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Abstract. Let {X(v), v ∈ Z
d × Z+} be an i.i.d. family of random variables

such that P {X(v) = eb} = 1−P {X(v) = 1} = p for some b > 0. We consider
paths π ⊂ Z

d ×Z+ starting at the origin and with the last coordinate increas-
ing along the path, and of length n. Define for such paths W(π) = number
of vertices πi,1 ≤ i ≤ n, with X(πi) = eb. Finally, let Nn(α) = number of
paths π of length n starting at π0 = 0 and with W(π) ≥ αn. We establish
several properties of limn→∞[Nn]1/n.

1 Statement of the problem

The problem studied in the present paper was suggested by the study of the free
energy of a directed polymer in random environment. Here we consider a site ver-
sion of semi-oriented first-passage percolation. To be more precise, we take for L
the graph Z

d × Z+ with the last coordinate oriented in the standard way. A vertex
v ∈ Z

d+ has an edge to v ± ei + ed+1 for 1 ≤ i ≤ d , and there are no other outgoing
edges from v. Here and in the sequel ei stands for the ith coordinate vector. We
shall use the symbol 0 for the origin in Z

d , as well as for the corresponding vertex
of L. For v = (v1, . . . , vd) a vertex of L or of Z

d , ‖v‖ will be the �1-norm of v,
that is, ‖v‖ = ∑d

i=1 |vi |. We will call a path on L semi-oriented and we will say
that we are dealing with the semi-oriented case.

Our arguments can also be carried out in the fully oriented case in which L
is replaced by the graph Z

d+1+ with an edge from v to v + ei for v ∈ Z
d+1+ and

1 ≤ i ≤ d + 1. However, we shall not mention the latter case anymore in these
notes.

We assign to each v ∈ L a random weight X(v). The {X(v) :v ∈ L} are taken
i.i.d. with the common distribution

P {X(v) = eb} = p, P {X(v) = 1} = 1 − p

for some b > 0,0 < p < 1. Nothing interesting happens when p = 0 or 1, so we
exclude these values for p. For an oriented path π = (π0, π1, . . . , πs) on L of
length s we define

W(π) = number of vertices πi,1 ≤ i ≤ s, with X(πi) = eb.
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[Note that X(π0) does not contribute to W(π).] We further define for 0 ≤ α ≤
1 − p

Ns(α) = number of paths π of length s starting at π0 = 0 with W(π) ≥ αs.

We are interested in these notes in the behavior of Ns(α) for large s and different α.
Related problems have been studied by Comets, Popov and Vashkovskaya

(2008), using different approach.
The first lemma is an exponential bound for P {Ns(α) = 0} for certain α, as

s → ∞. Basically this comes from Gandolfi and Kesten (1994), but the oriented
case considered here is simpler than the unoriented case of Gandolfi and Kesten
(1994). See also Cranston, Mountford and Shiga (2005).

Lemma 1. The limit

M = M(p) := lim
s→∞ max

π0=0,|π |=s

1

|π |W(π) (1.1)

exists and is constant a.s. If p > 0, then also M > 0. (Here |π | = s in the max
means that we take the maximum over all oriented paths of length s which start
at 0.) Moreover, for any ε > 0 there exist constants 0 < Ci < ∞ for which

P
{
Nt

(
M(p) − ε

) = 0
} = P

{
max

π0=0,|π |=t

W(π)

t
< M(p) − ε

}
(1.2)

≤ C1e
−C2t , t ≥ 0.

Proof. In the sequel a path will always mean an oriented path on L. However, a
path does not have to start at π0 at time 0. We will call the sequence (πj , . . . , πj+t )

a path starting at πj at time s and of length t if ‖πj‖ = s and there is an oriented
edge of L from πi to πi+1 for j ≤ i < j + t .

The limit M exists and is a.s. constant by Gandolfi and Kesten (1994). In the
oriented case considered here this was proven in an easier way in Cranston, Mount-
ford and Shiga (2005) by an application of Liggett’s subadditive ergodic theorem
[Liggett (1985)]. We merely outline the proof of Cranston, Mountford and Shiga
(2005). Define

Ms(x, y) = max
π0=x,|π |=s,πs=y

W(π),

Ms(x,∗) = max
y

Ms(x, y) = max
π0=x,|π |=s

W(π).

Define further

y(s) = first vertex y in lexicographical order for which Ms(0, y) = Ms(0,∗).

Then, for s, t ≥ 1

Ms+t (0,∗) ≥ Ms(0,∗) + Mt(y(s),∗) = Ms(0, y(s)) + Mt(y(s),∗). (1.3)
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Indeed, the left-hand side is a maximum over all paths starting at 0 and of length
s + t , while the right-hand side is just a maximum over paths which start at 0 but
pass through y(s) at time s and have length s + t . If one sets M0(x, y) = 0 for all
x, y, then (1.3) remains valid even if s = 0 or t = 0.

We note further that if all X(v) with ‖v‖ ≤ s are given, then y(s) is also fixed
and Mt(y(s),∗) is defined in the same way as Mt(0,∗), but with X(v) replaced by
X(v + y(s)). It follows from this that the conditional distribution of Mt(y(s),∗)

given all X(v) with ‖v‖ ≤ s is just the same as the unconditional distribution of
Mt(0,∗), and hence does not depend on the X(v) with ‖v‖ ≤ s. Thus, Mt(y(s),∗)

is independent of those X(v) and has the distribution of Mt(0,∗). These observa-
tions allow us to apply Liggett’s theorem [Liggett (1985), Theorem VI.2.6] to the
variables Xs,t := Mt−s(y(s), u(s, t)), where

u(s + t) = first vertex u in lexicographical order

for which Mt(y(s), u) = Mt(y(s),∗).

This shows that M(p) exists and is almost surely constant. The fact that M > 0 is
immediate from

M ≥ lim
t→∞

W(π(t))

t
,

where π(t) is the path which moves along the first coordinate axis from 0 to
(t,0, . . . ,0) in t steps. Indeed,

W(π(t))

t
= 1

t

t∑
i=1

I [X(i,0, . . . ,0) = eb]

and this tends to p by the strong law of large numbers.
Now, to start on the proof of (1.2) note first that the equality of the first and sec-

ond member in (1.2) is immediate from the definitions. Indeed, Nt(α) = 0 means
that for all path π of length t and starting at the origin W(π) ≤ αt . We therefore
concentrate on the inequality in (1.2). Observe that by the definition of W

1

|π |W(π) ≤ 1 (1.4)

so that also
Ms

s
is bounded and lim

s→∞
EMs

s
= M. (1.5)

Let ε > 0 be given. One can then fix s such that EMs/s − ε/2 ≥ M(p) − ε. Now
define recursively y0 = 0, y1 = y(s),

yk+1 = first vertex y in lexicographical order for which Ms(yk, y) = Ms(yk,∗).

Analogously to (1.3) we then have

Mks+t (x,∗) ≥ Mks(x, z) + Mt(z,∗).
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This holds for any z and in particular for any z for which Mks(x, z) = maxv Mks(x,

v). By iteration,

Mks(0,∗) ≥ Ms(0, y1) + M(k−1)s(y1,∗)

≥ Ms(0, y1) + Ms(y1, y2) + M(k−2)s(y2,∗)

≥ · · · ≥
k−1∑
j=0

Ms(yj , yj+1).

By the argument given a few lines after (1.3), the random variables Ms(yk, yk+1)

are i.i.d. Moreover, the variables Ms(yj , yj+1), j ≥ 0, are bounded [see (1.4)]. By
exponential bounds for the sum of i.i.d. variables or Bernstein’s inequality [see
Chow and Teicher (1988), Exercise 4.3.14] we have

P {Mks(0,∗) ≤ ks[M − ε]}
(1.6)

≤ P

{
k−1∑
j=0

Ms(yj , yj+1) ≤ k[EMs(0, y1) − εs/2]
}

≤ C1e
−C2k.

This proves (1.2) for t a multiple of s. The extension to arbitrary positive integers t

is an easy monotonicity argument. If ks ≤ t < (k + 1)s and π is a path of length t ,
let π ′ be the initial piece of length ks of π . Then Nt(M −2ε) = 0 implies W(π ′) ≤
W(π) ≤ t (M − 2ε) ≤ ks(M − ε) for large k and this happens only on a set of
probability at most C1 exp[−C2ks]. �

The next lemma will help us to formulate a concrete problem.

Lemma 2. For 0 ≤ α �= M

λ(α) = λ(α,p) := lim
t→∞[Nt(α)]1/t exists and is constant a.s. (1.7)

Proof. This proof uses standard arguments for superconvolutive sequences. How-
ever the assumptions here seem to differ from the usual ones and we see no way
to appeal to a standard theorem such as Hammersley (1974) for the lemma. We
therefore go into some details. We break the proof into three steps.

Step 1. To begin with, if α > M , then by the fact that the limit in (1.1) exists we
have maxπ0=0,|π |=s W(π)/s < α eventually. But this says that Ns(α) = 0 for all
large s, a.s. Thus (1.7) with λ(α) = 0 is obvious when α > M .

Next, fix an α with α < M . We shall suppress α in our notation for the rest of
this proof. In the rest of this step we define Nt and related quantities and show that
they are almost superconvolutive. Define

Nt(x) = Nt(x;α)

= number of paths π of length t which start at x and have W(π) ≥ αt,
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Nt(x, y) = Nt(x, y;α) = number of paths π of length t which start at x

and end at y and have W(π) ≥ αt,

and

Nt(x,∗) = max
y

Nt(x, y).

Note that

Nt(x) = ∑
y

Nt(x, y) and Nt = Nt(0).

Accordingly, we set

Nt(∗) = Nt(0,∗).

Note also that Nt(x, y) can be nonzero only if y = x + v for some v ∈ L with
‖v‖ = t . There are at most (t + 1)d possible values for v. Thus the max here is
really a maximum over at most (t + 1)d values of y. Consequently,

(t + 1)−dNt(x) ≤ Nt(x,∗) ≤ Nt(x). (1.8)

It follows from this that it suffices for (1.7) to prove that

lim
t→∞[Nt(∗)]1/t exists and is constant a.s. (1.9)

The advantage of Nt(∗) is that it is almost superconvolutive. To make this pre-
cise, we order the vertices of L lexicographically. If Nt > 0, then also Nt(∗) > 0.
In this case we define

z(t) = first site z in the lexicographical ordering for which Nt(0, z) = Nt(∗).

If Nt = 0, then also Nt(∗) = 0. In this case we take for z(t) any fixed vertex z of L
with ‖z‖ = t . For the sake of definiteness we shall take z(t) = (t,0, . . . ,0). With
these definitions we have for s, t ≥ 1

Ns+t (∗) ≥ Ns(∗) · Nt(z(s),∗). (1.10)

This is trivial if Ns = 0, for then also Ns(∗) = 0. If Ns > 0, and hence also Ns(∗) >

0, then (1.10) follows from the fact that Ns+t (∗) is no smaller than [number of
paths π = (π0, . . . , πs) of length s with π0 = 0, πs = z(s) and W(π) ≥ αs] times
[number of paths π̃ which start at time s at πs = z(s) and are at time s + t at any
fixed vertex z, and have W(π̃) ≥ αt]. The maximum over all z of the second factor
is just Nt(z(s),∗).

Step 2. In this step we show that

lim
t→∞

1

t
E{logNt(∗)} exists and lies in [0, log(2d)]. (1.11)

We set

Ys = Ys(α) = [logNs(∗)]+, Ys,t = [logNt(z(s),∗)]+
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and

Zs = Zs(α) = s log(2d) − Ys, Zs,t = t log(2d) − Ys,t .

Note that Ys is at most equal to the logarithm of the number of paths π of length s

with π0 = 0, that is, Ys ≤ s log(2d). Consequently,

0 ≤ Zs ≤ s log(2d). (1.12)

Similarly,

0 ≤ Zs,t ≤ t log(2d). (1.13)

On the event A(s, t) := {Ns > 0,Nt (z(s)) > 0} inequalities Ns(∗) ≥ 1 and
Nt(z(s),∗) ≥ 1 hold, so that Zs = s log(2d) − logNs(∗) and Zs,t = t log(2d) −
logNt(z(s),∗). The relation (1.10) therefore shows that on the event A(s, t) we
have

Zs+t ≤ Zs + Zs,t . (1.14)

Off the event As,t we need to introduce a correction term. We define

�(s, t) = �(s, t, α) := I [Ns = 0]Ys,t + I [Nt(z(s)) = 0]Ys. (1.15)

It is now easy to see that we always have

Zs+t ≤ Zs + Zs,t + �(s, t); (1.16)

in fact, if Ns = 0, then Ys = 0 and the right-hand side equals (s + t) log(2d).
Similarly if Nt(z(s)) = 0.

We claim that Nt(z(s)) is independent of all X(v) with ‖v‖ ≤ s and has the
same distribution as Nt . In fact, if we fix all X(v) with ‖v‖ ≤ s, then also z(s) is
determined, and Nt(z(s)) is defined in the same way as Nt(0) = Nt , but with X(v)

replaced by X(z(s) + v). This shows that the conditional distribution of Nt(z(s)),
given all X(v) with ‖v‖ ≤ s is the same as the unconditional distribution of Nt ,
which proves our claim. Taking expectations in (1.16) therefore gives

EZs+t ≤ EZs + EZs,t + E�(s, t)
(1.17)

≤ EZs + EZt + P {Ns = 0}t log(2d) + P {Nt = 0}s log(2d).

Note that all these expectations are finite by virtue of (1.12) and (1.13). In par-
ticular, if K is any positive integer, and s = t = K2j , then

1

K2j+1 EZK2j+1 ≤ 2

K2j+1 EZK2j + K2j+1 log(2d)

K2j+1 P {NK2j = 0}.
However, if we take ε = M − α, then we see from Lemma 1 that

P {Nt = 0} ≤ C1 exp[−C2t], (1.18)
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whence
1

K2j+1 EZK2j+1 ≤ 1

K2j
EZK2j + log(2d)C1 exp[−C2K2j ].

This easily implies

lim sup
j→∞

1

K2j
EZK2j ≤ lim inf

j→∞
1

K2j
EZK2j ,

so that

γ (K) := lim
j→∞

1

K2j
EZK2j exists and lies in [0, log(2d)] (1.19)

[see (1.12) for the bounds on γ ]. Next we will prove that γ (K) is independent
of K . Let K,L ≥ 1 be integers and let the dyadic expansion of L/K be

L

K
=

n∑
j=−∞

2kj , (1.20)

where kj is increasing in j , sign(kj ) = sign(j) and n some finite nonnegative
integer. The sum over negative j may actually be finite, but in order to avoid further
notation we write sum over the negative j as starting at −∞.

The expansion (1.20) can also be written as

L2� = K

n∑
j=−∞

2kj+�

for any integer � ≥ 0. We shall let � → ∞ later on, but for the moment leave it
unspecified. Since we shall use Zm for some complicated expressions of m, we
shall write Z(m) instead of Zm in the calculations below. Start with an application
of (1.17) with s + t = L2�, s = K2kn+�. Thus we take

t = L2� − K2kn+� = K

n−1∑
j=−∞

2kj+�. (1.21)

Since the right-hand side is positive, t is a positive integer. Taking into account
that

t = right-hand side of (1.21) ≤ K2kn+� = s,

we obtain

EZ(L2�) ≤ EZ(K2kn+�) + EZ(t) + P {Ns = 0}t log(2d)

+ P {Nt = 0}s log(2d)

≤ EZ(K2kn+�) + EZ(t) + C1t log(2d) exp[−C2s] (1.22)

+ C1s log(2d) exp[−C2t] [by (1.18)]

≤ EZ(K2kn+�) + EZ(t) + L2�C1 exp[−C2t] log(2d).
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Divide both sides of the inequality by L2� and let � → ∞, and note that t → ∞
as � → ∞ [see (1.21)]. (1.19) then shows that

γ (L) ≤ γ (K)
K

L
2kn + lim sup

�→∞
EZ(t)

L2�
.

We repeat this argument in the following way. Set

tr = K

n−r∑
j=−∞

2kj+�, r ≥ 0,

and apply (1.17) and (1.18) with tr for s + t and K2kn−r+� for s, and consequently
tr+1 for t . Taking into account that tr+1 ≤ K2kn−r+� we obtain

EZ(tr) ≤ EZ(K2kn−r+�) + EZ(tr+1)
(1.23)

+ C1tr log(2d) exp[−C2tr+1], r ≥ 0.

For r = 0 this is just (1.22) with L2� for t0. This time we successively use (1.23)
for r = 0,1, . . . ,R−1 before we divide by L2�, where R is determined as follows:
(i) if the expansion in (1.20) has only finitely many terms, then we take R such that
2kn−R is the smallest power of 2 appearing in the right-hand side of (1.20) (so that
tR+1 = 0); (ii) if the expansion in (1.20) has infinitely many terms, then we fix a
small number η > 0 and let R = R(η) be the smallest nonnegative integer such
that

K

n−R∑
j=−∞

2kj ≤ η. (1.24)

Note that R does not depend on �. We get

EZ(L2�) = EZ(t0)

≤ EZ(K2kn+�) + EZ(t1) + C1t0 log(2d) exp[−C2t1]
≤ EZ(K2kn+�) + EZ(K2kn−1+�) + EZ(t2)

(1.25)
+ C1t0 log(2d) exp[−C2t1] + C1t1 log(2d) exp[−C2t2]

≤ · · ·

≤
R−1∑
r=0

EZ(K2kn−r+�) + EZ(tR) + C1 log(2d)

R−1∑
r=0

tr exp[−C2tr+1].

Now we divide by L2� and let � → ∞. Consider first case (i) when the expansion
in (1.20) is finite. Now recall

tr

L2�
= K

L

n−r∑
j=−∞

2kj ≤ 1.
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On the other hand, tr+1 → ∞ as � → ∞ for each r ≤ R − 1. The inequality (1.25)
therefore implies

1

L2�
C1 log(2d)

R−1∑
r=0

tr exp[−C2tr+1] → 0

and, by virtue of (1.19) and tR = K2kn−R+�,

γ (L) = lim
�→∞

EZ(L2�)

L2�
≤

R∑
j=0

γ (K)
K

L
2kn−j = γ (K). (1.26)

Next, in case (ii) we obtain similarly

γ (L) ≤
R−1∑
j=0

γ (K)
K

L
2kn−j + lim sup

�→∞
EZ(tR)

L2�
+ lim sup

�→∞
C1 log(2d) exp[−C2tR].

This time we use that

1

L2�
EZ(tR)

(1.12)≤ 1

L2�
tR log(2d)

(1.24)≤ η log(2d)

L
.

Finally,

tR ≥ K2kn−R−12� → ∞ as � → ∞,

because the term 2kn−R−1 is actually present in (1.20) in case (ii). Thus in case (ii)

γ (L) ≤
R−1∑
j=0

γ (K)
K

L
2kn−j + η log(2d)

L
≤ γ (K) + η log(2d)

L
.

Since this holds for any η > 0 we obtain in both cases that γ (L) ≤ γ (K). By
interchanging the roles of K and L we finally prove that γ (K) does not depend
on K , as claimed. We shall write γ for the common value of the γ (K).

Step 3. In this step we deduce the almost sure convergence of (1/t) logNt(∗).
As pointed out after (1.8), this will prove (1.7).

We first show that [K2j ]−1ZK2j converges almost surely as j → ∞ for any
fixed positive integer K . The limit turns out to be independent of K . Recall that
Nt(z(s)) is independent of all X(v) with ‖v‖ ≤ s and has the same distribution
as Nt . We now follow the second moment calculations of Hammersley (1974) or
Smythe and Wierman (1985). We obtain from (1.16)

EZ2
K2j+1

[K2j+1]2 ≤ 1

2

EZ2
K2j

[K2j ]2 + 1

2

[EZK2j ]2

[K2j ]2 + 4

√
EZ2

K2j

√
E�2(s, t)

[K2j+1]2
(1.27)

+ E�2(K2j ,K2j )

[K2j+1]2 .
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It follows from (1.15), (1.12) and (1.18) that

E�2(K2j ,K2j ) ≤ 2[K2j log(2d)]2C1 exp[−C2K2j ]. (1.28)

By subtracting [K2j+1]−2[EZK2j+1]2 from both sides of (1.27) and using the
bound in (1.28) we now obtain for a suitable constant C3 < ∞

Var
[
ZK2j+1

K2j+1

]
≤ 1

2
Var

[
ZK2j

K2j

]
+ [EZK2j ]2

[K2j ]2 − [EZK2j+1]2

[K2j+1]2
(1.29)

+ C3 exp[−C2K2j−1].
Finally, summation of (1.29) from j = 0 to j = J and simple algebraic manipula-
tions yield

1

2

J∑
j=0

Var
[
ZK2j

K2j

]
≤ Var

[
ZK

K

]
+ [EZK ]2

K2 + C3

J∑
j=0

C3 exp[−C2K2j−1].

Since this holds for any J < ∞, it follows
∞∑

j=0

Var
[
ZK2j

K2j

]
< ∞,

and then by Chebychev’s inequality and Borel–Cantelli

ZK2j − EZK2j

K2j
→ 0 (j → ∞) a.s.

Combined with (1.19) and the independence of γ of K , this gives

ZK2j

K2j
→ γ (j → ∞) a.s. (1.30)

It remains to improve the convergence in (1.30) to convergence along all positive
integers. To this end we fix a 0 < ε < 1 and note that (1.30) implies

Z(�(1 + ε)r2j )

�(1 + ε)r2j
→ γ for all integers r ≥ 0 a.s.

Now, for small ε and for all large n we can find 1 ≤ r ≤ 2 log 2
log(1+ε)

and a j such that

�(1 + ε)r2j ≤ n ≤ �(1 + ε)r+12j .

For such r and j we can apply (1.16) with s + t = n, s = �(1 + ε)r−12j and
ε

3
�(1 + ε)r−12j ≤ ε

2
(1 + ε)−3n ≤ t = n − s ≤ 3ε(1 + ε)r−12j ≤ 4ε(1 + ε)−1n.

By (1.17) and (1.18) we then have outside a set of probability

P {Ns = 0} + P {Nt = 0} ≤ 2C1 exp
[
−C2

ε

2
(1 + ε)−3n

]
(1.31)
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that

Zn ≤ Z
(�(1 + ε)r−12j ) + Z(s, t)

≤ Z
(�(1 + ε)r−12j ) + t log(2d) [see (1.13)] (1.32)

≤ Z
(�(1 + ε)r−12j ) + 4 log(2d)ε(1 + ε)−1n,

and consequently also

Zn

n
≤ Z(�(1 + ε)r−12j )

�(1 + ε)r2j
+ 4 log(2d)ε(1 + ε)−1. (1.33)

Since the sum over n of the probabilities in (1.31) converges, (1.33) will be almost
surely valid for all large n. By taking first the limsup as n → ∞ and then as ε ↓ 0
we find that

lim sup
n→∞

Zn

n
≤ lim

ε↓0
lim

j→∞ sup
1≤r≤2 log 2/ log(1+ε)

Z(�(1 + ε)r−12j )

�(1 + ε)r2j
= γ a.s.

In almost the same way one can show that outside a set of negligible probability

Z(�(1 + ε)r+12j )

(1 + ε)r+12j
≤ (1 + ε)2 Zn

n

and obtain lim infn→∞ Zn/n ≥ γ .
We therefore proved that limn→∞ Zn/n = γ almost surely, and (1.7) with λ =

2de−γ is then immediate from the definition of Z. �

The main problem in these notes is to find information about Nn(α) as
a function of α. In particular, we want to compare λ(α) to φ = φ(α) :=
limn→∞[ENn(α)]1/n. Note that φ is easy to evaluate. Indeed, there are (2d)n

oriented paths of length n. A given path π of length n contributes to Nn if and
only if W(π) ≥ αn. But, for any given π of length n, W(π) has the a binomial
distribution with n trials and success probability p. Therefore

ENn(α) = (2d)n
∑

k≥αn

(
n

k

)
pk(1 − p)n−k, (1.34)

and if α ≥ p, then

φ = 2d

(
p

α

)α(
1 − p

1 − α

)1−α

. (1.35)

In the next section we shall prove a few facts concerning λ and φ; see also Fig-
ure 1.
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Figure 1 Illustration of the graph of φ(α) (the solid curve) and of λ(α) (the dotted curve). The
figure is not drawn to scale. The points α0, α1 and M(p) are explained in Proposition 4, display (3.1)
and Lemma 1, respectively.

2 Properties of λ

Let us first take care of the trivial region when α ≤ p. Then P {W(π) ≥ αn} is
of order 1 as n → ∞ and φ(α) = 2d . So we expect that also λ(α) = 2d . The
following lemma confirms this if α < p or if d ≥ 4 and α = p.

Lemma 3. For α < p, or d ≥ 4 and α = p

λ(α) = φ(α) = 2d. (2.1)

Proof. The case d ≥ 4, α = p, will be included in Proposition 4. We therefore
assume throughout this proof that α < p. It is evident from the strong law of large
numbers that M(p) ≥ p, since

lim
n→∞

1

n
W

(
π(n)) = p a.s.

if π(n) is the path which moves along the first coordinate axis, that is, with π
(n)
j =

(je1, j),0 ≤ j ≤ n. We therefore may assume for the rest of this proof that α <

M(p).
φ(α) = 2d for α ≤ p is immediate from (1.34) and the weak law of large num-

bers, so we concentrate on proving λ(α) = 2d . Let

Rn = (
number of paths π of length n starting at 0 and with W(π) < αn

)
.

Then ERn = (2d)nP {W(π) < αn} for any π of length n and starting at 0. Since
W(π) has a binomial distribution with parameters n,p, and p > α, Bernstein’s
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inequality [Chow and Teicher (1988), Exercise 4.3.14] shows that P {W(π) ≤
αn} ≤ C1 exp[−C2n] for some constants C1,C2 (depending on p and α, but not
on n). Consequently, ERn is exponentially small with respect to (2d)n. Thus by
Markov’s inequality

P

{
Rn ≥ 1

2
(2d)n

}
≤ ERn

(1/2)(2d)n

is also exponentially small. Hence by Borel–Cantelli, almost surely Nn = (2d)n −
Rn ≥ 1

2(2d)n eventually. This, together with Lemma 2 proves λ(α) = 2d . �

The following proposition shows that the equality λ(α) = φ(α) extends to α

some distance beyond p. This is much more difficult to prove than the preceding
lemma.

Proposition 4. If d ≥ 4, then there exists some constant α0 = α0(p) > p such that

λ(α) = φ(α) (2.2)

for α < α0. In particular M(p) ≥ α0 and the limit λ(α) in (1.7) exists for all
α < α0.

Proof. By the proof of Lemma 3 we only have to prove (2.2) for p ≤ α ≤ α0 for
some α0 > p. For the remainder of this proof a path is tacitly assumed to have
length n and to start at 0. Let

I [π ] =
{

1, if W(π) ≥ αn,
0, if W(π) < αn.

Then

Nn = ∑
π0=0,|π |=n

I [π ].

We shall prove that for suitable α0 > p

EN2
n ≤ C3[ENn]2 for p ≤ α ≤ α0 (2.3)

for a suitable constant C3 < ∞ (independent of n). By Schwarz’ inequality
[Durrett (1996)] this will imply

P {Nn ≥ ENn/2} ≥ 1

4C3
. (2.4)

In particular this will imply

M(p) ≥ lim sup
n→∞

1

n
Nn(α) ≥ lim sup

n→∞
1

2n
ENn(α) = 1

2
φ(α) > 0 [see (1.35)]

for α ≤ α0. But lim supn→∞ 1
n
Nn(α

′) = 0 for α′ > M(p), by definition of M(p),
so that M(p) ≥ α0. Lemma 2 then shows that λ(α) = limn→∞[Nn(α)]1/n exists
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almost surely for all α < α0. Finally, (2.4) will then show that the almost sure limit
of [Nn(α)]1/n satisfies

λ(α) ≥ lim
n→∞[ENn(α)]1/n = φ(α) for p ≤ α < α0.

In the other direction, Markov’s inequality immediately implies that always

λ ≤ φ. (2.5)

Together these inequalities will prove (2.2) and the last statement in the proposi-
tion.

We turn now to the proof of (2.3). Obviously

EN2
n = ∑

π ′

∑
π ′′

E{I [π ′]I [π ′′]}
(2.6)

=
n∑

k=1

∑
π ′

∑
π ′′ with |π ′∩π ′′|=k

E{I [π ′]I [π ′′]}.

Let {S′
n}n≥0 and {S′′

n}n≥0 be two independent simple random walks on L, both
starting at 0, and let Tn be a random variable with a binomial distribution with
parameters n and p. Further let

ρ = P {S′
n = S′′

n for some n ≥ 1}.
Then the number of pairs of paths π ′, π ′′ which meet at least k times (not including
at time 0, when both paths are at 0) is at most (2d)2nρk , provided k ≤ n; there
are no pairs of paths of length n which meet more than n times. Let J be the
collection of vertices which π ′ and π ′′ have in common (again excluding 0). Then,
if J contains exactly k vertices,

P {W(π ′′) ≥ αn|X(v) for v ∈ π ′′}
= P

{ ∑
v∈π ′′ but v /∈J

I [X(v) = eb] ≥ αn − ∑
v∈J

I [X(v) = eb]
∣∣∣X(v) for v ∈ J

}

≤ P

{ ∑
v∈π ′′ but v /∈J

I [X(v) = eb] ≥ αn − k

}
= P {Tn−k ≥ αn − k}.

Consequently, if |π ′ ∩ π ′′| = k, then

E{I [π ′]I [π ′′]} = P {W(π ′) ≥ αn}P {W(π ′′) ≥ αn|W(π ′) ≥ αn}
≤ P {Tn ≥ αn}P {Tn−k ≥ αn − k}
≤ P {Tn ≥ αn}.
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We substitute these bounds in (2.6). We then see that the right-hand side of (2.6) is
for any 0 < β ≤ 1 at most∑

1≤k≤βn

(2d)2nρkP {Tn ≥ αn}P {Tn−k ≥ αn − k} + (2d)2nρβnP {Tn ≥ αn}

≤ [(2d)nP {Tn ≥ αn}]2

(2.7)

×
[ ∑

1≤k≤βn

ρk P {Tn−k ≥ αn − k}
P {Tn ≥ αn} + ρβn 1

P {Tn ≥ αn}
]

= [ENn]2
[ ∑

1≤k≤βn

ρk P {Tn−k ≥ αn − k}
P {Tn ≥ αn} + ρβn 1

P {Tn ≥ αn}
]
.

Note that ρ depends on p and d only, so it is a constant < 1 for our purposes
here. Moreover, by (1.35), for any given α0 > p, it will be the case that for all
p ≤ α ≤ α0

lim
n→∞[P {Tn ≥ αn}]1/n ≥ lim

n→∞[P {Tn ≥ α0n}]1/n = (2d)−1φ(α0)

=
(

p

α0

)α0( 1 − p

1 − α0

)1−α0

.

Therefore, for any 0 ≤ β ≤ 1, we can choose α0 = α0(β) > 0 so close to p that
ρβn[P {Tn ≥ αn}]−1 is exponentially small, uniformly in p ≤ α ≤ α0. In other
words, the second term in the right-hand side of (2.7) can be taken care of by
taking α0 − p > 0 small, after we have picked β . Thus, to prove (2.2) it suffices to
show that we can pick α0 > p and β > 0 so small that∑

1≤k≤βn

ρk P {Tn−k ≥ αn − k}
P {Tn ≥ αn} ≤ C3 − 1 (2.8)

uniformly for p ≤ α ≤ α0. Without loss of generality we take β < p so that β < α.
To prove (2.8) we start from

P {Tn−k ≥ αn − k}
P {Tn ≥ αn} ≤ P {Tn ≥ αn − k}

P {Tn ≥ αn} =
k∏

j=1

P {Tn ≥ αn − j}
P {Tn ≥ αn − j + 1} . (2.9)

In addition, if for simplicity we write αn − j for �αn − j�, we shall use

P {Tn ≥ αn − j} =
n∑

r=αn−j

(
n

r

)
pr(1 − p)n−r

= n

(
n − 1

αn − j − 1

)∫ p

0
xαn−j−1(1 − x)(1−α)n+j dx
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and

P {Tn ≥ αn − j}
P {Tn ≥ αn − j + 1} = αn − j

(1 − α)n + j

∫ p
0 xαn−j−1(1 − x)(1−α)n+j dx∫ p
0 xαn−j (1 − x)(1−α)n+j−1 dx

. (2.10)

We want to show that the ratio here is close to 1 uniformly in α ∈ [p,α0] when
α0 is close to p, and 1 ≤ j ≤ k ≤ βn with β small. We first show that we may re-
place the integrals over the interval [0,p] here, by integrals over [p − ε,1] for any
fixed (but sufficiently small) ε > 0, without influence on the asymptotic behavior
of the right-hand side in (2.10). To be more precise, set

A = α − j + 1

n
, B = (1 − α) + j

n
and f (x) = f (x; j, n) = xA(1 − x)B,

so that xαn−j−1(1 − x)(1−α)n+j = f n(x; j, n). Now

f ′(x; j, n) =
[
A

x
− B

1 − x

]
f (x).

One sees from this that f (x) is strictly increasing in [0,A/(A + B)] and strictly
decreasing in [A/(A + B),1]. In particular, if 0 ≤ α − p ≤ ε/4 and j ≤ βn with
0 ≤ β ≤ (ε/8) ∧ p, then maxx f (x) is achieved at the single point

x0 := A

A + B
∈ [(α − β) − 1/(n − 1), α] ⊂ [p − ε/2,p + ε/4]

(provided n ≥ 1 + ε/4) and consequently∫ p−ε

0
f n(x) dx ≤ (p − ε)f n(p − ε;n, j) (2.11)

while ∫ p

0
f n(x) dx ≥

∫ p−ε/2

p−3ε/4
f n(x) dx ≥ ε

4
f n(p − 3ε/4;n, j). (2.12)

Finally,

f ′′(x) = − A

x2 − B

(1 − x)2 ≤ −(A + B) < 0

so that, by Rolle’s theorem,

f ′(x) ≥ f ′(p−3ε/4) ≥ f ′(p−ε/2)+ (A+B)
ε

4
≥ C > 0 for x ≤ p − 3ε/4,

and some constant C = C(ε) > 0, independent of α and n. Also, again by Rolle’s
theorem,

f (x) ≤ f (p − 3ε/4) − ε

4
f ′(p − 3ε/4) ≤ f (p − 3ε/4) − C

ε

4
for x ≤ p − ε.
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We combine this result with (2.11) and (2.12) to obtain that∫ p−ε
0 xαn−j−1(1 − x)(1−α)n+j dx∫ p

0 xαn−j−1(1 − x)(1−α)n+j dx

≤ 4p

ε

[
f (p − ε)

f (p − 3ε/4)

]n

≤ 4p

ε

[
1 − Cε

4f (p − 3ε/4)

]n

→ 0 as n → ∞.

In fact, since f (x) ≤ 1, this convergence is uniform in α ∈ [p,α0] for α0 suf-
ficiently close to p and β sufficiently small. This shows that replacement of the
integral over x ∈ [0,p] in the numerator of the right-hand side of (2.10) by the
same integral over [p − ε,1], does not change the right-hand side of (2.10) much
for large n. On the other hand, the right-hand side of (2.9) can only increase if we
replace the integral in the denominator by the integral over [p − ε,p]. It follows
that for small ε > 0 and p ≤ α0 ≤ p + ε/4,0 < β ≤ (ε/8) ∧ p, the right-hand side
of (2.10) is for p ≤ α ≤ α0 and all large n at most

(1 + ε)
α

1 − α + β

∫ p
p−ε xαn−j−1(1 − x)(1−α)n+j dx∫ p
p−ε xαn−j (1 − x)(1−α)n+j−1 dx

≤ (1 + ε)
p + ε/4

1 − p − ε/4
· 1 − p + ε

p − ε
.

Here we used that the integrand in the numerator is at most a factor (1−x)/x ≤
(1 − p + ε)/(p − ε) times the integrand in the denominator for x ∈ [p − ε,p].
Similar lower bounds hold for (2.10), but we will not need them.

The preceding estimates show that we can choose ε0 > 0 and α0 > p such that
for α ∈ [p,α0] and all large n for all 1 ≤ j ≤ k ≤ βn, ρ times the right-hand side
of (2.10) is less than 1 − ε0 (recall that ρ < 1). The inequality (2.9) then shows

ρk P {Tn−k ≥ αn − k}
P {Tn ≥ αn} ≤ [1 − ε0]k for k ≤ βn,

and hence also proves (2.8) with C3 = [ε0]−1 + 1. �

Corolary 5. For d ≥ 4 and all 0 < p < 1 it holds

M(p) > p. (2.13)

Proof. This is immediate from Proposition 4 and the fact that α0 > p in this propo-
sition. �
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3 Behavior of λ(α) for “large” α

The last proposition gives the behavior of λ for “small” α, that is, from α = 0 to a
little beyond p. In this section we shall look at the behavior of λ(α) when λ(α) is
small, which corresponds to large α.

It is well known that on the regular (2d)-ary tree (in which each vertex has
degree 2d) one has

M(p) = sup{α :φ(α) > 1}
[see Biggins (1977), Formula (3.4)]. One can also use a branching random walk
proof to show that on such a rooted regular tree, oriented away from the root, for α

such that φ(α) > 1, it holds λ(α) = φ(α). As we shall demonstrate soon, this is
not the case for walks on L = Z

d × Z+.
If α is such that φ(α) < 1, then, by the definition of φ, ENn(α) tends to 0

exponentially fast, so almost surely Nn(α) = 0 eventually. Of course λ(α) = 0 in
this case. If p is small, this case applies for α > α1 with

α1 ∼ log(2d)

log(1/p)
. (3.1)

We can do better, though. By definition of M(p), if α > M(p), then Nn(α) = 0
for large n. Thus

λ(α) = 0 if α > M(p). (3.2)

But it is shown in Lee (1994) that there exist constants C1,C2 ∈ (0,∞) such that

C1p
1/(d+1) ≤ M(p) ≤ C2p

1/(d+1). (3.3)

Thus, by (3.2), for small p it holds

λ(α) = 0 if α > C2p
1/(d+1). (3.4)

Clearly this improves (3.1) for small p; it shows that λ(α) is still zero for smaller
values of α than indicated by (3.1). We shall next show that (3.2) is best possible
in the following sense.

Proposition 6. For d ≥ 4 and each p ∈ (0,1) it holds

λ(α) > 1 for all α < M(p). (3.5)

Proof. For α ≤ p, (2.1) already shows that λ(α) = 2d > 1. For the remainder of
this proof we therefore take α > p. As before it is tacitly assumed that all paths in
this proof start at 0.

Fix η ∈ (0,1/4) and define α̃ = [α+M(p)]/2, so that p < α̃ < M(p) by (2.13).
By Theorem 2 in Gandolfi and Kesten (1994) there then exists an M0 < ∞ such
that with probability at least (1 − η) there exists for each n ≥ M0 a path π̃ starting
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at 0 and of length n which has W(π̃) ≥ α̃n. Now fix n ≥ M0 and let π̃ = (0 =
π̃0, π̃1, . . . , π̃n) be a path with the above properties. Assume that for a certain k ≤
n − 2

e(ik+1) := π̃k+2 − π̃k+1 �= e(ik) := π̃k+1 − π̃k. (3.6)

We can then interchange the two steps e(ik) and e(ik+1) to get the new path

π̂ = (
0, π̃1, . . . , π̃k, π̃k + e(ik+1), π̃k + e(ik+1) + e(ik) = π̃k+2, π̃k+3, . . . , π̃n

)
.

This path differs only in its point at time k + 1 from π̃ , so that

W(π̂) − W(π̃) ≥ −X(π̃k+1) ≥ −1. (3.7)

However π̂ will still be self-avoiding, since π̃ does not visit π̂k+1, because
‖π̂k+1‖ = ‖π̃k+1‖ = k + 1 and π̃ can visit only one point with �1-norm k + 1.

If there are m values of k for which (3.6) holds, then we can interchange two
successive steps as described above or not at at least m/2 places such that these
interchanges do not interfere with each other [say, at any subset of the even k’s
which satisfy (3.6)]. This yields at least 2m/2 paths with weight W ≥ α̃n − m/2.
In other words, [Nn(α̃ − m/(2n))]1/n ≥ 2m/(2n) in this case. If we take

0 < lim inf
n→∞ m/(2n) ≤ lim sup

n→∞
m/(2n) ≤ α̃ − α

then this method results in

lim inf
n→∞ [Nn(α)]1/n ≥ exp

[
lim inf
n→∞ m/(2n) log 2

]
> 1.

In view of the preceding paragraph and the fact that limn[Nn(α)]1/n exists, it
suffices for the proposition that there is for all large n at least a probability η that
there is a path π̃ of length n and W(π̃) ≥ α̃n and for which (3.6) holds for at least
C3n values of k (with C3 > 0 and independent of n and π̃ ). In this case we may
take m = (C3 ∧ (α̃ − α))n in the preceding argument. Let us now make sure that
we can find π̃ so that W(π̃) ≥ α̃n and such that (3.6) holds for many k. We shall
bound the probability that no such path exists. This last probability is, for n ≥ M0,
bounded by

P {there is no path π of length n with W(π) ≥ α̃n}
+ P {there exists a path π̃ of length n with W(π̃) ≥ α̃n (3.8)

but fewer than C3n values of k for which (3.6) holds}
≤ η + (

number of paths π̃ for which (3.6) holds for

no more than C3n values of k
)
P

{
n∑

i=1

Yi ≥ α̃n

}
, (3.9)

where the Yi are i.i.d., each with the distribution P {Yi = 1} = 1 − P {Yi = 0} = p.
But any path π̃ of length n is determined by the values of the k for which (3.6)
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holds as well as the values of the corresponding e(ik+1), and also π̃1. Indeed, this
gives the places at which the direction of the steps of π̃ changes and the value
of this direction immediately after the change (plus the starting direction). The
number of paths for which (3.6) holds for no more than C3n values of k and the
number of choices for the directions right after the ki and at time 0 is at most

2d
∑

j≤C3n

(
n

j

)
(2d − 1)j ≤ C4 exp[nC3 log(1/C3) + nC3 log(2d − 1)]

for small C3. But α̃ > p, and by simple exponential bounds for the binomial distri-
bution [e.g., Bernstein’s inequality in Chow and Teicher (1988), Exercise 4.3.14]

P

{
n∑

i=1

Yi ≥ α̃n

}
≤ C5 exp[−C6n]

for some constants 0 < C5(p, α̃),C6(p, α̃) < ∞. Thus the right-hand side of (3.9)
is bounded by

η + C4C5 exp[nC3 log(1/C3) + nC3 log(2d − 1) − nC6].
Since C6 is independent of C3, we can choose C3 > 0 so small that this expression
is at most 2η for large n. The complementary probability is then

P {there exist a path π̃ of length n with W(π̃) ≥ α̃n,

and all such paths have at least C3n values of k for which (3.6) holds}
≥ 1 − 2η > η

(recall η ≤ 1/4). �
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