
Brazilian Journal of Probability and Statistics
2010, Vol. 24, No. 2, 361–399
DOI: 10.1214/09-BJPS035
© Brazilian Statistical Association, 2010
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Abstract. This paper gives a didactic introduction to the problem of metasta-
bility by taking elementary examples from the theory of random walks. Some
mathematical tools of the theory are presented briefly with precise references.
The main ideas used in recent results about the conservative case, are dis-
cussed in the last section, through simplified models of random walks.

1 Introduction

The aim of the paper is to give a brief introduction to the main ideas of metastabil-
ity, providing some mathematical tools necessary to construct a general theory. We
will start from physics, from a ferromagnet, but we will use it just as an example to
understand the problem and to single out the interesting questions. Due to limited
space we will not mention the application of the theory to other fields.

Metastability is a dynamical phenomenon taking place in the vicinity of a first-
order phase transition. It is a difficult topic, because of the many different aspects
of the problem. Different mathematical methods are involved in the construction
of a theory of metastability, like the Freidlin and Wentzell results on small random
perturbations of dynamical systems or analytical methods to control the conver-
gence to equilibrium of a random process by means of the spectral properties of its
generator. Also, geometrical problems like isoperimetric inequalities are involved
to describe the cooperative effect of a large deviation. The different mathematical
tools necessary to a complete analysis of the problem are presented in the paper in
brief by simple examples and with precise references for the interested reader.

Some recent results, concerning the more difficult conservative case, are dis-
cussed in the last section and the main ideas are presented there in a simplified
way.

The paper is not a complete review on metastability but, rather, a guide for be-
ginners. In particular we will not discuss many interesting regimes of metastability
like the infinite volume results proved by Dehghampour and Schonmann for the
Glauber dynamics in two dimensions (see [10,11,41,42]), or the results by Schon-
mann and Shlosman for the Ising model in the regime of temperature T < Tc small
but fixed, h → 0 (see [40,43]).

A review of different regimes of the Glauber dynamics can be found in [39],
Chapter 7.
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1.1 The physical problem and the model

We present a model in which metastability can be studied, starting from its physical
origin. Consider a ferromagnet at low temperature T , say, sufficiently below the
Curie temperature, and measure its magnetization m for different values of the
external magnetic field h. The result of such an experiment is recalled in Figure 1.

The phenomenon of spontaneous magnetization takes place so that

lim
h→0+ m(h) > 0, lim

h→0− m(h) < 0.

Suppose we now change the value of the external magnetic field, starting from
a small negative value, going to zero and then to small positive values. Under
suitable experimental conditions, we can construct in this way a state, called
metastable, with magnetization opposite to h, in apparent equilibrium, until an
external perturbation or a spontaneous, large-enough fluctuation will nucleate the
stable phase with magnetization parallel to h, starting an irreversible process lead-
ing to global equilibrium. A similar behavior is observed in the opposite direction,
from positive to negative h. Metastable states correspond to the dashed line in the
picture. At high temperature this phenomenon disappears. A more detailed de-
scription of this physical phenomenon can be found, for instance, in [1].

A simple model to describe some aspect of ferromagnetism is the Ising model.
Consider a finite volume � ⊂ Z

d . With each site x ∈ � is associated a spin variable
σ(x) ∈ {−1,+1}. The interaction between spin variables is given by the following
Hamiltonian:

H(σ) = −J

2

∑
(x,y)∈�∗

σ(x)σ (y) − h

2

∑
x∈�

σ(x), (1.1)

where the first sum is over the set �∗ of all the pairs (x, y) of nearest-neighbor
sites, J > 0 is the pair interaction, h > 0 is the external magnetic field, and we

Figure 1 Spontaneous magnetization and metastable states (dashed line).
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assume periodic boundary conditions on �. Denote by X = {+1,−1}� the space
of all possible spin configurations σ . These spin variables represent a crude de-
scription of atom spins.

Following the general ideas of equilibrium statistical mechanics, to describe a
macroscopic physical system, instead of analyzing the microscopic variables de-
scribing the system, we look at families of probability measures on the state space,
called statistical ensembles. Each statistical ensemble depends on some parame-
ters. In particular, for the ferromagnet we are considering, we introduce a measure
depending on the volume �, on the external magnetic field h and on the tempera-
ture: the grand-canonical Gibbs measure

μ(σ) = e−βH(σ)

Z
(σ ∈ X ), where Z = ∑

σ∈X
e−βH(σ), (1.2)

and β > 0 is the inverse temperature. To describe macroscopic physical quantities,
we have to consider the thermodynamic limit � → Z

d .
A short introduction to equilibrium statistical mechanics can be found in [39],

Section 3.3, where Gibbs measures in the thermodynamic limit are rigorously de-
fined. In that chapter the reader can also find a first description of phase transitions
and in particular a rigorous proof of the existence of a phase transition at low
temperature for the Ising model when d ≥ 2. See also [16] for a more detailed
analysis.

The Ising model turns out to be sufficiently simple to be rigorously studied and
on the other hand not trivial so that interesting physical aspects, like phase transi-
tions, can be described in its framework. More information on the Ising model can
be found in classical Statistical Mechanics books like [24].

We now want to describe the evolution of a metastable state, and in particular
its decay to the stable equilibrium through the nucleation of the stable phase. Dif-
ferent strategies can be adopted to this purpose, since a general theory of nonequi-
librium statistical mechanics is still lacking. A metastable state can be described as
a Gibbs measure conditioned to a suitable subset R of the state space correspond-
ing to the metastable phase. This approach was originally developed by Lebowitz
and Penrose [29]. More details can also be found in [39], Section 4. In these notes
we will rather adopt the pathwise approach introduced in [7] by Cassandro et al.

We define a dynamics on the state space X by means of a Markov chain (MC)
on X with invariant measure given by the equilibrium Gibbs measure (1.2), corre-
sponding to the stable phase. Let (σt )t∈N0 be the discrete-time MC with transition
probabilities given by the Glauber–Metropolis algorithm: the transitions from a
configuration σ are allowed only towards the configurations σx , x ∈ �, where

σx(y) =
{

σ(y), if x �= y,
−σ(y), if x = y.

(1.3)

Each transition σ → σx occurs at rate given by the Metropolis rate:
e−β[H(σx)−H(σ)]+, where [a]+ := a ∨ 0. This means that the transition probability
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of the chain is given by

P(σ,σ ′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

|�|e
−β[H(σx)−H(σ)]+, if σ ′ = σx for some x,

1 − ∑
x∈�

1

|�|e
−β[H(σx)−H(σ)]+, if σ ′ = σ ,

0, otherwise.

(1.4)

This dynamic is nonconservative in the sense that the total magnetization is not a
conserved quantity. It is easy to check that the reversibility condition

μ(σ)P (σ,σ ′) = μ(σ ′)P (σ ′, σ ) (1.5)

is satisfied with μ the Gibbs measure defined in (1.2) so that μ is the invariant
measure of the chain. Moreover the chain is irreducible and aperiodic, which im-
plies that the t-step transition probability P t converges to the invariant measure as
t → ∞:

lim
t→∞P t(σ0, σ ) = μ(σ) (1.6)

for any starting configuration σ0 ∈ X and any σ ∈ X .
Metastability takes place when the MC is such that this convergence to equi-

librium is realized through a large deviation mechanism. This implies that there
exists an initial measure which is almost invariant for large times. In this way the
decay of the metastable state turns out to be described by the convergence to equi-
librium of the Markov chain starting from an initial measure corresponding to the
metastable state.

In Section 2 we will clarify what we mean by “metastability through large de-
viations” with a very simple example.

1.2 More references on Markov chains

Markov chains are an important subject in probability theory and are a crucial tool
in metastability. A beautiful, easy and self-contained introduction to the theory of
Markov chains can be found in [23] in which applications are also considered. In
particular the Markov chain Monte Carlo method (MCMC) for sampling is illus-
trated with several examples. This method is actually strictly related to mestasta-
bility, since a rigorous analysis of the convergence to equilibrium, that is, of the
method’s efficiency, requires the discussion of possible metastable states. For the
MCMC method see also the review by Jerrum and Sinclair [25].

We also mention here the connection between Markov chains and electric net-
works. A very interesting approach to the study of Markov chains and their con-
vergence to the stationary measure is based on potential theory. Indeed, several
probabilistic quantities, like the mean value of the first hitting time to a given set,
can be studied in terms of electrostatic quantities like capacities and equilibrium
potential. See the very informative paper by Doyle and Snell [14], and the useful
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review on this subject given by Gaudillière in [18] for the lecture notes of the XIIth
Brazilian School of Probability (Ouro Preto, 2008).

These ideas turn out to give rise to an alternative approach to metastability ([3–
5]) with respect to that of large deviations, providing sharp estimates on the mean
decay time of metastable states with a control not only in the logarithmic asymp-
totic sense. This means that following the approach based on large deviations, quite
rough estimates can be obtained, since prefactors of exponentially small quantities
are not taken into account. The potential theoretical approach, on the other hand,
takes into account also these prefactors providing in this way sharper estimates.

We will follow in these notes the large deviations ideas because more informa-
tion can be obtained in this way on the decay of the metastable state.

2 Metastability in finite state space

When |X | does not depend on β , for large β , the stable states coincide with the
configurations with minimal energy, on which the invariant measure is concen-
trated. In a similar way the metastable states are configurations corresponding to
local minima.

2.1 A toy model: 1D-RW

Consider a random walk {Xt }t∈N on X = {0,1, . . . , n} reversible w.r.t. the follow-
ing measure:

μ(x) = e−βH(x)

Z
, Z =

n∑
x=0

e−βH(x)

where the Hamiltonian H(x) is given by the double well shown in Figure 2.

Figure 2 Double well for the 1D-RW.
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This means that, for each x, y ∈ X , the transition probabilities of the chain are
given by the Metropolis rule

P(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
e−β[H(y)−H(x)]+, if |x − y| = 1,

0, if |x − y| > 1,

1 − 1

2

∑
y:|x−y|=1

e−β[H(y)−H(x)]+, if x = y,

(2.1)

where we can consider H(−1) = H(n+1) = ∞, in order to have the random walk
in the interval [0, n], and we consider the regime of large β at fixed n. We can look
at this random walk as a simple case of a birth and death chain.

The measure μ, which is the invariant measure of the chain, is concentrated
on the state of minimal energy, that is, the state n. Due to the convergence result
recalled in Equation (1.6), the chain Xt in a sufficiently long time will reach this
stable state n, with probability converging to one as β → ∞. All the other states
have a measure which is exponentially smaller in β . Among these, when β → ∞,
the state 1 has the largest measure, it is a local minimum. Actually the chain can
be viewed as a small stochastic perturbation of a random walk X

(0)
t , that we call

0-temperature dynamics, with absorbing states 1 and n obtained by Equation (2.1)
in the limit β → ∞. This means that the transition probabilities of this 0-
temperature dynamics are given by

P (0)(x, x) = P (0)(x, x − 1) = 1
2 ,

(2.2)
P (0)(x, x + 1) = 0 for x = 2, . . . , n − 2,

P (0)(0,0) = P (0)(0,1) = 1
2 , (2.3)

P (0)(n − 1, n) = P (0)(n − 1, n − 2) = 1
2 , P (0)(n − 1, n − 1) = 0, (2.4)

so that the state n − 1 represents the saddle configuration:

P (0)(1,1) = P (0)(n, n) = 1, (2.5)

so that 1 and n are absorbing states. The random walk X
(0)
t , when moving, that is,

not considering the steps i → i, is subject to a drift towards the left from n−1 to 1
and a drift towards the right from 0 to 1 and from n − 1 to n.

This dynamics, with large probability, reaches its absorbing states, 1 or n, in a
time nα for α ≥ 2. Indeed the probability that the absorbtion time is larger than t

is smaller than

n−1∑
i−0

(
t

i

)
2−t ≤ e−c(t−n ln t)

for a suitable constant c.



Metastability through random walks 367

For large β the process Xt is close to this 0-temperature dynamics X
(0)
t and

again its evolution reaches the set {1, n} with large probability in a short time.
Starting from this set the process Xt typically remains in the same state for a time
exponentially large in β , at least of order eδβ where δ := H(2) − H(1).

Consider now the evolution of the chain Xt starting at the state 1. After many un-
successful attempts to leave this state, coming back after small fluctuations, there
will be a large fluctuation corresponding to a motion against the drift, producing a
fast transition to n.

We summarize the behavior of the above-described chain with the following
proposition that we prove in this very simple case in order to present in the simplest
context some ideas and techniques that are used in more general situations. The
general version of these results is developed in the Freidlin Wenzell theory, as
discussed in Section 3.

We denote by τA the first hitting time to the set A ⊂ X , and shortly τx when
A = {x}, and by Px the probability conditioned to the starting point x and by Ex

the corresponding mean.

Proposition 2.1. For every positive ε:

(1) Uniformly in x ∈ X

Px

(
τ{1,n} > eεβ) = SES,

where SES means super exponentially small in β . Moreover for any x < n − 1

lim
β→∞ Px(τ1 < τn) = 1.

(2) If 	 = H(n − 1) − H(1) uniformly in x < n − 1 we have

lim
β→∞ Px

(
eβ(	−ε) < τn < eβ(	+ε)) = 1.

(3) For any x < n − 1

lim
β→∞

1

β
ln Ex(τn) = 	.

(4) If τ{0,n−1} is the first exit time from the interval [1, n − 2], for any x in this
interval we have

Px

(
Xτ{0,n−1} = 0

) ≤ e−β[H(0)−H(n−1)−ε].

2.2 Proof of Proposition 2.1

(1) Starting from every x ∈ X , we define the decreasing path starting at x, as the
sequence of states in X , {φd

t (x)}t=0,1,...,n, satisfying
• φd

t (x) = x for all t , for x = 1 or n;
• φd

t (x) = (x − t) ∨ 1, for x = 2,3, . . . , n − 1;
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• φd
t (0) = (x + t) ∧ 1.

Note that the decreasing paths are the paths of the 0-temperature dynamics
when cutting out the steps i → i, with the exclusion of the transition n − 1 →
n, having probability 1

2 for the process X(0). Indeed for the saddle point n − 1
it is possible to define the decreasing path to the left (as done in the previous
definition) or to the right, to the absorbing state n.

The event Dn := {Xt = φd
t (X0), for t = 0,1, . . . , n}, that is, the process

follows the decreasing path, implies the arrival to the set {1, n} and, for β

large it has a probability at least of order 2−n so that the event τ{1,n} > eεβ

implies that in each of the eεβ

n
subintervals of length n of the interval of length

eεβ the event Dn is not realized. We can conclude

Px

(
τ{1,n} > eεβ) ≤ (1 − 2−n)e

εβ/n = SES.

Note that we are considering the regime n fixed and β large. The second claim
of this point immediately follows by looking at the motion at 0-temperature
and noting that every step “against the flow,” that is, following the increasing
direction of H , has a probability smaller or equal to e−δβ , so that the proba-
bility that the process Xt follows a path which is not a trajectory of X

(0)
t in a

time interval exponentially shorter than eδβ , is exponentially small in β .
(2) To prove that

Px

(
τn > eβ(	+ε)) = SES

we can proceed as in the previous point. We define the event “go to the right”:
Rn := {Xt = (X0 + t) ∧ n, t = 0,1, . . . , n}. Rn implies {τn ≤ n} and indeed
its probability can be estimated from below uniformly in the starting point x

by e−β(	+ε/2), for β sufficiently large, so that we can conclude as before: for
each t ≥ eβ(	+ε)

Px(τn > t) ≤ (
1 − e−β(	+ε/2))t/(2n) ≤ e−te−β(	+ε/2)/(2n) = SES. (2.6)

The opposite bound can be proved by using reversibility. By point (1) it is
sufficient to consider the case x = 1 since

Px

(
τn < eβ(	−ε)) ≤ Px

(
τ1 < τn < eβ(	−ε)) + Px(τ1 ≥ τn)

and Px(τ1 < τn < eβ(	−ε)) ≤ P1(τn < eβ(	−ε)).
We have

P1
(
τn < eβ(	−ε)) ≤ P1

(
τn−1 ≤ eβ(	−ε)) =

eβ(	−ε)∑
t=1

∑
ω={ω0=1,ω1,...,ωt=n−1}

ωi �=n−1,i=1,...,t−1

P(ω)

where by time reversal

P(ω) := P(ω0,ω1)P (ω1,ω2) · · ·P(ωt−1,ωt )

= μ(n − 1)

μ(1)
P (ωt ,ωt−1) · · ·P(ω2,ω1)P (ω1,ω0) =: μ(n − 1)

μ(1)
P (←−ω ),
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so that

P1
(
τn−1 ≤ eβ(	−ε)) = μ(n − 1)

μ(1)

eβ(	−ε)∑
t=1

∑
ω={ω0=1,ω1,...,ωt=n−1}

ωi �=n−1,i=1,...,t−1

P(←−ω ).

Since the last sum is the probability that starting at n− 1 the process reaches 1
at t without visiting the sites n − 1 and n in between, and so it’s smaller than
one, we can conclude

P1
(
τn−1 ≤ eβ(	−ε)) ≤ eβ(	−ε) μ(n − 1)

μ(1)
= e−βε.

(3) For any ε > 0

Exτn =
∞∑
t=0

tPx(τn = t) ≥
eβ(	+ε)∑

t=eβ(	−ε)

tPx(τn = t)

≥ eβ(	−ε)
Px

(
eβ(	−ε) < τn < eβ(	+ε)).

On the other hand, for a discrete stopping time we have

Exτn =
∞∑
t=0

Px(τn > t) ≤ eβ(	+ε) + ∑
t>eβ(	+ε)

Px(τn > t)

and by (2.6) and by using that ε is arbitrarily small we obtain

lim
β→∞

1

β
ln Ex(τn) = 	.

(4) The proof of the last point is straightforward

Px(Xτ{0,n−1} = 0)

=
∞∑
t=1

Px

({Xτ{0,n−1} = 0} ∩ {
τ{0,n−1} = t

})

= P(1,0)

∞∑
t ′=0

Px

({Xt ′ = 1} ∩ {
τ{0,n−1} > t ′

}) ≤ P(1,0)Exτ{0,n−1}

≤ P(1,0)Exτn−1 ≤ P(1,0)Exτn ≤ e−β[H(0)−H(n−1)−ε].

2.3 Preliminary remarks on metastability

The main features of the toy model of Section 2.1, those describing its metastable
behavior, can be summarized as follows:
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Figure 3 A 1D-RW without metastable behavior.

• There are two minima of the Hamiltonian H : a local minimum 1 that can be
called a metastable state and a global minimum n representing the stable state
where the invariant measure is concentrated. This is a very important feature of
metastability. For instance the situation is completely different if we consider
the random walk on X = {0, . . . , n} reversible w.r.t. the Hamiltonian shown in
Figure 3.

The time τn is almost deterministic in this case and it is of order n, there is
not a metastable behavior.

• The dynamics Xt can be seen as a small random perturbation of the 0-
temperature dynamics X

(0)
t , and it reaches the states 1, n with large probability,

in a time shorter than the time necessary to go from 1 to n.
• Starting at the metastable state 1 the system performs small fluctuations around

it, staying in its vicinity an exponentially long time, every time coming back
to 1, remaining in the interval [1,2, . . . , n − 2].

• After this time exponentially large in β a large deviation takes place with motion
against the drift, leading the process Xt out of [1,2, . . . , n− 2], exiting at n− 1,
which is the point of the boundary with lowest energy. From the saddle n − 1
the stable state n is reached following the drift.

• The asymptotics of the first hitting time to the stable state starting from the
metastable one has been studied in probability and in L1. This convergence can
also be studied in distribution, as explained for instance at the end of the notes
[18] in a more general context (see also [30]).

2.4 A result on 2D Glauber dynamics

Consider now the two-dimensional Glauber dynamics, defined in Section 1.1, in
the metastable, finite-volume (MFV) regime:

� is large but finite (independent of β), h ∈ (0,2J ), β → ∞. (2.7)
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To justify this denomination we give two arguments showing that there is a crit-
ical size lc such that clusters smaller than lc have the tendency to shrink while
clusters larger than lc have the tendency to grow. A first rough preliminary discus-
sion of the energy landscape is the following: let

� = the configuration with σ(x) = +1 for all x ∈ �,
(2.8)

� = the configuration with σ(x) = −1 for all x ∈ �.

In the MFV regime (2.7) the Gibbs measure will be concentrated around �, which
is the unique ground state of H . Clearly, � is only a local minimum of H that we
call metastable state. Indeed, for l ∈ N, let

E(l) = H(σl×l) − H(�), (2.9)

where σl×l is the configuration in which the (+1)-spins form an l × l square in a
sea of (−1)-spins. It follows from (1.1) that E(l) = 4J l − hl2, which is maximal
for l = 2J

h
; see Figure 4.

This means that, even though an arbitrarily small, nonvanishing magnetic field
determines the phase, its effect is relevant only on sufficiently large space scales,
namely l ≥ lc with

lc =
⌈

2J

h

⌉
. (2.10)

Only on such scales the volume energy dominates the surface energy and a larger
square of (+1)-spins is energetically more favorable than a smaller square. Note
that the MFV regime implies lc ≥ 1.

We want to consider now the energy landscape in more details not only on
square configurations. Denoting by σl×l′ , a quasi-square configuration in which

Figure 4 The energy of a square droplet as a function of its side.
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Figure 5 Energy well for the Glauber dynamics around a quasi-square.

the (+1)-spins form a l × l′ rectangle in a sea of (−1)-spins, where |l − l′| ≤ 1,
we look at the energy barriers between σl×l and σl×(l−1) and between σl×l and
σl×(l+1) in order to compare the probabilities of shrinking or growing. Around
each quasi-square the energy landscape is like a well, as shown in Figure 5.

The energy barrier between σl×l and σl×(l−1) is given by h(l − 1), while the
energy barrier between σl×l and σl×(l+1) is given by 2J − h. If l is such that
h(l − 1) > 2J − h, that is, l > lc with lc given by (2.10), then the cluster tends to
grow, while if l < lc then the energy barrier on the left in the picture is lower than
that on the right so that the cluster tends to shrink.

The above heuristic arguments have been developed in a rigorous way by Neves
and Schonmann [34,35] (see also Schonmann [40–42]). Let

τA = min{t ∈ N0 :σt ∈ A} (2.11)

be the first hitting time of the set A ⊂ X , as before we use τη in the case A = {η},
and let

τη,η′ = max{t < τη′ :ηt = η}
be the time of the last visit to η before visiting η′.
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Figure 6 The critical droplet.

The main result for metastability in MFV regime reads:

Theorem 2.1 ([34,35]). Suppose that � is sufficiently large. Suppose that h ∈
(0,2J ), with 2J

h
not integer, and put lc = �2J

h
�.

(a) Let R be the set of configurations where the (+1)-spins form a rectangle in
a sea of (−1)-spins. For σ ∈ R, let l1(σ ) × l2(σ ) be the rectangle of (+1)-spins
in σ , and let l(σ ) = min{l1(σ ), l2(σ )}. Then for any σ ∈ R

l(σ ) < lc: lim
β→∞ Pσ (τ� < τ�) = 1, (2.12)

l(σ ) ≥ lc: lim
β→∞Pσ (τ� < τ�) = 1. (2.13)

(b) Let Cr be the set of configurations where the (+1)-spins form a rectangle
lc × (lc − 1) or (lc − 1) × lc with a protuberance attached anywhere to one of the
sides of length lc. Let τ̄Cr = min{t > τ�,� :σt ∈ Cr}. Then

lim
β→∞ P�(τ̄Cr < τ�) = 1. (2.14)

(c) Let 	(J,h) = 4J lc − h(l2
c − lc + 1). Then

lim
β→∞

1

β
log E�(τ�) = 	(J,h). (2.15)

Moreover, τ�/E�(τ�) converges in distribution to an exponential random variable
with mean one.

Note that 	(J,h) is the energy of the critical droplet Cr shown in Figure 6.

2.5 Different aspects of the problem and different approaches to
metastability

Metastability in this case of Glauber dynamics is a much richer phenomenon than
the one-dimensional random walk treated in Section 2.1 (1D-RW). We have here a
more complicated energy landscape and a new ingredient becomes relevant now:
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there is a critical size of the droplet representing the saddle configuration emerging
from the competition in the energy between volume and perimeter of the cluster.
Indeed, to have an idea of the energy landscape, consider also in this case the 0-
temperature dynamics, where only moves not increasing the energy are accepted.
It is immediate to see that there is a lot of local minima of H ; every configuration
in which the plus spins form rectangular clusters at distance larger than two from
each other is a local minimum. As discussed above, looking at configurations with
a unique cluster close to a square, we expect that the energy landscape is again a
sort of double well, with a local minimal configurations � and the absolute mini-
mum �, but with many additional local minima, as shown in Figure 5, and with a
saddle given by the critical configuration Cr described in the Theorem 2.1. Again
the process can be seen as a small random perturbation of a dynamical system,
the 0-temperature dynamics, so that the motion against the drift is still a crucial
ingredient for the nucleation of the critical droplet. As mentioned above, the re-
sults given in the case of the double well in Proposition 2.1, can be generalized to
any energy landscape within the Freidlin Wentzell theory so that they constitute
a general part of the theory. This is discussed in details in Freidlin and Wentzell
[15], Catoni and Cerf [6], Olivieri and Scoppola [36–38] and [44], under rather
general hypotheses on the Markov chain. However, this is only a first ingredient of
metastability.

The more geometrical aspect involved in the discussion of the energy landscape,
which is crucial when considering interacting particle systems, is an important
model-dependent part of the problem in the study of metastability in concrete situ-
ations. This can be difficult even in the case of finite volume we are considering at
the moment. We mention results in more than two dimensions [2], the anisotropic
case [27], Ising model with nearest and next nearest neighbor interaction [28],
Ising with alternating field [31,33], Blume–Capel model [9] and probabilistic cel-
lular automata [8]. There are cases in which it is a difficult task to have a complete
analysis of the full state space. In these cases the application of the general results
of the Freidlin Wentzell theory is too difficult, since the complete control of the
energy landscape is missing. This difficulty actually forces a reconsideration of
the problem also from a general point of view, then it becomes interesting to know
what is the minimal knowledge on the structure of the state space necessary to
have the different results on metastability. We refer to [30] for this discussion.

The geometrical model-dependent analysis of the state space is also crucial to
discuss the tube of typical paths followed in the transition from the metastable to
the stable state. Actually, a very interesting physical question is how nucleation
takes place. The study of the tube of typical paths is strictly related to the point
of view of the pathwise approach where, indeed, the main point is to single out
typical trajectories and to look at the statistics along such paths. So the tube of
typical paths suggests the relevant part of the energy landscape which is important
to analyze in order to control metastability in the pathwise approach.

We refer for this to [6,36,38,40] and [2].
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As a final remark we note that this question on the tube of typical paths clearly
shows that metastability is not only a problem of convergence to equilibrium in
the sense of the control on nucleation time and the analytical methods to control
convergence to equilibrium are not able to solve this aspect of the problem.

2.6 Back to one-dimensional random walks

We will not give here the proof of Theorem 2.1 given in [35], but we will discuss
the main ideas necessary to this proof, again with our toy model introduced in
Section 2.1. In this way we separate the geometrical aspects of the problem from
the probabilistic ones.

The geometrical problem involved in the discussion of the Glauber dynamics
can be summarized as follows:

given an integer i ∈ {0,1, . . . , |�|}, look for the minimal energy obtained
among the configurations with i plus spins:

E (i) := min
σ :∑x [σ(x)]+=i

H(σ ).

This can be viewed as an isoperimetrical problem, if we note that the energy (1.1)
of a spin configuration can be written as

H(σ) = Jp(σ) − ha(σ) + const, (2.16)

where p(σ) and a(σ ) are respectively the perimeter and the area of the union of
unit squares associated to the sites where σ is +1. This region, corresponding to
the configuration σ , is called polyomino in [2], where this geometrical problem
is completely solved also in three dimensions. In two dimensions the plyominos
minimizing the perimeter at a given area, can be found as the regions closest to
squares, like in the Figure 5.

We can then consider the random walk defined in Section 2.1 with n = |�|
and with Hamiltonian E (i). This energy landscape is similar to the double well
of the toy model 1D-RW, with minima in 0 and |�|, but now decorated by many
additional local minima, as given in Figure 5.

The goal of the following three sections is to provide the basic tools necessary
to explain:

(1) how to generalize the results of Proposition 2.1 to this more complicated en-
ergy landscape;

(2) why this one-dimensional random walk is a good representation of the original
Glauber dynamics.
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3 Freidlin and Wentzell results

The main ideas used to study metastability come out from the Freidlin and
Wentzell (F–W) theory of diffusion processes describing small random perturba-
tions of dynamical systems.

The crucial point of the F–W theory is to perform large deviation estimates
for such a process in terms of simpler processes defined on much smaller state
spaces. More precisely, it is possible to study a diffusion process, say in R

d , in
the regime of small diffusion, in terms of a Markov chain on a smaller state space
γ ⊂ R

d , which can be reduced further to a Markov chain on a finite state space L.
In particular, results on the invariant measure and on the first exit from a given
region can be obtained for the diffusion process in terms of similar results for a
much easier finite Markov chain.

These key results of the F–W theory are given in the lemmas stated in Sec-
tion 3.3, crucial to extend the analysis given in the case of 1-d random walk to
general situations. They are obtained by using the not widely known tool of W -
graphs recalled in what follows. We want to stress that the F–W theory is developed
under general hypotheses and in particular reversibility is not required.

This reduction procedure is used later on in the so-called renormalization pro-
cedure and will be crucial in the discussion of metastability for the conservative
case where the state space is exponentially large in β .

Another result of the F–W theory, based on W -graphs and concerning the spec-
trum of the generator of the process, is recalled in Section 5.3.

For the reader’s convenience we decided to adopt in this section and in Section 6
the notation of [15] even though this is not in agreement with the notation in the
rest of the paper. In particular, the large deviation parameter is 1

ε2 here, instead
of β . This choice is useful to make references to [15] for details and proofs. We
warn the reader about this.

3.1 From a diffusion process to a Markov chain

Consider a dynamical system in R
d

ẋ0
t = b(x0

t ). (3.1)

A small random perturbation of this system can be written in its simplest form as

ẋε
t = b(xε

t ) + εẇt , (3.2)

where wt is the Wiener process and ε a small parameter, under suitable hypotheses
on b (see again [47] for definitions and general results).

Suppose that all the long time limit sets (the ω-limit sets) of the unperturbed dy-
namical system (3.1), say the equilibrium points and the limit cycles, are contained
in a set K = K1 ∪ · · · ∪ Kl given by a finite number of compacta Ki .
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To make the ideas more concrete, let us consider the example of a diffusion
process on R with b(x) = −dU

dx
(x) with U(x) a symmetric double well U(x) =

(x2 − 1)2. (See [26] for a more general one-dimensional example.) There are three
equilibria in this case, K = {−1,0,+1}. All the solutions x0

t of (3.1) starting in
x > 0 (x < 0) will converge to the equilibrium +1 (−1), for t → ∞. The saddle
point 0 is an unstable equilibrium.

For small ε the diffusion process defined by (3.2) follows with large probability
the flow defined by (3.1). So with large probability, in a time independent of ε, the
diffusion process reaches the set K and remains around it under the effect of small
fluctuations. Looking at the process on sufficiently large time intervals, under the
effect of a large deviation, it is possible to see the diffusion process jumping from
an equilibrium Ki to another, going against the flow, for short time intervals, using
the F–W terminology. In our example this means that also transitions from −1 to 0
or from +1 to 0 are performed, under the effect of a large fluctuation.

Here the large deviation theory is more complicated than the easy case of the
one-dimensional random walk discussed in Section 2.1. For general references on
large deviation theory, see [12] and [39].

In this case the large deviation functional describing the concentration of ran-
dom paths around the deterministic ones, is given by

IT (φ) =
∫ T

0
|φ̇(s) − b(φ(s))|2 ds.

Therefore IT is zero along paths of the unperturbed system (3.1). This means that
the probability that a trajectory xε

t in the interval 0 ≤ t ≤ T is close to a function
φ(t), where φ(0) = x is the starting point of xε

t , is approximately equal to

exp
{
− 1

2ε2 IT (φ)

}
.

Define

V (x, y) = inf
T >0

inf
φ:φ0=x,φT =y

IT (φ),

and the equivalence relation: x ∼ y if V (x, y) = V (y, x) = 0.
Suppose the compacta K1 ∪ · · · ∪ Kl are such that for any i ∈ L := {1, . . . , l}

x ∼ y ∀x, y ∈ Ki, x �∼ y if x ∈ Ki, y /∈ Ki.

We define

Vij = V (x, y) ∀x ∈ Ki, y ∈ Kj .

To describe the behavior of the process in a simpler way, for each compactum
Ki we can construct a pair of neighborhoods with smooth boundaries γi and 	i .

Let γ = ⋃
i∈L γi and 	 = ⋃

i∈L 	i and define

τ0 = 0, σn = inf{t ≥ τn−1 :xε
t ∈ 	}, τn = inf{t ≥ σn :xε

t ∈ γ }
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Figure 7 Construction of the Markov chain (dots along the path correspond to the states of the
MC).

and the Markov chain on γ given by zn = xε
τn

(see Fig. 7).
In our example we can choose, for instance, intervals of length 0.1 and 0.2

around the points −1,0,1, respectively, for γi and 	i , with i ∈ {−1,0,1} = L.
We have that for each h > 0 there is an r > 0 such that for any choice of the two

neighborhoods inside the r-neighborhoods of Ki , and for ε sufficiently small, for
x ∈ γ :

e−Vij−h/(2ε2) < P (x, γj ) < e−Vij+h/(2ε2). (3.3)

Briefly we will write P(x, γj ) � e−Vij /(2ε2). More broadly we use this symbol to

denote estimates in the logarithmic asymptotic sense. We write A � eB/(2ε2) if for
any h > 0 and any ε sufficiently small we have

eB−h/(2ε2) < A < eB+h/(2ε2). (3.4)

3.2 W -graphs

For this kind of Markov chain, F–W theory provides estimates on the invariant
measure, on the mean number of steps until the first entrance in a given set

⋃
i∈W γi

and on the typical first entrance in this set by using the following graphs of arrows.
Let L = {1, . . . , l} and W ⊂ L, a graph of arrows m → n with m ∈ L\W and

n ∈ L is called a W -graph if:

(1) every point m ∈ L\W is the initial point of exactly one arrow,
(2) there are no closed cycles in the graph.
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Figure 8 A W-graph (dots represent states in L, dots within a circle states in W).

Condition (2) can be replaced with

(2′) for every point m ∈ L\W there exists a sequence of arrows leading from it to
some point in W .

This means that a W -graph can be seen as a forest with arrows directed to the roots
of the trees which are points in W . Figure 8 is an example of W -graph. We will
denote by G(W) the set of W -graphs, and if pij , i, j ∈ L are numbers given by

pij = e−Vij /2ε2
, given a graph g ∈ G(W) let π(g) = ∏

(m→n)∈g pmn.

3.3 Lemmas on Markov chains

The first exit problem and the invariant measure of the diffusion process can be
studied (see [15], Chapter 6) by using the following general results on Markov
chains on a state space γ = ⋃

i∈L γi such that

a−1pij ≤ P(x, γj ) ≤ apij , x ∈ γi, i �= j,

for some a > 1.
Note that this hypothesis is verified for the Markov chain defined in Section 3.1

(see [3.3]), with a = eh/(2ε2).
Suppose that for every i ∈ L and x ∈ γ , there exists s such that P s(x, γi) > 0,

that is, every γi can be reached from any state x, sooner or later.

Lemma 3.1. The invariant measure ν satisfies

a2−2l

(∑
i∈L

Qi

)−1

Qi ≤ ν(γi) ≤ a2l−2
(∑

i∈L

Qi

)−1

Qi,
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where

Qi = ∑
g∈G({i})

π(g).

For i ∈ L\W,j ∈ W we denote by Gij (W) the set of W -graphs in which the
sequence of arrows leading from i into W ends at the point j . We also denote
by qW(x, γj ) the probability that at the first entrance time of

⋃
k∈W γk the chain

starting from x hits γj .

Lemma 3.2. If the number of points in L\W is r then

a−4r

∑
g∈Gij (W) π(g)∑
g∈G(W) π(g)

≤ qW(x, γj ) ≤ a4r

∑
g∈Gij (W) π(g)∑
g∈G(W) π(g)

with x ∈ γi, i ∈ L\W,j ∈ W .

Let mW(x) be the mean number of steps until the first entrance on the set⋃
i∈W γi starting from x.

Lemma 3.3. If the number of points in L\W is r then for x ∈ γi, i ∈ L\W :

a−4r

∑
g∈G(W∪{i}) π(g) + ∑

j∈L\W,j �=i

∑
g∈Gij (W∪{i}) π(g)∑

g∈G(W) π(g)

≤ mW(x)

≤ a4r

∑
g∈G(W∪{i}) π(g) + ∑

j∈L\W,j �=i

∑
g∈Gij (W∪{i}) π(g)∑

g∈G(W) π(g)
.

3.4 Remarks on F–W results

• We do not give here the proofs of these lemmas, which can be found in Chapter 6
of [15]; we strongly recommend these to the interested reader. Indeed, after only
looking at these proofs it becomes clear that a W -graph is an important tool
producing simple and very elegant proofs.

• As discussed above, metastability in finite volume can be described in terms of
the first arrival of the process to the stable state of minimal energy. This means
that the results on the typical exit from a given region given by Lemmas 3.2
and 3.3, represent the main tool for the discussion of metastability in this regime.
In particular, not only the asymptotic of the first hitting time to the stable state
can be obtained but, as discussed below, information on the tube of typical paths
followed in the transition from the metastable state to the stable one can also be
derived in terms of typical exits from a suitable sequence of sets. Note that the
results recalled in this section are very general and, in particular, reversibility is
not required. In the reversible case, similar results can be obtained without the
help of W -graphs, as discussed in the following section (see also [36]).



Metastability through random walks 381

• Note that with the construction of the Markov chain we have a first reduction of
the state space from R

d to γ . Moreover, it is possible to study the chain on γ

through a finite Markov chain on L. Indeed, consider the MC on L with

pij = 1

ν(γi)

∫
γi

ν(dx)P (x, γj ).

Recall that for each i, j there exists s such that P s(x, γi) > 0, with x ∈ γj , so
ν(γi) > 0 for all i. This finite Markov chain clearly satisfies the hypotheses of
the lemmas with a = 1, so that the invariant measure and the exit from a given
region for the diffusion process can be actually studied in terms of the same
quantities evaluated for this finite chain.

Coming back to our example, we can then describe our diffusion process by
means of a Markov chain on the state space {−1,0,+1} with transition prob-
abilities: pij = e−Vi,j /(2ε2) where, by symmetry, V0,1 = V0,−1 = 0, since there
exists a solution of the unperturbed system x0

t going from δ to 1− δ for any pos-
itive, arbitrarily small δ, and so a path φ going from 0 to 1 arbitrarily close to
x0
t . For transitions in the opposite direction we have V−1,0 = V1,0 = 4U(0) = 4

since in the gradient case b(x) = −U ′(x) it is easy to estimate the large devia-
tion functional:

V1,0 = inf
T >0

inf
φ:φ0=1,φT =0

∫ T

0
|φ̇(s) + U ′(φ(s))|2 ds

= inf
T >0

inf
φ:φ0=1,φT =0

∫ T

0

(|φ̇(s) − U ′(φ(s))|2 + 4φ̇(s)U ′(φ(s))
)
ds (3.5)

≥ 4
(
U(0) − U(1)

) = 4.

On the other hand V1,0 ≤ IT (ψ), where ψ is a path going from 1 to 0, arbitrarily
close to a solution of the equation φ̇ = −b(φ) = U ′(φ) going from 1 − δ to δ,
for arbitrarily small δ. We have

IT (ψ) =
∫ T

0
|2b(ψ(s))|2 = 4

∫ T

0
ψ̇(s)U ′(ψ(s)) ds = 4.

• W -graphs are a very interesting and powerful tool of the theory. We have to note
that even if they provide very general results with elegant proofs, however their
application, when |L| = l is large it involves difficult combinatorial problems
since the set of W -graphs considered in the sums have a large cardinality. In
other words, W -graphs are not a simple tool for explicit calculations for finite
chains with large state space.

4 The reversible case

In the reversible case, that is, when the transition probabilities of the MC satisfy
(1.5) and can be defined by means of an energy landscape H , the first exit problem
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can be solved without W -graphs, by using the function H . Since both the toy
model 1D-RW and the Glauber dynamics are reversible MC, we briefly discuss in
this section the theory in this reversible case. We first introduce the main tool of
the theory in this case: the cycles.

4.1 Cycles

We need first of all some definition and notation.
Let σ,σ ′ ∈ X , we denote by ϕ :σ � σ ′ a path, that is, a finite sequence σ0,

σ1, . . . , σn of configurations such that, for any i < n, P(σi, σi+1) > 0, starting at σ

and ending at σ ′.
We will denote by ←−ϕ the time reversal of ϕ, defined by

←−ϕ := (σn, . . . , σ1, σ0).

A subset V of X is said to be connected if for any σ and σ ′ in V there exists a
path ϕ :σ � σ ′ which never leaves V .

For any subset V of X we will denote by ∂V its border:

∂V := {σ ′ ∈ X \ V :∃σ ∈ V,P (σ,σ ′) > 0}.
We say that the connected set of configurations C ⊂ X is a cycle if it satisfies one
at least of the two following conditions:

(i) C is a singleton;
(ii) infH(∂C ) > supH(C ) [with the convention: infH(A) = infσ∈A H(σ), the

same for sup, and H(∅) = +∞].

A cycle which satisfies the first condition only is called trivial cycle. A cycle
which satisfies the second condition is called a nontrivial cycle.

The height h(C ) and the depth d(C ) of a cycle C are defined by

h(C ) :=
{

minH(∂C ), if C is a nontrivial cycle,
H(C ), if C is a trivial cycle,

and

d(C ) := h(C ) − minH(C ).

To have an idea we consider the example of one-dimensional random walk with
Hamiltonian given in Figure 9, where C1 = {1,2,3},C2 = {1,2,3,4,5,6} and
C3 = {12,13,14,15,16,17}.

Cycles were introduced by Freidlin Wentzell to study the system on different
time scales. Actually, their method provides a control of the time typically spent
by the system in each cycle, and we know that, again in a typical way, the process
visits a whole cycle before leaving it. Furthermore, we can identify the configura-
tion through which the system leaves a given cycle.
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Figure 9 Cycles.

4.2 Cycle theorem

The main result on cycles can be summarized as follows. (We refer to [39] for
more details and for the proof; see also [6] for analogous results.)

Theorem 4.1. Let C ⊂ X be a nontrivial cycle. For any δ > 0, there exists α > 0
such that:

(i) for any η in C

lim sup
β→+∞

1

β
ln Pη

(
τ∂C /∈ [

e(d(C )−δ)β, e(d(C )+δ)β]) ≤ −α,

(ii) for any η and η′ in C

lim sup
β→+∞

1

β
ln Pη(τη′ > τ∂C ) ≤ −α.

Furthermore, for any η ∈ C and any η′′ ∈ ∂C ,

lim inf
β→+∞

1

β
ln Pη(ητ∂C = η′′) ≥ −[H(η′′) − h(C )]+,

and for any η ∈ C

lim
β→∞

1

β
log Eη(τ∂C ) = d(C ).

Moreover, τ∂C /Eη(τ∂C ) converges in distribution to an exponential random vari-
able with mean one.
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4.3 Strategy

Cycles turn out to be a crucial tool to study metastability and, actually, Theo-
rem 2.1 can be proved by using these results on cycles with the following general
strategy:

1. Define the stable state as the configurations in which H reaches its absolute
minimum. To simplify the exposition we assume that this ground state is given
by a unique configuration denoted by σs .

Given a pair of configuration σ,σ ′ ∈ X we define their communication
height:

�(σ,σ ′) = min
ϕ:σ�σ ′ max

ζ∈ϕ
H(ζ ). (4.1)

Among the local minima of H , find the configuration such that its communica-
tion height with σs is largest. Suppose again that this is a unique configuration
that we call the metastable state σm.

2. Define the metastable cycle C�(σm,σs)
σm as the nontrivial cycle made of all the

configurations reached from σm by some path staying stricly below the com-
munication height �(σm,σs) and study the first exit time from it. By definition
the metastable cycle does not contain the stable state and is the deepest cycle
with this property, so that the decay of the metastable state is equivalent to the
exit from the metastable cycle.

The results on the decay of the metastable state, τσs (c) in Theorem 2.1 can then
be derived by Theorem 4.1. By point (ii) also point (a) of Theorem 2.1 can be
obtained. To control the critical configuration, point (b), and more generally to get
the tube of typical paths, we summarize as follows the remaining strategy:

3. Denote now by S(σ, σ ′) the set of minimal saddles from σ to σ ′ in X :

S(σ, σ ′) = {ζ :∃ϕ :σ � σ ′, ζ ∈ ϕ,H(ζ ) = maxH(ϕ) = �(σ,σ ′)}, (4.2)

and consider the set of optimal paths between σ and σ ′:
(η � η′)opt = {ϕ :σ � σ ′ : maxH(ϕ) = �(σ,σ ′)}. (4.3)

Find the gates from σm to σs , that is, the subset G of the set of minimal saddles
S(σm,σs) such that for any ϕ ∈ (σm � σs)opt we have ϕ ∩ G �= ∅;

4. If we define a cycle path as a sequence � = (�0,�1, . . . ,�n) of cycles such
that

∀i ∈ {1, . . . , n} �i ∩ ∂�i−1 �= ∅

and a downhill cycle path as a cycle path � = (�0,�1, . . . ,�n) such that

∀i ∈ {1, . . . , n} h(�i) ≤ h(�i−1),

then we have to look for the downhill cycle paths from the gates to the
metastable state and from the gate to the stable state.
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5. By using reversibility we describe the typical exit with the typical descent:

∀� ∈ �∗(σ, σ ′) := {ϕ = (σ0 = σ,σ1, . . . , σn = σ ′) :

σi �= σ,σ ′ ∀i = 1, . . . , n − 1},

Pσ

({σt }t∈[τσ,σ ′ ,τσ ′ ] ∈ �
) = Pσ ′

({σt }t∈[τσ ′,σ ,τσ ′ ] ∈ ←−
�

)
with

←−
� = {←−ϕ ,ϕ ∈ �}.

Remarks.

• The previous strategy is general, however, to implement each step a general con-
trol of the configuration space X is necessary, and this is the model-dependent
part of the problem. The min–max problem in the first step of the strategy can be
studied in the case of Glauber dynamics by solving an isoperimetrical problem.
Indeed, to go from � to � with single spin–flip dynamics, all the magnetizations
between −|�| and +|�| must be crossed; moreover, for a given magnetization,
the configurations with minimal energy turn out to have a unique plus cluster
whose shape is as close as possible to a square. With this idea, the min–max
problem can be solved easily; see [2].

• As described in this strategy, metastable decay in finite volume implies the exit
from the metastable cycle. We can call this exit the event of first nucleation.
In this case of finite state space, when σm is a unique metastable state, the
metastable cycle is the deepest one, so that the first nucleation actually cor-
responds to the main part of the event of decay to the stable state. Indeed, to go
from the metastable state to the stable one, the longer portion of time is spent
in the effort to leave the metastable cycle, by nucleating the critical droplet.
Once a saddle configuration is reached, in the gate, the rest of the story can be
discussed again by a sequence of problems of first exit from a sequence of suit-
able domains, the cycles constituting the cycle path. However, since these cycles
have a smaller depth, the time necessary to follow the cycle path from the gate to
the stable state is exponentially shorter in β . This is exactly what we saw in the
1D-RW example where the metastable cycle was given by the interval [1, n− 2]
and n − 1 was the gate configuration.

This strict relation between metastable decay and first exit from the metasta-
ble cycle actually can produce the identification of the two problems. We prefer
to distinguish between first nucleation, that is, exit from the metastable cycle,
and decay to the stable state. In the case of conservative dynamics in exponen-
tially large volumes, these two problems are very different and between first
nucleation and arrival to the stable state, many additional physical problems are
involved, during the supercritical growth.
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5 Recurrence and renormalization

The main idea of the F–W theory to study a diffusion process or a Markov chain
in terms of a simpler Markov chain can be applied iteratively by constructing a
sequence of simpler and simpler Markov chains describing the original process
on an increasing sequence of time scales. This theory has been introduced in [44]
(see also [45]) and turned out to be a useful tool in many different applications
(see, e.g., [30]). In particular, it provides answers to the two questions at the end
of Section 2.6.

As in the F–W theory, we present the idea of renormalization under very general
hypotheses; the reversible case is discussed, as a particular case, in Section 5.2.

Consider a discrete time Markov chain Xt on a finite state space X with tran-
sition probabilities satisfying for each x �= y P (x, y) � exp{−β�(x, y)}, with
�(x,y) assuming a finite number of values �0 = 0 < �1 < · · · < �n < ∞.
We define �(x,y) = ∞ if P(x, y) = 0. Using the same strategy introduced by
F–W we can define the functional IT (φ) = ∑T −1

i=0 �(φi,φi+1), where we define
�(x,x) = 0. Note that we are considering now paths φ given by sequences of
states φi ∈ X such that P(φi, φi+1) > 0. Clearly, here the exponential weigh (the
large deviation functional) of each path φ of length T is given by IT (φ).

We introduce the equivalence relation x ∼ y iff V (x, y) = V (y, x) = 0, where
as before V (x, y) = infT ∈N infφ:φ0=x,φT =y IT (φ). We say that x ∈ X is a minimum
iff for any y �∼ x we have V (x, y) > 0. Note that we are not assuming reversibility,
even though the name “minimum” becomes evident in the context of reversible
chains. Denote by M ⊂ X the set of configurations which are minima. We have
the following recurrence property on M (see Proposition 2.2 of [44]):

Proposition 5.1. Let δ = 2δ0|X |, for any β sufficiently large and for any t > eδβ

sup
x∈X

Px(τM > t) ≤ exp
{
− exp

{
δβ

2

}}
= SES,

where τM is the first hitting time to M.

5.1 Rescaled and renormalized chain

Let θ be the shift operator for the Markov chain Xt , that is, θ({x0, x1, . . . ,

xn, . . .}) = {x1, x2, . . . , xn+1, . . .}, and θp be its pth power. We define

V1 = inf
x∈M,y∈X ,x �∼y

V (x, y), t1 = eV1β

and define recursively a sequence of stopping times:

σ = inf{t > 0 :Xt �∼ X0}, τ = inf{t ≥ σ :Xt ∈ M},

ζ1 =
{

t1, if σ > t1,
τ, if σ ≤ t1,
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and for all n > 1

ζn = ζn−1 + ζ1 ◦ θζn−1 .

It is easy to prove that ζn are stopping times and that X̄n = Xζn is an homogeneous
Markov chain on M with transition probabilities satisfying the following: ∀x, y ∈
M, x �∼ y P̄ (x, y) � t1 exp{−�̄(x, y)β} with

�̄(x, y) = inf
t,φ;φ0=x,φt=y

φs /∈Mx,y∀s∈(0,t)

I[0,t](φ),

where Mx,y is the set of minima with the exception of the states x and y and all
the states which are equivalent to x and y.

Let M = {m1, . . . ,mr} be the partition of M in maximal equivalence classes;
on the state space X (1) = {1, . . . , r} we can define a Markov chain X(1) similar to
Xt but on a smaller state space with transition probabilities

P (1)(i, j) = 1

ν̄(mi)

∑
x∈mi

ν̄(x)
∑

y∈mj

P̄ (x, y)

and corresponding to Xt on scale t1 in the following sense: for B(1) ⊂ W(1) ⊂ X (1)

by denoting with B ⊂ W the corresponding sets in M we have (see Theorem 2.1
in [44]):

Theorem 5.1. For any β sufficiently large, x ∈ mi, i ∈ X (1)\W(1), j ∈ W(1)

exp{−4rδβ}q(1)

W(1) (i, j) ≤ qW(x,mj ) ≤ exp{4rδβ}q(1)

W(1) (i, j),

e−δ′βt1Eiτ
(1)

W(1) ≤ ExτW ≤ eδ′βt1Eiτ
(1)

W(1) ,

t1e
−δ′′βν(1)(B(1)) ≤ ν(B) ≤ t1e

δ′′βν(1)(B(1)),
where δ, δ′, δ′′ → 0 as β → ∞.

By iteration we obtain a sequence of Markov chains X(i) on smaller and smaller
state spaces X (i) corresponding to the initial chain Xt on a sequence of larger and
larger time scales Ti = t1t2 · · · ti .

By the cycle theory we can associate with each state x ∈ X (i) a cycle in the
original state space X corresponding to the states visited by the chain Xt before
the chain X(i) leave the state x. In particular, it is easy to associate with each path
of the chain Xt a corresponding path of the renormalized chain X(n) by looking at
the realization of the stopping times ζi on the path. On the other hand, it is possible
to associate with each transition of the renormalized chain X(n) a tube of paths of
the original chain Xt (see [37]).

This remark suggests another strategy to study metastability in finite volume
based on renormalization. Indeed, we can:
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1. apply the renormalization procedure up to a state space containing only the
metastable and the stable states;

2. reconstruct the tube of paths corresponding to the trivial trajectory metasta-
ble → stable for this renormalized chain.

A global control of the state space is necessary for reduction, but the control of
local details is not necessary to have L1 estimates on tunneling time.

5.2 The reversible and nondegenerate case

Suppose that the transition probabilities of the chain satisfy P(x, y) � e−β�(x,y),
with

�(x,y) = H(x,y) − H(x)

and

H(x,y) = H(y,x) ≥ H(x) ∨ H(y). (5.1)

In the Metropolis case H(x,y) = H(x) ∨ H(y). Moreover we assume a nonde-
generacy condition

H(x) �= H(y) ∀x �= y.

This hypothesis is called approximately reversible nondegenerate condition in [39]
(see Section 6.9).

In this case the renormalization procedure can be simplified by using the energy
landscape and the fact that there are no equivalent states. At each step of the it-
eration the chain is reversible and nondegenerate and the iteration scheme can be
view directly on the functions H(x) and H(x,y):

H(k)(x) = H(x), H (k+1)(x, y) = H(x) + inf
t,φ(k):x→y

I
(k)
[0,t]

(
φ(k)) − Vk+1.

This means that with the renormalization procedure the local minima are ordered in
terms of their increasing stability level, that is, the height of the barrier separating
them from lower energy states.

In Figure 10 we consider the 1D-RW example; see [45] for more details.

5.3 Time scales of renormalization and the spectrum of the generator

Freidlin and Wentzell proved the following result. Let L = P − 1 be the generator
associated to a finite Markov chain Xt with transition matrix (P)i,j � e−Vij /ε2

where 1 is the identity matrix and the relation � is defined in (3.4). Denote by
λ1 = 0, λ2, . . . the eigenvalues of the matrix −L arranged in order of increasing
real part (real eigenvalues in the reversible case) and define

Vk = min
W ;|W |=k

min
g∈G(W)

∑
(i→j)∈g

Vij . (5.2)
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Figure 10 The renormalization procedure.

Lemma 5.1.

lim
ε→0

− 1

2ε2 log(Reλk) = Vk−1 − Vk.

See [15], Chapter 7 for the proof. By using this lemma we have

Theorem 5.2.

lim
β→∞− 1

β
log(Reλk) = lim

β→∞− 1

β
logTNk

= V1 + V2 + · · · + Vnk
,

where Nk = min{n : |X (n)| < k}.
The main point in the proof of this theorem (see [46]) is that the renormaliza-

tion strategy can be applied to the F–W theory of W -graphs in particular to find the
graphs g ∈ G(W) maximizing π(g), call it ḡ(W), which are crucial in the large
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deviation regime studied by F–W. More precisely given W ⊂ X (k) there is a cor-
respondence between ḡ(k)(W) and ḡ(k−1)(W). This correspondence turns out to
be a powerful tool in the W -graph theory because ḡ(k)(W) are easily found for
sufficiently large k.

6 The conservative case

In this final section we consider a lattice-gas model in order to describe metasta-
bility for a supersaturated gas. This is a more difficult situation and we will discuss
the new problems arising in this conservative case again by means of examples of
random walks.

6.1 The model

With each site x in a box � ⊂ Z
2, we associate a variables η(x) ∈ {0,1}, [η(x) = 0

means the site x is empty, and η(x) = 1 means the site x contains a particle]. The
interaction between particles is given by the analog of the Ising Hamiltonian

H(η) = −U
∑

(x,y)∈�∗
η(x)η(y), η ∈ X = {0,1}� (6.1)

with 0 boundary conditions, where −U < 0 is the binding energy and, as before,
the sum is over all the pairs of nearest-neighbor sites in �. Consider now a fixed
particle density in �: n

|�| =: ρ = e−�β , with n = ∑
x∈� η(x), where � > 0. On the

set Nn of configurations with n particles, we define the canonical Gibbs measure

νn(η) = e−βH(η)1Nn(η)

Zn

(η ∈ X ), Zn = ∑
η∈Nn

e−βH(η). (6.2)

In order to have at least a particle we need now to consider exponentially large
volumes, moreover, metastability in this case is given by the Kawasaki metastable
regime:

� = �β with |�β | = e�β, � ∈ (U,2U),

β → ∞, n = e−�β |�β | → ∞.

In order to explain why ρ = e−�β with � ∈ (U,2U) is the interesting regime of
density, we consider the grand-canonical Gibbs measure associated to the model

μλ(η) = e−βHλ(η)

Zλ

,

where Hλ(η) = H(η) − λn, λ ∈ R is an activity parameter. It turns out that the
canonical and the grand-canonical ensembles are equivalent in the thermodynamic
limit if ρ and λ are related by the equation ρ = eλβ . We define � = −λ.
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Writing now the grand-canonical Hamiltonian in terms of spin variables, by
using the relation η(x) = 1+σ(x)

2 , for which η(x) = 1(0) corresponds to σ(x) =
1(−1), we obtain

Hλ(σ) = −U
∑

(x,y)∈�

1 + σ(x)

2

1 + σ(y)

2
− λ

∑
x∈�

1 + σ(x)

2
(6.3)

= U

4

∑
(x,y)∈�

σ(x)σ (y) − 2U − �

2

∑
x∈�

σ(x) + const.

This Hamiltonian is equal to that in (1.1) with J = U
2 and h = 2U − � so that the

metastable regime can be derived for these variables as � ∈ (U,2U) correspond-
ing to h ∈ (0,2J ).

� ∈ (0,U) represents the unstable gas, � = U the spinodal point, � ∈ (U,2U)

the metastable gas, � = 2U the condensation point, and � ∈ (2U,∞) the stable
gas.

If we consider now a finite box �0 ⊂ �β independent of β , we will call local
grand-canonical energy the Hamiltonian (6.3) restricted to it:

Hlgc(η) = −U
∑

(x,y)∈�∗
0

η(x)η(y) + �
∑

x∈�0

η(x). (6.4)

For this Hamiltonian metastability can be discussed as before in the spin variables,
so we expect a critical length lc = � U

2U−�
�.

Kawasaki dynamics: the dynamics are defined by a continuous time Markov
chain (ηt )t≥0 with state space Nn = {η ∈ {0,1}�β :

∑
x∈�β

η(x) = n}. With each
bond b ∈ �∗

β we associate a Poissonian random clock. When the clock at b =
(x, y) rings, we look at the present configuration (say η), define the configuration
η(x,y) obtained by exchanging η(x) → η(y), and jump from η to η(x,y) with a
Metropolis rate given by

c((x, y), η) = e−β[H(η(x,y))−H(η)]+ . (6.5)

It is easily verified that the reversibility condition holds w.r.t. the canonical mea-
sure νn.

6.2 The problem

The main difference between the conservative and nonconservative case is that in
the nonconservative case particles are “created ex nihilo” so that the gas is like a
constant reservoir acting everywhere; it produces an effect on the cluster behavior
but the cluster change doesn’t affect the gas behavior. In the conservative case par-
ticles must “arrive” at a given point to construct a cluster, coming from somewhere
in the gas. Gas and clusters are interacting in a stronger sense: there are effects not
only of the gas on the cluster but also of the cluster on the gas. What is difficult
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is to combine the behavior of gas and clusters in the conservative case and to de-
scribe them jointly. In the analysis of metastability, we can say that the difficulty in
controlling many different aspects of the problem at the same time reaches its top
in the conservative case, and a complete discussion of metastability is a long-term
objective. As a first, simpler problem we can describe the first nucleation of a criti-
cal droplet when the volume |�β | is sufficiently small to have a unique nucleation.
By calling R the set of subcritical configurations, corresponding to the metastable
phase

R := {
η ∈ {0;1}�β : all clusters have volume ≤ lc(lc − 1) + 2

}
,

we suppose to start from μR the grand-canonical Gibbs measure conditioned to R,
with ZR the corresponding partition function,

μR(η) := 1

ZR
exp

{
−

(
H(η) + �

∑
x∈�β

η(x)

)
β

}
1R(η) for η ∈ {0;1}�β .

Indeed, we expect that in this first stage of the dynamics, clusters do not deplete
the gas, so that the gas density is constant and equal to e−�β .

This problem was studied introducing some simplified models, again to discuss
separately the different aspects of the interaction gas–cluster. In [13] the authors
study a model with interaction only in a finite box in order to discuss the cluster
nucleation while in [19] is discussed the behavior of the gas particle. The complete
result on the first nucleation for the Kawasaki dynamics in exponentially large
volumes uses all these preliminary results and is in preparation, [21].

6.3 The 1D-RW corresponding to the local dynamics

We believe that the best way to introduce the reader to the analysis of the conser-
vative case, which is not easy involving different models, is again through random
walks. As before, we want to discuss the Kawasaki dynamics as a one-dimensional
random walk with states given by the volume of a growing cluster, at least up to
the nucleation of a supercritical cluster, that is, up to the first exit from R. The
Kawasaki analog of the random walk introduced in Section 2.6 for the finite vol-
ume Glauber dynamics is the following: for i = 0,1, . . . , lc(lc − 1) + 2

P(i, i + 1) = 1
2e−�β, P (i, i − 1) = 1

2e−f (i)β,
(6.6)

P(i, i) = 1 − P(i, i + 1) − P(i, i − 1),

with

f (i) =

⎧⎪⎪⎨
⎪⎪⎩

∞, if i = 0,
0, if i = 1,
U, if i = 2,3 or i = l1 × l2 + 1, i > 4,

2U, otherwise,

(6.7)
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Figure 11 Energy landscape for the Kawasaki dynamics.

here l1 and l2 are two integers such that l2 ≥ l1 > 1 and l2 − l1 ≤ 1. As in the
Glauber case, if we consider the geometrical isoperimetrical problem, that is, the
minimization of the grand-canonical local energy at fixed area of the cluster i:
E (i) = minη:|η|=i Hlgc(η), again we have that the minimizing configurations can
be be found as those clusters closest to squares, like in Figure 11.

The function f (i) turns out to be the energy barrier to overcome to go from
the area i to i − 1. This means that this chain is reversible w.r.t. the Hamiltonian
given by E (i), if we consider the pair energy H(i, i + 1) ≡ H(i + 1, i) := E (i) +
� [see(5.1)]. Indeed, we have P(i, i + 1) = e−(H(i,i+1)−E(i)) and P(i, i − 1) =
e−(H(i−1,i)−E(i)) and H(i − 1, i) − E (i) = E (i − 1) + � − E (i) = f (i).

This chain is a good description of the completely local model introduced in
[13] (see also [23,34]), given by the Kawasaki dynamics in a finite box �0 with
creation and annihilation of particle at the boundary with rates ρ and 1 respectively.
This is a simple model to study the behavior of the cluster, it captures and releases
particles, describing the effect of the gas on the cluster. The process of creation
and annihilation of particles at the boundary is like a constant reservoir outside the
box, there is no conservation, and there are no effects of the cluster on the gas in
this model.

6.4 A two-dimensional model for the gas: 2D-gas

If we now adopt the point of view of the gas in the reservoir outside the finite box
mentioned above, we can consider a gas of identical and indistinguishable parti-
cles moving in an exponentially large two-dimensional box, with density e−�β .
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All the gas particles move in this model like independent simple random walks
everywhere except at site 0, which represents a kind of trap. When a gas particle
arrives at 0, it is captured and can be released with a rate depending on the num-
ber of particles which are at 0 at that moment. This dynamic can be realized by
associating with each particle a Poissonian clock. When a clock rings, the corre-
sponding particle moves from its position x to one of the four neighboring sites
y : |x − y| = 1, with equal probability which is equal to 1

4 if x �= 0 (independently
from the position of the other particles), and 1

8e−f (i)β if x = 0, where i is the
number of particles at 0 at this time and f (i) is the function defined in (6.7), and
remaining at 0 with probability 1 − 1

2ef (i)β . In other words, we are assuming that
the site 0 behaves like a cluster capturing and releasing particles as described in
the previous model of Section 6.3.

The gas dynamics defined in this way are clearly very close to a system of
IRW and a coupling can be easily defined between the two systems. Gas particles
perform in this model Quasi Random Walks (QRW), that is, RW with possible
pauses in 0 and the interaction among them is only related to these pauses.

A general theory for QRW is developed in [19], by using the important result
on the control of collisions for a finite system of IRW given in [17]. In particular,
it is proved that particle trajectories are nonsuperdiffusive and have a diffusive,
spread-out property.

6.5 The local interaction model

The two previous models, 1D-RW and 2D-gas, can be combined together to de-
scribe the behavior of a cluster (with 1D-RW) in a gas (with 2D-gas), with the
following coupling. Start from the state i for the 1D-RW and with the same num-
ber i of particles in the origin for the 2D-gas. Define the dynamics of the 2D-gas
exactly as in the previous section. The evolution of the 1D-RW is now defined
by considering i independent Poissonian clocks, coinciding with the clocks of the
particles in the trap in the 2D-gas model. When such a clock rings the transition
i → i − 1 is done by using the same random variables used for the exit from the
trap in the 2D-gas. The transition i → i + 1 is realized only when a new particle
arrives at 0 in the 2D-gas. This implies that, with this coupling, the number of par-
ticles at the origin for the 2D-gas model coincides, at every time, with the state of
the 1D-RW. Of course, the probability P(i, i + 1) for the 1D-RW depends in this
case on the original configuration of the gas particles not in 0 of the 2D-gas model.
If the gas particles not at 0 are at a distance of order eβ�/2 from the origin, in the
initial configuration, then we expect that the transition i → i + 1 takes place in a
time of order eβ�, as in the case of the model of Section 6.3.

By using the ideas of recurrence developed in Section 3, we can prove that the
gas configurations in which there are no particles outside the origin within a radius
eβ�/2 are recurrent for the gas so that these become the typical configurations on
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a time scale eβ�. This implies that on this time scale this combined model behaves
like the 1D-RW Section 6.3, as far as its cluster behavior is concerned.

With this combined model we obtain the main idea at the origin of the local
interaction model introduced in [13] where the dynamics ηt is Kawasaki in the
finite box and a process of independent random walks (IRW) outside. In this case
the control of the gas–cluster interaction is not too difficult: particles arrive in
the box with an IRW law, they are caught and released by the cluster as in the
completely local model, described in Section 6.3, they can return to the gas outside.
Gas and cluster are studied jointly in this case.

6.6 A system of RWs for the Kawasaki dynamics in an exponentially large
volume

Looking now at the original problem of the Kawasaki dynamics in exponentially
large volume, some questions arise:

• There is no longer a fixed interaction box, there are many clusters and they can
be everywhere in �β ;

• What is actually the gas? Does the gas behave independently in different re-
gions? Is there propagation of the effects of a cluster on the gas?

In this case we obtain in [21] a result on the first nucleation in the regime of ho-
mogeneous nucleation, that is, when the volume |�β | is sufficiently small to have
a unique nucleation. We can prove the following.

Result. If |�β | = e�β , with � < 	 − (2� − U) then:

(i) For all δ > 0,

lim sup
β→+∞

1

β
lnPμR

(
τRc /∈

[
e	β

|�β |e
−δβ; e	β

|�β |e
+δβ

])
< 0;

(ii) With probability exponentially close to 1 the system will nucleate a wander-
ing cluster visiting in dimensions the full increasing sequence of the quasi-
squares, and that, after the exit from R, will grow in the same way up to a
square l(β) × l(β) for any unbounded and nondecreasing function l(β) such
that

l(β) ln l(β) = o(lnβ).

This square l(β) × l(β) will be reached from the exit of R in a time exponentially
smaller than that used to reach Rc. In addition there will be some fluctuations
in the dimensions of the growing cluster between two successive q.s. of different
dimensions, both in the subcritical and supercritical evolution: denoting by l and L

the shortest and longest side length of its circumscribed rectangle, fluctuations of
order

0 ≤ L − l ≤ 2
√

lc
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will be typical (will occur with probability exponentially close to 1) and fluctua-
tions of order

0 ≤ L − l ≤ 2
√

L + 1

will be nonnegligible (will occur with nonexponentially small probability).

We are looking at the escape from metastability by looking at the first exit
from R starting from a measure concentrated on subcritical configurations. This
occurs by nucleation of a supercritical cluster in any place of the box �β and that
is why we are talking of homogeneous nucleation. This is reflected by the spatial
entropic factor 1

|�β | in the asymptotics of the exit time.
We can look at the supercritical growth only up to a small size l(β); indeed, the

growth of macroscopical cluster implies gas depletion and this is a difficult open
problem.

As before we will not give the proof of this result, but we go back again to
our random walk model in order to give some ideas. Indeed it is possible to prove
the theorem by studying the first nucleation in a box of volume e(2�−U−γ )β for a
suitable small γ . By a priori estimates of large deviations for μR, we can prove that
the number of clusters in such a box is not exponentially large in β , say, smaller
than m, with probability super exponentially close to one.

On the other hand we have to note that the results on QRW obtained in [19] are
sufficiently robust and a large (though not exponentially large) number of traps,
say m, can be considered obtaining results essentially independent of their loca-
tion.

This suggests that the Kawasaki dynamics can be studied in terms of a family
of m copies of the 1d-RW, {ξk}k=1,...,m, describing the size of the clusters, with m

not exponentially large in β , and a 2D-gas of indistinguishable particles perform-
ing QRW. With each 1D-RW ξk not in 0 a trap is associated in the 2D-gas of
QRW. In this way, the geometrical problems arising in the Kawasaki dynamics are
completely overtaken.

This family of 1D-RW can be studied along the same lines described above.
This is discussed in [20], by using again the idea of reduction of the F–W theory.

The proof that the Kawasaki dynamics can be reduced to this family of 1D-RWs
is given in [21] and is far from trivial. Indeed, for the Kawasaki dynamics, clusters
evolve, in general, not independently one from the other. Consider, for instance, the
possible coalescence of two different clusters. Of course it is difficult to control
these dependent evolutions. However, by using again the idea of recurrence, we
can over pass this problem since with large probability, the Kawasaki process visits
the set V of configurations without any cluster in a time exponentially smaller than
e	β

|�β | . Starting from this set V it is possible to construct an event of nucleation along
trajectories with a unique growing cluster.
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