
1

2
, γ ; 3

2
;−α2

)]}
+ (1 − γ )−2{−γ logC + log θ + logH(γ )}.

Using L’Hospital’s rule again and the fact

∂2

∂b2 2F1(a, b; c;x)

=
∞∑

k=0

(a)k{�(b)�
′′
(b + k) − �

′
(b)�

′
(b + k)}

(c)k�2(b)

xk

k!

− ψ(b)

∞∑
k=0

(a)k(b)kψ(b + k)

(c)k

xk

k! + {ψ2(b) − ψ
′
(b)}2F1(a, b; c;x),

one gets the expression

−2J ′
R(1) = δ2 − π2

6
+ β

D

∞∑
k=0

(1/2)k{�′′
(1 + k) + δ�

′
(1 + k)}

(3/2)k

(−β2)k

k!

− α

D

∞∑
k=0

(1/2)k{�′′
(1 + k) + δ�

′
(1 + k)}

(3/2)k

(−α2)k

k!

+ βδ

D

∞∑
k=0

(1/2)kψ(1 + k)

(3/2)k
(−β2)k − αδ

D

∞∑
k=0

(1/2)kψ(1 + k)

(3/2)k
(−α2)k
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− 1

D2

{
β

∞∑
k=0

(1/2)kψ(1 + k)

(3/2)k
(−β2)k

− α

∞∑
k=0

(1/2)kψ(1 + k)

(3/2)k
(−α2)k + δD

}2

for the measure proposed by Song (2001).

9 Order statistics

Suppose X1, . . . ,Xn is a random sample from (1.2). Let X1:n < X2:n < · · · < Xn:n
denote the corresponding order statistics. It is well known that the pdf of the r th
order statistic, say Y = Xr:n, is given by

fY (y) = n!
(r − 1)!(n − r)!F

r−1(y;A,B){1 − F(y;A,B)}n−rf (y;A,B) (9.1)

for r = 1,2, . . . , n. Using (1.2) and (1.3), one can express (9.1) as

fY (y) = n!
(r − 1)!(n − r)!Dn

(9.2)

× {arctan(y) − arctan(A)}r−1{arctan(B) − arctan(y)}n−r

1 + y2 ,

where we have assumed without loss of generality that μ = 0 and θ = 1. Using the
binomial expansion, one can rewrite (9.2) as

fY (y) = n!
(r − 1)!(n − r)!Dn

×
r−1∑
i=0

n−r∑
j=0

(
r − 1

i

)(
n − r

j

)
(−1)r−1−i+j (arctan(A))r−1−i (9.3)

× (arctan(B))n−r−j (arctan(y))i+j (1 + y2)−1.

Furthermore, using the series expansion, (3.3), one can rewrite (9.3) as

fY (y) = n!
(r − 1)!(n − r)!Dn

×
r−1∑
i=0

n−r∑
j=0

(
r − 1

i

)(
n − r

j

)
(−1)r−1−i+j (arctan(A))r−1−i (9.4)

× (arctan(B))n−r−j
∞∑

k1=0

· · ·
∞∑

ki+j=0

(−1)k1+···+ki+j y2(k1+···+ki+j )+i+j

(2k1 + 1) · · · (2ki+j + 1)(1 + y2)
.
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Using the representation, (9.4), the lth moment of the r th order statistic can be
expressed as

E(Y l) = n!
(r − 1)!(n − r)!Dn−1

×
r−1∑
i=0

n−r∑
j=0

(
r − 1

i

)(
n − r

j

)
(−1)r−1−i+j (arctan(A))r−1−i

× (arctan(B))n−r−j

×
∞∑

k1=0

· · ·
∞∑

ki+j=0

(−1)k1+···+ki+j E(X2(k1+···+ki+j )+i+j+l;A,B)

(2k1 + 1) · · · (2ki+j + 1)
.

Using the same representation, the cdf of the r th order statistic can be expressed
as

FY (y) = n!
(r − 1)!(n − r)!Dn

×
r−1∑
i=0

n−r∑
j=0

(
r − 1

i

)(
n − r

j

)
(−1)r−1−i+j (arctan(A))r−1−i

× (arctan(B))n−r−j

×
∞∑

k1=0

· · ·
∞∑

ki+j=0

(−1)k1+···+ki+j K(2(k1 + · · · + ki+j ) + i + j, y)

(2k1 + 1) · · · (2ki+j + 1)
,

where

K(m,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m/2∑
k=0

(
m/2
k

)
(−1)m/2−k{I (k − 1, y) − I (k − 1,A)}, for m even,

(m−1)/2∑
k=0

(
(m − 1)/2

k

)
(−1)(m−1)/2−k

× {J (k − 1, y) − J (k − 1,A)}, for m odd,

where

I (k, y) =
k∑

l=0

(
k

l

)
y2l+1

2l + 1
, k ≥ 0

and

J (k, y) = (1 + y2)k+1

2(k + 1)
, k ≥ 0,

with the initial values I (−1, y) = arctan(y) and J (−1, y) = (1/2) log(1 + y2).
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10 Asymptotic distributions

If X1, . . . ,Xn is a random sample from (1.2) and if X̄ = (X1 + · · · + Xn)/n

denotes the sample mean then by the usual central limit theorem
√

n(X̄ −
E(X))/

√
Var(X) approaches the standard normal distribution as n → ∞. Some-

times one would be interested in the asymptotics of the extreme order statistics
Mn = max(X1, . . . ,Xn) and mn = min(X1, . . . ,Xn).

For the cdf (1.3), it can be seen using L’Hospital’s rule that

lim
t→∞

1 − F(tx)

1 − F(t)
= 1

x

if B = ∞,

lim
t→0

1 − F(B − tx)

1 − F(B − t)
= x

if B < ∞,

lim
t→−∞

F(tx)

F (t)
= 1

x

if A = −∞, and

lim
t→0

F(A + tx)

F (A + t)
= x

if A < ∞. Hence, it follows from Theorem 1.6.2 in Leadbetter et al. (1987) that
there must be norming constants an > 0, bn, cn > 0 and dn such that

Pr{an(Mn − bn) ≤ x} → exp(−1/x)

if B = ∞ and

Pr{cn(Mn − dn) ≤ x} → exp(x)

if B < ∞. The form of the norming constants can be determined using Corol-
lary 1.6.3 in Leadbetter et al. (1987): one can see that bn = 0, dn = B ,

1

an

= μ + θ cot
(

π

2n
− 1

n
arctan(α)

)
,

and
1

cn

= B − μ − θ tan
(

1

n
arctan(α) − n − 1

n
arctan(β)

)
.

Similarly, one can show that

Pr{an(mn − bn) ≤ x} → 1 − exp(1/x)

if A = −∞ and

Pr{cn(mn − dn) ≤ x} → 1 − exp(−x)
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if A > −∞, where bn = 0, dn = A,

1

an

= μ − θ cot
(

π

2n
+ 1

n
arctan(β)

)
,

and
1

cn

= μ + θ tan
(

1

n
arctan(β) + n − 1

n
arctan(α)

)
− A.

11 Estimation

Here, we consider estimation by the method of moments and the method of max-
imum likelihood and provide expressions for the associated Fisher information
matrix.

Suppose X1, . . . ,Xn is a random sample from (1.2). By equating the first four
moments of (2.4) with the corresponding sample estimates, one can obtain the
method of moments estimators as the simultaneous solutions of the four equations:

μm

D

m∑
k=0

1

k + 1

(
m

k

)(
θ

μ

)k{
βk+1

2F1

(
1,

k + 1

2
;1 + k + 1

2
;−β2

)

− αk+1
2F1

(
1,

k + 1

2
;1 + k + 1

2
;−α2

)}
= 1

n

n∑
i=1

Xm
i

for m = 1,2,3,4, where D = arctan(β) − arctan(α), α = (A − μ)/θ and β =
(B − μ)/θ .

Now, consider the method of maximum likelihood. The log-likelihood for the
random sample is

logL(μ, θ,A,B) = −n logC −
n∑

i=1

log
{

1 +
(

Xi − μ

θ

)2}
, (11.1)

where C = θD. The first-order derivatives of (11.1) with respect to the four pa-
rameters are:

∂ logL

∂A
= − n

C

∂C

∂A
,

∂ logL

∂B
= − n

C

∂C

∂B
,

∂ logL

∂μ
= − n

C

∂C

∂μ
+ 2

θ2

n∑
i=1

(Xi − μ)

{
1 +

(
Xi − μ

θ

)2}−1

and

∂ logL

∂θ
= − n

C

∂C

∂θ
+ 2

θ3

n∑
i=1

(Xi − μ)2
{

1 +
(

Xi − μ

θ

)2}−1

.
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The maximum likelihood estimators of μ, θ , A and B are the simultaneous so-
lutions of the equations ∂ logL/∂A = 0, ∂ logL/∂B = 0, ∂ logL/∂μ = 0 and
∂ logL/∂θ = 0. If the parameters A and B are assumed known then the maximum
likelihood estimators of μ and θ are the simultaneous solutions of the equations

n

C

∂C

∂μ
= 2

θ2

n∑
i=1

(Xi − μ)

{
1 +

(
Xi − μ

θ

)2}−1

and

n

C

∂C

∂θ
= 2

θ3

n∑
i=1

(Xi − μ)2
{

1 +
(

Xi − μ

θ

)2}−1

.

For interval estimation of (A,B,μ, θ) and tests of hypothesis, one requires the
Fisher information matrix. Standard calculations show that the elements of this
matrix are

E

(
−∂2 logL

∂λ∂ν

)
= − n

C2

∂C

∂λ

∂C

∂ν
+ n

C

∂2C

∂λ∂ν
,

E

(
−∂2 logL

∂μ2

)
= − n

C2

(
∂C

∂μ

)2

+ n

C

∂2C

∂μ2 + 2n

θ2 I (1,0) − 4n

θ2 I (2,2),

E

(
−∂2 logL

∂μ∂θ

)
= − n

C2

∂C

∂μ

∂C

∂θ
+ n

C

∂2C

∂μ∂θ
+ 4n

θ2 I (1,1) − 4n

θ2 I (2,3)

and

E

(
−∂2 logL

∂θ2

)
= − n

C2

(
∂C

∂θ

)2

+ n

C

∂2C

∂θ2 + 6n

θ2 I (1,2) − 4n

θ2 I (2,4),

where

I (m,n) = E

{[
1 +

(
X − μ

θ

)2]−m(
X − μ

θ

)n}
. (11.2)

By an easy application of equation (3.194.1) in Gradshteyn and Ryzhik (2000),
one can calculate I (m,n) in (11.2) as

I (m,n) = θ

(n + 1)C

{
βn+1

2F1

(
n + 1

2
,m + 1; n + 3

2
;−β2

)

− αn+1
2F1

(
n + 1

2
,m + 1; n + 3

2
;−α2

)}
for m ≥ 0 and n ≥ 0.
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12 Simulation

Simulation from the truncated Cauchy distribution in (1.2) is straightforward. Note
that the inverse cdf corresponding to (1.2) is F−1(x) = μ+θ tan(Dx +arctan(α)).
So, one can generate truncated Cauchy variates by X = μ + θ tan(DU +
arctan(α)), where U is a uniform random variate on the interval [0,1].

13 Application

We now illustrate an application of the truncated Cauchy distribution to consumer
price index data. We collected the data on this index for the six countries: United
States, United Kingdom, Japan, Canada, Germany and Australia. The data were
extracted from the website https://www.globalfinancialdata.com/ and the range of
data for each country is shown in Table 1.

A distribution that is of interest to economists is the positive consumer price
distribution, that is, the distribution of change in consumer price index when it
increases from one year to the next. We propose the truncated Cauchy distribu-
tion in (1.2) with A = 0 and B = ∞ as a model for the positive consumer price
distribution. The performance of this model is compared versus the truncated nor-
mal model given by the pdf (1/θ ′)φ((x − μ′)/θ ′)/�(μ′/θ ′), where φ(·) and �(·)
denote the pdf and the cdf of the standard normal distribution.

Prior to fitting, following common practice, we transformed the data by first
taking logarithms and then the lag 1 differences. A crucial assumption for the fit-
ting is that the data are independent. We tested this by plotting the autocorrelation
function. Figure 2 shows these plots for two of the six countries: the United King-
dom and Canada. The plots for the other countries are similar. It is clear that the
autocorrelation is generally weak except for the first lag.

The method of maximum likelihood procedure in Section 11 was used to fit
the two models. The maximum likelihood estimates of the parameters and the
logarithms of the maximized likelihoods (L for the truncated Cauchy model and
L′ for the truncated normal model) are shown in Table 2. The numbers within

Table 1 Datasets

Country Range of data

United Kingdom 1800 to 2006
United States 1820 to 2006
Japan 1868 to 2006
Canada 1910 to 2006
Germany 1923 to 2006
Australia 1901 to 2006

https://www.globalfinancialdata.com/
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Figure 2 Autocorrelation function plots for data from the United Kingdom (left) and Canada
(right).

Table 2 Parameter estimates and standard errors of the truncated Cauchy and truncated normal
models

Country μ̂ θ̂ logL μ̂′ θ̂ ′ logL′

United Kingdom 0.00618 0.00324 2279.7 0.01245 0.01804 1786.5
(0.00019) (0.00018) (0.00069) (0.00049)

United States 0.00480 0.00247 2844.6 0.00868 0.01458 2163.4
(0.00014) (0.00013) (0.00053) (0.00038)

Japan 0.00609 0.00439 1782.0 0.02176 0.05410 927.8
(0.00028) (0.00026) (0.00218) (0.00154)

Canada 0.00575 0.00261 2118.4 0.00744 0.00569 2096.2
(0.00018) (0.00015) (0.00024) (0.00018)

Germany 0.00318 0.00166 2557.3 0.00530 0.00607 2293.2
(0.00011) (0.00010) (0.00024) (0.00018)

Australia 0.01021 0.00643 871.6 0.01618 0.01442 863.2
(0.00065) (0.00052) (0.00082) (0.00059)

brackets are the standard errors computed by inverting the expected information
matrix.

The two fitted models are clearly not nested. In this case, testing can be based on
Akaike information criterion (AIC) defined by 2k− logL, where k is the number of
parameters in the model, and L is the maximized value of the likelihood function
for the model (Akaike, 1974). However, the fitted models have the same number
of parameters, so AIC reduces to the standard log likelihood ratio.
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Figure 3 Fitted pdfs of the truncated Cauchy model (solid curve) and the truncated normal model
(broken curve) for the transformed consumer price index data from the six countries.

It follows by the standard likelihood ratio test that the truncated Cauchy dis-
tribution provides the better fit for each of the six countries. This observation is
confirmed by the fitted pdfs shown in Figure 3.
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