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Nonparametric density estimation for functional data by
delta sequences

B. L. S. Prakasa Rao
University of Hyderabad

Abstract. We consider the problem of estimation of density function by the
method of delta sequences for functional data with values in an infinite di-
mensional separable Banach space.

1 Introduction

Methods of nonparametric estimation of density function and regression function
are widely discussed in the literature starting from Prakasa Rao (1983, 1999a),
Silverman (1986) and more recently in Efromovich (1999). Among the most inter-
esting of recently developed statistical methods are those for analyzing data in the
form of curves presently known as functional data. Nonparametric statistical mod-
els have been developed recently for such data. Functional data are present in many
fields of application such as medicine, environmetrics, chemometrics, economet-
rics, etc. Analysis of such functional data is of importance in problems of clas-
sification, discrimination, regression, prediction and longitudinal studies. For an
introduction to this area, see Ramsay and Silverman (2002, 2005). Gasser, Hall
and Presnell (1998) consider density and mode estimation for data taking values
in a normed vector space. Nonparametric regression estimation for functional data
has been studied in Masry (2005), Rachdi and Vieu (2007) and Ferraty and Vieu
(2006).

Our aim in this paper is to study density estimation for random elements tak-
ing values in an infinite dimensional separable Banach space such as the space
of continuous functions on the interval [0,1] endowed with the supremum norm.
Examples of functional data where such spaces arise are stochastic processes with
continuous sample paths on a finite interval associated with the supremum norm
or stochastic processes whose sample paths are square integrable on the real line.
Dabo-Niang (2004) and Dabo-Niang, Ferraty and Vieu (2006) developed a naive
kernel estimator and a general kernel estimator for the estimation of a probability
density function. Since there is no analog of the Lebesgue measure on a Banach
space, the density function of a random element, if it exists, is related to the domi-
nating measure with respect to which the density function or the Radon–Nikodym
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derivative is computed. Problems involving the density estimation of a random
element taking values in a metric space were earlier studied by Geffroy (1974).
Wertz (1972) and Craswell (1965) investigated the properties of kernel type den-
sity estimators for random elements taking values in locally compact topological
groups [cf. Prakasa Rao (1983), page 226]. We study density estimation through
the method of delta sequences generalizing the method of kernel density estima-
tion in Dabo-Niang, Ferraty and Vieu (2006). It is known that the method of delta
sequences unifies the kernel method of density estimation, histogram method and
some other methods such as the method of orthogonal series for suitable choices
of orthonormal bases in the one-dimensional and finite-dimensional cases. For a
discussion of the method of delta sequences in the finite-dimensional cases, see
Prakasa Rao (1983), pages 136–143 and pages 218–224, Walter and Blum (1979)
and Susarla and Walter (1981). Density estimation for Markov processes using
delta sequences is studied in Prakasa Rao (1978, 1979a) and sequential nonpara-
metric estimation of density in the univariate case via delta sequences is investi-
gated in Prakasa Rao (1979b). A different method of density estimation, for func-
tional data by wavelets, was discussed recently in Prakasa Rao (2009).

Let {�, F ,P ) be a probability space and {Ft , t ≥ 0} be a nondecreasing family
of sub-σ -algebras of F . Let {Wt, t ≥ 0} be a standard Wiener process defined on
{�, F ,P ) such that Wt is Ft -measurable. Let C[0, T ] be the space of real-valued
continuous functions defined on the interval [0, T ] associated with the supremum
norm topology. It is known that the standard Wiener process induces a probabil-
ity measure μW on the space C[0, T ] associated with Borel σ -algebra generated
by the supremum norm topology. Consider a diffusion process {X(t),0 ≤ t ≤ T }
governed by the stochastic differential equation

dX(t) = a(t,X(t)) dt + b(t,X(t)) dW(t), X(0) = x0, 0 ≤ t ≤ T .

Under some conditions on the functions a(·, ·) and b(·, ·), it can be shown that
the probability measure μX induced by the process X on the space C[0, T ] is ab-
solutely continuous with respect to the probability measure μW and one can com-
pute the Radon–Nikodym derivative of μX with respect to μW by using the Gir-
sanov’s theorem. This can be considered as the probability density of the process
X on the space C[0, T ]. More details on such a frame work and other exam-
ples are given in Prakasa Rao (1999b). One of the motivations for analysis of
functional data in our view is inference for stochastic processes [cf. Prakasa Rao
(1999b, 1999c)]. We are assuming here that the complete path of the process is
observable for inferential purposes. However, if the process can be observed only
at discrete times either on a fine grid or when the data is sparse, other methods
have to be developed as in the case of parametric inference for a discrete data, for
instance, for the diffusion processes [cf. Prakasa Rao (1999b)]. Note that an impor-
tant motivation for development of statistical methods for analysis of a functional
data is that the parametric methods behave badly when the dimension is large or
infinite due to “curse of dimensionality” and the infinite dimensional data can be
viewed as a theoretical approximation of large dimensional data.
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2 Preliminaries

Let (�, F ,P ) be a probability space and E be an infinite dimensional separa-
ble Banach space and B be the σ -algebra of Borel subsets of E. Suppose X is
a random element defined on (�, F ,P ) taking values in (E, B) and that it has a
density f with respect to a σ -finite measure μ on (E, B) such that 0 < μ(A) < ∞
for every open ball A ⊂ E. Note that

P(X ∈ A) =
∫
A

f (x)μ(dx), A ∈ B.

Let X1, . . . ,Xn be independent and identically distributed random elements
as X. Let ‖ · ‖ denote the norm on the Banach space E. Suppose C is a compact
subset of E with the property that for any rn > 0 there exist tk ∈ E,1 ≤ k ≤ dn,
where

C ⊂
dn⋃

k=1

B(tk, rn)

and there exists αn > 0 such that dnr
αn
n is a constant c > 0. This condition gives a

geometric link between the number dn of open spheres and the radius of the rn of
the open spheres covering the compact set C [cf. Ferraty and Vieu (2008)]. Here
B(tk, rn) denotes the open sphere with center tk and radius rn.

(G1) Assume that, for every ε > 0, there exists γ > 0 such that

|f (y) − f (x)| ≤ ε if ‖y − x‖ ≤ γ, x ∈ C,y ∈ E.

Note that this condition is stronger than the uniform continuity of the function f

on C as it refers to x ∈ C and y ∈ E. It follows, in particular, that there exists a
postive constant M such that

sup
x∈C

f (x) ≤ M < ∞.

Definition. A sequence of nonnegative functions {δm(x, y),m ≥ 1} defined on
E ×E is said to be a delta sequence with respect to the measure μ if the following
conditions hold:

(G2) for every γ,0 < γ ≤ ∞,

lim
m→∞ sup

x∈C

∣∣∣∣
∫
[y:‖y−x‖≤γ ]

δm(x, y)μ(dy) − 1
∣∣∣∣ = 0;

(G3) there exists a constant c0 > 0 such that

sup
x∈C,y∈E

δm(x, y) ≤ c0sm < ∞,

where 0 < sm → ∞ as m → ∞ and limm→∞ m
sm logm

= ∞;
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(G4) there exist c > 0, β1 > 0 and β2 > 0 such that

|δm(x1, y) − δm(x2, y)| ≤ csβ2
m ‖x1 − x2‖β1

for all x1, x2, y ∈ E; and
(G5) for any γ > 0,

lim
m→∞ sup

(x,y)∈C×[y:‖y−x‖>γ ]
δm(x, y)‖y − x‖ = 0.

Further suppose that

(G6) dn = nα,α > 0, and

rβ1
n sβ2

m < ([sm logm]/m)1/2

for large m and n.

Let

fn(x) = 1

n

n∑
i=1

δm(x,Xi).

The choice of the sequence m might depend on n such that m → ∞ as n → ∞.

We now prove the following result leading to uniform strong consistency of the
estimator fn(x) over the set C as an estimator of f (x).

Theorem 1. Suppose that m → ∞ and there exists 0 < p < 1 such that np ≤ m ≤
n for n large. Under the conditions (G1)–(G6),

lim
n→∞ sup

x∈C

|fn(x) − f (x)| = 0 a.s.

Proof. Let γ > 0 and x ∈ C. Define

I1(x) =
∫
[y:‖y−x‖≤γ ]

δm(x, y)
(
f (y) − f (x)

)
μ(dy) (2.1)

and

I2(x) =
∫
[y:‖y−x‖>γ ]

δm(x, y)
(
f (y) − f (x)

)
μ(dy). (2.2)

Observe that

E[fn(x)] − f (x) =
∫
E

δm(x, y)f (y)μ(dy) − f (x) (2.3)

and hence

E[fn(x)] − f (x) − I1(x) − I2(x)

=
∫
E

δm(x, y)f (y)μ(dy) − f (x) −
∫
E

δm(x, y)
(
f (y) − f (x)

)
μ(dy) (2.4)

= f (x)

[∫
E

δm(x, y)μ(dy) − 1
]
.
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Observe that

lim
m→∞ sup

x∈C

∣∣∣∣
∫
E

δm(x, y)μ(dy) − 1
∣∣∣∣ = 0

by (G2). Hence

lim
n→∞ sup

x∈C

|E[fn(x)] − f (x) − I1(x) − I2(x)| = 0 (2.5)

by the conditions (G1) and (G2). Furthermore, for every x ∈ C,

|I2(x)| ≤
∫
[y:‖y−x‖>γ ]

δm(x, y)f (y)μ(dy)

+ f (x)

∫
[y:‖y−x‖>γ ]

δm(x, y)μ(dy)

=
∫
[y:‖y−x‖>γ ]

δm(x, y)
‖y − x‖
‖y − x‖f (y)μ(dy)

+ f (x)

∫
[y:‖y−x‖>γ ]

δm(x, y)μ(dy)

(2.6)

≤ 1

γ
sup

(x,y)∈C×[y:‖y−x‖>γ ]
[δm(x, y)‖y − x‖]

∫
[y:‖y−x‖>γ ]

f (y)μ(dy)

+ f (x)

∫
[y:‖y−x‖>γ ]

δm(x, y)μ(dy)

≤ 1

γ
sup

(x,y)∈C×[y:‖y−x‖>γ ]
[δm(x, y)‖y − x‖]

+ M sup
x∈C

∫
[y:‖y−x‖>γ ]

δm(x, y)μ(dy)

which implies that

sup
x∈C

|I2(x)|

≤ 1

γ
sup

(x,y)∈C×[y:‖y−x‖>γ ]
[δm(x, y)‖y − x‖]

+ M sup
x∈C

∫
[y:‖y−x‖>γ ]

δm(x, y)μ(dy).

Assumptions (G2) and (G5) imply that the two terms on the right-hand side of
the above inequality tend to zero as m → ∞.

Note that, for every ε > 0, there exists γ > 0 such that

|f (y) − f (x)| ≤ ε if ‖y − x‖ ≤ γ, x ∈ C,y ∈ E



Nonparametric density estimation for functional data 473

by condition (G1). Then there exists γ > 0 such that

|I1(x)| ≤ ε

∫
[y:‖y−x‖≤γ ]

δm(x, y)μ(dy). (2.7)

Hence

sup
x∈C

|I1(x)| ≤ ε sup
x∈C

∣∣∣∣
∫
[y:‖y−x‖≤γ ]

δm(x, y)μ(dy)

∣∣∣∣
and the term on the right-hand side can be made smaller than 2ε as m → ∞ by
condition (G2). Therefore

lim
n→∞ sup

x∈C

|E[fn(x)] − f (x)| = 0. (2.8)

We now prove that

lim
n→∞ sup

x∈C

|fn(x) − E[fn(x)]| = 0 a.s.

Let x ∈ C. Then

fn(x) − E[fn(x)] = 1

n

n∑
i=1

Zi,x,

where

Zi,x = δm(x,Xi) − E[δm(x,Xi)].
Note that Zi,x,1 ≤ i ≤ n, are independent and identically distributed real-valued
bounded random variables bounded by 2c0sm by condition (G3). Applying the
Bernstein’s inequality [see Hoeffding (1963); Prakasa Rao (1983), page 183], we
get that, for any η > 0 and m large,

P

[
|fn(x) − E[fn(x)]| > η

√
sm logm

m

]

≤ 2 exp
[
− n((sm logm)/m)η2

4c0Msm + 4c0smη
√

(sm logm)/m

]
(2.9)

≤ 2 exp
[
−η2n logm/m

8c0M

]
.

Since the set C ⊂ Cn = ⋃dn

k=1 B(tk, rn), for any x ∈ C, there exists an index
τ(x) among t1, . . . , tdn such that x ∈ B(tτ(x), rn). Hence

P

[
sup
x∈C

|fn(x) − E[fn(x)]| > 2η

√
sm logm

m

]

≤ P

[
sup
x∈C

∣∣fn(x) − E[fn(x)] (2.10)
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− fn

(
tτ (x)

) + E
[
fn

(
tτ (x)

)]∣∣ > η

√
sm logm

m

]

+ P

[
max

1≤k≤dn

|fn(tk) − E[fn(tk)]| > η

√
sm logm

m

]
.

Conditions (G4) and (G6) imply that

sup
x∈C

∣∣fn(x) − fn

(
tτ (x)

)∣∣ ≤ O(rβ1
n sβ2

m ) = O

(√
sm logm

m

)
.

Hence, for some η > 0 and for sufficiently large n and large m

P

[
sup
x∈C

∣∣fn(x) − E[fn(x)] − fn

(
tτ (x)

) + E
[
fn

(
tτ (x)

)]∣∣ > η

√
sm logm

m

]
= 0.

Therefore,

P

[
sup
x∈C

|fn(x) − E[fn(x)]| > η

√
sm logm

m

]
≤ 2dn exp

[
−η2n logm/m

8c0M

]
.

Since m ≤ n and logm ≥ p logn, it follows that there exists η > 0 such that

P

[
sup
x∈C

|fn(x) − E[fn(x)]| > η

√
sm logm

m

]
≤ nα−pη2/C1

for some positive constant C1. Applying the Borel–Cantelli lemma, we get that

sup
x∈C

|fn(x) − E[fn(x)]| = O

(√
sm logm

m

)
a.s.

Since

sm logm

m
→ 0 as m → ∞,

we obtain that

sup
x∈C

|fn(x) − E[fn(x)]| → 0 a.s. as n → ∞. (2.11)

Combining equations (2.8) and (2.11), we obtain that

sup
x∈C

|fn(x) − f (x)| → 0 a.s. as n → ∞. (2.12)

�

Theorem 2. Suppose conditions (G1) and (G3)–(G6) hold. In addition, suppose
that the following condition holds: for every γ , 0 ≤ γ ≤ ∞,
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(G2)′

sup
x∈C

∣∣∣∣
∫
[y:‖y−x‖≤γ ]

δm(x, y)μ(dy) − 1
∣∣∣∣ = O(Dm),

where Dm = sup{‖y − x‖;x ∈ C,y ∈ E,δm(x, y) > 0} = o(1) as m → ∞. Fur-
ther suppose that f is Lipschitzian in the sense that there exists a constant K > 0
such that

|f (x) − f (y)| ≤ K‖x − y‖
for any x ∈ C,y ∈ E. Then, with probability one,

sup
x∈C

|fn(x) − f (x)| = O(Dm) + O

(√
sm logm

m

)
. (2.13)

Proof. Since (G2)′ implies (G2), applying Theorem 1, we get that

sup
x∈C

|fn(x) − E[fn(x)]| = O

(√
sm logm

m

)
a.s.

It is sufficient to prove that

sup
x∈C

|E[fn(x)] − f (x)| = O(Dm).

Note that

Efn(x) − f (x) =
∫
E

δm(x, y)f (y)μ(dy) − f (x)

=
∫
E

δm(x, y)
(
f (y) − f (x)

)
μ(dy)

(2.14)
+

∫
E

δm(x, y)f (x)μ(dy) − f (x)

= J + f (x)

[∫
E

δm(x, y)μ(dy) − 1
]
,

where

J =
∫
E

δm(x, y)
(
f (y) − f (x)

)
μ(dy).

Hence

|Efn(x) − f (x) − J | = O(Dm) (2.15)

by condition (G2)′. Since f satisfies the condition that there exists a constant K

such that

|f (x) − f (y)| ≤ K‖y − x‖
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for all x ∈ C,y ∈ E, it follows that

|J | ≤
∫
E

δm(x, y)|f (y) − f (x)|μ(dy)

≤ KDm

∫
E

δm(x, y)μ(dy) (2.16)

≤ O(Dm)

by condition (G2)′. Combining equations (2.15) and (2.16), we get the relation

|Efn(x) − f (x)| = O(Dm). (2.17)

�

Remarks 1. Let C0[0,1] be the space of real-valued continuous functions x(·)
on the interval [0,1] with x(0) = 0. Suppose the space C0[0,1] is equipped with
uniform topology induced by the norm

‖x‖ = sup
t∈[0,1]

|x(t)|.

Let μ(·) denote the Wiener measure on the space C0[0,1] induced by the standard
Wiener process and Bx

m be the closed ball with center x ∈ C0[0,1] and radius 1
m

.

Define

δm(x, y) = 1

μ(Bx
m)

I (y ∈ Bx
m), (2.18)

where I (A) denotes the indicator function of the set A. It is easy to check that the
corresponding density estimator fn(x) is the naive kernel estimator proposed in
equation (6) in Dabo-Niang (2004). This sequence clearly satisfies condition (G2).

Suppose ax
n is a sequence of positive numbers. Let

δm(x, y) = 1

ax
n

Kn(‖x − y‖), (2.19)

where Kn(·) is sequence of functions satisfying conditions (H2)–(H6) in Dabo-
Niang, Ferraty and Vieu (2006). As was indicated earlier, the choice of the se-
quence m may depend on n such that m → ∞ as n → ∞. Then we get the kernel
estimator proposed by them. Other estimators using delta sequences can be con-
structed following the ideas in Example 2.8.3 in Prakasa Rao (1983), page 136,
depending on the space E and the measure μ.

Remarks 2. It is true that conditions (G2)–(G6) are patterned on a similar set of
conditions for kernel type of estimators but, due to the infinite dimensional nature
of the problem, additional conditions are necessary to obtain uniform consistency
even over compact sets. In a recent note, Ferrarty and Vieu (2008) comment on the
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conditions for deriving uniform consistency on compact sets. In particular, they
suggest that the conditions on the infinite dimensional spaces should be such that
the compact set C satisfies the property

C ⊂
τ⋃

k=1

B(tk, �),

where the number τ of spheres and the radius � satisfy the geometric link condi-
tion τ�α = c for some α > 0 and c > 0. This condition holds trivially for any finite
dimensional Euclidean space but it also holds for infinite dimensional projection-
based metric spaces. Here B(tk, �) is the open sphere with center tk and radius �.

Condition (G3) relates to the bound on δm over C × E and condition (G4) relates
to the uniform Lipschitzian property of δm(x, y). The choice β1 and β2 are gov-
erned by condition (G6) involving rn and sm. Condition (G5) is a condition on the
limiting behavior of δm(x, y)‖x −y‖ as m tends to infinity and it is not a condition
on the bound of sup‖x −y‖ over C ×C. Condition (G6) is introduced to get a rate
of convergence for uniform consistency.
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