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Option pricing model based on a Markov-modulated
diffusion with jumps

Nikita Ratanov
University of Rosario

Abstract. The paper proposes a class of financial market models which are
based on inhomogeneous telegraph processes and jump diffusions with al-
ternating volatilities. It is assumed that the jumps occur when the tendencies
and volatilities are switching. Such a model captures well the stock price dy-
namics under periodic financial cycles. The distribution of this process is de-
scribed in detail. We also provide a closed form of the structure of risk-neutral
measures. This incomplete model can be completed by adding another asset
based on the same sources of randomness. For completed market model we
obtain explicit formulae for call prices.

1 Introduction

Beginning with the works of Mandelbrot (1963), Mandelbrot and Taylor (1967),
and Clark (1973), it is widely recognized that the market dynamics cannot be
described by geometric Brownian motion with constant parameters of drift and
volatility. A lot of sophisticated constructions have been exploited to capture the
features that help to express the reality better than Black–Scholes–Merton model.
First, Merton (1976) proposed a jump diffusion model for the asset pricing. Later
on the constructions with random drift and random volatility parameters appeared.
Although it would be difficult to improve these theoretical findings in terms of
structural generality, the efforts to calculate exact theoretically and practically sig-
nificant formulas for option pricing have been successful only for those models
of financial markets, in which the increments of underlying random processes are
independent (Wiener, Poisson, Lévy processes etc.).

Another approach utilizes Markovian dependence on the past and the technique
of Markov random processes [see, e.g., Elliott and van der Hoek (1997)]. We
deal mainly with this direction. More precisely, the model is based on a standard
Brownian motion w = w(t), t ≥ 0 and on a Markov process ε(t), t ≥ 0 with two
states 0,1 and with transition probability intensities λ0 and λ1.

Let us define processes cε(t), σε(t) and rε(t), t ≥ 0, where c0 ≥ c1, r0, r1 > 0.
Then, we introduce T (t) = ∫ t

0 cε(τ) dτ , D(t) = ∫ t
0 σε(τ) dw(τ) and a pure jump

process J = J (t) with alternating jumps of sizes h0 and h1, h0, h1 > −1.
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The continuous time random motion T (t) = ∫ t
0 cε(τ) dτ, t ≥ 0 with alternating

velocities is known as telegraph process. This type of processes have been used
before in various probabilistic aspects [see, e.g., Goldstein (1951), Kac (1974) and
Zacks (2004)]. These processes have been exploited for stochastic volatility mod-
eling [Di Masi, Kabanov and Runggaldier (1994)], as well as for obtaining a “tele-
graph analog” of the Black–Scholes model [Di Crescenzo and Pellerey (2002)].
The option pricing models based on continuous-time random walks are widely
presented in the physics literature [see Masoliver et al. (2006) or Montero (2008)].
Recently the telegraph processes was applied to actuarial problems, Mazza and
Rullière (2004). Markov-modulated telegraph-diffusion process T (t)+ D(t), t ≥ 0
(or more general regime switching Lévy process) was exploited for financial mar-
ket modeling [see Guo (2001), Jobert and Rogers (2006), Asmussen, Avram and
Pistorius (2004)], as well as in insurance [see Bäuerle and Kötter (2007)] or in
theory of queueing networks [see Ren and Kobayashi (1998)].

In this paper we presume the evolution of risky asset S(t) to be given by the
stochastic exponential of the sum X = T (t) + D(t) + J (t). The bond price is
the usual exponential of the process Y = Y(t) = ∫ t

0 rε(τ) dτ, t ≥ 0 with alternating
interest rates r0 and r1.

This model generalizes the classic Black–Scholes–Merton model based on geo-
metric Brownian motion (c0 = c1, r0 = r1, σ0 = σ1 �= 0, h0 = h1 = 0), Black and
Scholes (1973), Merton (1973). Other particular versions of this model was also
discussed before:

1. c0 = c1, σ0 = σ1 = 0, h0 = h1 �= 0: Cox–Ross model, Cox and Ross (1976);
2. c0 �= c1, σ0 = σ1 = 0, h0 �= h1: jump-telegraph model, Ratanov (2007a);
3. c0 �= c1, σ0 �= σ1, h0 = h1 = 0: Markov-modulated dynamics, Guo (2001),

Jobert and Rogers (2006).

The jump-telegraph model, as well as Black–Scholes and Cox–Ross model, is
free of arbitrage opportunities, and it is complete. Moreover it permits explicit
standard option pricing formulae similar to the classic Black–Scholes formula.
Under suitable rescaling this model converges to the Black–Scholes [see Ratanov
(2007a)]. First calibration results of the parameters of the telegraph model have
been presented in De Gregorio and Iacus (2007). These estimations have been
based on the data of Dow–Jones industrial average (July 1971–August 1974).
However, a presence of jumps and/or diffusion components has not been esti-
mated. Nevertheless, an implied volatility with respect to a moneyness variable
in stochastic volatility models of the Ornstein–Uhlenbeck type [see Nicolato and
Venardos (2003)] looks very similar to the volatility smile in jump telegraph model
[see Ratanov (2007b)].

In this paper we extend the jump-telegraph market model, presented in Ratanov
(2007a, 2007b), by adding the diffusion component with an alternating volatility
coefficients.
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The jump-telegraph model equipped with the diffusion term becomes more real-
istic. Indeed, the alternating velocities of the telegraph process describe long-term
financial trends, and the diffusion summand introduces an uncertainty of current
prices. This uncertainty may have different volatilities in different market trends
(σ0 �= σ1).

The paper is organized as follows: in Section 2 we present the detailed def-
initions and the description of underlying processes and their distributions. The
explicit construction of a measure change is given by the Girsanov theorem for
jump telegraph-diffusion processes.

In Section 3 we describe the set of risk-neutral measures for the incomplete
jump telegraph-diffusion model. Also we consider a completion of the model by
adding another asset driven by the same sources of randomness. For the completed
market model we obtain explicit option pricing formulae of the standard call op-
tion. These formulae are based on a mix of Black–Scholes function and densities
of spending times of the driving Markov flow.

2 Jump telegraph processes and jump diffusions with Markov
switching

Let (�,F,P) be a probability space. Denote εi(t), t ≥ 0, i = 0,1 a pair of Markov
processes with two states {0,1} and with rates λ0, λ1 > 0:

P{εi(t + �t) = j | εi(t) = j} = 1 − λj�t + o(�t), �t → 0, i, j = 0,1.

Subscript i indicates the initial state εi(0) = i.
Let τ1, τ2, . . . be switching times. The time intervals τj − τj−1, j = 1,2, . . .

(τ0 = 0), separated by moments of value changes τj = τ i
j are independent and

exponentially distributed. We denote by Pi the conditional probability with respect
to the initial state i = 0,1, and by Ei the expectation with respect to Pi .

Denote by Ni(t) = max{j : τj ≤ t}, t ≥ 0 a number of switchings of εi till time
t, t ≥ 0. It is clear that Ni, i = 0,1 are the counting Poisson processes with al-
ternating intensities λ0, λ1 > 0. It is easy to see that the distributions πi(t;n) :=
Pi{Ni(t) = n}, n = 0,1,2, . . . , i = 0,1, t ≥ 0 of the processes Ni = Ni(t) satisfy
the following system:

dπi(t;n)

dt
= −λiπi(t;n) + λiπ1−i (t;n − 1), i = 0,1, n ≥ 1,

πi(t;0) = e−λi t . (2.1)

To prove it notice that conditioning on the Poisson event on the time interval
(0,�t) one can obtain

πi(t + �t;n) = (1 − λi�t)πi(t;n) + λi�tπ1−i (t;n − 1) + o(�t), �t → 0,

which immediately leads to (2.1).
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Let c0, c1, c0 > c1;h0, h1;σ0, σ1 be real numbers. Let w = w(t), t ≥ 0 be a
standard Brownian motion independent of εi . We consider

Ti (t) = Ti (t; c0, c1) =
∫ t

0
cεi(τ ) dτ,

Ji (t) = Ji (t;h0, h1) =
∫ t

0
hεi(τ ) dNi(τ) =

Ni(t)∑
j=1

hεi(τj−),

Di (t) = Di (t;σ0, σ1) =
∫ t

0
σεi(τ ) dw(τ). (2.2)

Processes T0, T1 are telegraph processes with the states 〈c0, λ0〉 and 〈c1, λ1〉,
J0, J1 have a sense of pure jump processes, and D0, D1 are Markov-modulated
diffusions. Thus the sum Xi := Ti (t) + Ji (t) + Di (t), t ≥ 0, i = 0,1 is naturally
called jump telegraph-diffusion (JTD) process with two states, 〈c0, h0, σ0, λ0〉 and
〈c1, h1, σ1, λ1〉.

Further, we will assume all processes to be adapted to the natural filtration Fi =
(Fi

t )t≥0 (Fi
0 = {∅,�}), generated by εi(t), t ≥ 0, and w(t), t ≥ 0. We suppose

that the filtration satisfies the “usual conditions” [see, e.g., Karatzas and Schreve
(1998)].

The distribution of Xi (t) can be found exactly. First, we denote by pi(x, t;n)

(generalized) probability densities with respect to the measure Pi of the jump
telegraph-diffusion variable Xi (t), which has n turns up to time t :

Pi{Xi (t) ∈ �,Ni(t) = n} =
∫
�

pi(x, t;n)dx, (2.3)

i = 0,1, t ≥ 0, n = 0,1,2, . . . .

The PDEs which describe the densities pi(x, t;n) have the following form.

Theorem 2.1. Densities pi, i = 0,1 satisfy the following PDE-system

∂pi

∂t
(x, t;n) + ci

∂pi

∂x
(x, t;n) − σ 2

i

2

∂2pi

∂x2 (x, t;n)

= −λipi(x, t;n) + λip1−i (x − hi, t;n − 1), (2.4)

t > 0, i = 0,1, n ≥ 1.

Moreover

pi(x, t;0) = e−λi tψi(x, t), (2.5)

where

ψi(x, t) = 1

σi

√
2πt

e−(x−ci t)
2/(2σ 2

i t), (2.6)

and

pi(x, t;n)|t↓0 = 0, n ≥ 1, i = 0,1.
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Proof. The equality (2.5) follows from definitions (2.2) and (2.3).
To derive (2.4) note that from the properties of Poisson and Wiener processes

[see, e.g., Protter (1990)] for any t2 > t1 it follows that

Xi (t2) = Xi (t1) + X ′
εi(t1)

(t2 − t1), (2.7)

where X ′
i is a copy of the process Xi , i = 0,1 which is independent of the original.

Let �t > 0. From (2.7) it follows that Xi (t +�t) = Xi (�t)+ X ′
i (t). Let τ is the

random variable uniformly distributed on [0,�t] and independent of Xi . Notice

that Xi (�t) = ci�t + σiw(�t), if Ni(�t) = 0, and Xi (�t)
d= ciτ + c1−i (�t −

τ) + σiw(τ) + σ1−iw(�t − τ) + hi , if Ni(�t) = 1.
Since Pi (Ni(�t) > 1) = o(�t) as �t → 0, then conditioning on a jump in

(0,�t) we have

pi(x, t + �t;n) = (1 − λi�t)pi(·, t;n) ∗ ψi(·,�t)(x)
(2.8)

+ λi�tp1−i (·, t;n − 1) ∗ ψ̃i(·,�t)(x − hi) + o(�t),

i = 0,1,�t → 0. Here ψi(·,�t), the distribution density of ci�t + σiw(�t), is
defined in (2.6), and ψ̃i(·,�t) is the distribution density of ciτ + c1−i (�t − τ) +
σiw(τ) + σ1−iw(�t − τ); the notation ∗ is used for the convolution in spacial
variables.

It is easy to see, that ψi(x,�t), ψ̃i(x,�t) → δ(x) as �t → 0. Hence

pi(·, t;n) ∗ ψi(·,�t)(x) → pi(x, t;n),

p1−i (·, t;n − 1) ∗ ψ̃i(·,�t)(x − hi) → p1−i (x − hi, t;n − 1) (2.9)

as �t → 0.
Then,

1

�t
[pi(·, t;n) ∗ ψi(·,�t)(x) − pi(x, t;n)]

= 1

�t

[∫ ∞
−∞

pi(x − y, t;n)ψi(y,�t)dy − pi(x, t;n)

]

= 1

�t

∫ ∞
−∞

[
pi

(
x − ci�t − yσi

√
�t, t;n) − pi(x, t;n)

]
ψ(y)dy,

where ψ = ψ(·) is N (0,1)-density. The latter value equals to

1

�t

∫ ∞
−∞

ψ(y)

[
∂pi

∂x
(x, t;n)(−ci�t − yσi

√
�t)

+ 1

2

∂2pi

∂x2 (x, t;n)
(−ci�t − yσi

√
�t

)2 + o(�t)

]
dy

= 1

�t

∫ ∞
−∞

ψ(y)

[
∂pi

∂x
(x, t;n)(−ci�t)
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+ 1

2

∂2pi

∂x2 (x, t;n)y2σ 2
i �t + o(�t)

]
dy

→ −ci

∂pi

∂x
(x, t;n) + σ 2

i

2

∂2pi

∂x2 (x, t;n),

so system (2.4) follows from (2.8) and (2.9). �

To express the solution of system (2.4) we use functions qi = qi(x, t;n) which
are defined as follows. For n ≥ 1

q0(x, t;2n) = λn
0λ

n
1

(c0 − c1)2n
· (c0t − x)n−1(x − c1t)

n

(n − 1)!n! θ(x, t),

q1(x, t;2n) = λn
0λ

n
1

(c0 − c1)2n
· (c0t − x)n(x − c1t)

n−1

n!(n − 1)! θ(x, t), (2.10)

and for n ≥ 0

q0(x, t;2n + 1) = λn+1
0 λn

1

(c0 − c1)2n+1 · (c0t − x)n(x − c1t)
n

(n!)2 θ(x, t),

q1(x, t;2n + 1) = λn
0λ

n+1
1

(c0 − c1)2n+1 · (c0t − x)n(x − c1t)
n

(n!)2 θ(x, t). (2.11)

Here θ(x, t) = exp{− λ1
c0−c1

(c0t − x) − λ0
c0−c1

(x − c1t)}1{c1t<x<c0t}.
In the particular case of jump telegraph process without a diffusion term the

distribution densities p
(0)
i can be found from equation (2.4) with σ0 = σ1 = 0. It is

easy to see [Ratanov (2007a)] that

p
(0)
i (x, t;n) = qi

(
x − ji(n), t;n)

, (2.12)

where ji(n) = [(n+1)/2]hi +[n/2]h1−i , n = 0,1, . . . . Equation (2.5) now means
that p

(0)
0 (x, t;0) = e−λ0t δ(x − c0t), p

(0)
1 (x, t;0) = e−λ1t δ(x − c1t).

Conditioning on the number of switches we get the probability density of
the jump telegraph process which is described by parameters 〈c0, λ0, h0〉 and
〈c1, λ1, h1〉:

p
(0)
i (x, t) =

∞∑
n=0

p
(0)
i (x, t;n). (2.13)

Remark 2.1. Formula (2.13) in particular case B = h0 + h1 = 0 becomes

p
(0)
i (x, t) = e−λi t · δ(x − ci t)

+ θ(x, t)

c0 − c1

[
λi exp

(
λ0 − λ1

c0 − c1
hi

)
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× I0

(
2

√
λ0λ1(c0t − x + hi)(x − hi − c1t)

c0 − c1

)

+ √
λ0λ1

(
x − c1t

c0t − x

)1/2−i

I1

(
2

√
λ0λ1(c0t − x)(x − c1t)

c0 − c1

)]
,

where I0(z) = ∑∞
n=0

(z/2)2n

(n!)2 and I1(z) = I ′
0(z) are modified Bessel functions. Com-

pare with Beghin, Nieddu and Orsingher (2001).

We apply previous results to obtain the distributions of times which the
process εi spends in the certain state.

Let Ti = Ti(t) = ∫ t
0 1{εi (τ )=0} dτ, i = 0,1 be the total time between 0 and t

spending by the process εi in the state 0 starting form the state i.
If we consider a standard telegraph processes with velocities c0 = 1, c1 = −1,

T0(t) = ∫ t
0 (−1)N0(τ ) dτ and T1(t) = − ∫ t

0 (−1)N1(τ ) dτ , then

T0(t) = T0 − (t − T0) = 2T0 − t and T1(t) = 2T1 − t. (2.14)

Let fi(τ, t;n),0 ≤ τ ≤ t denote the density of Ti : for all measurable ϒ ⊂ [0, t]∫
ϒ

fi(τ, t;n)dτ = Pi{Ti ∈ ϒ,Ni(t) = n}. (2.15)

Applying (2.14) we can notice that

f0(τ, t;n) = 2p̄0(2τ − t, t;n), f1(τ, t;n) = 2p̄1(2τ − t, t;n), (2.16)

where p̄0 and p̄1 are the densities of the standard telegraph process T0 and T1.
Functions p̄0 and p̄1 are defined in (2.10)–(2.12) with c0 = 1, c1 = −1 and h0 =
h1 = 0.

Using formulae for densities p̄i , which are obtained in (2.10)–(2.12),
from (2.16) we have

f0(τ, t;0) = e−λ0t δ(τ − t), f1(τ, t;0) = e−λ1t δ(τ ).

For n ≥ 1

f0(τ, t;2n) = λn
0λ

n
1
(t − τ)n−1τn

(n − 1)!n! e−λ0τ−λ1(t−τ)1{0≤τ≤t}, (2.17)

f1(τ, t;2n) = λn
0λ

n
1
(t − τ)nτn−1

(n − 1)!n! e−λ0τ−λ1(t−τ)1{0≤τ≤t}, (2.18)

and for n ≥ 0

f0(τ, t;2n + 1) = λn+1
0 λn

1
(t − τ)nτn

(n!)2 e−λ0τ−λ1(t−τ)1{0≤τ≤t}, (2.19)

f1(τ, t;2n + 1) = λn
0λ

n+1
1

(t − τ)nτn

(n!)2 e−λ0τ−λ1(t−τ)1{0≤τ≤t}. (2.20)
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Summarizing we have the following expressions for the densities fi(τ, t) of the
spending time of the the process εi(τ ),0 ≤ τ ≤ t in state 0:

f0(τ, t) = e−λ0t δ(τ − t)

+ e−λ0τ−λ1(t−τ)

[
λ0I0

(
2
√

λ0λ1τ(t − τ)
) + √

λ0λ1

√
τ

t − τ

× I1
(
2
√

λ0λ1τ(t − τ)
)]

1{0≤τ≤t}, (2.21)

f1(τ, t) = e−λ1t δ(τ )

+ e−λ0τ−λ1(t−τ)

[
λ1I0

(
2
√

λ0λ1τ(t − τ)
) + √

λ0λ1

√
t − τ

τ

× I1
(
2
√

λ0λ1τ(t − τ)
)]

1{0≤τ≤t}. (2.22)

In terms of fi(τ, t) it is possible to express the distribution of the telegraph-
diffusion process. If Ti(t) = ∫ t

0 1{εi (τ )=0} dτ , then Ti (t) = c0Ti(t) + c1(t − Ti(t))

and Di(t)
d= σ0w(Ti(t)) + σ1w

′(t − Ti(t)), where w and w′ are independent.
Let aτ = c0τ + c1(t − τ) and �2

τ = σ 2
0 τ + σ 2

1 (t − τ). The distribution densities
of telegraph-diffusion process Ti (t) + Di (t), t ≥ 0 can be expressed as follows:

pi(x, t) = 1√
2π

∫ t

0

fi(τ, t)

�τ

exp
{
− 1

2�2
τ

(x − aτ )
2
}

dτ.

Next, we describe in this framework martingales and martingale measures. The
following theorem could be considered as a version of the Doob–Meyer decompo-
sition for telegraph-diffusion processes with alternating intensities.

Theorem 2.2. Jump telegraph-diffusion process Ti + Ji + Di , i = 0,1 is a mar-
tingale if and only if c0 = −λ0h0 and c1 = −λ1h1.

Proof. The processes σεi(t), t ≥ 0, i = 0,1 are Ft -measurable. Hence the processes
Di = Di (t) = ∫ t

0 σεi(τ ) dw(τ), t ≥ 0, i = 0,1 are Ft -martingales. Now, the result
follows from Theorem 2.1 of Ratanov (2007a). �

Let h0, h1 > −1. Denote

κi(t) =
Ni(t)∏
k=1

(
1 + hεi(τk−)

)
. (2.23)

Corollary 2.1. The process exp{Ti (t) + Di(t)}κi(t) is a martingale if and only if
ci + σ 2

i /2 = −λihi, i = 0,1.
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Proof. It is sufficient to notice that exp{Ti (t) + Di(t)}κi(t) = Et (Ti + Ji + Di +
1/2

∫ t
0 σ 2

εi (τ ) dτ), where Et (·) denote a stochastic exponential [see Protter (1990)].
The corollary follows from Theorem 2.2. �

Now we study the properties of jump telegraph-diffusion processes under a
change of measure. Let T ∗

i , i = 0,1 be the telegraph processes with states 〈c∗
0, λ0〉

and 〈c∗
1, λ1〉, and J ∗

i = −∑Ni(t)
j=1 c∗

εi(τj−)/λεi(τj−), i = 0,1 be the jump processes
with jump values h∗

i = −c∗
i /λi > −1, which let the sum T ∗

i + J ∗
i to be a mar-

tingale. Let D∗
i = ∫ t

0 σ ∗
εi(τ ) dw(τ) be the diffusion with alternating diffusion coef-

ficients σ ∗
i , i = 0,1. Consider a probability measure P

∗
i with a local density with

respect to Pi :

Zi(t) = P
∗
i

Pi

∣∣∣∣
t

= Et (T ∗
i + J ∗

i + D∗
i )

(2.24)

= exp
(

T ∗
i (t) + D∗

i (t) − 1

2

∫ t

0

(
σ ∗

εi(s)

)2 ds

)
κ∗
i (t),

where κ∗
i (t) is defined in (2.23) with h∗

i instead of hi .

Theorem 2.3 (Girsanov theorem). Under the probability measure P
∗
i :

(1) process w̃(t) := w(t) − ∫ t
0 σ ∗

εi(τ ) dτ is a standard Brownian motion;
(2) counting Poisson process Ni(t) has intensities λ∗

i := λi(1 +h∗
i ) = λi − c∗

i .

Proof. Let Ui(t) := exp{zw̃(t)} = exp{z(w(t) − ∫ t
0 σ ∗

εi(τ ) dτ)}. For (1) it is suffi-
cient to show that for any t1 < t

Ei{Zi(t)Ui(t) | Ft1} = ez2(t−t1)/2Zi(t1)Ui(t1).

We prove it for t1 = 0 [see (2.7)].
Notice that

Zi(t)Ui(t) = exp
{

T ∗
i (t) + D∗

i (t) − 1

2

∫ t

0

(
σ ∗

εi(τ )

)2 dτ

+ zw(t) − z

∫ t

0
σ ∗

εi (τ ) dτ

}
κ∗
i (t)

= exp
{∫ t

0

(
cεi(τ ) − 1

2
σ ∗

εi(τ )
2 − zσ ∗

εi(τ )

)
dτ

+
∫ t

0

(
σ ∗

εi (τ ) + z
)

dw(τ)

}
κ∗
i (t)

= Et (T ∗
i + D∗

i + J ∗
i + zw) exp(z2t/2).

Thus Ei (Zi(t)Ui(t)) = exp(z2t/2).
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To prove the second part of the theorem we denote π∗
i (t;n) = P

∗
i {Ni(t) =

n} = Ei (Zi(t)1{Ni(t)=n}) = κ∗
i (n)

∫ ∞
−∞ exp∗

i (x, t;n)dx, where κ∗
i (n) = ∏n

k=1(1 +
hεi(τk−)), and p∗

i = p∗
i (x, t;n) are (generalized) probability densities of telegraph-

diffusion process X∗
i (t)+D∗

i (t)− ∫ t
0 (σ ∗

εi (τ ))
2 dτ/2. Notice that functions p∗

i (x, t;
n) satisfy system (2.4) with c∗

i − (σ ∗
i )2/2 and σ ∗

i instead of ci and σi , respectively.
Therefore

dπ∗
i (t;n)

dt
= (c∗

i − λi)π
∗
i (t;n) + λi(1 + h∗

i )π
∗
1−i (t;n − 1).

Next notice that λi − c∗
i = λi + λih

∗
i := λ∗

i and, thus

dπ∗
i (t;n)

dt
= −λ∗

i π
∗
i (t;n) + λ∗

i π
∗
1−i (t;n − 1).

The second part of the theorem now follows from (2.1). �

3 Jump telegraph-diffusion model

Let εi = εi(t) = 0,1, t ≥ 0 be a Markov switching process defined in Section 2
which indicates the current market state.

Consider Ti , Ji and Di , which are defined in (2.2). Assume that h0, h1 > −1.
First, we define the market with one risky asset. Assume that the price of the risky
asset which initially is at the state i, follows the equation

dS(t) = S(t−)d
(

Ti (t) + Ji (t) + Di(t)
)
, i = 0,1.

As it is observed in Section 2,

S(t) = S0Et (Ti + Ji + Di) = S0 exp
(

Ti (t) + Di(t) − 1

2

∫ t

0
σ 2

εi(τ ) dτ

)
κi(t). (3.1)

Let ri, ri ≥ 0 is the interest rate of the market which is at the state i, i = 0,1.
Let us consider the geometric telegraph process of the form

B(t) = exp{Yi (t)}, Yi (t) =
∫ t

0
rεi(τ ) dτ (3.2)

as a numeraire.
The model (3.1)–(3.2) is incomplete. Due to the simplicity of this model the

set M of equivalent risk-neutral measures can be described in detail.
Let us define an equivalent measure P

∗
i by means of the density Zi(t) [see

(2.24)] with arbitrary c∗
i , σ ∗

i and h∗
i = −c∗

i /λi > −1. Due to Theorem 2.3 c∗
i =

λi − λ∗
i < λi, i = 0,1.

Let θ0, θ1 > 0. We denote c∗
0 = λ0 − θ0, c∗

1 = λ1 − θ1, h∗
0 = −1 + θ0/λ0, h∗

1 =
−1 + θ1/λ1, and we take arbitrary σ ∗

0 , σ ∗
1 . Due to Theorem 2.3, under the measure

P
∗
i the driving Poisson process Ni(t) has intensities λ∗

i = λi −c∗
i = θi, i = 0,1. We

argue that the equivalent risk-neutral measures for the model (3.1)–(3.2) depend
on two positive parameters θ0 and θ1.
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Theorem 3.1. Let σ0 �= 0 and σ1 �= 0. Let probability measure P
∗
i be defined by

means of the density Zi(t), t ≥ 0, where Zi(t), t ≥ 0 is defined in (2.24).
The process B(t)−1S(t) is a P

∗
i -martingale if and only if the measure P

∗
i is

defined by parameters

c∗
0 = λ0 − θ0, c∗

1 = λ1 − θ1,

h∗
0 = −1 + θ0/λ0, h∗

1 = −1 + θ1/λ1,

σ ∗
0 = (r0 − c0 − h0θ0)/σ0, σ ∗

1 = (r1 − c1 − h1θ1)/σ1,

θ0 > 0, θ1 > 0.

Proof. Indeed,

Zi(t)B(t)−1S(t) = S0 exp{Yi(t)}κ̃i(t),

where

Yi(t) = Ti (t) + T ∗
i (t) + Di(t) + D∗

i (t) − 1

2

∫ t

0

(
σεi(τ )

2 + σ ∗
εi(τ )

2)
dτ − Yi (t)

and κ̃i(t) is defined as in (2.23) with h̃i instead of hi . Here h̃i satisfies the equation

1 + h̃i = (1 + h∗
i )(1 + hi), i = 0,1.

Thus h̃i = hi +h∗
i +hih

∗
i = hi + (−1+θi/λi)+hi(−1+θi/λi) = θi(1+hi)/λi −

1, i = 0,1. Using Corollary 2.1 we see that Zi(t)B(t)−1S(t) is the Pi-martingale,
if and only if {

c0 + c∗
0 − r0 + σ0σ

∗
0 = −λ0h̃0,

c1 + c∗
1 − r1 + σ1σ

∗
1 = −λ1h̃1.

Note that c∗
i = λi − θi and λih̃i = θi(1 + hi) − λi , so{

c0 + (λ0 − θ0) − r0 + σ0σ
∗
0 = −θ0(1 + h0) + λ0,

c1 + (λ1 − θ1) − r1 + σ1σ
∗
1 = −θ1(1 + h1) + λ1,

and then {
c0 − r0 + σ0σ

∗
0 = −θ0h0,

c1 − r1 + σ1σ
∗
1 = −θ1h1.

(3.3)

Therefore σ ∗
i = (ri − ci − hiθi)/σi, i = 0,1. �

Remark 3.1. The case of σ0 = σ1 = 0 is called a jump-telegraph model, and
it is complete. In this case the martingale measure is defined by c∗

i = λi − λ∗
i

and λ∗
i = ri−ci

hi
as the new intensities of switchings. See Ratanov (2007a) for de-

tails.
The Black–Scholes model respects to h0 = h1 = 0, σ0 = σ1 := σ, c0 = c1 :=

c, r0 = r1 = r . In this case system (3.3) has the unique solution σ ∗
0 = σ ∗

1 = σ ∗ =
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r−c
σ

. It means that the martingale measure is unique. Due to Girsanov Theorem 2.3
the process w(t) − σ ∗t is Brownian motion under the new measure, which repeats
the classic result.

To complete the model we add a new asset. Consider the market of two risky
assets which are driven by common Brownian motion w and counting Poisson
processes Ni :

dS(1)(t) = S(1)(t−)d
(

T (1)
i (t) + J (1)

i (t) + D(1)
i (t)

)
, (3.4)

dS(2)(t) = S(2)(t−)d
(

T (2)
i (t) + J (2)

i (t) + D(2)
i (t)

)
. (3.5)

As usual, i = 0,1 denotes the initial market state.
Denote

�
(h)
0 =

∣∣∣∣∣σ
(1)
0 h

(1)
0

σ
(2)
0 h

(2)
0

∣∣∣∣∣ = σ
(1)
0 h

(2)
0 − σ

(2)
0 h

(1)
0 ,

(3.6)

�
(h)
1 =

∣∣∣∣σ
(1)
1 h

(1)
1

σ
(2)
1 h

(2)
1

∣∣∣∣ = σ
(1)
1 h

(2)
1 − σ

(2)
1 h

(1)
1 .

Let �
(h)
0 �= 0,�

(h)
1 �= 0. We assume that

λ∗
i := �

(r−c)
i

�
(h)
i

> 0, (3.7)

where �
(r−c)
i , i = 0,1 are defined as in (3.6) with ri − c

(1)
i , ri − c

(2)
i instead of

h
(1)
i , h

(2)
i , i = 0,1.

Theorem 3.2. Both processes B(t)−1S(m)(t), t ≥ 0,m = 1,2 are P
∗
i -martingales

if and only if the measure P
∗
i is defined by (2.24) with the following parameters:

σ ∗
0 = (r0 − c

(1)
0 )h

(2)
0 − (r0 − c

(2)
0 )h

(1)
0

�
(h)
0

,

(3.8)

σ ∗
1 = (r1 − c

(1)
1 )h

(2)
1 − (r1 − c

(2)
1 )h

(1)
1

�
(h)
1

,

c∗
0 = λ0 − �

(r−c)
0

�
(h)
0

, c∗
1 = λ1 − �

(r−c)
1

�
(h)
1

(3.9)

and

h∗
0 = −c∗

0/λ0, h∗
1 = −c∗

1/λ1.

Under the measure P
∗
i the rate of leaving the state i equals to λ∗

i defined in (3.7).
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Proof. First notice

Zi(t)B(t)−1S(m)(t) = S(m)(0)Et exp(T ∗
i + J ∗

i + D∗
i )

× exp(−Yi(t))Et

(
T (m)

i + J (m)
i + D(m)

i

)
= exp

(
T ∗

i (t) + D∗
i (t) − 1

2

∫ t

0
σ ∗

εi (τ )
2 dτ

)
κ∗
i (t)

× exp
(

T (m)
i (t) + D(m)

i (t) − Yi(t)

− 1

2

∫ t

0
σ

(m)
εi(τ )

2
dτ

)
κ

(m)
i (t)

= Et

(
T (m)

i + T ∗
i + D(m)

i + D∗
i

− Yi +
∫ t

0
σ

(m)
εi(τ )σ

∗
εi(τ ) dτ

)
κ

(m)
i (t)κ∗

i (t).

Thus Zi(t)B(t)−1S(m)(t) is a martingale if and only if (Theorem 2.2){
c
(1)
i + c∗

i − ri + σ
(1)
i σ ∗

i = −λi

(
h

(1)
i + h∗

i + h
(1)
i h∗

i

)
,

c
(2)
i + c∗

i − ri + σ
(2)
i σ ∗

i = −λi

(
h

(2)
i + h∗

i + h
(2)
i h∗

i

)
.

(3.10)

Now using the identities c∗
i = −λih

∗
i , i = 0,1 we simplify the system (3.10) to{

σ
(1)
i σ ∗

i − h
(1)
i c∗

i = ri − c
(1)
i − λih

(1)
i ,

σ
(2)
i σ ∗

i − h
(2)
i c∗

i = ri − c
(2)
i − λih

(2)
i .

(3.11)

Systems (3.11) have the solutions described in (3.8)–(3.9).
Note that as it follows from Girsanov theorem, the intensity parameters under

measure P
∗
i , λ∗

0 and λ∗
1 are defined in (3.7). �

Corollary 3.1. Let �
(h)
0 �= 0,�

(h)
1 �= 0 and (3.7) is fulfilled. If the prices S

(1)
i and

S
(2)
i of both risky assets are defined in (3.4) and (3.5) with nonzero jumps, h

(m)
0 �=

0, h
(m)
1 �= 0,m = 1,2, then

σ ∗
0 = α

(1)
0 − α

(2)
0

β
(1)
0 − β

(2)
0

, σ ∗
1 = α

(1)
1 − α

(2)
1

β
(1)
1 − β

(2)
1

and

c∗
0 = λ0 − β

(1)
0 α

(2)
0 − β

(2)
0 α

(1)
0

β
(1)
0 − β

(2)
0

, c∗
1 = λ1 − β

(1)
1 α

(2)
1 − β

(2)
1 α

(1)
1

β
(1)
1 − β

(2)
1

,
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where

α
(m)
0 = r0 − c

(m)
0

h
(m)
0

, α
(m)
1 = r1 − c

(m)
1

h
(m)
1

,

β
(m)
0 = σ

(m)
0

h
(m)
0

, β
(m)
1 = σ

(m)
1

h
(m)
1

, m = 1,2.

In the completed market model (3.4)–(3.5) consider a European option with
maturity time T and payoff function f (S(1)(T )). The price of this option can be
calculated using the expectation E

∗
i with respect to the unique martingale measure

P
∗
i which is constructed by Theorem 3.2:

ci = E
∗
i

{
B(T )−1f

(
S(1)(T )

)}
, i = 0,1. (3.12)

Remark 3.2. If �
(h)
0 = �

(h)
1 = 0, then the system (3.11) does not have a solu-

tion (if �
(r−c)
0 �= 0, �

(r−c)
1 �= 0) or it has infinitely many solutions (if �

(r−c)
0 =

�
(r−c)
1 = 0). It means arbitrage or incompleteness, respectively.

In particular case of the market model without jumps, that is, h
(1)
i = h

(2)
i =

0, i = 0,1, the market of two assets is arbitrage-free (respectively, the sys-
tem (3.11) has solutions) if and only if the assets are similar:

ri − c
(1)
i

σ
(1)
i

= ri − c
(2)
i

σ
(2)
i

= σ ∗
i , i = 0,1.

In this case the model still to be incomplete.

Remark 3.3. The incomplete market model (3.1) with h0, h1 = 0 (i.e., without
jump component),

S(1)(t) = S(1)(0) exp
{

Ti (t) + Di(t) − 1

2

∫ t

0
σ 2

εi(τ ) dτ

}
(3.13)

is known as hidden Markov model with information [see Guo (2001)] or Markov-
modulated dynamics [see Jobert and Rogers (2006)]. This model can be completed
not only by using Theorem 3.2, but by another way. Suppose that at each time t ,
there is a market for a security that pays one unit of bond at the next time τi that the
Markov chain εi(t) changes state [see Guo (2001)]. That change-of-state contract
then becomes worthless and a new contract is issued that pays at the next change
of state, and so on. It is natural to propose that the current change-of-state contract
takes a price of

Vi = Ei

{
e−(ri+ki)τi

} = λi

ri + ki + λi

. (3.14)
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Here ki is given, and can be thought as a risk-premium coefficient.
Assuming that the price Vi is calculated as expectation under the martingale

measure [see (3.12)] we get

Vi = E
∗
i {B(τi)

−1 × 1} = λ∗
i

ri + λ∗
i

, (3.15)

where λ∗
i is defined in (3.7). From (3.14) and (3.15) we have

λ∗
i = riλi

ri + ki

, i = 0,1.

According to Theorem 3.1 the martingale measure is given by the density (2.24)
with

c∗
i = λi − λ∗

i = λiki

ri + ki

, h∗
i = −1 + λ∗

i

λi

= − ki

ri + ki

,

σ ∗
i = ri − ci

σi

, i = 0,1.

In our framework the stock (3.13) and the bond B(t) defined in (3.2) (with
ri > 0) can be naturally accompanied with the security which magnifies its value
with the fixed rate at each moment of the change of state:

S(2)(t) =
Ni(t)∏
k=1

(
1 + hεi(τk−)

)
, h0, h1 > 0. (3.16)

This security can be considered as an insurance contract that compensates losses
provoked by state changes and helps to hedge the option with payoff function
f (S(1)(T )). In contrast with Guo (2001) the security (3.16) which completes the
market model (3.13) is perpetual, that is, it does not become worthless at the
switching times.

In the denominations of Theorem 3.2 c
(1)
i = ci, c

(2)
i = 0, σ

(1)
i = σi, σ

(2)
i = 0,

h
(1)
i = 0, h

(2)
i = hi . Hence �

(h)
i = σihi,�

(r−c)
i = σiri [see (3.6)] and Theorem 3.2

gives λ∗
i = ri/hi and

c∗
i = λi − ri

hi

, h∗
i = −1 + ri

λihi

, σ ∗
i = ri − ci

σi

, i = 0,1.

Let us present the pricing formula of standard call option in the market, com-
pleted by Theorem 3.2. Assume that �

(h)
0 �= 0 and �

(h)
1 �= 0, and condition (3.7) is

fulfilled.
Let Z be a r.v. with normal distribution N (0, σ 2). We denote

ϕ(x,K,σ) := E[xeZ−σ 2/2 − K]+
(3.17)

= xF

(
ln(x/K) + σ 2/2

σ

)
− KF

(
ln(x/K) − σ 2/2

σ

)
,
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where F(x) is the distribution function of standard normal law:

F(x) = 1√
2π

∫ x

−∞
e−y2/2 dy.

Let the market contains two risky assets (3.4) and (3.5). Consider the standard
call option on the first asset with the claim (S(1)(T ) − K)+. Therefore the call-
price is

ci = E
∗
i

{
B(T )−1(

S
(1)
i (T ) − K

)+}
, (3.18)

if the market is starting with the state i. Here E
∗
i is the expectation with respect to

the martingale measure P
∗
i which is constructed in Theorem 3.2.

By Girsanov Theorem 2.3 the process w̃(t) = w(t) − ∫ t
0 σ ∗

εi(τ ) dτ is the Brown-
ian motion under new measure P

∗
i . Hence

B(T )−1S(1)(T ) = S(1)(0) exp
{

T (1)
i (T ) +

∫ T

0
σ

(1)
εi (τ ) dw(τ)

− 1

2

∫ T

0
σ

(1)
εi (τ )

2
dτ − Yi (T )

}
κ

(1)
i (T )

= S(1)(0) exp
{

T (1)
i (T ) +

∫ T

0
σ

(1)
εi (τ ) dw̃(τ ) +

∫ T

0
σ

(1)
εi (τ )σ

∗
εi(τ ) dτ

− 1

2

∫ T

0
σ

(1)
εi (τ )

2
dτ − Yi (T )

}
κ

(1)
i (T ).

Notice that the first equation of (3.11) can be transformed to c
(1)
i − ri + σ

(1)
i σ ∗

i =
h

(1)
i (c∗

i − λi), and from Girsanov Theorem 2.3 we have c∗
i − λi = −λ∗

i . Let us

introduce the telegraph process T (1)
i independent of w̃ which is driven by Pois-

son process with parameters λ∗
i and with the velocities c̃i = c

(1)
i − ri + σ

(1)
i σ ∗

i =
−λ∗

i h
(1)
i , i = 0,1. So the martingale B(T )−1S(1)(T ) takes the form

B(T )−1S(1)(T ) = S(1)(0) exp
{

T (1)
i (T ) +

∫ T

0
σ

(1)
εi (τ ) dw̃(τ )

− 1

2

∫ T

0
σ

(1)
εi (τ )

2
dτ

}
κ

(1)
i (T ).

Again applying the property (2.7), from (3.18) we obtain

ci =
∫ T

0

∞∑
n=0

fi(t, T ;n)ϕ
(
xi(t, T , n),Ke−r0t−r1(T −t),

(3.19)√
σ 2

0 t + σ 2
1 (T − t)

)
dt, i = 0,1.
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Here xi(t, T , n) = S(1)(0)κi,nec̃0t+c̃1(T −t) and

κi,2n = (
1 + h

(1)
0

)n(
1 + h

(1)
1

)n
, i = 0,1,

κ0,2n+1 = (
1 + h

(1)
0

)n+1(
1 + h

(1)
1

)n
, κ1,2n+1 = (

1 + h
(1)
1

)n+1(
1 + h

(1)
0

)n
,

n = 0,1,2, . . . ;
fi(t, T ;n) are defined in (2.17)–(2.20) with λ∗

0 = �
(r−c)
0 /�

(h)
0 , and λ∗

1 = �
(r−c)
1 /

�
(h)
1 instead of λ0 and λ1; ϕ(x,K,σ) is defined in (3.17). Notice that as in the

jump-telegraph model [see Ratanov (2007a)] the option price (3.19) does not de-
pend on λ0 and λ1.

In particular, if h
(1)
0 = h

(1)
1 = 0 and, nevertheless, �

(h)
0 �= 0,�

(h)
1 �= 0 [see, e.g.,

model (3.13), (3.16)], we can summarize in (3.19) applying (2.17)–(2.20):

ci =
∫ T

0
fi(t, T )ϕ

(
S0,Ke−r0t−r1(T −t),

√
σ 2

0 t + σ 2
1 (T − t)

)
dt, i = 0,1,

where fi(t, T ) are defined in (2.21) and (2.22) [cf. Guo (2001)].

Remark 3.4. The stock and the bond prices are modeled in (3.1)–(3.2) using the
Markov process ε = ε(t), t ≥ 0, which can be interpreted as information-based
feature of market movements. In the paper we assume that ε(t) is actually ob-
servable, and thus predictable. This assumption is reasonable, if c0 �= c1 and (or)
σ0 �= σ1, h0 �= h1. Hence, the option price ci (in completed market) is defined de-
pending on initial state i = ε(0).

Contrarily, if the market state ε(t) is not observable then at each time t the
option with claim X has the current price

c(t) = E
{(

B(T )/B(t)
)−1

X|Ft

}
which is random (with two possible values depending on the future infinitesimal
direction of risky asset movement).

The main cause of this peculiarity is that the price process S(t), t ≥ 0 which
is defined in (3.1), as well as its components T (t), J (t) and D(t), t ≥ 0 are
not Markovian. Nevertheless, the pair {S(t), ε(t)}, t ≥ 0 forms jointly a Markov
process.
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