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Gibbs measures and phase transitions
on sparse random graphs

Amir Dembo and Andrea Montanari
Stanford University

Abstract. Many problems of interest in computer science and information
theory can be phrased in terms of a probability distribution over discrete vari-
ables associated to the vertices of a large (but finite) sparse graph. In recent
years, considerable progress has been achieved by viewing these distributions
as Gibbs measures and applying to their study heuristic tools from statistical
physics. We review this approach and provide some results towards a rigorous
treatment of these problems.
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1 Introduction

Statistical mechanics is a rich source of fascinating phenomena that can be, at
least in principle, fully understood in terms of probability theory. Over the last
two decades, probabilists have tackled this challenge with much success. Notable
examples include percolation theory [31], interacting particle systems [37], and
most recently, conformal invariance. Our focus here is on another area of statistical
mechanics, the theory of Gibbs measures, which provides a very effective and
flexible way to define collections of “locally dependent” random variables.

The general abstract theory of Gibbs measures is fully rigorous from a mathe-
matical point of view [27]. However, when it comes to understanding the properties
of specific Gibbs measures, that is, of specific models, a large gap persists between
physicists’ heuristic methods and the scope of mathematically rigorous techniques.

This paper is devoted to a somewhat nonstandard family of models, namely
Gibbs measures on sparse random graphs. Classically, statistical mechanics has
been motivated by the desire to understand the physical behavior of materials, for
instance the phase changes of water under temperature change, or the permeation
or oil in a porous material. This naturally led to three-dimensional models for such
phenomena. The discovery of “universality” (i.e., the observation that many qual-
itative features do not depend on the microscopic details of the system), led in
turn to the study of models on three-dimensional lattices, whereby the elementary
degrees of freedom (spins) are associated with the vertices of of the lattice. There-
after, d-dimensional lattices (typically Zd ), became the object of interest upon
realizing that significant insight can be gained through such a generalization.

The study of statistical mechanics models “beyond Zd” is not directly motivated
by physics considerations. Nevertheless, physicists have been interested in models
on other graph structures for quite a long time (an early example is [23]). Appro-
priate graph structures can simplify considerably the treatment of a specific model,
and sometimes allow for sharp predictions. Hopefully some qualitative features of
this prediction survive on Zd .

Recently this area has witnessed significant progress and renewed interest as a
consequence of motivations coming from computer science, probabilistic combi-
natorics, and statistical inference. In these disciplines, one is often interested in
understanding the properties of (optimal) solutions of a large set of combinatorial
constraints. As a typical example, consider a linear system over GF[2], Ax = b

mod 2, with A an n × n binary matrix and b a binary vector of length n. Assume
that A and b are drawn from random matrix/vector ensemble. Typical questions
are: What is the probability that such a linear system admits a solution? Assuming
a typical realization does not admit a solution, what is the maximum number of
equations that can, typically, be satisfied?

While probabilistic combinatorics developed a number of ingenious techniques
to deal with these questions, significant progress has been achieved recently by em-
ploying novel insights from statistical physics (see [39]). Specifically, one first de-
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fines a Gibbs measure associated to each instance of the problem at hand, then ana-
lyzes its properties using statistical physics techniques, such as the cavity method.
While nonrigorous, this approach appears to be very systematic and provides many
sharp predictions.

It is clear at the outset that, for “natural” distributions of the binary matrix A,
the above problem does not have any d-dimensional structure. Similarly, in many
interesting examples, one can associate to the Gibbs measure a graph that is sparse
and random, but of no finite-dimensional structure. Nonrigorous statistical me-
chanics techniques appear to provide detailed predictions about general Gibbs
measures of this type. It would be highly desirable—and in principle possible—to
develop a fully mathematical theory of such Gibbs measures. The present paper
provides a unified presentation of a few results in this direction.

In the rest of this section, we proceed with a more detailed overview of the topic,
proposing certain fundamental questions the answer to which plays an important
role within the nonrigorous statistical mechanics analysis. We illustrate these ques-
tions on the relatively well-understood Curie–Weiss (toy) model and explore a few
additional motivating examples.

Section 2 focuses on a specific example, namely the ferromagnetic Ising model
on sequences of locally tree-like graphs. Thanks to its monotonicity properties,
detailed information can be gained on this model.

A recurring prediction of statistical mechanics studies is that Bethe–Peierls
approximation is asymptotically tight in the large graph limit, for sequences of
locally tree-like graphs. Section 3 provides a mathematical formalization of Bethe–
Peierls approximation. We also prove there that, under an appropriate correla-
tion decay condition, Bethe–Peierls approximation is indeed essentially correct
on graphs with large girth.

In Section 4 we consider a more challenging, and as of now, poorly understood,
example: proper colorings of a sparse random graph. A fascinating “clustering”
phase transition is predicted to occur as the average degree of the graph crosses a
certain threshold. Whereas the detailed description and verification of this phase
transition remains an open problem, its relation with the appropriate notion of
correlation decay (“extremality”), is the subject of Section 5.

1.1 The Curie–Weiss model and some general definitions

The Curie–Weiss model is deceivingly simple, but is a good framework to start il-
lustrating some important ideas. For a detailed study of this model we refer to [24].

1.1.1 A story about opinion formation. At time zero, each of n individuals takes
one of two opinions Xi(0) ∈ {+1,−1} independently and uniformly at random for
i ∈ [n] = {1, . . . , n}. At each subsequent time t , one individual i, chosen uniformly
at random, computes the opinion imbalance

M ≡
n∑

j=1

Xj, (1.1)
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and M(i) ≡ M − Xi . Then, he/she changes his/her opinion with probability

pflip(X) =
{

exp
(−2β|M(i)|/n

)
, if M(i)Xi > 0,

1, otherwise.
(1.2)

Despite its simplicity, this model raises several interesting questions:

(a) How long does is take for the process X(t) to become approximately sta-
tionary?

(b) How often do individuals change opinion in the stationary state?
(c) Is the typical opinion pattern strongly polarized (herding)?
(d) If this is the case, how often does the popular opinion change?

We do not address question (a) here, but we will address some version of questions
(b)–(d). More precisely, this dynamics (first studied in statistical physics under
the name of Glauber or Metropolis dynamics) is an aperiodic irreducible Markov
chain whose unique stationary measure is

μn,β(x) = 1

Zn(β)
exp

{
β

n

∑
(i,j)

xixj

}
. (1.3)

To verify this, simply check that the dynamics given by (1.2) is reversible
with respect to the measure μn,β of (1.3). Namely, that μn,β(x)P(x → x′) =
μn,β(x′)P(x ′ → x) for any two configurations x, x′ (where P(x → x′) denotes
the one-step transition probability from x to x′).

We are mostly interested in the large-n (population size), behavior of μn,β(·)
and its dependence on β (the interaction strength). In this context, we have the
following “static” versions of the preceding questions:

(b′) What is the distribution of pflip(x) when x has distribution μn,β(·)?
(c′) What is the distribution of the opinion imbalance M? Is it concentrated

near 0 (evenly spread opinions), or far from 0 (herding)?
(d′) In the herding case: how unlikely are balanced (M ≈ 0) configurations?

1.1.2 Graphical models. A graph G = (V ,E) consists of a set V of vertices and
a set E of edges (where an edge is an unordered pair of vertices). We always
assume G to be finite with |V | = n and often make the identification V = [n].
With X a finite set, called the variable domain, we associate to each vertex i ∈ V

a variable xi ∈ X , denoting by x ∈ X V the complete assignment of these variables
and by xU = {xi : i ∈ U} its restriction to U ⊆ V .

Definition 1.1. A bounded specification ψ ≡ {ψij : (i, j) ∈ E} for a graph G and
variable domain X is a family of functionals ψij : X × X → [0,ψmax] indexed by
the edges of G with ψmax a given finite, positive constant (where for consistency
ψij (x, x′) = ψji(x

′, x) for all x, x′ ∈ X and (i, j) ∈ E). The specification may
include in addition functions ψi : X → [0,ψmax] indexed by vertices of G.
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A bounded specification ψ for G is permissive if there exists a positive con-
stant κ and a “permitted state” x

p
i ∈ X for each i ∈ V , such that mini,x′ ψi(x

′) ≥
κψmax and

min
(i,j)∈E,x′∈X

ψij (x
p
i , x′) = min

(i,j)∈E,x′∈X
ψij (x

′, xp
j ) ≥ κψmax ≡ ψmin.

The graphical model associated with a graph-specification pair (G,ψ) is the
canonical probability measure

μG,ψ(x) = 1

Z(G,ψ)

∏
(i,j)∈E

ψij (xi, xj )
∏
i∈V

ψi(xi) (1.4)

and the corresponding canonical stochastic process is the collection X = {Xi : i ∈
V } of X -valued random variables having joint distribution μG,ψ(·).

One such example is the distribution (1.3), where X = {+1,−1}, G is the com-
plete graph over n vertices and ψij (xi, xj ) = exp(βxixj /n). Here ψi(x) ≡ 1. It
is sometimes convenient to introduce a “magnetic field” (see, e.g., equation (1.9)
below). This corresponds to taking ψi(xi) = exp(Bxi).

Rather than studying graphical models at this level of generality, we focus on a
few concepts/tools that have been the subject of recent research efforts.

Coexistence. Roughly speaking, we say that a model (G,ψ) exhibits coexis-
tence if the corresponding measure μG,ψ(·) decomposes into a convex combi-
nation of well-separated lumps. To formalize this notion, we consider sequences
of measures μn on graphs Gn = ([n],En), and say that coexistence occurs if, for
each n, there exists a partition �1,n, . . . ,�r,n of the configuration space X n with
r = r(n) ≥ 2, such that:

(a) The measure of elements of the partition is uniformly bounded away from
one:

max
1≤s≤r

μn(�s,n) ≤ 1 − δ. (1.5)

(b) The elements of the partition are separated by “bottlenecks.” That is, for
some ε > 0,

max
1≤s≤r

μn(∂ε�s,n)

μn(�s,n)
→ 0, (1.6)

as n → ∞, where ∂ε� denotes the ε-boundary of � ⊆ X n,

∂ε� ≡ {x ∈ X n : 1 ≤ d(x,�) ≤ nε}, (1.7)

with respect to the Hamming1 distance. The normalization by μn(�s,n) removes
“false bottlenecks” and is, in particular, needed since r(n) often grows (exponen-
tially) with n.

1The Hamming distance d(x, x′) between configurations x and x′ is the number of positions in
which the two configurations differ. Given � ⊆ X n, d(x,�) ≡ min{d(x, x′) :x′ ∈ �}.
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Depending on the circumstances, one may further specify a required rate of
decay in (1.6).

We often consider families of models indexed by one (or more) continuous pa-
rameters, such as the inverse temperature β in the Curie–Weiss model. A phase
transition will generically be a sharp threshold in some property of the measure
μ(·) as one of these parameters changes. In particular, a phase transition can sep-
arate values of the parameter for which coexistence occurs from those values for
which it does not.

Mean field models. Intuitively, these are models that lack any (finite-dimensional)
geometrical structure. For instance, models of the form (1.4) with ψij independent
of (i, j) and G the complete graph or a regular random graph are mean field mod-
els, whereas models in which G is a finite subset of a finite-dimensional lattice
are not. To be a bit more precise, the Curie–Weiss model belongs to a particular
class of mean field models in which the measure μ(x) is exchangeable (i.e., in-
variant under coordinate permutations). A wider class of mean field models may
be obtained by considering random distributions2 μ(·) (e.g., when either G or ψ

are chosen at random in (1.4)). In this context, given a realization of μ, consider k

i.i.d. configurations X(1), . . . ,X(k), each having distribution μ. These “replicas”
have the unconditional, joint distribution

μ(k)(x(1), . . . , x(k)) = E
{
μ

(
x(1)) · · ·μ(

x(k))}. (1.8)

The random distribution μ is a candidate to be a mean field model when for each
fixed k the measure μ(k), viewed as a distribution over (X k)n, is exchangeable
(with respect to permutations of the coordinate indices in [n]). Unfortunately,
while this property suffices in many “natural” special cases, there are models
that intuitively are not mean-field and yet have it. For instance, given a nonran-
dom measure ν and a uniformly random permutation π , the random distribution
μ(x1, . . . , xn) ≡ ν(xπ(1), . . . , xπ(n)) meets the preceding requirement yet should
not be considered a mean field model. While a satisfactory mathematical definition
of the notion of mean field models is lacking, by focusing on selective examples
we examine in the sequel the rich array of interesting phenomena that such models
exhibit.

Mean field equations. Distinct variables may be correlated in the model (1.4) in
very subtle ways. Nevertheless, mean field models are often tractable because an
effective “reduction” to local marginals3 takes place asymptotically for large sizes
(i.e., as n → ∞).

2A random distribution over X n is just a random variable taking values on the (|X |n − 1)-
dimensional probability simplex.

3In particular, single variable marginals, or joint distributions of two variables connected by an
edge.
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Thanks to this reduction it is often possible to write a closed system of equa-
tions for the local marginals that hold in the large size limit and determine the lo-
cal marginals, up to possibly having finitely many solutions. Finding the “correct”
mathematical definition of this notion is an open problem, so we shall instead pro-
vide specific examples of such equations in a few special cases of interest (starting
with the Curie–Weiss model).

1.1.3 Coexistence in the Curie–Weiss model. The model (1.3) appeared for the
first time in the physics literature as a model for ferromagnets.4 In this context,
the variables xi are called spins and their value represents the direction in which a
localized magnetic moment (think of a tiny compass needle) is pointing. In certain
materials the different magnetic moments favor pointing in the same direction,
and physicists want to know whether such interaction may lead to a macroscopic
magnetization (imbalance), or not.

In studying this and related problems it often helps to slightly generalize the
model by introducing a linear term in the exponent (also called a “magnetic field”).
More precisely, one considers the probability measures

μn,β,B(x) = 1

Zn(β,B)
exp

{
β

n

∑
(i,j)

xixj + B

n∑
i=1

xi

}
. (1.9)

In this context 1/β is referred to as the “temperature” and we shall always assume
that β ≥ 0 and, without loss of generality, also that B ≥ 0.

The following estimates on the distribution of the magnetization per site are the
key to our understanding of the large size behavior of the Curie–Weiss model (1.9).

Lemma 1.2. Let H(x) = −x logx − (1 − x) log(1 − x) denote the binary entropy
function and for β ≥ 0, B ∈ R, and m ∈ [−1,+1] set

ϕ(m) ≡ ϕβ,B(m) = Bm + 1

2
βm2 + H

(
1 + m

2

)
. (1.10)

Then, for X ≡ n−1 ∑n
i=1 Xi , a random configuration (X1, . . . ,Xn) from the Curie–

Weiss model and each m ∈ Sn ≡ {−1,−1 + 2/n, . . . ,1 − 2/n,1},
e−β/2

n + 1

1

Zn(β,B)
enϕ(m) ≤ P{X = m} ≤ 1

Zn(β,B)
enϕ(m). (1.11)

Proof. Noting that for M = nm,

P{X = m} = 1

Zn(β,B)

(
n

(n + M)/2

)
exp

{
BM + βM2

2n
− 1

2
β

}
,

4A ferromagnet is a material that acquires a macroscopic spontaneous magnetization at low tem-
perature.
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our thesis follows by Stirling’s approximation of the binomial coefficient (e.g., see
[17], Theorem 12.1.3). �

A major role in determining the asymptotic properties of the measures μn,β,B

is played by the free entropy density (the term “density” refers here to the fact that
we are dividing by the number of variables),

φn(β,B) = 1

n
logZn(β,B). (1.12)

Lemma 1.3. For all n large enough we have the following bounds on the free
entropy density φn(β,B) of the (generalized) Curie–Weiss model

φ∗(β,B) − β

2n
− 1

n
log{n(n + 1)} ≤ φn(β,B) ≤ φ∗(β,B) + 1

n
log(n + 1),

where

φ∗(β,B) ≡ sup{ϕβ,B(m) :m ∈ [−1,1]}. (1.13)

Proof. The upper bound follows upon summing over m ∈ Sn the upper bound
in (1.11). Further, from the lower bound in (1.11) we get that

φn(β,B) ≥ max{ϕβ,B(m) :m ∈ Sn} − β

2n
− 1

n
log(n + 1).

A little calculus shows that maximum of ϕβ,B(·) over the finite set Sn is not smaller
that its maximum over the interval [−1,+1] minus n−1(logn), for all n large
enough. �

Consider the optimization problem in equation (1.13). Since ϕβ,B(·) is continu-
ous on [−1,1] and differentiable in its interior, with ϕ′

β,B(m) → ±∞ as m → ∓1,
this maximum is achieved at one of the points m ∈ (−1,1) where ϕ′

β,B(m) = 0.
A direct calculation shows that the latter condition is equivalent to

m = tanh(βm + B). (1.14)

Analyzing the possible solutions of this equation, one finds out that:

(a) For β ≤ 1, the equation (1.14) admits a unique solution m∗(β,B) increasing
in B with m∗(β,B) ↓ 0 as B ↓ 0. Obviously, m∗(β,B) maximizes ϕβ,B(m).

(b) For β > 1 there exists B∗(β) > 0 continuously increasing in β with
limβ↓1 B∗(β) = 0 such that: (i) for 0 ≤ B < B∗(β), equation (1.14) admits three
distinct solutions m−(β,B),m0(β,B),m+(β,B) ≡ m∗(β,B) with m− < m0 ≤
0 ≤ m+ ≡ m∗; (ii) for B = B∗(β) the solutions m−(β,B) = m0(β,B) coincide;
(iii) and for B > B∗(β) only the positive solution m∗(β,B) survives.

Further, for B ≥ 0 the global maximum of ϕβ,B(m) over m ∈ [−1,1] is at-
tained at m = m∗(β,B), while m0(β,B) and m−(β,B) are (respectively) a lo-
cal minimum and a local maximum (and a saddle point when they coincide at
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B = B∗(β)). Since ϕβ,0(·) is an even function, in particular m0(β,0) = 0 and
m±(β,0) = ±m∗(β,0).

Our next theorem answers question (c′) of Section 1.1.1 for the Curie–Weiss
model.

Theorem 1.4. Consider X of Lemma 1.2 and the relevant solution m∗(β,B) of
equation (1.14). If either β ≤ 1 or B > 0, then for any ε > 0 there exists C(ε) > 0
such that, for all n large enough

P{|X − m∗(β,B)| ≤ ε} ≥ 1 − e−nC(ε). (1.15)

In contrast, if B = 0 and β > 1, then for any ε > 0 there exists C(ε) > 0 such that,
for all n large enough

P{|X − m∗(β,0)| ≤ ε} = P{|X + m∗(β,0)| ≤ ε} ≥ 1

2
− e−nC(ε). (1.16)

Proof. Suppose first that either β ≤ 1 or B > 0, in which case ϕβ,B(m) has the
unique nondegenerate global maximizer m∗ = m∗(β,B). Fixing ε > 0 and setting
Iε = [−1,m∗ − ε] ∪ [m∗ + ε,1], by Lemma 1.2

P{X ∈ Iε} ≤ 1

Zn(β,B)
(n + 1) exp{nmax[ϕβ,B(m) :m ∈ Iε]}.

Using Lemma 1.3 we then find that

P{X ∈ Iε} ≤ (n + 1)3eβ/2 exp{nmax[ϕβ,B(m) − φ∗(β,B) :m ∈ Iε]},
whence the bound of (1.15) follows.

The bound of (1.16) is proved analogously, using the fact that μn,β,0(x) =
μn,β,0(−x). �

We just encountered our first example of coexistence (and of phase transition).

Theorem 1.5. The Curie–Weiss model shows coexistence if and only if B = 0 and
β > 1.

Proof. We will limit ourselves to the “if” part of this statement: for B = 0, β > 1,
the Curie–Weiss model shows coexistence. To this end, we simply check that
the partition of the configuration space {+1,−1}n to �+ ≡ {x :

∑
i xi ≥ 0} and

�− ≡ {x :
∑

i xi < 0} satisfies the conditions in Section 1.1.2. Indeed, it follows
immediately from (1.16) that choosing a positive ε < m∗(β,0)/2, we have

μn,β,B(�±) ≥ 1

2
− e−Cn, μn,β,B(∂ε�±) ≤ e−Cn,

for some C > 0 and all n large enough, which is the thesis. �



146 A. Dembo and A. Montanari

1.1.4 The Curie–Weiss model: mean field equations. We have just encountered
our first example of coexistence and our first example of phase transition. We fur-
ther claim that the identity (1.14) can be “interpreted” as our first example of a
mean field equation (in line with the discussion of Section 1.1.2). Indeed, assuming
throughout this section not to be on the coexistence line B = 0, β > 1, it follows
from Theorem 1.4 that EXi = EX ≈ m∗(β,B).5 Therefore, the identity (1.14) can
be rephrased as

EXi ≈ tanh
{
B + β

n

∑
j∈V

EXj

}
, (1.17)

which, in agreement with our general description of mean field equations, is a
closed form relation between the local marginals under the measure μn,β,B(·).

We next rederive the equation (1.17) directly out of the concentration in prob-
ability of X. This approach is very useful, for in more complicated models one
often has mild bounds on the fluctuations of X while lacking fine controls such as
in Theorem 1.4. To this end, we start by proving the following “cavity” estimate.6

Lemma 1.6. Denote by En,β and Varn,β the expectation and variance with respect
to the Curie–Weiss model with n variables at inverse temperature β (and magnetic
field B). Then, for β ′ = β(1 + 1/n), X = n−1 ∑n

i=1 Xi and any i ∈ [n],
|En+1,β ′Xi − En,βXi | ≤ β sinh(B + β)

√
Varn,β(X). (1.18)

Proof. By direct computation, for any function F : {+1,−1}n → R,

En+1,β ′ {F(X)} = En,β{F(X) cosh(B + βX)}
En,β{cosh(B + βX)} .

Therefore, with cosh(a) ≥ 1 we get by Cauchy–Schwarz that

|En+1,β ′ {F(X)} − En,β{F(X)}|
≤ |Covn,β{F(X), cosh(B + βX)}|
≤ ‖F‖∞

√
Varn,β

(
cosh(B + βX)

) ≤ ‖F‖∞β sinh(B + β)

√
Varn,β(X),

where the last inequality is due to the Lipschitz behavior of x �→ cosh(B + βx)

together with the bound |X| ≤ 1. �

The following theorem provides a rigorous version of equation (1.17) for β ≤ 1
or B > 0.

5We use ≈ to indicate that we do not provide the approximation error, nor plan to rigorously prove
that it is small.

6Cavity methods of statistical physics aim at understanding thermodynamic limits n → ∞ by first
relating certain quantities for systems of size n � 1 to those in systems of size n′ = n + O(1).
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Theorem 1.7. There exists a constant C(β,B) such that for any i ∈ [n],∣∣∣∣EXi − tanh
{
B + β

n

∑
j∈V

EXj

}∣∣∣∣ ≤ C(β,B)

√
Var(X). (1.19)

Proof. In the notations of Lemma 1.6 recall that En+1,β ′Xi is independent of i

and so upon fixing (X1, . . . ,Xn) we get by direct computation that

En+1,β ′ {Xi} = En+1,β ′ {Xn+1} = En,β sinh(B + βX)

En,β cosh(B + βX)
.

Further notice that (by the Lipschitz property of cosh(B + βx) and sinh(B + βx)

together with the bound |X| ≤ 1),

|En,β sinh(B + βX) − sinh(B + βEn,βX)| ≤ β cosh(B + β)

√
Varn,β(X),

|En,β cosh(B + βX) − cosh(B + βEn,βX)| ≤ β sinh(B + β)

√
Varn,β(X).

Using the inequality |a1/b1 − a2/b2| ≤ |a1 − a2|/b1 + a2|b1 − b2|/b1b2 we thus
have here (with ai ≥ 0 and bi ≥ max(1, ai)), that∣∣∣∣∣En+1,β ′ {Xi} − tanh

{
B + β

n

n∑
j=1

En,βXj

}∣∣∣∣∣ ≤ C(β,B)

√
Varn,β(X).

At this point you get our thesis by applying Lemma 1.6. �

1.2 Graphical models: examples

We next list a few examples of graphical models, originating at different domains
of science and engineering. Several other examples that fit the same framework are
discussed in detail in [39].

1.2.1 Statistical physics.

Ferromagnetic Ising model. The ferromagnetic Ising model is arguably the most
studied model in statistical physics. It is defined by the Boltzmann distribution

μβ,B(x) = 1

Z(β,B)
exp

{
β

∑
(i,j)∈E

xixj + B
∑
i∈V

xi

}
, (1.20)

over x = {xi : i ∈ V }, with xi ∈ {+1,−1}, parametrized by the “magnetic field”
B ∈ R and “inverse temperature” β ≥ 0, where the partition function Z(β,B) is
fixed by the normalization condition

∑
x μ(x) = 1. The interaction between ver-

tices i, j connected by an edge pushes the variables xi and xj towards taking the
same value. It is expected that this leads to a global alignment of the variables
(spins) at low temperature, for a large family of graphs. This transition should be
analogue to the one we found for the Curie–Weiss model, but remarkably little is
known about Ising models on general graphs. In Section 2 we consider the case of
random sparse graphs.
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Antiferromagnetic Ising model. This model takes the same form (1.20), but with
β < 0.7 Note that if B = 0 and the graph is bipartite (i.e., if there exists a partition
V = V1 ∪ V2 such that E ⊆ V1 × V2), then this model is equivalent to the ferro-
magnetic one (upon inverting the signs of {xi, i ∈ V1}). However, on nonbipartite
graphs the antiferromagnetic model is way more complicated than the ferromag-
netic one, and even determining the most likely (lowest energy) configuration is a
difficult matter. Indeed, for B = 0 the latter is equivalent to the celebrated max-cut
problem from theoretical computer science.

Spin glasses. An instance of the Ising spin glass is defined by a graph G, together
with edge weights Jij ∈ R, for (i, j) ∈ E. Again variables are binary xi ∈ {+1,−1}
and

μβ,B,J (x) = 1

Z(β,B,J )
exp

{
β

∑
(i,j)∈E

Jij xixj + B
∑
i∈V

xi

}
. (1.21)

In a spin glass model the “coupling constants” Jij are random with even distri-
bution (the canonical examples being Jij ∈ {+1,−1} uniformly and Jij centered
Gaussian variables). One is interested in determining the asymptotic properties as
n = |V | → ∞ of μn,β,B,J (·) for a typical realization of the coupling J ≡ {Jij }.

1.2.2 Random constraint satisfaction problems. A constraint satisfaction prob-
lem (CSP) consists of a finite set X (called the variable domain), and a class C
of possible constraints (i.e., indicator functions), each of which involves finitely
many X -valued variables xi . An instance of this problem is then specified by a
positive integer n (the number of variables), and a set of m constraints involving
only the variables x1, . . . , xn (or a subset thereof). A solution of this instance is an
assignment in X n for the variables x1, . . . , xn which satisfies all m constraints.

In this context, several questions are of interest within computer science:

1. Decision problem. Does the given instance have a solution?
2. Optimization problem. Maximize the number of satisfied constraints.
3. Counting problem. Count the number of solutions.

There are many ways of associating a graphical model to an instance of CSP. If
the instance admits a solution, then one option is to consider the uniform measure
over all such solutions. Let us see how this works in a few examples.

Coloring. A proper q-coloring of a graph G is an assignment of colors in [q] to
the vertices of G such that no edge has both endpoints of the same color. The cor-
responding CSP has variable domain X = [q] and the possible constraints in C are
indexed by pairs of indices (i, j) ∈ V × V , where the constraint (i, j) is satisfied
if and only if xi �= xj .

7In the literature one usually introduces explicitly a minus sign to keep β positive.
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Figure 1 Factor graph representation of the satisfiability formula (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x1 ∨ x̄2) ∧
(x2 ∨x4 ∨x5)∧ (x1 ∨x2 ∨x5)∧ (x1 ∨ x̄2 ∨x5). Edges are continuous or dashed depending whether
the corresponding variable is directed or negated in the clause.

Assuming that a graph G admits a proper q-coloring, the uniform measure over
the set of possible solutions is

μG(x) = 1

ZG

∏
(i,j)∈E

I(xi �= xj ), (1.22)

with ZG counting the number of proper q-colorings of G.
k-SAT. In case of k-satisfiability (in short, k-SAT), the variables are binary xi ∈

X = {0,1} and each constraint is of the form (xi(1), . . . , xi(k)) �= (x∗
i(1), . . . , x

∗
i(k))

for some prescribed k-tuple (i(1), . . . , i(k)) of indices in V = [n] and their pre-
scribed values (x∗

i(1), . . . , x
∗
i(k)). In this context constraints are often referred to as

“clauses” and can be written as the disjunction (logical OR) of k variables or their
negations. The uniform measure over solutions of an instance of this problem, if
such solutions exist, is then

μ(x) = 1

Z

m∏
a=1

I
((

xia(1), . . . , xia(k)

) �= (
x∗
ia(1), . . . , x

∗
ia(k)

))
,

with Z counting the number of solutions. An instance can be associated to a factor
graph; cf. Figure 1. This is a bipartite graph having two types of nodes: variable
nodes in V = [n] denoting the unknowns x1, . . . , xn and function (or factor) nodes
in F = [m] denoting the specified constraints. Variable node i and function node a

are connected by an edge in the factor graph if and only if variable xi appears in
the ath clause, so ∂a = {ia(1), . . . , ia(k)} and ∂i corresponds to the set of clauses
in which i appears.

In general, such a construction associates to arbitrary CSP instance a factor
graph G = (V ,F,E). The uniform measure over solutions of such an instance is
then of the form

μG,ψ(x) = 1

Z(G,ψ)

∏
a∈F

ψa(x∂a), (1.23)
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for a suitable choice of ψ ≡ {ψa(·) :a ∈ F }. Such measures can also be viewed as
the zero temperature limit of certain Boltzmann distributions. We note in passing
that the probability measure of equation (1.4) corresponds to the special case where
all function nodes are of degree two.

1.2.3 Communications, estimation, detection. We describe next a canonical way
of phrasing problems from mathematical engineering in terms of graphical models.
Though we do not detail it here, this approach applies to many specific cases of
interest.

Let X1, . . . ,Xn be a collection of i.i.d. “hidden” random variables with a com-
mon distribution p0(·) over a finite alphabet X . We want to estimate these vari-
ables from a given collection of observations Y1, . . . , Ym. The ath observation (for
a ∈ [m]) is a random function of the Xi’s for which i ∈ ∂a = {ia(1), . . . , ia(k)}. By
this we mean that Ya is conditionally independent of all the other variables given
{Xi : i ∈ ∂a} and we write

P{Ya ∈ A|X∂a = x∂a} = Qa(A|x∂a) (1.24)

for some probability kernel Qa(·|·).
The a posteriori distribution of the hidden variables given the observations is

thus

μ(x|y) = 1

Z(y)

m∏
a=1

Qa(ya|x∂a)

n∏
i=1

p0(xi). (1.25)

1.2.4 Graph and graph ensembles. The structure of the underlying graph G is of
much relevance for the general measures μG,ψ of (1.4). The same applies in the
specific examples we have outlined in Section 1.2.

As already hinted, we focus here on (random) graphs that lack finite-dimension-
al Euclidean structure. A few well-known ensembles of such graphs (cf. [34]) are:

I. Random graphs with a given degree distribution. Given a probability distrib-
ution {Pl}l≥0 over the nonnegative integers, for each value of n one draws the
graph Gn uniformly at random from the collection of all graphs with n ver-
tices of which precisely �nPk� are of degree k ≥ 1 (moving one vertex from
degree k to k + 1 if needed for an even sum of degrees). We will denote this
ensemble by G(P,n).

II. The ensemble of random k-regular graphs corresponds to Pk = 1 (with kn

even). Equivalently, this is defined by the set of all graphs Gn over n vertices
with degree k, endowed with the uniform measure. With a slight abuse of
notation, we will denote it by G(k, n).

III. Erdös–Renyi graphs. This is the ensemble of all graphs Gn with n vertices
and m = �nα� edges endowed with the uniform measure. A slightly modified
ensemble is the one in which each edge (i, j) is present independently with
probability nα/

(n
2

)
. We will denote it as G(α,n).
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As further shown in Section 2.1, an important property of these graph ensembles
is that they converge locally to trees. Namely, for any integer �, the depth-� neigh-
borhood Bi (�) of a uniformly chosen random vertex i converges in distribution as
n → ∞ to a certain random tree of depth (at most) �.

2 Ising models on locally tree-like graphs

A ferromagnetic Ising model on the finite graph G (with vertex set V , and edge
set E) is defined by the Boltzmann distribution μβ,B(x) of (1.20) with β ≥ 0. In
the following it is understood that, unless specified otherwise, the model is ferro-
magnetic, and we will call it “Ising model on G.”

For sequences of graphs Gn = (Vn,En) of diverging size n, nonrigorous statisti-
cal mechanics techniques, such as the “replica” and “cavity methods,” make a num-
ber of predictions on this model when the graph G “lacks any finite-dimensional
structure.” The most basic quantity in this context is the asymptotic free entropy
density; cf. equation (1.12),

φ(β,B) ≡ lim
n→∞

1

n
logZn(β,B). (2.1)

The Curie–Weiss model, cf. Section 1.1, corresponds to the complete graph
Gn = Kn. Predictions exist for a much wider class of models and graphs, most
notably, sparse random graphs with bounded average degree that arise in a num-
ber of problems from combinatorics and theoretical computer science (cf. the ex-
amples of Section 1.2.2). An important new feature of sparse graphs is that one
can introduce a notion of distance between vertices as the length of shortest path
connecting them. Consequently, phase transitions and coexistence can be studied
with respect to the correlation decay properties of the underlying measure. It turns
out that this approach is particularly fruitful and allows to characterize these phe-
nomena in terms of appropriate features of Gibbs measures on infinite trees. This
direction is pursued in [36] in the case of random constraint satisfaction problems.

Statistical mechanics also provides methods for approximating the local mar-
ginals of the Boltzmann measure of (1.20). Of particular interest is the algorithm
known in artificial intelligence and computer science under the name of belief
propagation. Loosely speaking, this procedure consists of solving by iteration cer-
tain mean field (cavity) equations. Belief propagation is shown in [19] to converge
exponentially fast for an Ising model on any graph (even in a low-temperature
regime lacking uniform decorrelation), with resulting asymptotically tight esti-
mates for large locally tree-like graphs (see Section 2.3).

2.1 Locally tree-like graphs and conditionally independent trees

We follow here [19], where the asymptotic free entropy density (2.1) is determined
rigorously for certain sparse graph sequences {Gn} that converge locally to trees. In
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order to make this notion more precise, we denote by Bi (t) the subgraph induced
by vertices of Gn whose distance from i is at most t . Further, given two rooted
trees T1 and T2 of the same size, we write T1 � T2 if T1 and T2 are identical
upon labeling their vertices in a breadth first fashion following lexicographic order
among siblings.

Definition 2.1. Let Pn denote the law of the ball Bi (t) when i ∈ Vn is a uniformly
chosen random vertex. We say that {Gn} converges locally to the random rooted
tree T if, for any finite t and any rooted tree T of depth at most t ,

lim
n→∞Pn{Bi (t) � T } = P{T(t) � T }, (2.2)

where T(t) denotes the subtree of first t generations of T.
We also say that {Gn} is uniformly sparse if

lim
l→∞ lim sup

n→∞
1

|Vn|
∑
i∈Vn

|∂i|I(|∂i| ≥ l) = 0, (2.3)

where |∂i| denotes the size of the set ∂i of neighbors of i ∈ Vn (i.e., the degree
of i).

The proof that for locally tree-like graphs φn(β,B) = 1
n

logZn(β,B) converges
to (an explicit) limit φ(β,B) consists of two steps:

(a) Reduce the computation of φn(β,B) to computing expectations of local
(in Gn) quantities with respect to the Boltzmann measure (1.20). This is achieved
by noting that the derivative of φn(β,B) with respect to β is a sum of such expec-
tations.

(b) Show that under the Boltzmann measure (1.20) on Gn expectations of local
quantities are, for t and n large, well approximated by the same expectations with
respect to an Ising model on the associated random tree T(t) (a philosophy related
to that of [8]).

The key is of course step (b), and the challenge is to carry it out when the
parameter β is large and we no longer have uniqueness of the Gibbs measure on
the limiting tree T. Indeed, this is done in [19] for the following collection of trees
of conditionally independent (and of bounded average) offspring numbers.

Definition 2.2. An infinite labeled tree T rooted at the vertex ∅ is called condi-
tionally independent if for each integer k ≥ 0, conditional on the subtree T(k) of
the first k generations of T, the number of offspring �j for j ∈ ∂T(k) are inde-
pendent of each other, where ∂T(k) denotes the set of vertices at generation k. We
further assume that the (conditional on T(k)) first moments of �j are uniformly
bounded by a given nonrandom finite constant � and say that an unlabeled rooted
tree T is conditionally independent if T � T′ for some conditionally independent
labeled rooted tree T′.
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As shown in [19], Section 4 (see also Theorem 2.10), on such a tree, local ex-
pectations are insensitive to boundary conditions that stochastically dominate the
free boundary condition. Our program then follows by monotonicity arguments.
An example of the monotonicity properties enjoyed by the Ising model is provided
by Lemma 2.12.

We next provide a few examples of well-known random graph ensembles that
are uniformly sparse and converge locally to conditionally independent trees. To
this end, let P = {Pk :k ≥ 0} be a probability distribution over the nonnegative in-
tegers, with finite, positive first moment P , set ρk = (k + 1)Pk+1/P and denote its
mean as ρ. We denote by T(ρ, t) the rooted Galton–Watson tree of t ≥ 0 genera-
tions, that is, the random tree such that each node has offspring distribution {ρk},
and the offspring numbers at different nodes are independent. Further, T(P,ρ, t)

denotes the modified ensemble where only the offspring distribution at the root is
changed to P . In particular, T(P,ρ,∞) is clearly conditionally independent. Other
examples of conditionally independent trees include: (a) deterministic trees with
bounded degree; (b) percolation clusters on such trees; (c) multitype branching
processes.

When working with random graph ensembles, it is often convenient to work
with the configuration models [14] defined as follows. In the case of the Erdös–
Renyi random graph, one draws m i.i.d. edges by choosing their endpoints ia, ja in-
dependently and uniformly at random for a = 1, . . . ,m. For a graph with given de-
gree distribution {Pk}, one first partitions the vertex sets into subsets V0, of �nP0�
vertices, V1 of �nP1� vertices, V2 of �nP2� vertices, etc. Then associate k half-
edges to the vertices in Vk for each k (eventually adding one half edge to the last
node, to make their total number even). Finally, recursively match two uniformly
random half edges until there is no unmatched one. Whenever we need to make the
distinction we denote by P∗(·) probabilities under the corresponding configuration
model.

The following simple observation transfers results from configuration models
to the associated uniform models.

Lemma 2.3. Let An be a sequence of events, such that, under the configuration
model ∑

n

P∗(Gn /∈ An) < ∞. (2.4)

Further, assume m = �αn� with α fixed (for Erdös–Renyi random graphs), or {Pk}
fixed, with bounded first moment (for general degree distribution). Then, almost
surely under the uniform model, property An holds for all n large enough.

Proof. The point is that, the graph chosen under the configuration model is dis-
tributed uniformly when further conditional on the property Ln that it has neither
self-loops nor double edges (see [34]). Consequently,

P(Gn /∈ An) = P∗(Gn /∈ An|Ln) ≤ P∗(Gn /∈ An)/P∗(Ln).
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The thesis follows by recalling that P∗(Ln) is bounded away from 0 uniformly
in n for the models described here (cf. [34]), and applying the Borel–Cantelli
lemma. �

Our next lemma ensures that we only need to check the local (weak) conver-
gence in expectation with respect to the configuration model.

Lemma 2.4. Given a finite rooted tree T of at most t generations, assume that

lim
n→∞ P∗{Bi (t) � T } = QT , (2.5)

for a uniformly random vertex i ∈ Gn. Then, under both the configuration and the
uniform models of Lemma 2.3, Pn{Bi (t) � T } → QT almost surely.

Proof. Per given value of n consider the random variable Z ≡ Pn{Bi (t) � T }. In
view of Lemma 2.3 and the assumption (2.5) that E∗[Z] = P∗{Bi (t) � T } con-
verges to QT , it suffices to show that P∗{|Z − E∗[Z]| ≥ δ} is summable (in n),
for any fixed δ > 0. To this end, let r denote the maximal degree of T . The pres-
ence of an edge (j, k) in the resulting multigraph Gn affects the event {Bi (t) � T }
only if there exists a path of length at most t in Gn between i and {j, k}, the
maximal degree along which is at most r . Per given choice of (j, k) there are
at most u = u(r, t) ≡ 2

∑t
l=0 rl such values of i ∈ [n], hence the Lipschitz norm

of Z as a function of the location of the m edges of Gn is bounded by 2u/n.
Let Gn(t) denote the graph formed by the first t edges (so Gn(m) = Gn), and
introduce the martingale Z(t) = E∗[Z|Gn(t)], so Z(m) = Z and Z(0) = E∗[Z].
A standard argument (cf. [9,51]), shows that the conditional laws P∗(·|Gn(t)) and
P∗(·|Gn(t + 1)) of Gn can be coupled in such a way that the resulting two (con-
ditional) realizations of Gn differ by at most two edges. Consequently, applying
Azuma–Hoeffding inequality we deduce that for any T , M , m and δ > 0, some
c0 = c0(δ,M,u) positive and all m ≤ nM ,

P∗(|Z − E∗[Z]| ≥ δ) = P∗(|Zm − Z0| ≥ δ) ≤ 2e−c0n, (2.6)

which is more than enough for completing the proof. �

Proposition 2.5. Given a distribution {Pl}l≥0 of finite mean, let {Gn}n≥1 be a
sequence of graphs whereby Gn is distributed according to the ensemble G(P,n)

with degree distribution P . Then the sequence {Gn} is almost surely uniformly
sparse and converges locally to T(P,ρ,∞).

Proof. Note that for any random graph Gn of degree distribution P ,

En(l) ≡ ∑
i∈Vn

|∂i|I(|∂i| ≥ l) ≤ 1 + n
∑
k≥l

kPk ≡ 1 + nP l. (2.7)
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Our assumption that P = ∑
k kPk is finite implies that P l → 0 as l → ∞, so any

such sequence of graphs {Gn} is uniformly sparse.
As the collection of finite rooted trees of finite depth is countable, by Lemma 2.4

we have the almost sure local convergence of {Gn} to T(P,ρ,∞) once we show
that P∗(Bi (t) � T ) → P(T(P,ρ, t) � T ) as n → ∞, where i ∈ Gn is a uniformly
random vertex and T is any fixed finite, rooted tree of at most t generations.

To this end, we opt to describe the distribution of Bi (t) under the configura-
tion model as follows. First fix a nonrandom partition of [n] to subsets Vk with
|Vk| = �nPk�, and assign k half-edges to each vertex in Vk . Then, draw a uni-
formly random vertex i ∈ [n]. Assume it is in Vk , that is, has k half-edges. De-
clare these half-edges “active.” Recursively sample k unpaired (possibly active)
half-edges, and pair the active half-edges to them. Repeat this procedure for the
vertices thus connected to i and proceed in a breadth first fashion for t generations
(i.e., until all edges of Bi (t) are determined). Consider now the modified procedure
in which, each time an half-edge is selected, the corresponding vertex is put in a
separate list, and replaced by a new one with the same number of half-edges, in
the graph. Half-edges in the separate list are active, but they are not among the
candidates in the sampling part. This modification yields Bi (t) which is a random
tree, specifically, an instance of T(P̃ (n), ρ̃(n), t), where P̃

(n)
k = �nPk�/∑

l�nPl�.
Clearly, T(P̃ (n), ρ̃(n), t) converges in distribution as n → ∞ to T(P,ρ, t). The
proof is thus complete by providing a coupling in which the probability that either
Bi (t) � T under the modified procedure and Bi (t) �� T under the original proce-
dure (i.e., the configurational model), or vice versa, is at most 4|T |2/n. Indeed,
after � steps, a new vertex j is sampled by the pairing with probability pj ∝ kj (�)

in the original procedure and p′
j ∝ kj (0) in the modified one, where kj (�) is the

number of free half-edges associated to vertex j at step �. Having to consider at
most |T | steps and stopping once the original and modified samples differ, we get
the stated coupling upon noting that ‖p − p′‖TV ≤ 2|T |/n (as both samples must
then be subsets of the given tree T ). �

Proposition 2.6. Let {Gn}n≥1 be a sequence of Erdös–Renyi random graphs,
that is, of graphs drawn either from the ensemble G(α,n) or from the uniform
model with m = m(n) edges, where m(n)/n → α. Then, the sequence {Gn} is
almost surely uniformly sparse and converges locally to the Galton–Watson tree
T(P,ρ,∞) with Poisson(2α) offspring distribution P (in which case ρk = Pk).

Proof. We denote by P〈m〉(·) and E〈m〉(·) the probabilities and expectations with
respect to a random graph Gn chosen uniformly from the ensemble of all graphs
of m edges, with P

〈m〉∗ (·) and E
〈m〉∗ (·) in use for the corresponding configuration

model.
We start by proving the almost sure uniform sparsity for graphs Gn from the

uniform ensemble of m = m(n) edges provided m(n)/n ≤ M for all n and some
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finite M . To this end, by Lemma 2.3 it suffices to prove this property for the corre-
sponding configuration model. Setting Z ≡ n−1En(l) for En(l) of (2.7) and P 〈m〉
to be the Binomial(2m,1/n) distribution of the degree of each vertex of Gn in

this configuration model, note that E
〈m〉∗ [Z] = P

〈m〉
l ≤ P l for P l ≡ ∑

k≥l kPk of
the Poisson(4M) degree distribution P , any n ≥ 2 and m ≤ nM . Since

∑
k kPk is

finite, necessarily P l → 0 as l → ∞ and the claimed almost sure uniform sparsity
follows from the summability in n, per fixed l and δ > 0 of P

〈m〉∗ {Z−E
〈m〉∗ [Z] ≥ δ},

uniformly in m ≤ nM . Recall that the presence of an edge (j, k) in the resulting
multigraph Gn changes the value of En(l) by at most 2l, hence the Lipschitz norm
of Z as a function of the location of the m edges of Gn is bounded by 2l/n.
Thus, applying the Azuma–Hoeffding inequality along the lines of the proof of
Lemma 2.4 we get here a uniform in m ≤ nM and summable in n bound of the
form of (2.6).

As argued in proving Proposition 2.5, by Lemma 2.4 we further have the
claimed almost sure local convergence of graphs from the uniform ensembles
of m = m(n) edges, once we verify that (2.5) holds for P

〈m〉∗ (·) and QT =
P{T(P,ρ, t) � T } with the Poisson(2α) offspring distribution P . To this end, fix
a finite rooted tree T of depth at most t and order its vertices from 1 (for ∅) to |T |
in a breadth first fashion following lexicographic order among siblings. Let �v de-
note the number of offspring of v ∈ T with T (t − 1) the subtree of vertices within
distance t − 1 from the root of T (so �v = 0 for v /∈ T (t − 1)), and denoting by
b ≡ ∑

v≤T (t−1) �v = |T | − 1 the number of edges of T . Under our equivalence
relation between trees there are

b∏
v=1

n − v

�v!
distinct embeddings of T in [n] for which the root of T is mapped to 1. Fixing such
an embedding, the event {B1(t) � T } specifies the b edges in the restriction of En

to the vertices of T and further forbids having any edge in En between T (t − 1)

and a vertex outside T . Thus, under the configuration model P
〈m〉∗ (·) with m edges

chosen with replacement uniformly among the n2 ≡ (n
2

)
possible edges, the event

{B1(t) � T } occurs per such an embedding for precisely (n2 − a − b)m−bm!/(m−
b)! of the nm

2 possible edge selections, where a = (n − |T |)|T (t − 1)| + (b
2

)
. With

P
〈m〉∗ (Bi (t) � T ) independent of i ∈ [n], it follows that

P〈m〉∗
(
Bi (t) � T

) = 2bm!
nb(m − b)!

(
1 − a + b

n2

)m−b b∏
v=1

n − v

(n − 1)�v! .

Since b is independent of n and a = n|T (t − 1)| + O(1), it is easy to verify that
for n → ∞ and m/n → α the latter expression converges to

QT ≡ (2α)be−2α|T (t−1)|
b∏

v=1

1

�v! =
|T (t−1)|∏

v=1

P�v = P{T(P,ρ, t) � T }



Gibbs measures on sparse random graphs 157

(where Pk = (2α)ke−2α/k!, hence ρk = Pk for all k). Further, fixing γ < 1 and
denoting by In the interval of width 2nγ around αn, it is not hard to check that
P

〈m〉∗ (Bi (t) � T ) → QT uniformly over m ∈ In.
Let P(n)(·) and E(n)(·) denote the corresponding laws and expectations with re-

spect to random graphs Gn from the ensembles G(α,n), that is, where each edge is
chosen independently with probability qn = 2α/(n−1). The preceding almost sure
local convergence and uniform sparseness extend to these graphs since each law
P(n)(·) is a mixture of the laws {P〈m〉(·),m = 1,2, . . .} with mixture coefficients
P(n)(|En| = m) that are concentrated on m ∈ In. Indeed, by the same argument as
in the proof of Lemma 2.3, for any sequence of events An,

P(n)(Gn /∈ An) ≤ P(n)(|En| /∈ In) + η−1 sup
m∈In

P〈m〉∗ (Gn /∈ An), (2.8)

where

η = lim inf
n→∞ inf

m∈In

P〈m〉∗ (Ln),

is strictly positive (cf. [34]). Under P(n)(·) the random variable |En| has the
Binomial(n(n − 1)/2, qn) distribution (of mean αn). Hence, upon applying
Markov’s inequality, we find that for some finite c1 = c1(α) and all n,

P(n)(|En| /∈ In) ≤ n−4γ E(n)[(|En| − αn)4] ≤ c1n
2−4γ ,

so taking γ > 3/4 guarantees the summability (in n), of P(n)(|En| /∈ In). For given
δ > 0 we already proved the summability in n of supm∈In

P
〈m〉∗ (Gn /∈ An) both

for An = {n−1En(l) < P l + δ} and for An = {|Pn(Bi (t) � T ) − QT | < 2δ}. In
view of this, considering (2.8) for the former choice of An yields the almost sure
uniform sparsity of Erdös–Renyi random graphs from G(α,n), while the latter
choice of An yields the almost sure local convergence of these random graphs to
the Galton–Watson tree T(P,ρ,∞) with Poisson(2α) offspring distribution. �

Remark 2.7. As a special case of Proposition 2.5, almost every sequence of uni-
formly random k-regular graphs of n vertices converges locally to the (nonrandom)
rooted k-regular infinite tree Tk(∞).

Let Tk(�) denote the tree induced by the first � generations of Tk(∞), that is,
Tk(0) = {∅} and for � ≥ 1 the tree Tk(�) has k offspring at ∅ and (k − 1) offspring
for each vertex at generations 1 to � − 1. It is easy to check that for any k ≥ 3, the
sequence of finite trees {Tk(�)}�≥0 does not converge locally to Tk(∞). Instead,
it converges to the following random k-canopy tree (cf. [7] for a closely related
definition).

Lemma 2.8. For any k ≥ 3, the sequence of finite trees {Tk(�)}�≥0 converges lo-
cally to the k-canopy tree. This random infinite tree, denoted CTk , is formed by
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the union of the infinite ray �R ≡ {(r, r + 1), r ≥ 0} and additional finite trees
{Tk−1(r), r ≥ 0} such that Tk−1(r) is rooted at the r th vertex along �R. The root
of CTk is on �R with P(CTk rooted at r) = (k − 2)/(k − 1)r+1 for r ≥ 0.

Proof. This local convergence is immediate upon noting that there are exactly
nr = k(k − 1)r−1 vertices at generation r ≥ 1 of Tk(�), hence |Tk(�)| = [k(k −
1)� − 2]/(k − 2) and n�−r/|Tk(�)| → P(CTk rooted at r) as � → ∞, for each fixed
r ≥ 0 and k ≥ 3 (and Bi (�) matches for each i of generation �− r in Tk(�) the ball
Br (�) of the k-canopy tree). �

Remark 2.9. Note that the k-canopy tree is not conditionally independent.

2.2 Ising models on conditionally independent trees

Following [19] it is convenient to extend the model (1.20) by allowing for vertex-
dependent magnetic fields Bi , that is, to consider

μ(x) = 1

Z(β,B)
exp

{
β

∑
(i,j)∈E

xixj + ∑
i∈V

Bixi

}
. (2.9)

In this general context, it is possible to prove correlation decay results for Ising
models on conditionally independent trees. Beyond their independent interest,
such results play a crucial role in our analysis of models on sparse graph sequences.

To state these results denote by μ�,0 the Ising model (2.9) on T(�) with mag-
netic fields {Bi} (also called free boundary conditions), and by μ�,+ the modified
Ising model corresponding to the limit Bi ↑ +∞ for all i ∈ ∂T(�) (also called plus
boundary conditions), using μ� for statements that apply to both free and plus
boundary conditions.

Theorem 2.10. Suppose T is a conditionally independent infinite tree of average
offspring numbers bounded by �, as in Definition 2.2. Let 〈·〉(r)i denote the expecta-
tion with respect to the Ising distribution on the subtree of i and all its descendants
in T(r) and 〈x;y〉 ≡ 〈xy〉−〈x〉〈y〉 denotes the centered two-point correlation func-
tion. There exist A finite and λ positive, depending only on 0 < Bmin ≤ Bmax, βmax
and � finite, such that if Bi ≤ Bmax for all i ∈ T(r − 1) and Bi ≥ Bmin for all
i ∈ T(�), then for any r ≤ � and β ≤ βmax,

E

{ ∑
i∈∂T(r)

〈x∅;xi〉(�)∅

}
≤ Ae−λr . (2.10)

If in addition Bi ≤ Bmax for all i ∈ T(� − 1) then for some C = C(βmax,Bmax)

finite

E
∥∥μ�,+

T(r) − μ
�,0
T(r)

∥∥
TV ≤ Ae−λ(�−r)E

{
C|T(r)|}. (2.11)
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The proof of this theorem, given in [19], Section 4, relies on monotonicity prop-
erties of the Ising measure, and in particular on the following classical inequality.

Proposition 2.11 (Griffiths inequalities). Given a finite set V and parameters
J = (JR,R ⊆ V ) with JR ≥ 0, consider the extended ferromagnetic Ising measure

μJ (x) = 1

Z(J )
exp

{ ∑
R⊆V

JRxR

}
, (2.12)

where x ∈ {+1,−1}V and xR ≡ ∏
u∈R xu. Then, for X of law μJ and any

A,B ⊆ V ,

EJ [XA] = 1

Z(J )

∑
x

xA exp
{ ∑

R⊆V

JRxR

}
≥ 0, (2.13)

∂

∂JB

EJ [XA] = CovJ (XA,XB) ≥ 0. (2.14)

Proof. See [37], Theorem IV.1.21 (and consult [29] for generalizations of this
result). �

Note that the measure μ(·) of (2.9) is a special case of μJ (taking J{i} = Bi ,
J{i,j} = β for all (i, j) ∈ E and JR = 0 for all other subsets of V ). Thus, Grif-
fiths inequalities allow us to compare certain marginals of the latter measure for a
graph G and nonnegative β , Bi with those for other choices of G, β , and Bi . To
demonstrate this, we state (and prove) the following well-known general compari-
son results.

Lemma 2.12. Fixing β ≥ 0 and Bi ≥ 0, for any finite graph G = (V ,E) and
A ⊆ V let 〈xA〉G = μ(xA = 1) − μ(xA = −1) denote the mean of xA under the
corresponding Ising measure on G. Similarly, for U ⊆ V let 〈xA〉0

U and 〈xA〉+U de-
note the magnetization induced by the Ising measure subject to free (i.e., xu = 0)
and plus (i.e., xu = +1) boundary conditions, respectively, at all u /∈ U . Then,
〈xA〉0

U ≤ 〈xA〉G ≤ 〈xA〉+U for any A ⊆ U . Further, U �→ 〈xA〉0
U is monotone non-

decreasing and U �→ 〈xA〉+U is monotone nonincreasing, both with respect to set
inclusion (among sets U that contain A).

Proof. From Griffiths inequalities we know that J �→ EJ [XA] is monotone non-
decreasing (where J ≥ Ĵ if and only if JR ≥ ĴR for all R ⊆ V ). Further, 〈xA〉G =
EJ 0[XA] where J 0{i} = Bi , J 0{i,j} = β when (i, j) ∈ E and all other values of J 0 are
zero. Considering

J
η,U
R = J 0

R + ηI(R ⊆ Uc, |R| = 1),
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with η �→ J η,U nondecreasing, so is η �→ EJη,U [XA]. In addition, μJη,U (xu =
−1) ≤ Ce−2η whenever u /∈ U . Hence, as η ↑ ∞ the measure μJη,U converges
to μJ subject to plus boundary conditions xu = +1 for u /∈ U . Consequently,

〈xA〉G ≤ EJη,U [XA] ↑ 〈xA〉+U .

Similarly, let JU
R = J 0

RI(R ⊆ U) noting that under μJU the random vector xU is
distributed according to the Ising measure μ restricted to GU (alternatively, having
free boundary conditions xu = 0 for u /∈ U ). With A ⊆ U we thus deduce that

〈xA〉0
U = EJU [XA] ≤ EJ 0[XA] = 〈xA〉G.

Finally, the stated monotonicity of U �→ 〈xA〉0
U and U �→ 〈xA〉+U are in view of

Griffiths inequalities the direct consequence of the monotonicity (with respect to
set inclusions) of U �→ JU and U �→ J η,U , respectively. �

In addition to Griffiths inequalities, the proof of Theorem 2.10 uses also the
GHS inequality [30] which regards the effect of a magnetic field B on the local
magnetizations at various vertices. It further uses an extension of Simon’s inequal-
ity (about the centered two-point correlation functions in ferromagnetic Ising mod-
els with zero magnetic field; see [52], Theorem 2.1), to arbitrary magnetic field,
in the case of Ising models on trees. Namely, [19], Lemma 4.3, states that if edge
(i, j) is on the unique path from ∅ to k ∈ T(�), with j a descendant of i ∈ ∂T(t),
t ≥ 0, then

〈x∅;xk〉(�)∅ ≤ cosh2(2β + Bi)〈x∅;xi〉(t)∅ 〈xj ;xk〉(�)j . (2.15)

2.3 Algorithmic implications: belief propagation

The “belief propagation” (BP) algorithm consists of solving by iterations a col-
lection of Bethe–Peierls (or cavity) mean field equations. More precisely, for the
Ising model (1.20) we associate to each directed edge in the graph i → j , with
(i, j) ∈ G, a distribution (or “message”) νi→j (xi) over xi ∈ {+1,−1}, using then
the following update rule

ν
(t+1)
i→j (xi) = 1

z
(t)
i→j

eBxi
∏

l∈∂i\j

∑
xl

eβxixl ν
(t)
l→i(xl) (2.16)

starting at a positive initial condition, namely where ν
(0)
i→j (+1) ≥ ν

(0)
i→j (−1) at

each directed edge.
Applying Theorem 2.10 we establish in [19], Section 5, the uniform exponential

convergence of the BP iteration to the same fixed point of (2.16), irrespective of
its positive initial condition. As we further show there, for tree-like graphs the
limit of the BP iteration accurately approximates local marginals of the Boltzmann
measure (1.20).
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Theorem 2.13. Assume β ≥ 0, B > 0, and G is a graph of finite maximal
degree �. Then, there exists A = A(β,B,�) and c = c(β,B,�) finite, λ =
λ(β,B,�) > 0 and a fixed point {ν∗

i→j } of the BP iteration (2.16) such that for

any positive initial condition {ν(0)
l→k} and all t ≥ 0,

sup
(i,j)∈E

∥∥ν(t)
i→j − ν∗

i→j

∥∥
TV ≤ A exp(−λt). (2.17)

Further, for any io ∈ V , if Bio (t) is a tree then for U ≡ Bio(r)

‖μU − νU‖TV ≤ exp{cr+1 − λ(t − r)}, (2.18)

where μU(·) is the law of xU ≡ {xi : i ∈ U} under the Ising model (1.20) and νU

the probability distribution

νU(xU) = 1

zU

exp
{
β

∑
(i,j)∈EU

xixj + B
∑

i∈U\∂U

xi

} ∏
i∈∂U

ν∗
i→j (i)(xi), (2.19)

with EU the edge set of U whose border is ∂U (i.e., the set of its vertices at dis-
tance r from io), and j (i) is any fixed neighbor in U of i.

2.4 Free entropy density, from trees to graphs

Bethe–Peierls approximation (we refer to Section 3.1 for a general introduction),
allows us to predict the asymptotic free entropy density for sequences of graphs
that converge locally to conditionally independent trees. We start by explaining
this prediction in a general setting, then state a rigorous result which verifies it for
a specific family of graph sequences.

To be definite, assume that B > 0. Given a graph sequence {Gn} that converges
to a conditionally independent tree T with bounded average offspring number, let
L = �∅ be the degree of its root. Define the “cavity fields” {h1, . . . , hL} by letting
hj = limt→∞ h

(t)
j with h

(t)
j ≡ atanh[〈xj 〉(t)j ], where 〈·〉(t)j denotes expectation with

respect to the Ising distribution on the subtree induced by j ∈ ∂∅ and all its de-
scendants in T(t) (with free boundary conditions). We note in passing that t �→ h

(t)
j

is stochastically monotone (and hence has a limit in law) by Lemma 2.12. Further
{h1, . . . , hL} are conditionally independent given L. Finally, define θ = tanh(β)

and

h−j = B +
L∑

k=1,k �=j

atanh[θ tanh(hk)]. (2.20)

The Bethe–Peierls free energy density is given by

ϕ(β,B) ≡ 1

2
E{L}γ (θ) − 1

2
E

{
L∑

j=1

log[1 + θ tanh(h−j ) tanh(hj )]
}

(2.21)

+ E log

{
eB

L∏
j=1

[1 + θ tanh(hj )] + e−B
L∏

j=1

[1 − θ tanh(hj )]
}
,
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for γ (u) = −1
2 log(1 − u2). We refer to Section 3.3 where this formula is obtained

as a special case of the general expression for a Bethe–Peierls free energy. The
prediction is extended to B < 0 by letting ϕ(β,B) = ϕ(β,−B), and to B = 0 by
letting ϕ(β,0) be the limit of ϕ(β,B) as B → 0.

As shown in [19], Lemma 2.2, when T = T(P,ρ,∞) is a Galton–Watson tree,
the random variables {hj } have a more explicit characterization in terms of the
following fixed point distribution.

Lemma 2.14. In case T = T(P,ρ,∞) consider the random variables {h(t)} where
h(0) ≡ 0 and for t ≥ 0,

h(t+1) d= B +
K∑

i=1

atanh
[
θ tanh

(
h

(t)
i

)]
, (2.22)

with h
(t)
i i.i.d. copies of h(t) that are independent of the variable K of distribu-

tion ρ. If B > 0 and ρ < ∞ then t �→ h(t) is stochastically monotone (i.e., there
exists a coupling under which P(h(t) ≤ h(t+1)) = 1 for all t), and converges in law
to the unique fixed point h∗ of (2.22) that is supported on [0,∞). In this case, hj

of (2.21) are i.i.d. copies of h∗ that are independent of L.

The main result of [19] confirms the statistical physics prediction for the free
entropy density.

Theorem 2.15. If ρ is finite then for any B ∈ R, β ≥ 0 and sequence {Gn}n∈N of
uniformly sparse graphs that converges locally to T(P,ρ,∞),

lim
n→∞

1

n
logZn(β,B) = ϕ(β,B). (2.23)

We proceed to sketch the outline of the proof of Theorem 2.15. For uniformly
sparse graphs that converge locally to T(P,ρ,∞) the model (1.20) has a line of
first-order phase transitions for B = 0 and β > βc (i.e., where the continuous func-
tion B �→ ϕ(β,B) exhibits a discontinuous derivative). Thus, the main idea is to
utilize the magnetic field B to explicitly break the +/− symmetry, and to care-
fully exploit the monotonicity properties of the ferromagnetic Ising model in order
to establish the result even at β > βc.

Indeed, since φn(β,B) ≡ 1
n

logZn(β,B) is invariant under B → −B and is uni-
formly (in n) Lipschitz continuous in B with Lipschitz constant one, for proving
the theorem it suffices to fix B > 0 and show that φn(β,B) converges as n → ∞ to
the predicted expression ϕ(β,B) of (2.21). This is obviously true for β = 0 since
φn(0,B) = log(2 coshB) = ϕ(0,B). Next, denoting by 〈·〉n the expectation with
respect to the Ising measure on Gn (at parameters β and B), it is easy to see that

∂βφn(β,B) = 1

n

∑
(i,j)∈En

〈xixj 〉n = 1

2
En

[ ∑
j∈∂i

〈xixj 〉n
]
. (2.24)
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With |∂βφn(β,B)| ≤ |En|/n bounded by the assumed uniform sparsity, it is thus
enough to show that the expression in (2.24) converges to the partial derivative of
ϕ(β,B) with respect to β . Turning to compute the latter derivative, after a bit of
real analysis we find that the dependence of {hj ,h−j } on β can be ignored (cf.
[19], Corollary 6.3, for the proof of this fact in case T = T(P,ρ,∞)). That is,
hereafter we simply compute the partial derivative in β of the expression (2.21)
while considering the law of {hj } and {h−j } to be independent of β . To this end,
setting zj = tanh(hj ) and yj = tanh(h−j ), the relation (2.20) amounts to

yj = eB ∏
k �=j (1 + θzk) − e−B ∏

k �=j (1 − θzk)

eB
∏

k �=j (1 + θzk) + e−B
∏

k �=j (1 − θzk)

for which it follows that

∂

∂θ

{
l∑

j=1

log(1 + θzjyj )

}
= ∂

∂θ
log

{
eB

l∏
j=1

(1 + θzj ) + e−B
l∏

j=1

(1 − θzj )

}

=
l∑

j=1

zjyj

1 + θzjyj

and hence a direct computation of the derivative in (2.21) leads to

∂βϕ(β,B) = 1

2
E

[ ∑
j∈∂∅

〈x∅xj 〉T

]
, (2.25)

where 〈·〉T denotes the expectation with respect to the Ising model

μT(x∅, x1, . . . , xL) = 1

z
exp

{
β

L∑
j=1

x∅xj + Bx∅ +
L∑

j=1

hjxj

}
, (2.26)

on the “star” T(1) rooted at ∅ and the random cavity fields hj of (2.21).
In comparison, fixing a positive integer t and considering Lemma 2.12 for

A ≡ {i, j} and U ≡ Bi (t), we find that the correlation 〈xixj 〉n lies between the cor-
relations 〈xixj 〉0

Bi (t)
and 〈xixj 〉+Bi (t)

for the Ising model on the subgraph Bi (t) with
free and plus, respectively, boundary conditions at ∂Bi(t). Thus, in view of (2.24)

1

2
En{F0(Bi (t))} ≤ ∂βφn(β,B) ≤ 1

2
En{F+(Bi (t))},

where F0/+(Bi (t)) ≡ ∑
j∈∂i〈xixj 〉0/+

Bi (t)
.

Next, taking n → ∞ we rely on the following consequence of the local con-
vergence of a uniformly sparse graph sequence {Gn} (cf. [19], Lemma 6.4, for the
derivation of a similar result).

Lemma 2.16. Suppose a uniformly sparse graph sequence {Gn} converges locally
to the random tree T. Fix an integer t ≥ 0 and a function F(·) on the collection of
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all possible subgraphs that may occur as Bi (t), such that F(Bi (t))/(|∂i| + 1) is
uniformly bounded and F(T1) = F(T2) whenever T1 � T2. Then,

lim
n→∞En{F(Bi (t))} = E{F(T(t))}. (2.27)

Indeed, applying this lemma for the functions F0(·) and F+(·) we find that

1

2
E{F0(T(t))} ≤ lim inf

n→∞ ∂βφn(β,B) ≤ lim sup
n→∞

∂βφn(β,B) ≤ 1

2
E{F+(T(t))}.

To compute F0/+(T(t)) we first sum over the values of xk for k ∈ T(t) \ T(1). This
has the effect of reducing F0/+(T(t)) to the form of

∑
j∈∂∅〈x∅xj 〉T and the cavity

fields are taken as h
(t),0/+
j ≡ atanh[〈xj 〉(t),0/+

j ]. Further, from (2.11) we deduce
that as t → ∞ both sets of cavity fields converge in law to the same limit {hj }.
Since E[〈x∅xj 〉T] are continuous with respect to such convergence in law, we get
by (2.25) that

lim
t→∞

1

2
E{F0/+(T(t))} = ∂βϕ(β,B),

which completes the proof of the theorem.

2.5 Coexistence at low temperature

We focus here on the ferromagnetic Ising model on a random k-regular graph with
k ≥ 3 and zero magnetic field. In order to simplify derivations, it is convenient
to use the so-called configuration model for random regular graphs [14]. A graph
from this ensemble is generated by associating k half edges to each i ∈ [n] (with kn

even) and pairing them uniformly at random. In other words, the collection En of
m ≡ kn/2 edges is obtained by pairing the kn half-edges. Notice that the resulting
object is in fact a multigraph, that is, it might include double edges and self-loops.
However the number of such “defects” is O(1) as n → ∞ and hence the resulting
random graph model shares many properties with random k-regular graphs. With
a slight abuse of notation, we keep denoting by G(k, n) the multigraph ensemble.

For β ≥ 0 we consider the distribution

μn,β,k(x) = 1

Z(Gn)
exp

{
β

∑
(i,j)∈En

xixj

}
. (2.28)

Recall Remark 2.7 that any sequence of random graphs Gn from the ensembles
G(k, n) is almost surely uniformly sparse and converges locally to the infinite k-
regular tree. Thus, considering the function

ϕk(β,h) ≡ k

2
{γ (θ) − log[1 + θ tanh2(h)]}

+ log{[1 + θ tanh(h)]k + [1 − θ tanh(h)]k},
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of h ∈ R and θ = tanh(β), we have from Theorem 2.15 that

lim
n→∞

1

n
logZ(Gn) = ϕk(β,h∗), (2.29)

where the cavity field h∗ is the largest solution of

g(h) ≡ (k − 1) atanh[θ tanh(h)] − h = 0. (2.30)

Indeed, the expression for ϕk(β,h∗) is taken from (2.21), noting that here L =
K + 1 = k is nonrandom, hence so are h−j = hj = h∗. It is not hard to check by
calculus that the limit as B ↓ 0 of the unique positive solution of g(h) = −B is
strictly positive if and only if β > βc ≡ atanh(1/(k − 1)), in which case g(−h) =
−g(h) is zero if and only if h ∈ {0,±h∗} with g′(0) > 0 and g′(h∗) < 0 (cf. [38]).

We expect coexistence in this model if and only if β > βc (where we have a line
of first-order phase transitions for the asymptotic free entropy at B = 0), and shall
next prove the “if” part.

Theorem 2.17. With probability one, the ferromagnetic Ising measures μn,β,k on
uniformly random k-regular multigraphs from the ensemble G(k, n) exhibit coex-
istence if (k − 1) tanh(β) > 1.

Proof. As in the proof of Theorem 1.5 (for the Curie–Weiss model), we again
consider the partition of X n to �+ ≡ {x :

∑
i xi ≥ 0} and �− ≡ {x :

∑
i xi < 0}.

From the invariance of μn,β,k with respect to the sign change x �→ −x it follows
that μn,β,k(�+) = μn,β,k(�0) + μn,β,k(�−) where �r ≡ {x :

∑
i xi = r}. Hence,

to prove coexistence it suffices to show that for ε > 0 small enough, with proba-
bility one

lim sup
n→∞

1

n
log

{ ∑
|r|≤nε

μn,β,k(�r)

}
< 0. (2.31)

To this end, note that μn,β,k(�r) = Zr(Gn)/Z(Gn) for the restricted partition
function

Zr(Gn) ≡ ∑
x∈�r

exp
{
β

∑
(i,j)∈En

xixj

}
. (2.32)

Further, recall that by Markov’s inequality and the Borel–Cantelli lemma, for any
positive random variables Yn, with probability one

lim sup
n→∞

1

n
logYn ≤ lim sup

n→∞
1

n
log E(Yn).

Thus, combining (2.29) with the latter inequality for Yn = ∑
|r|≤nε Zr(Gn) we

arrive at the inequality (2.31) upon proving the following lemma (cf. [28], Sec-
tion 5). �
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Lemma 2.18. Considering even values of n and assuming β > βc, we have that

lim
ε→0

lim sup
n→∞

1

n
log

{ ∑
|r|≤nε

EZr(Gn)

}
= ϕk(β,0) < ϕk(β,h∗). (2.33)

Proof. First, following the calculus preceding (2.25) we get after some algebraic
manipulations that

∂hϕk(β,h) = kθ

cosh2(h)
[f (tanh(u), c) − f (tanh(h), c)]

for c = c(h) ≡ θ tanh(h) and u = u(h) ≡ (k − 1) atanh(c), where for c ≥ 0 the
function f (x, c) = x/(1 + cx) is monotone increasing in x ≥ 0. With β > βc we
know already that g(h) > 0 (for g(·) of (2.30)), hence u(h) > h for any h ∈ (0, h∗).
From the preceding expression for ∂hϕk(β,h) and the monotonicity of f (·, c) we
thus deduce that ϕk(β,h∗) > ϕk(β,0).

Next, since Zr(G) = Z−r (G) we shall consider hereafter only r ≥ 0, setting
s ≡ (n − r)/2. Further, let �G(x) denote the number of edges (i, j) ∈ E such that
xi �= xj and Zr(G,�) be the number of configurations x ∈ �r such that �G(x) =
�. Since |E| = m it follows that

∑
(i,j)∈E xixj = m − 2�G(x) and hence

Zr(G) = eβm
m∑

�=0

Zr(G,�)e−2β�.

By the linearity of the expectation and since the distribution of Gn (chosen uni-
formly from G(k, n)) is invariant under any permutation of the vertices, we have
that

E{Zr(Gn,�)} = ∑
x∈�r

P{�Gn(x) = �} =
(

n

s

)
P{�Gn(x

∗) = �}

=
(

n

s

) |{G ∈ G(k, n) and �G(x∗) = �}|
|G(k, n)| ,

where x∗
i = −1 for i ≤ s and x∗

i = 1 for s < i ≤ n.
The size of the ensemble G(k, n) is precisely the number of pairings of nk

objects, that is,

|G(k, n)| = P(nk) ≡ (nk)!
(nk/2)!2nk/2 .

Similarly, the number of such pairings with exactly � edges of unequal end-points
is

|{G ∈ G(k, n) and �G(x∗) = �}| =
(

ks

�

)(
n̂

�

)
�!P(ks − �)P(n̂ − �),
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where n̂ ≡ k(n − s). Putting everything together we get that

E{Zr(Gn)}
(2.34)

= eβm

P(2m)

(
n

s

) ks∑
�=0

(
ks

�

)(
n̂

�

)
�!P(ks − �)P(n̂ − �)e−2β�.

Recall that for any q ∈ [0,1]
n−1 log

(
n

nq

)
= H(q) + o(1), n−1 logP(n) = 1

2
log

(
n

e

)
+ o(1),

where H(x) ≡ −x logx − (1 − x) log(1 − x) denotes the binary entropy function.
Setting � = δkn, s = un, and

ψβ(u, δ) ≡ (u − δ) log(u − δ) + (1 − u − δ) log(1 − u − δ) + 2δ log δ + 4βδ,

we find upon substituting these estimates in the expression (2.34) that

n−1 log E{Zr(Gn)} = βk

2
+ (1 − k)H(u) − k

2
inf

δ∈[0,u]ψβ(u, δ) + o(1).

Differentiating ψβ(u, δ) in δ we deduce that the infimum in the preceding expres-
sion is achieved for the positive solution δ = δ∗(β,u) of (u−δ)(1−u−δ) = δ2e4β .
Using this value of δ we get that n−1 log E{Zr(Gn)} = ηk(β,u) + o(1), where

ηk(β,u) ≡ βk

2
+ (1 − k)H(u)

− k

2

{
u log

(
u − δ∗(β,u)

) + (1 − u) log
(
1 − u − δ∗(β,u)

)}
.

Next, note that δ∗(β,1/2) = 1/[2(1 + e2β)] from which we obtain after some el-
ementary algebraic manipulations that ηk(β,1/2) = ϕk(β,0). Further, as ηk(β,u)

is continuous in u ≥ 0, we conclude that

lim sup
n→∞

n−1 log
{ ∑

|r|≤εn

EZr(Gn)

}
= sup

|2u−1|≤ε

ηk(β,u),

which for ε → 0 converges to ηk(β,1/2) = ϕk(β,0), as claimed. �

3 The Bethe–Peierls approximation

Bethe–Peierls approximation reduces the problem of computing partition func-
tions and expectation values to the one of solving a set of nonlinear equations.
While in general this “reduction” involves an uncontrolled error, for mean-field
models it is expected to be asymptotically exact in the large system limit. In fact,
in Section 2 we saw such a result for the ferromagnetic Ising model on sparse
tree-like graphs.
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Bethe states, namely those distributions that are well approximated within the
Bethe–Peierls scheme play for mean-field models the role that pure Gibbs states do
on infinite lattices (for the latter, see [27]). For example, it is conjectured by physi-
cists that a large class of models, including for instance the examples in Section 1,
decompose into convex combinations of Bethe states.

In the context of mean field spin glasses, the Bethe–Peierls method was sig-
nificantly extended by Mézard, Parisi, and Virasoro to deal with proliferation of
pure states [43]. In the spin glass jargon, this phenomenon is referred to as “replica
symmetry breaking,” and the whole approach is known as the “cavity method.”
A closely related approach is provided by the so-called Thouless–Anderson–
Palmer (TAP) equations [43].

Section 3.1 outlines the rationale behind the Bethe–Peierls approximation of lo-
cal marginals, based on the Bethe mean field equations (and the belief propagation
algorithm for iteratively solving them). Complementing it, Section 3.2 introduces
the Bethe free entropy. In Section 3.3 we explain how these ideas apply to the fer-
romagnetic Ising, the Curie–Weiss model, the Sherrington–Kirkpatrick model, and
the independent set model. Finally, in Section 3.4 we define a notion of correlation
decay which generalizes the so-called “extremality condition” in trees. We show
that if the graphical model associated with a permissive graph-specification pair
(G,ψ) satisfies such correlation decay condition then it is a Bethe state. Subject to
a slightly stronger condition, [20] validates also the Bethe–Peierls approximation
for its free entropy.

While in general extremality on the graph G does not coincide with extremality
on the associated tree model, in Section 5 we shall provide a sufficient condition
for this to happen for models on random graphs.

3.1 Messages, belief propagation, and Bethe equations

Given a variable domain X and a simple finite graph G ≡ (V ,E) without double
edges or self loops, let �E ≡ {i → j : (i, j) ∈ E} denote the induced set of directed
edges. The Bethe–Peierls method provides an approximation for the marginal on
U ⊂ V of the probability measure μ ≡ μG,ψ ; cf. equation (1.4). The basic idea is
to describe the influence of the factors outside U via factorized boundary condi-
tions. Such a boundary law is fully specified by a collection of distributions on X
indexed by the directed edges on the “internal” boundary ∂U = {i ∈ U : ∂i �⊆ U}
of U (where as usual ∂i is the set of neighbors of i ∈ V ). More precisely, this is
described by appropriately choosing a set of messages.

Definition 3.1. A set of messages is a collection {νi→j (·) : i → j ∈ �E} of proba-
bility distributions over X indexed by the directed edges in G.

A set of messages is permissive for a permissive graph-specification pair (G,ψ)

if νi→j (x
p
i ) are positive and further νi→j (·) = ψi(·)/zi whenever ∂i = {j}.
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As we shall soon see, in this context the natural candidate for the Bethe–Peierls
approximation is the following standard message set.

Definition 3.2. The standard message set for the canonical probability measure μ

associated to a permissive graph-specification pair (G,ψ) is ν∗
i→j (xi) ≡ μ

(ij)
i (xi),

that is, the marginal on i of the probability measure on X V

μ(ij)(x) = 1

Zij

∏
(k,l)∈E\(i,j)

ψkl(xk, xl)
∏
k∈V

ψk(xk), (3.1)

obtained from equation (1.4) upon “taking out” the contribution ψij (·, ·) of edge
(i, j) (and with Zij an appropriate normalization constant).

Remark 3.3. Since ψ is permissive, the measure μ(ij)(·) is well defined and
strictly positive at x = (x

p
1 , . . . , x

p
n). Further, the marginal on i of μ(ij)(·) is pre-

cisely ψi(xi)/
∑

x ψi(x) whenever ∂i = {j}, so the collection {ν∗
i→j (·)} is indeed

a permissive set of messages (per Definition 3.1).

In order to justify the Bethe–Peierls method let μ(i)(·) denote the probability
measure obtained from the canonical measure of (1.4) when the vertex i ∈ V and
all edges incident on i are removed from G. That is,

μ(i)(x) ≡ 1

Zi

∏
(k,l)∈E,i /∈(k,l)

ψkl(xk, xl)
∏

k∈V,k �=i

ψk(xk). (3.2)

For any U ⊆ V we let μU (respectively, μ
(ij)
U , μ

(i)
U ), denote the marginal distribu-

tion of xU ≡ {xi : i ∈ U} when x is distributed according to μ (respectively μ(ij),
μ(i)).

Clearly, finding good approximations to the marginals of the modified models
μ(ij), μ(i) is essentially equivalent to finding good approximations for the original
model μ. Our first step consists of deriving an identity between certain marginals
of μ(ij) in terms of marginals of μ(i). Hereafter, we write f (·) ∼= g(·) whenever
two nonnegative functions f and g on the same domain differ only by a positive
normalization constant. By definition we then have that

μ
(ij)
ij (xi, xj ) ∼= ψi(xi)

∑
x∂i\j

μ
(i)
∂i (x∂i)

∏
l∈∂i\j

ψil(xi, xl). (3.3)

To proceed, we let ν∗
i→j (xi) ≡ μ

(ij)
i (xi) and make the crucial approximate inde-

pendence assumptions

μ
(ij)
ij (xi, xj ) = ν∗

i→j (xi)ν
∗
j→i (xj ) + ERR, (3.4)

μ
(i)
∂i (x∂i) = ∏

l∈∂i

ν∗
l→i(xl) + ERR, (3.5)
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where the error terms ERR are assumed to be small. Indeed, upon neglecting the
error terms, plugging these expressions in equation (3.3), setting xj = x

p
j and di-

viding by the positive common factor ν∗
j→i(xj ), we get the following Bethe equa-

tions.

Definition 3.4. Let M(X ) denote the space of probability measures over X and
consider the Bethe (or belief propagation, BP) mapping T of the space M(X )

�E of
possible message sets to itself, whose value at ν is

(Tν)i→j (xi) ≡ ψi(xi)

zi→j

∏
l∈∂i\j

[ ∑
xl∈X

ψil(xi, xl)νl→i(xl)

]
, (3.6)

where zi→j is determined by the normalization condition
∑

x∈X (Tν)i→j (x) = 1.
The Bethe equations characterize fixed points of the BP mapping. That is,

νi→j (xi) ≡ (Tν)i→j (xi). (3.7)

Remark 3.5. The BP mapping T is well defined when the specification ψ is per-

missive. Indeed, in such a case there exists for each i → j ∈ �E and any message
set ν, a positive constant zi→j ≥ ψ

|∂i|
min for which (Tν)i→j ∈ M(X ).

Moreover, in this case by definition (Tν)i→j (x) is positive at x = x
p
i and fur-

ther, equals ψi(x)/zi whenever ∂i = {j}. In particular, any solution of the Bethe
equations is a permissive set of messages.

These equations characterize the set of messages {ν∗
i→j (·)} to be used in the

approximation. Bethe–Peierls method estimates marginals of the graphical model
μG,ψ in a manner similar to that expressed by (3.4) and (3.5). For instance, μi(·)
is then approximated by

μi(xi) ∼= ψi(xi)
∏
j∈∂i

∑
xj

ψij (xi, xj )ν
∗
j→i (xj ). (3.8)

A more general expression will be provided in Section 3.4.
At this point the reader can verify that if G is a (finite) tree then the error terms

in equations (3.4) and (3.5) vanish, hence in this case the Bethe equations have
a unique solution, which is precisely the standard message set for the canonical
measure μ. More generally, it is not hard to verify that in the framework of a
(permissive) specification ψ for a factor graph G = (V ,F,E) the Bethe equations
are then

νa→i(xi) ∼= ∑
x∂a\i

ψa(x∂a)
∏

l∈∂a\i
νl→a(xl),

νi→a(xi) ∼= ∏
b∈∂i\a

νb→i(xi)
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and that when the factor graph is a (finite) tree these equations have a unique
solution which is precisely the standard message set for the (canonical) measure
μG,ψ(·) of (1.23). That is, νi→a(·) and νa→i(·) are then the marginals on vari-
able i for factor graphs in which factor a and all factors in ∂i \ a are removed,
respectively.

In view of the preceding, we expect such an approximation to be tight as soon
as G lacks short cycles or for a sequence of graphs that converges locally to a tree.

3.2 The Bethe free entropy

Within the Bethe approximation all marginals are expressed in terms of the per-
missive messages {νi→j } that solve the Bethe equations (3.7). Not surprisingly,
the free entropy logZ(G,ψ) can also be approximated in terms as the Bethe free
entropy at this message set.

Definition 3.6. The real valued function on the space of permissive message sets

�G,ψ(ν) = − ∑
(i,j)∈E

log
{ ∑

xi ,xj

ψij (xi, xj )νi→j (xi)νj→i (xj )

}
(3.9)

+ ∑
i∈V

log
{∑

xi

ψi(xi)
∏
j∈∂i

∑
xj

ψij (xi, xj )νj→i (xj )

}
,

is called the Bethe free entropy associated with the given permissive graph-
specification pair (G,ψ). In the following we shall often drop the subscripts and
write �(ν) for the Bethe free entropy.

In the spirit of the observations made at the end of Section 3.1, this approxima-
tion is exact whenever G is a tree and the Bethe messages are used.

Proposition 3.7. Suppose G is a tree and let ν∗ denote the unique solution of the
Bethe equations (3.7). Then, logZ(G,ψ) = �G,ψ(ν∗).

Proof. We progressively disconnect the tree G in a recursive fashion. In doing so,
note that if f (x) = f1(x)f2(x)/f3(x) and fa(x) ∼= p(x) for a ∈ {1,2,3} and some
probability distribution p, then

log
{∑

x

f (x)

}
= log

{∑
x

f1(x)

}
+ log

{∑
x

f2(x)

}
− log

{∑
x

f3(x)

}
(3.10)

(adopting hereafter the convention that 0/0 = 0).
Proceeding to describe the first step of the recursion, fix an edge (i, j) ∈ E.

Without this edge the tree G breaks into disjoint subtrees G(i) and G(j) such that
i ∈ G(i) and j ∈ G(j). Consequently, the measure μ(ij)(·) of (3.1) is then the prod-
uct of two canonical measures, corresponding to the restriction of the specification
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ψ to G(i) and to G(j), respectively. Let Zi→j (x) denote the constrained partition
function for the specification ψ restricted to the subtree G(i) whereby we force
the variable xi to take the value x. With Zj→i(x) defined similarly for the subtree
G(j), we obviously have that

Z(G,ψ) = ∑
xi ,xj

Zi→j (xi)ψij (xi, xj )Zj→i(xj ).

Further, recall our earlier observation that for a tree G the unique solution
{ν∗

i→j (·)} of (3.7) is {μ(ij)
i (·)}. Hence, in this case Zi→j (xi) ∼= ν∗

i→j (xi),
Zj→i(xj ) ∼= ν∗

j→i (xj ) and ν∗
i→j (xi)ψij (xi, xj )ν

∗
j→i (xj ) ∼= μij (xi, xj ). Setting

ψ∗
i→j (xi, xj ) ≡ ν∗

i→j (xi)ψij (xi, xj ) we next apply the identity (3.10) for x =
(xi, xj ), f1(x) = Zi→j (xi)ψ

∗
j→i(xi, xj ), f2(x) = ψ∗

i→j (xi, xj )Zj→i(xj ) and
f3(x) = ν∗

i→j (xi)ψij (xi, xj )ν
∗
j→i(xj ) to get that

logZ(G,ψ) = logZ
(
G(i→j),ψ(i→j)) + logZ

(
G(j→i),ψ(j→i)) − logϕ(i, j),

where for each edge (i, j) ∈ E,

ϕ(i, j) ≡ ∑
xi ,xj

ν∗
i→j (xi)ψij (xi, xj )ν

∗
j→i (xj )

and the term

Z
(
G(i→j),ψ(i→j)) ≡ ∑

xi ,xj

Zi→j (xi)ψ
∗
j→i (xi, xj ),

is the partition function for the (reduced size) subtree G(i→j) obtained when
adding to (G(i),ψ(i)) the edge (i, j) and the vertex j whose specification is now
ψ∗

j ≡ ν∗
j→i . We have the analogous representation for

Z
(
G(j→i),ψ(j→i)) ≡ ∑

xi ,xj

ψ∗
i→j (xi, xj )Zj→i(xi).

It is not hard to verify that the unique solution of the Bethe equations (3.7) for the
graph-specification (G(i→j),ψ(i→j)) coincides with ν∗(·) at all directed edges
of G(i→j). Likewise, the unique solution of the Bethe equations (3.7) for the
graph-specification (G(j→i),ψ(j→i)) coincides with ν∗(·) at all directed edges
of G(j→i). Thus, recursively repeating this operation until we have dealt once
with each edge of G, we find a contribution − logϕ(k, l) from each (k, l) ∈ E,
the sum of which is precisely the first term in (3.10), evaluated at the permis-
sive set of messages ν∗

i→j (·). The residual graph remaining at this stage con-
sists of disconnected “stars” centered at vertices of G, with specification ν∗

l→k(xl)

at vertices l ∈ ∂k for the “star” centered at k ∈ V (and original specification
at vertex k and the edges (k, l) ∈ E). The log-partition function for such star
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is log{∑xk
ψk(xk)

∏
l∈∂k

∑
xl

ψ∗
l→k(xl, xk)} so the aggregate of these contribu-

tions over all vertices of G is precisely the second term in (3.10), evaluated at
ν∗
i→j (·). �

Lemma 3.8. Solutions of the Bethe equations (3.7) for a given permissive graph-
specification pair (G,ψ) are stationary points of the corresponding Bethe free en-
tropy �G,ψ(·). The converse holds when the |X |-dimensional matrices {ψij (x, y)}
are invertible for all (i, j) ∈ E.

Proof. From the formula (3.10) and our definition (3.6) we find that for any j →
i ∈ �E and xj ∈ X ,

∂�(ν)

∂νj→i(xj )
= −

∑
xi

νi→j (xi)ψij (xi, xj )∑
x′
i ,x

′
j
νi→j (x

′
i )νj→i(x

′
j )ψij (x

′
i , x

′
j )

+
∑

xi
(Tν)i→j (xi)ψij (xi, xj )∑

x′
i ,x

′
j
(Tν)i→j (x

′
i )νj→i (x

′
j )ψij (x

′
i , x

′
j )

.

Hence, if {νi→j (·)} satisfies the Bethe equations (3.7), then ∂�(ν)/∂νj→i (x) = 0
for all x ∈ X and any j → i ∈ �E, as claimed.

Conversely, given a permissive specification, if a permissive set of messages ν

is a stationary point of �(·), then by the preceding we have that for any i → j ∈ �E,
some positive ci→j and all y ∈ X ,∑

x

[(Tν)i→j (x) − ci→j νi→j (x)]ψij (x, y) = 0.

By assumption the matrices {ψij (x, y)} are invertible, hence νi→j (x) ∼=
(Tν)i→j (x) for any i → j ∈ �E. The probability measures νi→j and (Tν)i→j are
thus identical, for each directed edge i → j . That is, the set of messages ν satisfies
the Bethe equations for the given specification. �

3.3 Examples: Bethe equations and free entropy

In most of this section we consider the extension of the Ising measure (2.9) on
{+1,−1}V , of the form

μβ,B,J (x) = 1

Z(β,B,J )
exp

{
β

∑
(i,j)∈E

Jij xixj + ∑
i∈V

Bixi

}
, (3.11)

where J = {Jij , (i, j) ∈ E} for generic “coupling constants” Jij ∈ R as in the spin-
glass example of (1.21). This model corresponds to the permissive specification
ψij (xi, xj ) = exp(βJij xixj ) and ψi(xi) = exp(Bixi). Since X = {+1,−1}, any
set of messages {νi→j } is effectively encoded through the “cavity fields”

hi→j ≡ 1

2
log

νi→j (+1)

νi→j (−1)
. (3.12)



174 A. Dembo and A. Montanari

Using these cavity fields, we find the following formulas.

Proposition 3.9. The Bethe equations for the cavity fields and the measure
μβ,B,J (·) are

hi→j = Bi + ∑
l∈∂i\j

atanh{θil tanh(hl→i)}, (3.13)

where θil ≡ tanh(βJil). The expected magnetization 〈xi〉 for this measure is ap-
proximated (in terms of the Bethe cavity fields h∗

i→j ), as

〈xi〉 = tanh
{
Bi + ∑

l∈∂i

atanh{θil tanh(h∗
l→i)}

}
, (3.14)

and the Bethe free entropy of any permissive cavity field h = {hi→j } is

�G,β,B,J (h) = 1

2

∑
i∈V

∑
j∈∂i

{γ (θij ) − log[1 + θij tanh(hi→j ) tanh(hj→i )]}

+ ∑
i∈V

log
{
eBi

∏
j∈∂i

[1 + θij tanh(hj→i )] (3.15)

+ e−Bi
∏
j∈∂i

[1 − θij tanh(hj→i)]
}
,

where γ (u) ≡ −1
2 log(1 − u2).

Proof. Expressing the BP mapping for the Ising measure μ(x) ≡ μβ,B,J (x) in
terms of cavity fields we find that

(Th)i→j (xi) ≡ eBixi

z̃i→j

∏
l∈∂i\j

cosh(hl→i + βJilxi)

for some positive normalization constants z̃i→j . Thus, the identity

1

2
log

cosh(a + b)

cosh(a − b)
= atanh(tanh(a) tanh(b)),

leads to the formula (3.13) for the Bethe equations. The approximation (3.8) of
local marginals then results with μi(xi) ∼= eBixi

∏
l∈∂i cosh(h∗

l→i + βJilxi), out
of which we get the formula (3.14) for 〈xi〉 = μi(+1) − μi(−1) by the identity
1
2 log(a) = atanh(a−1

a+1). Next note that if u = tanh(b) then γ (u) = log cosh(b) and
recall that by definition, for any (i, j) ∈ E and x ∈ X ,

νj→i (x) = exp(xhj→i )

2 cosh(hj→i )
. (3.16)
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Hence, using the identity

1

4

∑
x,y∈{+1,−1}

eaxyebxecy

cosh(a) cosh(b) cosh(c)
= 1 + tanh(a) tanh(b) tanh(c),

the first term in the formula (3.10) of the Bethe free entropy �(·) is in this case

− ∑
(i,j)∈E

γ (θij ) − ∑
(i,j)∈E

log[1 + θij tanh(hi→j ) tanh(hj→i )].

Similarly, using (3.16) and the identity

1

2

∑
x∈{+1,−1}

eaxyebx

cosh(a) cosh(b)
= 1 + y tanh(a) tanh(b),

for y = xi ∈ {+1,−1}, we find that the second term in the formula (3.10) is in our
case∑

i∈V

∑
j∈∂i

γ (θij )

+ ∑
i∈V

log
{
eBi

∏
j∈∂i

[1 + θij tanh(hj→i)] + e−Bi
∏
j∈∂i

[1 − θij tanh(hj→i )]
}
.

Combining the preceding expressions for the two terms of (3.10) we arrive at the
formula of (3.15). �

We proceed with a few special models of interest.

The Curie–Weiss model. This model, which we already considered in Section 1.1,
corresponds to G = Kn (the complete graph of n vertices), with Bi = B and Jij =
1/n for all 1 ≤ i �= j ≤ n. Since this graph-specification pair is invariant under
relabeling of the vertices, the corresponding Bethe equations (3.13) admit at least
one constant solution h∗

i→j = h∗(n), possibly dependent on n, such that

h∗(n) = B + (n − 1) atanh{tanh(β/n) tanh(h∗(n))}.
These cavity fields converge as n → ∞ to solutions of the (limiting) equation h∗ =
B + β tanh(h∗). Further, the Bethe approximations (3.14) for the magnetization
m(n) = 〈xi〉 are of the form m(n) = tanh(h∗(n)) + O(1/n) and thus converge as
n → ∞ to solutions of the (limiting) equation m = tanh(B + βm). Indeed, we
have already seen in Theorem 1.4 that the Curie–Weiss magnetization (per spin)
concentrates for large n around the relevant solutions of the latter equation.
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Ising models on random k-regular graphs. By the same reasoning as for the
Curie–Weiss model, in case of a k-regular graph of n vertices with Jij = +1, and
Bi = B , the Bethe equations admit a constant solution hi→j = h∗ such that

h∗ = B + (k − 1) atanh{θ tanh(h∗)},
for θ ≡ tanh(β), with the corresponding magnetization approximation m =
tanh(B + k atanh{θ tanh(h∗)}) and Bethe free entropy

n−1�n(h
∗) = k

2
{γ (θ) − log[1 + θ tanh2(h∗)]}

+ log{eB [1 + θ tanh(h∗)]k + e−B[1 − θ tanh(h∗)]k}.

Ising models on k-regular trees. It is instructive to contrast the above free entropy
with the analogous result for rooted k-regular trees Tk(�). From Proposition 3.7
we know that the free entropy logZ�(B,β) for the Ising measure on the finite tree
Tk(�) is precisely the Bethe free entropy of (3.15) for the unique solution of the
Bethe equations (3.13) with Jij = +1 and Bi = B .

We denote by nt the number of vertices at generation t ∈ {0, . . . , �} (thus n0 = 1
and nt = k(k − 1)t−1 for t ≥ 1), and by

n(�) = |Tk(�)| = k
(
(k − 1)� − 1

)
/(k − 2),

the total number of vertices in Tk(�). Due to symmetry of Tk(�), the Bethe cavity
field assumes the same value hr on all directed edges leading from a vertex at
generation � − r to one at generation � − r − 1 of Tk(�). Thus, we have

hr = B + (k − 1) atanh(θ tanhhr−1), (3.17)

with initial condition h−1 = 0. Similarly, we denote by h�
r of the Bethe cavity field

on the n�−r directed edges leading from a vertex at generation � − r − 1 to one at
generation � − r . We then have

h�
r = B + (k − 2) atanh(θ tanhhr) + atanh(θ tanhh�

r+1),

for r = � − 1, � − 2, . . . ,0, with initial condition h�
� = h�−1. The (Bethe) free

entropy is in this case

logZ�(B,β) = (
n(�) − 1

)
γ (θ) −

�−1∑
r=0

n�−r log[1 + θ tanhhr tanhh�
r ]

+
�∑

r=0

n�−r log{eB[1 + θ tanhhr−1]k−1[1 + θ tanhh�
r ]

+ e−B[1 − θ tanhhr−1]k−1[1 − θ tanhh�
r ]}.
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Using the relation (3.17) you can verify that the preceding formula simplifies to

logZ�(B,β)

= (
n(�) − 1

)
γ (θ)

+ log{eB[1 + θ tanhh�−1]k + e−B[1 − θ tanhh�−1]k}

+
�−1∑
r=0

n�−r log{eB [1 + θ tanhhr−1]k−1 + e−B [1 − θ tanhhr−1]k−1}.

The � → ∞ limit can then be expressed in terms of the k-canopy tree CTk (cf.
Lemma 2.8). If R denotes the random location of the root of CTk , then we get

lim
�→∞

1

n(�)
logZ�(B,β)

= γ (θ) + E log{eB[1 + θ tanhhR−1]k−1 + e−B[1 − θ tanhhR−1]k−1}.

Locally tree-like graphs. Recall Remark 2.7, that k-regular graphs converge lo-
cally to the Galton–Watson tree T(P,ρ,∞) with Pk = 1. More generally, con-
sider the ferromagnetic Ising model μβ,B(x) of (1.20), namely, with Jij = +1
and Bi = B , for a uniformly sparse graph sequence {Gn} that converges locally
to the random rooted tree T. Then, for any n and cavity field h = {hi→j } we have
from (3.15) that

n−1�n(h)

= 1

2
En

[ ∑
j∈∂i

{γ (θ) − log[1 + θ tanh(hi→j ) tanh(hj→i)]}
]

+ En

[
log

{
eB

∏
j∈∂i

[1 + θ tanh(hj→i )] + e−B
∏
j∈∂i

[1 − θ tanh(hj→i )]
}]

,

where En corresponds to expectations with respect to a uniformly chosen i ∈ Vn.
For n → ∞, as shown in Lemma 2.16 we have by local convergence and uniform
sparsity that these expectations converge to the corresponding expectations on the
tree T rooted at ∅. Consequently, we expect to have

lim
n→∞n−1�n(h

∗
n)

= 1

2
E

[
L∑

j=1

{γ (θ) − log[1 + θ tanh(h∗
∅→j ) tanh(h∗

j→∅)]}
]

+ E

[
log

{
eB

L∏
j=1

[1 + θ tanh(h∗
j→∅)] + e−B

L∏
j=1

[1 − θ tanh(h∗
j→∅)]

}]
,
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where L = |∂∅|, the variables {tanh(h∗
j→∅)} are the limit as t → ∞ of the Ising

magnetizations 〈xj 〉(t)j on the subtrees of j ∈ ∂∅ and all its descendants (in T(t),
either with free or plus boundary conditions), and for j = 1, . . . ,L,

h∗
∅→j = B +

L∑
k=1,k �=j

atanh{θ tanh(h∗
k→∅)}.

Indeed, this is precisely the prediction (2.21) for the free entropy density of ferro-
magnetic Ising models on such graphs (which is proved in [19] to hold in case T is
a Galton–Watson tree).

The Sherrington–Kirkpatrick model. The Sherrington–Kirkpatrick spin-glass
model corresponds to the complete graph Gn = Kn with the scaling β → β/

√
n,

constant Bi = B and Jij which are i.i.d. standard normal random variables. Ex-
panding the corresponding Bethe equations (3.13), we find that for large n and
any i, j ,

hi→j = B + β√
n

n∑
l=1,l �=i,j

Jil tanh(hl→i) + o

(
1√
n

)
. (3.18)

Similarly, expanding the formula (3.14), we get for the local magnetizations mi ≡
〈xi〉 and large n that

atanh(mi) = hi→j + βJij√
n

tanh(hj→i ) + o

(
1√
n

)
= hi→j + βJij√

n
mj + o

(
1√
n

)
.

Substituting this in both sides of equation (3.18), and neglecting terms of O(n−1/2)

yields the so-called TAP equations

atanh(mi) = B + β√
n

n∑
l=1,l �=i

Jilml − mi

β2

n

n∑
l=1,l �=i

J 2
il(1 − m2

l ). (3.19)

The independent set model. In this model, which is not within the framework
of (3.11), we consider the measure

μG,λ(x) = 1

Z(G,λ)
λ|x| ∏

(i,j)∈E

I
(
(xi, xj ) �= (1,1)

)
, (3.20)

where |x| denotes the number of nonzero entries in the vector x ∈ {0,1}V . It
corresponds to the permissive specification ψij (x, y) = I((x, y) �= (1,1)), and
ψi(x) = λx , having x

p
i = 0 for all i ∈ V . In this case the Bethe equations are

νi→j = 1

1 + λ
∏

l∈∂i\j νl→i

,
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for νi→j ≡ νi→j (0) and their solution {ν∗
i→j } provides the approximate densities

μ(xi = 1) = λ
∏

j∈∂i ν
∗
j→i

1 + λ
∏

j∈∂i ν
∗
j→i

,

and the approximate free entropy

�(ν∗) = ∑
i∈V

log
{

1 + λ
∏
j∈∂i

ν∗
j→i

}
− ∑

(i,j)∈E

log[ν∗
i→j + ν∗

j→i − ν∗
i→j ν

∗
j→i].

3.4 Extremality, Bethe states and Bethe–Peierls approximation

Following upon Section 3.1 we next define the Bethe–Peierls approximation of
local marginals in terms of a given set of messages. To this end, recall that each
subset U ⊆ V has a (possibly infinite) diameter diam(U) = max{d(i, j) : i, j ∈ U}
(where d(i, j) is the number of edges traversed in the shortest path on G from i ∈
V to j ∈ V ), and it induces the subgraph GU = (U,EU) such that EU = {(i, j) ∈
E : i, j ∈ U}.

Definition 3.10. Let U denote the collection of U ⊆ V for which GU = (U,EU)

is a tree and each i ∈ ∂U is a leaf of GU (i.e., |∂i ∩ U | = 1 whenever i ∈ ∂U ).
A set of messages {νi→j } induces on each U ∈ U the probability measure

νU(xU) = 1

ZU

∏
i∈U

ψ∗
i (xi)

∏
(ij)∈EU

ψij (xi, xj ), (3.21)

where ψ∗
i (·) = ψi(·) except for i ∈ ∂U in which case ψi(·) = νi→u(i)(·) with

{u(i)} = ∂i ∩ U .
A probability measure ρ(x) on X V is (ε, r)-Bethe approximated by a set of

messages {νi→j } if

sup
U∈U ,diam(U)≤2r

‖ρU − νU‖TV ≤ ε, (3.22)

where ρU(·) denotes the marginal distribution of xU under ρ(·). We call any such
ρ(·) an (ε, r)-Bethe state for the graph-specification pair (G,ψ).

Remark 3.11. Note that if i /∈ ∂U is a leaf of an induced tree GU then ∂i = {u(i)}
and if {νi→j } is a permissive set of messages then νi→u(i)(·) ∼= ψi(·). Conse-
quently, in (3.21) we may and shall not distinguish between ∂U and the collection
of all leaves of GU .

We phrase our error terms and correlation properties in terms of valid rate func-
tions, and consider graphs that are locally tree-like. Namely:
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Definition 3.12. A valid rate function is a monotonically nonincreasing function
δ : N → [0,1] that decays to zero as r → ∞. By (eventually) increasing δ(r), we
assume, without loss of generality, that δ(r + 1) ≥ δ∗δ(r) for some positive δ∗ and
all r ∈ N.

Given an integer R ≥ 0 we say that G is R-tree like if its girth exceeds 2R + 1
(i.e., Bi (R) is a tree for every i ∈ V ).

We show in the sequel that the Bethe approximation holds when the canonical
measure on a tree like graph satisfies the following correlation decay hypotheses.

Definition 3.13. A probability measure ρ on X V is extremal for G with valid rate
function δ(·) if for any A,B ⊆ V ,

‖ρA,B(·, ·) − ρA(·)ρB(·)‖TV ≤ δ(d(A,B)), (3.23)

where d(A,B) = min{d(i, j) : i ∈ A,j ∈ B} is the length of the shortest path in G

between A ⊆ V and B ⊆ V .

We consider the notions of Bethe measure and extremality for general prob-
ability distributions over X V (and not only for the canonical measure μG,ψ(·)).
The key (unproven) assumption of statistical physics approaches is that the canon-
ical measure (which is ultimately, the object of interest), can be decomposed as
a unique convex combination of extremal measures, up to small error terms. This
motivates the name “extremal.” Further, supposedly each element of this decom-
position can then be treated accurately within its Bethe approximation.

Here is the first step in verifying this broad conjecture, dealing with the case
where the canonical measure μG,ψ(·) is itself extremal.

Theorem 3.14. Let ψ be a permissive specification for an R-tree like graph G

and δ(·) a valid rate function. If μG,ψ(·) is extremal with rate δ(·) then it is (ε, r)-
Bethe approximated by its standard message set for ε = exp(cr)δ(R − r) and all
r < R − 1, where the (universal) constant c depends only on |X |, δ∗, κ and the
maximal degree � ≥ 2 of G. In particular, μG,ψ(·) is then an (ε, r)-Bethe state
for this graph-specification pair.

To prove the theorem, recall first that for any probability measures ρa on a
discrete set Z and f : Z �→ [0, fmax] we have the elementary bound

‖ρ̂1 − ρ̂2‖TV ≤ 3fmax

2〈ρ1, f 〉‖ρ1 − ρ2‖TV, (3.24)

where ρ̂a(z) ≡ ρa(z)f (z)/〈ρa, f 〉 and 〈ρa, f 〉 ≡ ∑
z∈Z ρa(z)f (z) (cf. [19],

Lemma 3.3). Further, it is easy to check that if μ(·) = μG,ψ(·) and (G,ψ) is a
permissive graph-specification pair, then for any C ⊆ V ,

μC(x
p
C) ≥ X −|C|κ�|C|. (3.25)



Gibbs measures on sparse random graphs 181

In addition, as shown in [20], Section 3, for such μ(·), if GU ′ is a tree, (i, j) ∈ EU ′
and j /∈ A ⊇ ∂U ′, then∥∥μ(ij)

i|A (·|xA) − μ
(ij)
i|A (·|y

A
)
∥∥

TV ≤ b‖μij |A(·|xA) − μij |A(·|y
A
)‖TV, (3.26)

for b ≡ 2|X |κ−(�+1) and all x, y ∈ X V . Finally, the following lemma is also
needed for our proof of the theorem.

Lemma 3.15. If the canonical measure μ for 2-tree like graph and a permis-
sive specification is extremal of valid rate function δ(·) then for some finite
K = K(|X |, κ,�) and any A ⊆ V∥∥μ(ij)

A − μA

∥∥
TV ≤ Kδ(d({i, j},A)).

Proof. Set B = ∂i ∪ ∂j \ {i, j} and C = ⋃
l∈B ∂l noting that |B| ≤ 2(� − 1),

|C| ≤ 2�(� − 1) and since G is 2-tree like, necessarily the induced subgraph GB

has no edges. Hence,

μB(xB) ≥ μC(x
p
C)μB|C(xB |xp

C)

≥ μC(x
p
C)

∏
l∈B

(
ψl(xl)

∏
k∈∂l ψlk(xl, x

p
k )∑

x′
l
ψl(x

′
l )

∏
k∈∂l ψlk(x

′
l , x

p
k )

)
≥ μC(x

p
C)κ2(�2−1)

so by the bound (3.25) we deduce that μB(xB) ≥ c0 for all xB and some positive
c0 = c0(|X |, κ,�). Next assume, without loss of generality, that A∩B = ∅. Then

∥∥μ(ij)
A − μA

∥∥
TV = 1

2

∑
xA

∣∣∣∣∑
xB

μ
(ij)
B (xB)μA|B(xA|xB) − ∑

x′
B

μB(x′
B)μA|B(xA|x′

B)

∣∣∣∣
≤ sup

xB,x′
B

‖μA|B(·|xB) − μA|B(·|x′
B)‖TV

≤ 1

c2
0

E
{∥∥μA|B

(·|X(1)
B

) − μA|B
(·|X(2)

B

)∥∥
TV

}
,

where X(1) and X(2) are independent random configurations, each of distribu-
tion μ. Next, from the extremality of μ(·) we deduce that

E
{∥∥μA|B

(·|X(1)
B

) − μA|B
(·|X(2)

B

)∥∥
TV

} ≤ 2δ(d(A,B)),

so taking K = 2/c2
0 we arrive at our thesis. �

Proof of Theorem 3.14. Fixing r < R − 1, a permissive graph-specification pair
(G,ψ) that is extremal for R-tree like graph G with valid rate function δ(·) and
U ∈ U with diam(U) ≤ 2r , let UR′ = {k ∈ V : d(k,U) ≥ R′} for R′ = R − r > 1.
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Note that

‖μU(·) − νU(·)‖TV ≤ E‖μU(·) − μU |UR′ (·|X̃UR′ )‖TV
(3.27)

+ E‖μU |UR′ (·|X̃UR′ ) − νU(·)‖TV,

where νU corresponds to the standard message set (i.e., νi→j = μ
(ij)
i for the mea-

sure μ(ij)(·) of (3.1)), and the expectation is with respect to the random config-
uration X̃ of distribution μ. The first term on the right-hand side is precisely
‖μU,UR′ (·, ·) − μU(·)μUR′ (·)‖TV which for μ(·) extremal of valid rate function

δ(·) is bounded by δ(d(U,UR′)) = δ(R − r). Turning to the second term, consider
the permissive set of messages

ν̃i→j (xi) = μ
(ij)

i|Bi (R
′)
(
xi |X̃Bi (R

′)
)
,

where Bi (t) denotes the collection of vertices of distance at least t from i. Since
diam(U) ≤ 2r there exists io ∈ V such that U ⊆ Bio(r) and as Bio (R) is a tree, the
canonical measure for Bio (R) \ GU is the product of the corresponding measures
for the subtrees rooted at i ∈ ∂U . Noting that V \ Bio(R) ⊆ UR′ , it is thus not hard
to verify that we have the representation

μU |UR′ (xU |X̃UR′ ) = 1

Z̃U

∏
i∈U

ψ̃∗
i (xi)

∏
(ij)∈EU

ψij (xi, xj ), (3.28)

as in (3.21), corresponding to the messages {̃νi→j } (i.e., with ψ̃∗
i (·) = ψi(·) except

for i ∈ ∂U in which case ψ̃i(·) = ν̃i→u(i)(·)). Consequently, we proceed to bound
‖ν̃U − νU‖TV by applying the inequality (3.24) for the function

f (xU) = ∏
i∈U\∂U

ψi(xi)
∏

(ij)∈EU

ψij (xi, xj )

on Z = X U and probability measures ρa that are uniform on X U\∂U with
ρ1(x∂U ) = ∏

i∈∂U νi→u(i)(xi) and ρ2(x∂U ) = ∏
i∈∂U ν̃i→u(i)(xi). To this end, re-

call that f (xU) ≤ fmax = ψM
max for M = |U | − |∂U | + |EU |. Further, since GU is

a tree (hence |EU | ≤ |U |), and ψ is a permissive specification (also when (i, j) is
removed from E), upon applying (3.25) for |C| = 1, we have that

〈ρ1, f 〉 ≥ ∏
i∈U\∂U

ψi(x
p
i )

|X |
∏

(ij)∈EU

ψij (x
p
i , x

p
j )

∏
i∈∂U

νi→u(i)(x
p
i )

≥ fmax|X |−|U |κM+�|∂U | ≥ fmaxc
−|U |
1 ,

where c1 = |X |κ−(�+1) is a finite constant. Consequently, we deduce upon apply-
ing (3.24) that

‖μU |UR
(·|X̃UR

) − νU(·)‖TV = ‖ρ̂2 − ρ̂1‖TV ≤ 2c
|U |
1 ‖ρ1 − ρ2‖TV

(3.29)
≤ 2c

|U |
1

∑
i∈∂U

∥∥νi→u(i) − ν̃i→u(i)

∥∥
TV.
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Following [20] we show in the sequel that

E
{∥∥νi→u(i) − ν̃i→u(i)

∥∥
TV

} ≤ c2δ(R − r), (3.30)

for some finite c2 = c2(|X |,�,κ, δ∗) and all i ∈ ∂U . As |∂U | ≤ |U | ≤ |Bio (r)| ≤
�r+1, we can choose c = c(|X |,�,κ, δ∗) finite such that 1 + 2c

|U |
1 |∂U |c2 ≤

exp(cr). Then, combining the inequalities (3.27), (3.29), and (3.30) results with

‖μU − νU‖TV ≤ exp(cr)δ(R − r),

for every U ∈ U of diam(U) ≤ 2r and r < R − 1, which is the thesis of Theo-
rem 3.14.

As for the proof of (3.30), fixing i ∈ ∂U let A = Bi (R
′) and ν′

i→j = μ
(ij)
i|A (·|X′

A)

where X′ of distribution μ(ij) is independent of X̃. Then,

E{‖νi→j − ν̃i→j‖TV} = E{‖Eν′
i→j − ν̃i→j‖TV}

(3.31)
≤ E{‖ν′

i→j − ν̃i→j‖TV}.
Further, setting U ′ = Bi (R

′) note that GU ′ is a tree (since G is R-tree like), such
that ∂U ′ ⊆ A (while ∂i and A are disjoint). Thus, from (3.26) we have that for any
j ∈ ∂i,

‖ν′
i→j − ν̃i→j‖TV = ∥∥μ(ij)

i|A (·|X′
A) − μ

(ij)
i|A (·|X̃A)

∥∥
TV

(3.32)
≤ b‖μij |A(·|X′

A) − μij |A(·|X̃A)‖TV.

Taking the expectation with respect to the independent random configurations X′
(of law μ(ij)) and X̃ (of law μ), leads to

E{‖μij |A(·|X′
A) − μij |A(·|X̃A)‖TV}

≤ 2
∥∥μ{ij},A − μ{ij}μA

∥∥
TV + ∥∥μ(ij)

A − μA

∥∥
TV.

For μ extremal of valid rate function δ(·) the latter expression is, due to
Lemma 3.15, bounded by (2 + K)δ(R′ − 1) ≤ (2 + K)δ(R − r)/δ∗, which to-
gether with (3.31) and (3.32) results with (3.30). �

4 Colorings of random graphs

Given a graph G = (V ,E), recall that a proper q-coloring of G is an assignment
of colors to the vertices of G such that no edge has both endpoints of the same
color. Deciding whether a graph is q-colorable is a classical NP-complete con-
straint satisfaction problem. Here we shall study this problem when G is sparse
and random. More precisely, we shall consider the uniform measure μG(·) over
proper q-colorings of G, with q ≥ 3.
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As the average degree of G increases, the measure μG(·) undergoes several
phase transitions and exhibits coexistence when the average degree is within a cer-
tain interval. Eventually, for any q , if the average degree is large enough, a random
graph becomes, with high probability, non q-colorable. Statistical physicists have
put forward a series of exact conjectures on these phase transitions [35,36,49], but
as of now most of it cannot be rigorously verified (cf. [1,4,5] for what has been
proved so far).

We begin in Section 4.1 with an overview of the various phase transitions as they
emerge from the statistical mechanics picture. Some bounds on the q-colorability
of a random graph are proved in Section 4.2. Finally, Section 4.3 explores the
nature of the coexistence threshold for q-coloring, in particular, connecting it with
the question of information reconstruction, to which Section 5 is devoted.

4.1 The phase diagram: a broad picture

Let x = {xi : i ∈ V } denote a q-coloring of the graph G = (V ,E) (i.e., for each
vertex i, let xi ∈ {1, . . . , q} ≡ Xq ). Assuming that the graph G admits a proper
q-coloring, the uniform measure over the set of proper q-colorings of G is

μG(x) = 1

ZG

∏
(i,j)∈E

I(xi �= xj ), (4.1)

with ZG denoting the number of proper q-colorings of G. We shall consider the
following two examples of a random graph G = Gn over the vertex set V = [n]:

(a) G = Gn,α is uniformly chosen from the Erdös–Renyi ensemble G(α,n) of
graphs of m = �nα� edges (hence of average degree 2α).

(b) G = Gn,k is a uniformly chosen random k-regular graph.

Heuristic statistical mechanics studies suggest a rich phase transition structure
for the measure μG(·). For any q ≥ 4, different regimes are separated by three
distinct critical values of the average degree: 0 < αd(q) < αc(q) < αs(q) [the
case q = 3 is special in that αd(q) = αc(q), whereas q = 2 is rather trivial, as
2-colorability is equivalent to having no odd cycles, in which case each connected
component of G admits two proper colorings, independently of the coloring of the
rest of G]. In order to characterize such phase transitions we will use two notions
(apart from colorability), namely coexistence and sphericity. To define the latter
notion we recall that the joint type of two color assignments x = {xi : i ∈ V } and
y = {yi : i ∈ V } is a q × q matrix whose x, y entry (for x, y ∈ {1, . . . , q}) is the
fraction of vertices with color x in the first assignment and color y in the second.

Definition 4.1. Let ν = {ν(x, y)}x,y∈[q] be the joint type of two independent color
assignments, each distributed according to μG(·), with ν(x, y) = 1/q2 denoting
the uniform joint type. We say that μG is (ε, δ)-spherical if ‖ν − ν‖2 ≤ ε with
probability at least 1 − δ.
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The various regimes of μG(·) are characterized as follows (where all statements
are to hold with respect to the uniform choice of G ∈ G(α,n) with probability
approaching one as n → ∞):

I. For α < αd(q) the set of proper q-colorings forms a unique compact lump:
there is no coexistence. Further, μG(·) is with high probability (ε, δ)-spherical
for any ε, δ > 0.

II. For αd(q) < α < αc(q) the measure μG exhibits coexistence in the sense of
Section 1.1.2. More precisely, there exist ε > 0, C > 0 and for each n a parti-
tion of the space of configurations X n

q into N = Nn sets {��,n} such that for
any n and 1 ≤ � ≤ N ,

μG(∂ε��,n)

μG(��,n)
≤ e−Cn.

Furthermore, there exists � = �(α) > 0, called complexity or configurational
entropy and a subfamily Typ = Typn of the partition {��,n}�∈Typ such that∑

�∈Typ

μG(��,n) ≥ 1 − e−C′n,

for some C′ > 0 independent of n and

e−n�−o(n) ≤ inf
�∈Typ

μG(��,n) ≤ sup
�∈Typ

μG(��,n) ≤ e−n�+o(n)

so in particular, |Typn| = en�+o(n).
III. For αc(q) < α < αs(q) the situation is analogous to the last one, but now Nn

is subexponential in n. More precisely, for any δ > 0, a fraction 1 − δ of the
measure μG is comprised of N (δ) elements of the partition, whereby N (δ)

converges as n → ∞ to a finite random variable. Furthermore, μG(·) is no
longer spherical.

IV. For αs(q) < α the random graph Gn is, with high probability, uncolorable
(i.e., non q-colorable).

Statistical mechanics methods provide semi-explicit expressions for the thresh-
old values αd(q), αc(q), and αs(q) in terms of the solution of a certain identity
whose argument is a probability measure on the (q − 1)-dimensional simplex.

4.2 The COL–UNCOL transition

Though the existence of a colorable–uncolorable transition is not yet established,
q-colorability is a monotone graph property (i.e., if G is q-colorable, so is any
subgraph of G). As such, Friedgut’s theory [2,3] provides the first step in this
direction. Namely:
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Theorem 4.2. Suppose the random graph Gn,α is uniformly chosen from the
Erdös–Renyi graph ensemble G(α,n). Then, for any q ≥ 3 there exists αs(q;n)

such that for any δ > 0,

lim
n→∞P

{
Gn,αs(q;n)(1−δ) is q-colorable

} = 1, (4.2)

lim
n→∞ P

{
Gn,αs(q;n)(1+δ) is q-colorable

} = 0. (4.3)

We start with a simple upper bound on the COL–UNCOL transition threshold.

Proposition 4.3. The COL–UNCOL threshold is upper bounded as

αs(q;n) ≤ αs(q) ≡ logq

log(1 − 1/q)
. (4.4)

Proof. A q-coloring is a partition of the vertex set [n] into q subsets of sizes nx ,
x ∈ Xq . Given a q-coloring, the probability that a uniformly chosen edge has both
end-points of the same color is∑

x∈Xq

(
nx

2

)/(
n

2

)
≥ 1

q
− 2

n − 1
.

Consequently, choosing first the q-coloring and then choosing uniformly the m

edges to be included in G = Gn,α we find that the expected number of proper
q-colorings for our graph ensemble is bounded by

E{ZG} ≤ qn

(
n + 1

n − 1
− 1

q

)m

.

Since E{ZG} → 0 for α > αs(q) our thesis follows from Markov’s inequality. �

Notice that αs(q) = q logq[1 + o(1)] as q → ∞. This asymptotic behavior is
known to be tight, for it is shown in [4] that:

Theorem 4.4. The COL–UNCOL threshold is lower bounded as

αs(q;n) ≥ αs(q) ≡ (q − 1) log(q − 1). (4.5)

Sketch of proof. Let Z denote the number of balanced q-colorings, namely q-
colorings having exactly n/q vertices of each color. A computation similar to the
one we used when proving Proposition 4.3 yields the value of EZ. It captures
enough of EZG to potentially yield a tight lower bound on αs(q) by the second
moment method, namely, using the bound P(ZG > 0) ≥ P(Z > 0) ≥ (EZ)2/EZ2.
The crux of the matter is of course to control the second moment of Z, for which
we defer to [4]. �
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The proof of Theorem 4.4 is nonconstructive. In particular, it does not suggest
a way of efficiently finding a q-coloring when α is near αs(q;n) (and as of now, it
is not even clear if this is possible). In contrast, we provide next a simple, “algo-
rithmic” (though suboptimal), lower bound on αs(q;n). To this end, recall that the
k-core of a graph G is the largest induced subgraph of G having minimal degree
at least k.

Proposition 4.5. If G does not have a nonempty q-core then it is q-colorable.

Proof. Given a graph G and a vertex i, denote by G \ {i} the graph obtained by
removing vertex i and all edges incident to it. If G does not contain a q-core, then
we can sequentially remove vertices of degree less than q (and the edges incident
to them), one at a time, until we have decimated the whole graph. This simple
“peeling algorithm” provides an ordering i(1), i(2), . . . , i(n) of the vertices, such
that setting G0 = G and Gt = Gt−1 \ {i(t)}, we have that for any t ≤ n, the degree
of i(t) in Gt−1 is smaller than q . Our thesis follows from the observation that if
G \ {i} is q-colorable, and i has degree smaller than q , then G is q-colorable as
well. �

As mentioned before, this proof outlines an efficient algorithm for constructing
a q-coloring for any graph G whose q-core is empty, and in principle, also for
enumerating in this case the number of q-colorings of G. The threshold for the
appearance of a q-core in a random Erdös–Renyi graph chosen uniformly from
G(α,n) was first determined in [50].

Proposition 4.6. Let hα(u) = P{Poisson(2αu) ≥ q − 1}, and define (for q ≥ 3)

αcore(q) = sup{α ≥ 0 :hα(u) ≤ u ∀u ∈ [0,1]}. (4.6)

Then, with high probability, a uniformly random graph G from G(α,n) has a q-
core if α > αcore(q), and does not have one if α < αcore(q).

Sketch of proof. Starting the peeling algorithm at such graph G0 = Gn,α yields
an inhomogeneous Markov chain t �→ Gt which is well approximated by a chain
of reduced state space Z

q
+ and smooth transition kernel. The asymptotic behavior

of such chains is in turn governed by the solution of a corresponding ODE, out
of which we thus deduce the stated asymptotic of the probability that a uniformly
random graph G from G(α,n) has a q-core. �

We note in passing that the value of αcore(q) can be a priori predicted by the
following elegant heuristic “cavity” argument. For a vertex i ∈ V we call “q-core
induced by i” the largest induced subgraph having minimum degree at least q

except possibly at i. We denote by u the probability that for a uniformly chosen
random edge (i, j), its endpoint i belongs to the q-core induced by j . Recall that
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for large n the degree � of the uniformly chosen vertex i of Gn,α , excluding the
distinguished edge (i, j), is approximately a Poisson(2α) random variable. We ex-
pect each of these � edges to connect i to a vertex from the q-core induced by j

with probability u and following the Bethe ansatz, these events should be approx-
imately independent of each other. Hence, under these assumptions the vertex i is
in the q-core induced by j with probability hα(u), leading to the self-consistency
equation u = hα(u). The threshold αcore(q) then corresponds to the appearance of
a positive solution of this equation.

4.3 Coexistence and clustering: the physicist’s approach

For α < αs(q), the measure μG(·) is well defined but can have a highly nontriv-
ial structure, as discussed in Section 4.1. We describe next the physicists conjec-
ture for the corresponding threshold αd(q) and the associated complexity function
�(α). For the sake of simplicity, we shall write the explicit formulae in case of
random (k + 1)-regular ensembles instead of the Erdös–Renyi ensembles G(α,n)

we use in our overview.

4.3.1 Clustering and reconstruction thresholds: a conjecture. Following [40],
the conjectured value for αd(q) has a particularly elegant interpretation in terms
of a phase transition for a model on the rooted Galton–Watson tree T = T(P,∞)

with offspring distribution P = Poisson(2α). With an abuse of notation, let μ also
denote the free boundary Gibbs measure over proper q-colorings of T (recall that
every tree is 2-colorable). More explicitly, a proper q-coloring x = {xi ∈ Xq : i ∈ T}
is sampled from μ as follows. First sample the root color uniformly at random.
Then, recursively, for each colored node i, sample the colors of its offspring uni-
formly at random among the colors that are different from xi .

We denote by ∅ the root of T and by B∅(t) the set of vertices of T whose
distance from the root is at least t . Finally, for any subset of vertices U , we let
μU(·) be the marginal law of the corresponding color assignments.

For small α the color at the root decorrelates from colors in B∅(t) when t is
large, whereas at large α they remain correlated at any distance t . The “recon-
struction threshold” separates these two regimes.

Definition 4.7. The reconstruction threshold αr(q) is the maximal value of α such
that

lim
t→∞E

{∥∥μ∅,B∅(t) − μ∅ × μB∅(t)

∥∥
TV

} = 0 (4.7)

(where the expectation is over the random tree T). If the limit on the left-hand side
is positive, we say that the reconstruction problem is solvable.

It is conjectured that the coexistence threshold αd(q) for locally tree like ran-
dom graphs coincides with the reconstruction threshold αr(q) for the correspond-
ing random trees. We next present a statistical physics argument in favor of this
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conjecture. There are various nonequivalent versions of this argument, all predict-
ing the same location for the threshold. The argument that we will reproduce was
first developed in [16,26,42], to explore the physics of glasses and spin glasses.

Note that the major difficulty in trying to identify the existence of “lumps” is
that we do not know, a priori, where these lumps are in the space of configurations.
However, if X∗ is a configuration sampled from μ(·), it will fall inside one such
lump so the idea is to study how a second configuration x behaves when tilted
towards the first one. Specifically, fix x∗ = {x∗

i ∈ Xq : i ∈ V } and consider the tilted
measures

μ∗
G,x∗,ε(x) = 1

Zε

∏
(i,j)∈E

I(xi �= xj )
∏
i∈V

ψε(x
∗
i , xi),

where ψε(x, y) is a tilting function depending continuously on ε, such that
ψ0(x, y) = 1 (so μ∗

0 reduces to the uniform measure over proper colorings), and
which favors x = y when ε > 0. For instance, we might take

ψε(x, y) = exp{εI(x = y)}.
While the study of the measure μ∗

G,x∗,ε is beyond our current means, we gain
valuable insight from examining its Bethe approximation. Specifically, in this set-
ting messages depend in addition to the graph also on x∗ and ε, and the Bethe
equations of Definition 3.4 are

νi→j (xi) = z−1
i→jψε(x

∗
i , xi)

∏
l∈∂i\j

(
1 − νl→i(xi)

)
, (4.8)

with zi→j a normalization constant. In shorthand we write this equation as

νi→j = Fε{νl→i : l ∈ ∂i \ j}.
Let us now assume that G is a regular graph of degree k+1 and that X∗ is a uni-

formly random proper q-coloring of G. Then, the message νi→j is itself a random
variable, taking values in the (q − 1)-dimensional probability simplex M(Xq).
For each x ∈ Xq we denote by Qx (which also depends on ε), the conditional law
of νi→j given that X∗

i = x. In formulae, for any Borel measurable subset A of
M(Xq), we have

Qx(A) ≡ P{νi→j (·) ∈ A|X∗
i = x}.

Assume that, conditionally on the reference coloring X∗, the messages νl→i for
l ∈ ∂i \ j are asymptotically independent, and have the laws QX∗

i
. We then obtain

the following recursion for {Qx},

Qx(A) = ∑
x1···xk

μ(x1, . . . , xk|x)

∫
I
(
Fε(ν1, . . . , νk) ∈ A

) k∏
i=1

Qxi
(dνi),
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where (x1, . . . , xk) denote the values of (X∗
l , l ∈ ∂i \ j) and μ(x1, . . . , xk|x) the

corresponding conditional marginal of μ = μ∗
0 given X∗

i = x. Assuming further
that for a random regular graph G = Gn,k+1 the measure μ(x1, . . . , xk|x) con-
verges as n → ∞ to the analogous conditional law for the regular k-ary tree, we
obtain the fixed point equation

Qx(A) = 1

(q − 1)k

∑
x1···xk �=x

∫
I
(
Fε(ν1, . . . , νk) ∈ A

) k∏
i=1

Qxi
(dνi). (4.9)

In the limit ε = 0 this equation admits a trivial degenerate solution, whereby Qx =
δν is concentrated on one point, the uniform vector ν(x) = 1/q for all x ∈ Xq . The
interpretation of this solution is that, as ε ↓ 0, a random coloring from the tilted
measure μ∗

G,X∗,ε , becomes uncorrelated from the reference coloring X∗.
It is not hard to verify that this is the only degenerate solution (namely, where

each measure Qx is supported on one point), of (4.9) at ε = 0. A second sce-
nario is however possible. It might be that, as ε ↓ 0 (and, in particular, for ε = 0),
equation (4.9) admits also a nontrivial solution, whereby at least one of the mea-
sures Qx is not supported on the uniform vector ν. This is interpreted by physicists
as implying coexistence: the coloring sampled from the tilted measure μ∗

G,X∗,ε re-
mains trapped in the same “state” (i.e., in the same subset of configurations ��,n),
as X∗.

Let us summarize the statistical physics conjecture: the uniform measure μG(·)
over proper q-colorings of a random (k + 1)-regular graph exhibits coexistence if
and only if equation (4.9) admits a nontrivial solution for ε = 0. In the next sub-
section we show that this happens if and only if k ≥ kr(q), with kr(q) the recon-
structibility threshold on k-ary trees (which is defined analogously to the Poisson
tree threshold αr(q); see Definition 4.7).

4.3.2 The reconstruction threshold for k-ary trees. We say that a probability
measure on M(Xq) is color-symmetric if it is invariant under the action of color
permutations on its argument ν ∈ M(Xq). Following [40], Proposition 1, we pro-
ceed to show that the existence of certain nontrivial solutions {Qx} of (4.9) at ε = 0
is equivalent to solvability of the corresponding reconstruction problem for k-ary
trees.

Proposition 4.8. The reconstruction problem is solvable on k-ary trees if and only
if equation (4.9) admits at ε = 0 a solution {Qx,x ∈ Xq} such that each Qx has
the Radon–Nikodym density qν(x) with respect to the same color-symmetric, non-
degenerate probability measure Q.

Proof. First notice that {Qx,x ∈ Xq} is a solution of (4.9) at ε = 0 if and only if
for any x ∈ Xq and bounded Borel function g,∫

g(ν)q−1Qx(dν) = cq,k

∫
g(F0(ν1, . . . , νk))

k∏
i=1

[Q∗ − q−1Qx](dνi), (4.10)
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where Q∗ = q−1 ∑q
x=1 Qx and cq,k = qk−1(q − 1)−k . If this solution is of the

stated form, then Q∗ = Q and upon plugging Qx(dν) = qν(x)Q(dν) in the iden-
tity (4.10) we see that for any bounded Borel function h,∫

h(ν)Q(dν) =
∫ [

z(ν1, . . . , νk)

z(ν, . . . , ν)

]
h(F0(ν1, . . . , νk))

k∏
i=1

Q(dνi), (4.11)

where z(ν1, . . . , νk) = ∑q
x=1

∏k
i=1(1 − νi(x)) is the normalization constant of

the mapping F0(·) (so cq,k = 1/z(ν, . . . , ν)). Conversely, for any color-symmetric
probability measure Q on M(Xq) the value of

∫
ν(x)Q(dν) is independent of x ∈

Xq , hence Qx(dν) = qν(x)Q(dν) are then also probability measures on M(Xq)

and such that Q = Q∗. Further, recall that for any x ∈ Xq and νi ∈ M(Xq),

z(ν1, . . . , νk)F0(ν1, . . . , νk)(x) =
k∏

i=1

(
1 − νi(x)

)
,

so if such Q satisfies (4.11), then considering there h(ν) = g(ν)ν(x) leads to {Qx}
satisfying (4.10).

If a solution Q of (4.11) is degenerate, that is, supported on one point ν, then
ν = F0(ν, . . . , ν), hence ν = ν. That is, any nontrivial solution Q �= δν is also non-
degenerate. We thus proceed to show that solvability of the reconstruction problem
on k-ary trees is equivalent to having color-symmetric solution Q �= δν of (4.11).
To this end, consider a proper q-coloring X = {Xv :v ∈ T} of the k-ary tree, sam-
pled at random according to the free boundary Gibbs measure μ. Let ν(t) denote
the marginal distribution of the root color given the colors at generation t . In for-
mulae, this is the M(Xq)-valued random variable such that for x ∈ {1, . . . , q},

ν(t)(x) = μ∅|B∅(t)

(
x|XB∅(t)

) = P
{
X∅ = x|XB∅(t)

}
.

Denote by Q
(t)
x the conditional law of ν(t) given the root value X∅ = x. The k-

ary tree of (t + 1) generations is the merging at the root of k disjoint k-ary trees,
each of which has t generations. Thus, conditioning on the colors x1, . . . , xk of the
root’s offspring, one finds that the probability measures {Q(t)

x } satisfy for any x

and any bounded Borel function h(·) the recursion∫
h(ν)Q(t+1)

x (dν) = 1

(q − 1)k

∑
x1,...,xk �=x

∫
h(F0(ν1, . . . , νk))

k∏
i=1

Q(t)
xi

(dνi),

starting at Q
(0)
x = δνx , where νx denotes the probability vector that puts weight one

on the color x.
Let Q(t) denote the unconditional law of ν(t). That is, Q(t) = q−1 ∑q

x=1 Q
(t)
x .

By the tower property of the conditional expectation, for any x ∈ Xq and bounded
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measurable function h on M(Xq),∫
h(ν)Q(t)

x (dν) = qE
[
h
(
ν(t))I(X∅ = x)

]
= qE

[
h
(
ν(t))ν(t)(x)

] = q

∫
ν(x)h(ν)Q(t)(dν).

Consequently, Q(t)
x has the Radon–Nikodym derivative qν(x) with respect to Q(t).

Plugging this into the recursion for Q
(t)
x we find that Q(t) satisfies the recursion

relation∫
h(ν)Q(t+1)(dν) =

∫ [
z(ν1, . . . , νk)

z(ν, . . . , ν)

]
h(F0(ν1, . . . , νk))

k∏
i=1

Q(t)(dνi), (4.12)

starting at Q(0) = q−1 ∑q
x=1 δνx .

Note that for each x ∈ Xq , the sequence {ν(t)(x)} is a reversed martingale with
respect to the filtration F−t = σ(XB∅(t)), t ≥ 0, hence by Lévy’s downward the-

orem, it has an almost sure limit. Consequently, the probability measures {Q(t)}
converge weakly to a limit Q(∞).

As Q(0) is color-symmetric and the recursion (4.12) transfers the color-
symmetry of Q(t) to that of Q(t+1), we deduce that Q(∞) is also color-symmetric.
Further, with the function F0 : M(Xq)

k → M(Xq) continuous at any point
(ν1, . . . , νk) for which z(ν1, . . . , νk) > 0, it follows from the recursion (4.12) that
Q(∞) satisfies (4.11) for any continuous h, hence for any bounded Borel func-
tion h. By definition,∥∥μ∅,B∅(t) − μ∅ × μB∅(t)

∥∥
TV =

∫
‖ν − ν‖TVQ(t)(dν),

and with Xq finite, the function ν �→ ‖ν − ν‖TV is continuous. Hence, the re-
construction problem is solvable if and only if Q(∞) �= δν . That is, as claimed,
solvability implies the existence of a nontrivial color-symmetric solution Q(∞) of
(4.11).

To prove the converse assume there exists a color-symmetric solution Q �= δν

of equation (4.11). Recall that in this case Qx(dν) = qν(x)Q(dν) are probabil-
ity measures such that Q = q−1 ∑q

x=1 Qx . Further, if a random variable Y(t) is
conditionally independent of X∅ given XB∅(t) then∥∥μ∅,Y (t) − μ∅ × μY(t)

∥∥
TV ≤ ∥∥μ∅,Y (t),B∅(t)

− μ∅ × μY(t),B∅(t)

∥∥
TV

= ∥∥μ∅,B∅(t)
− μ∅ × μB∅(t)

∥∥
TV

(where μ∅,Y (t) denotes the joint law of X∅ and Y(t)). Turning to construct
such a random variable Y(t) ∈ M(Xq), let ∂B∅(t) denote the vertices of the
tree at distance t from ∅ and set νi ∈ M(Xq) for i ∈ ∂B∅(t)} to be condi-
tionally independent given XB∅(t), with νi distributed according to the random



Gibbs measures on sparse random graphs 193

measure QXi
(·). Then, define recursively νv ≡ F0(νu1, . . . , νuk

) for v ∈ ∂B∅(s),
s = t − 1, t − 2, . . . ,0, where u1, . . . , uk denote the offspring of v in T. Finally, set
Y(t) = ν∅.

Under this construction, the law Pv,x of νv conditional upon Xv = x is QXv ,
for any v ∈ ∂B∅(s), s = t, . . . ,0. Indeed, clearly this is the case for s = t and
proceeding recursively, assume it applies at levels t, . . . , s + 1. Then, as {Qx,x ∈
Xq} satisfy (4.10), we see that for v ∈ ∂B∅(s) of offspring u1, . . . , uk , any x ∈ Xq

and bounded Borel function g(·),∫
g(ν)Pv,x(dν) = E

[∫
g(F0(ν1, . . . , νk))

k∏
i=1

QXui
(dνi)

∣∣∣Xv = x

]

= qcq,k

∫
g(F0(ν1, . . . , νk))

k∏
i=1

[Q − q−1Qx](dνi)

=
∫

g(ν)Qx(dν).

That is, Pv,x = Qx , as claimed. In particular, μY(t)|∅ = QX∅
, μY(t) = Q and with

Qx(dν) = qν(x)Q(dν), it follows that

∥∥μ∅,Y (t) − μ∅ × μY(t)

∥∥
TV = 1

q

q∑
x=1

‖Qx − Q‖TV =
∫

‖ν − ν‖TVQ(dν),

which is independent of t and strictly positive (since Q �= δν). By the preceding
inequality, this is a sufficient condition for reconstructibility. �

4.3.3 Complexity: exponential growth of the number of clusters. We provide next
a heuristic derivation of the predicted value of the complexity parameter � = �(k)

for proper q-colorings of a uniformly chosen random regular graph G = Gn,k+1, as
defined in Section 4.1, regime II, namely, when kd(q) < k < kc(q). This parameter
is interpreted as the exponential growth rate of the number of “typical” lumps
or “clusters” to which the uniform measure μG(·) decomposes. Remarkably, we
obtain an expression for �(k) in terms of the nondegenerate solution of (4.9) at
ε = 0.

Recall Definition 3.6 that the Bethe free entropy for proper q-colorings of G

and a given (permissive) message set {νi→j } is

�{νi→j } = − ∑
(i,j)∈E

log

{
1 −

q∑
x=1

νi→j (x)νj→i (x)

}
(4.13)

+ ∑
i∈V

log

{ q∑
x=1

∏
j∈∂i

(
1 − νj→i (x)

)}
.
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According to the Bethe–Peierls approximation, the logarithm of the number Zn

of proper q-colorings for G = Gn,k+1 is approximated for large n by the value
of �{νi→j } for a message set {νi→j } which solves the Bethe–Peierls equations
(4.8) at ε = 0. One trivial solution of these equations is νi→j = ν (the uniform
distribution over {1, . . . , q}), and for G = Gn,k+1 the corresponding Bethe free
entropy is

�(ν) = n

{
−k + 1

2
log

{
1 −

q∑
x=1

ν(x)2

}
+ log

{ q∑
x=1

(
1 − ν(x)

)k+1
}}

(4.14)

= n

[
logq + k + 1

2
log(1 − 1/q)

]
.

As explained before, when kd(q) < k < ks(q), upon fixing n large enough,
a regular graph Gn of degree k + 1 and a reference proper q-coloring x∗ of its
vertices, we expect equation (4.8) to admit a second solution {ν∗

i→j } for all ε > 0
small enough. In the limit ε ↓ 0, this solution is conjectured to describe the uni-
form measure over proper q-colorings in the cluster ��,n containing x∗. In other
words, the restricted measure

μ�,n(x) = μGn(x|��,n) = 1

Z�,n

∏
(i,j)∈E

I(xi �= xj )I(x ∈ ��,n), (4.15)

is conjectured to be Bethe approximated by such message set {ν∗
i→j }. One natu-

rally expects the corresponding free entropy approximation to hold as well. That
is, to have

logZ�,n = �{ν∗
i→j } + o(n).

As discussed in Section 4.1, in regime II, namely, for kd(q) < k < kc(q), it is con-
jectured that for uniformly chosen proper q-coloring X∗, the value of n−1 logZ�,n

(for the cluster ��,n containing X∗), concentrates in probability as n → ∞, around
a nonrandom value. Recall that logZn = �(ν) + o(n), so with most of the Zn

proper q-colorings of Gn comprised within the en�+o(n) “typical” clusters ��,n,
� ∈ Typn, each having Z�,n proper q-colorings, we conclude that

�(ν) = logZn + o(n) = log

{|Typn|∑
�=1

Z�,n

}
+ o(n)

(4.16)
= n� + E[�{ν∗

i→j }] + o(n),

where the latter expectation is with respect to both the random graph Gn and the
reference configuration X∗ (which together determine the message set {ν∗

i→j }).
This argument provides a way to compute the exponential growth rate �(k) of

the number of clusters, as

�(k) = lim
n→∞n−1{

�(ν) − E[�{ν∗
i→j }]

}
.
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For a uniformly chosen random proper q-coloring X∗, the distribution of {ν∗
i→j }

can be expressed in the n → ∞ limit in terms of the corresponding solution {Qx}
of the fixed point equation (4.9) at ε = 0. Specifically, following the Bethe ansatz,
we expect that for uniformly chosen i ∈ [n], the law of {ν∗

j→i , j ∈ ∂i} condi-

tional on {X∗
i ,X

∗
j , j ∈ ∂i} converges as n → ∞ to the product measure

∏k+1
j=1 QX∗

j

and the law of {ν∗
i→j , ν

∗
j→i} conditional on X∗

i and X∗
j converges to the prod-

uct measure QX∗
i
× QX∗

j
. By the invariance of the uniform measure over proper

q-colorings to permutations of the colors, for any edge (i, j) of Gn,k+1, the pair
(X∗

i ,X
∗
j ) is uniformly distributed over the q(q − 1) choices of xi �= xj in X 2

q .
Moreover, for large n the Bethe approximation predicts that {X∗

i ,X
∗
j , j ∈ ∂i} is

nearly uniformly distributed over the q(q − 1)k+1 choices of xj ∈ Xq , all of which
are different from xi ∈ Xq . We thus conclude that

�(k) = −k + 1

2

1

q(q − 1)

∑
x1 �=x2

∫
We(ν1, ν2)Qx1(dν1)Qx2(dν2)

(4.17)

+ 1

q(q − 1)k+1

q∑
x=1

∑
xj �=x

∫
Wv(ν1, . . . , νk+1)

k+1∏
j=1

Qxj
(dνj ),

where

We(ν1, ν2) = log
{

1 − ∑q
x=1 ν1(x)ν2(x)

1 − 1/q

}
, (4.18)

Wv(ν1, . . . , νk+1) = log

{
1

q

q∑
x=1

k+1∏
j=1

1 − νj (x)

1 − 1/q

}
. (4.19)

5 Reconstruction and extremality

As shown in Section 3.4, the Bethe–Peierls approximation applies for permissive
graph-specification pairs (G,ψ) such that:

(a) The graph G = (V ,E) has large girth (and it often suffices for G to merely
have a large girth in the neighborhood of most vertices).

(b) The dependence between the random vectors xA and xB is weak for sub-
sets A and B which are far apart on G (indeed, we argued there that “extremality”
is the appropriate notion for this property).

While these conditions suffice for Bethe–Peierls approximation to hold on gen-
eral graphs with bounded degree, one wishes to verify them for specific models
on sparse random graphs. For condition (a) this can be done by standard random
graph techniques (cf. Section 2.1), but checking condition (b) is quite an intricate
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task. Thus, largely based on [28], we explore here the extremality condition in the
context of random sparse graphs.

Beyond the relevance of extremality for the Bethe–Peierls approximation, it is
interesting per se and can be rephrased in terms of the reconstruction problem.
In Section 4.3.1 we considered the latter in case of proper q-colorings, where it
amounts to estimating the color of a distinguished (root) vertex ∅ ∈ V for a uni-
formly chosen proper coloring X of the given graph G = (V ,E), when the colors
{Xj, j ∈ U} on a subset U of vertices are revealed. In particular, we want to un-
derstand whether revealing the colors at large distance t from the root, induces a
nonnegligible bias on the distribution of X∅.

It turns out that, for a random Erdös–Renyi graph chosen uniformly from the en-
semble G(α,n), there exists a critical value αr(q), such that reconstruction is possi-
ble (in the sense of Definition 4.7), when the number of edges per vertex α > αr(q),
and impossible when α < αr(q). Recall from Section 4.3, that the reconstruction
threshold αr(q) is conjectured to coincide with the so-called “clustering” thresh-
old αd(q). That is, the uniform measure over proper q-colorings of these random
graphs should exhibit coexistence if and only if αr(q) = αd(q) ≤ α < αc(q). As we
will show, this relation provides a precise determination of the clustering threshold.

More generally, consider a graph-specification pair (G,ψ), with a distinguished
marked vertex ∅ ∈ V (which we call hereafter the “root” of G), and a sample X

from the associated graphical model μG,ψ(x) of (1.4). The reconstructibility ques-
tion asks whether “far away” variables XB∅(t) provide nonnegligible information

about X∅ [here B∅(t) denotes the subset of vertices i ∈ V at distance d(∅, i) ≥ t

from the root]. This is quantified by the following definition, where as usual, for
U ⊆ V we denote the corresponding marginal distribution of XU = {Xj : j ∈ U}
by μU(xU).

Definition 5.1. The reconstruction problem is (t, ε)-solvable (also called, (t, ε)-
reconstructible), for the graphical model associated with (G,ψ) and rooted at ∅ ∈
V , if ∥∥μ∅,B∅(t) − μ∅ × μB∅(t)

∥∥
TV ≥ ε. (5.1)

We say that the reconstruction problem is solvable (reconstructible), for a given
sequence {Gn} of random graphs (and specified joint distributions of the graph Gn,
the specification ψ on it, and the choice of ∅ ∈ Vn), if for some ε > 0 and all t ≥ 0,
the events An(t) that the reconstruction problem is (t, ε)-solvable on Gn, occur
with positive probability. That is, when inft lim supn→∞ P{An(t)} > 0.

Remark 5.2. The inequality (5.1) fails when the connected component of ∅ in G,
has diameter less than t . Hence, for sparse random graphs Gn, the sequence n �→
P{An(t)} is often bounded away from one (on account of ∅ possibly being in a
small connected component).
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The rationale for this definition is that the total variation distance on the left-
hand side of equation (5.1) measures the information about X∅ that the variables
in B∅(t) provide. For instance, it is proportional to the difference between the
probability of correctly guessing X∅ when knowing XB∅(t), and the a priori prob-
ability of doing so without knowing XB∅(t).

Note that nonreconstructibility is slightly weaker than the extremality condi-
tion of Section 3.4. Indeed, we require here a decay of the correlations between a
vertex ∅ and an arbitrary subset of vertices at distance t from it, whereas in De-
finition 3.13, we require such decay for arbitrary subsets of vertices A and B of
distance t apart. However, it is not hard to check that when proving Theorem 3.14
we only consider the extremality condition in cases where the size of the sub-
set B does not grow with R (or with the size of G) and for graph sequences that
converge locally to trees, this is in turn implied by a nonreconstructibility type
condition, where B = {∅} is a single vertex.

Recall Section 2.1 that for a uniformly chosen root ∅ and locally tree-like sparse
random graphs Gn, for any t ≥ 0 fixed, the finite neighborhood B∅(t) converges
in distribution to a (typically random) tree. We expect that with high probability
the vertices on the corresponding boundary set ∂B∅(t) = {i ∈ B∅(t) : ∂i �⊆ B∅(t)},
are “far apart” from each other in the complementary subgraph B∅(t). This sug-
gests that for the graphical model on B∅(t), the variables {Xj, j ∈ ∂B∅(t)} are
then weakly dependent, and so approximating Gn by its limiting tree structure
might be a good way to resolve the reconstruction problem. In other words, one
should expect reconstructibility on Gn to be determined by reconstructibility on
the associated limiting random tree.

Beware that the preceding argument is circular, for we assumed that variables
on “far apart” vertices (with respect to the residual graph B∅(t)), are weakly de-
pendent, in order to deduce the same for variables on vertices that are “far apart”
in Gn. Indeed, its conclusion fails for many graphical models. For example, [28]
shows that the tree and graph reconstruction thresholds do not coincide in the sim-
plest example one can think of, namely, ferromagnetic Ising models.

On the positive side, we show in the sequel that the tree and graph reconstruc-
tion problems are equivalent under the sphericity condition of Definition 4.1 (we
phrased this definition in terms proper colorings, but it applies verbatim to general
graphical models). More precisely, if for any ε, δ > 0, the canonical measure μ(·)
is (ε, δ)-spherical with high probability (with respect to the graph distribution),
then the graph and tree reconstructions do coincide. It can indeed be shown that,
under the sphericity condition, sampling X according to the graphical model on
the residual graph B∅(t), results with {Xj, j ∈ ∂B∅(t)} which are approximately
independent.

This sufficient condition was applied in [28] to the Ising spin glass (where
sphericity can be shown to hold as a consequence of a recent result by Guerra and
Toninelli [32]). More recently, [45] deals with proper colorings of random graphs
(building on the work of Achlioptas and Naor, in [4]). For a family of graphical
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models parametrized by their average degree, it is natural to expect reconstructibil-
ity to hold at large average degrees (as the graph is “more connected”), but not
at small average degrees (since the graph “falls” apart into disconnected compo-
nents). We are indeed able to establish a threshold behavior (i.e., a critical degree
value above which reconstruction is solvable) both for spin glasses and for proper
colorings.

5.1 Applications and related work

Beyond its relation with the Bethe–Peierls approximation, the reconstruction prob-
lem is connected to a number of other interesting problems, two of which we
briefly survey next.

Markov Chain Monte Carlo (MCMC) algorithms provide a well established
way of approximating marginals of the distribution μ = μG,ψ of (1.4). The idea
is to define an (irreducible and aperiodic) Markov chain whose unique stationary
distribution is μ(·), so if this chain converges rapidly to its stationary state (i.e.,
its mixing time is small), then it can be effectively used to generate a sample X

from μ(·).
In many interesting cases, the chain is reversible and consists of local updates

(i.e., consecutive states differ in only few variables, with transition probabilities
determined by the restriction of the state to a neighborhood in G of the latter set).
Under these conditions, the mixing time is known to be related to the correlation
decay properties of the stationary distribution μ(·) (see [22,33]). With

�(t;x) ≡ ∥∥μ∅|B∅(t)

(·|xB∅(t)

) − μ∅(·)∥∥TV, (5.2)

one usually requires in this context that the dependence between x∅ and xB∅(t)

decays uniformly, that is, supx �(t;x) → 0 as t → ∞. On graphs with subexpo-
nential growth, a fast enough (uniform) decay is necessary and sufficient for fast
mixing. However, for more general graphs, this uniform decay is often a too strong
requirement, which one might opt to replace by the weaker assumption of nonre-
constructibility (indeed, the inequality (5.1) can be rewritten as E[�(t;X)] ≥ ε,
where the expectation is with respect to the random sample X).

In this direction, it was shown in [10] that nonreconstructibility is a necessary
condition for fast mixing. Though the converse may in general fail, nonrecon-
structibility is sufficient for rapid decay of the variance of local functions (which
in physics is often regarded as the criterion for fast dynamics; see [46]). Further, for
certain graphical models on trees, [10] shows that nonreconstructibility is equiva-
lent to polynomial spectral gap, a result that is sharpened in [38] to the equivalence
between nonreconstructibility and fast mixing (for these models on trees).

Random constraint satisfaction problems. Given an instance of a constraint sat-
isfaction problem (CSP), consider the uniform distribution over its solutions. As



Gibbs measures on sparse random graphs 199

we have seen in Section 1.2.2, it takes the form (1.23), which is an immediate
generalization of (1.4).

Computing the marginal μ∅(x∅) is useful both for finding a solution and the
number of solutions of such a CSP. Suppose we can generate only one uniformly
random solution X. In general this is not enough for approximating the law of X∅

in a meaningful way, but one can try the following: First, fix all variables “far
from ∅” to take the same value as in the sampled configuration, namely XB∅(t).
Then, compute the conditional distribution at ∅ (which for locally tree-like graphs
can be done efficiently via dynamic programming). While the resulting distribution
is in general not a good approximation of μ∅(·), nonreconstructibility implies that
it is, with high probability within total variation distance ε of μ∅(·). That is, nonre-
constructibility yields a good approximation of μ∅(x∅) based on a single sample
(namely, a single uniformly random solution X). The situation is even simpler
under the assumptions of our main theorem (Theorem 5.4), where the boundary
condition XB∅(t) may be replaced by an i.i.d. uniform boundary condition.

We have explained in Section 4 why for a typical sparse random graph of
large average degree one should expect the set of proper colorings to form well-
separated “clusters.” The same rationale should apply, at high constraint density,
for the solutions of a typical instance of a CSP based on large, sparse random
graphs (cf. [6,41,44]). This in turn increases the computational complexity of sam-
pling even one uniformly random solution.

Suppose the set of solutions partitions into clusters and any two solutions that
differ on at most nε vertices, are in the same cluster. Then, knowing the value
of all “far away” variables XB∅(t) determines the cluster to which the sample X

belongs, which in turn provides some information on X∅. The preceding heuristic
argument connects reconstructibility to the appearance of well-separated solution
clusters, a connection that has been studied, for example, in [36,39].

Reconstruction problems also emerge in a variety of other contexts: (i) Phy-
logeny (where given some evolved genomes, one aims at reconstructing the
genome of their common ancestor; cf. [18]); (ii) Network tomography (where,
given end-to-end delays in a computer network, one aims to infer the link delays
in its interior; cf. [11]); (iii) Gibbs measures theory (cf. [13,27]).

Reconstruction on trees: a brief survey. The reconstruction problem is relatively
well understood in case the graph is a tree (see [47]). The fundamental reason for
this is that then the canonical measure μ(x) admits a simple description. More
precisely, to sample X from μ(·), first sample the value of X∅ according to the
marginal law μ∅(x∅), then recursively for each node j , sample its children {X�}
independently conditional on their parent value.

Because of this Markov structure, one can derive a recursive distributional equa-
tion for the conditional marginal at the root ν(t)(·) ≡ μ∅|B∅(t)(·|XB∅(t)) given the
variable values at generation t (just as we have done in the course of proving
Proposition 4.8). Note that ν(t)(·) is a random quantity even for a deterministic
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graph Gn (because XB∅(t) is itself drawn randomly from the distribution μ(·)).
Further, it contains all the information in the boundary about X∅ (i.e., it is a “suf-
ficient statistic”), so the standard approach to tree reconstruction is to study the
asymptotic behavior of the distributional recursion for ν(t)(·).

Indeed, following this approach, reconstructibility has been thoroughly charac-
terized for zero magnetic field Ising models on generic trees (cf. [13,15,25]). More
precisely, for such model on an infinite tree T of branching number br(T), the re-
construction problem is solvable if and only if br(T)(tanhβ)2 > 1. For the cases
we treat in the sequel, br(T) coincides with the mean offspring number of any ver-
tex, hence this result establishes a sharp reconstruction threshold in terms of the
average degree (or in terms of the inverse temperature parameter β), that we shall
generalize here to random graphs.

Reconstruction on general graphs poses new challenges, since it lacks such re-
cursive description of sampling from the measure μ(·). The result of [10] allows
for deducing nonreconstructibility from fast mixing of certain reversible Markov
chains with local updates. However, proving such fast mixing is far from being an
easy task, and in general the converse does not hold (i.e., one can have slow mixing
and nonreconstructibility).

A threshold λr for fast mixing has been established in [48] for the indepen-
dent set model of (3.20), in case Gn are random bipartite graphs. Arguing as
in [28], it can be shown that this is also the graph reconstruction threshold. An
analogous result was proved in [28] for the ferromagnetic Ising model and ran-
dom regular graphs (and it extends also to Poisson random graphs; see [21]).
In all of these cases, the graph reconstruction threshold does not coincide with
the tree reconstruction threshold, but coincides instead with the tree “uniqueness
threshold” (i.e., the critical parameter such that the uniform decorrelation condi-
tion supx �(t;x) → 0 holds).

5.2 Reconstruction on graphs: sphericity and tree-solvability

For the sake of clarity, we focus hereafter on Poisson graphical models. Specify-
ing such an ensemble requires an alphabet X , a density parameter γ ≥ 0, a finite
collection of nonnegative, symmetric functionals ψa(·, ·) on X × X , indexed by
a ∈ C , and a probability distribution {p(a) :a ∈ C} on C . In the random multi-
graph Gn the multiplicities of edges between pairs of vertices i �= j ∈ [n] are in-
dependent Poisson(2γ /n) random variables, and Gn has additional independent
Poisson(γ /n) self-loops at each vertex i ∈ [n]. For each occurrence of an edge
e = {e1, e2} in Gn (including its self-loops), we draw an independent random vari-
able Ae ∈ C according to the distribution {p(·)} and consider the graphical model
of specification ψ ≡ {ψAe(xe1, xe2) : e ∈ Gn}. Finally, the root ∅ is uniformly cho-
sen in [n], independently of the graph-specification pair (Gn,ψ).

For example, the uniform measure over proper q-colorings fits this framework
(simply take X = Xq and |C| = 1 with ψ(x, y) = I(x �= y)).
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It is easy to couple the multigraph Gn of the Poisson model and the Erdös–
Renyi random graph from the ensemble G(γ, n) such that the two graphs differ
in at most �n = ∑

1≤i≤j≤n Y{i,j} edges, where the independent variables Y{i,j}
have the Poisson(γ /n) distribution when i = j and that of (Poisson(2γ /n) − 1)+
when i �= j . It is not hard to check that �n/(logn) is almost surely uniformly
bounded, and hence by Proposition 2.6, almost surely the Poisson multigraphs
{Gn} are uniformly sparse and converge locally to the rooted at ∅, Galton–Watson
tree T of Poisson(2γ ) offspring distribution. Let T(�), � ≥ 0, denote the graph-
specification pair on the first � generations of T, where each edge carries the spec-
ification ψa(·, ·) with probability p(a), independently of all other edges and of the
realization of T.

It is then natural to ask whether reconstructibility of the original graphical
models is related to reconstructibility of the graphical models μT(�)(x) per equa-
tion (1.4) for G = T(�) and the same specification ψ .

Definition 5.3. Consider a sequence of random graphical models {Gn} converging
locally to the random rooted tree T. We say that the reconstruction problem is tree-
solvable for the sequence {Gn} if it is solvable for {T(�)}. That is, there exists ε > 0
such that, as � → ∞, for any t ≥ 0,∥∥μT(�)

∅,B∅(t)
− μ

T(�)
∅ × μ

T(�)

B∅(t)

∥∥
TV ≥ ε, (5.3)

with positive probability.

This definition could have been expressed directly in terms of the free boundary
Gibbs measure μT on the infinite rooted tree T. Indeed, the reconstruction problem
is tree-solvable if and only if with positive probability

lim inf
t→∞

∥∥μT
∅,B∅(t)

− μT
∅ × μT

B∅(t)

∥∥
TV > 0.

While equations (5.3) and (5.1) are similar, as explained before, passing from the
original graph to the tree is a significant simplification (due to the recursive de-
scription of sampling from μT(�)(·)).

We proceed with a sufficient condition for graph-reconstruction to be equiva-
lent to tree reconstruction. To this end, we introduce the concept of “two-replicas
type” as follows. Consider a graphical model G and two i.i.d. samples X(1), X(2)

from the corresponding canonical measure μ(·) = μ(G,ψ)(·) (we will call them
replicas following the spin glass terminology). The two-replica type is a ma-
trix {ν(x, y) :x, y ∈ X } where ν(x, y) counts the fraction of vertices j such that
X

(1)
j = x and X

(2)
j = y. We denote by R the set of distributions ν on X × X

and by Rn the subset of valid two-replicas types, that is, distributions ν with
nν(x, y) ∈ N for all x, y ∈ X .

The matrix ν = νn is a random variable, because the graph Gn is random, and
the two replicas X(1), X(2) are i.i.d. conditional on Gn. If μ(·) was the uniform
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distribution, then νn would concentrate (for large n), around ν(x, y) ≡ 1/|X |2.
Our sufficient condition requires this to be approximately true.

Theorem 5.4. Consider a sequence of random Poisson graphical models {Gn}.
Let νn(·, ·) be the type of two i.i.d. replicas X(1), X(2), and �νn(x, y) ≡ νn(x, y)−
ν(x, y). Assume that, for any x ∈ X ,

lim
n→∞E

{[
�νn(x, x) − 2|X |−1

∑
x′

�νn(x, x′)
]2}

= 0. (5.4)

Then, the reconstruction problem for {Gn} is solvable if and only if it is tree-
solvable.

Remark 5.5. The expectation in equation (5.4) is with respect to the two replicas
X(1), X(2) (which the type νn(·, ·) is a function of), conditional on Gn, as well as
with respect to Gn. Explicitly,

E
{
F

(
X(1),X(2))} = E

{ ∑
x(1),x(2)

μGn

(
x(1))μGn

(
x(2))F (

x(1), x(2))}. (5.5)

Remark 5.6. It is easy to see that the sphericity condition of Definition 4.1 implies
equation (5.4). That is, (5.4) holds if μGn are (ε, δn)-spherical for any ε > 0 and
some δn(ε) → 0.

Remark 5.7. In fact, as is hinted by the proof, condition (5.4) can be weakened,
for example, ν(·, ·) can be chosen more generally than the uniform matrix. Such a
generalization amounts to assuming that “replica symmetry is not broken” (in the
spin glass terminology, see [39]). For the sake of simplicity we omit such general-
izations.

Condition (5.4) emerges naturally in a variety of contexts, a notable one being
second moment method applied to random constraint satisfaction problems. As an
example, consider proper colorings of random graphs; cf. Section 4. The second
moment method was used in [5] to bound from below the colorability threshold.
The reconstruction threshold on trees was estimated in [12,53]. Building on these
results, and as outlined at the end of Section 5.3 the following statement is obtained
in [45].

Theorem 5.8. For proper q-colorings of a Poisson random graph of density γ ,
the reconstruction problem is solvable if and only if γ > γr(q), where for large q ,

γr(q) = 1

2
q[logq + log logq + o(1)]. (5.6)
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In general the graph and tree reconstruction thresholds do not coincide. For
example, as mentioned before, zero magnetic field ferromagnetic Ising models
on the Galton–Watson tree T(P,ρ,∞) (of Section 2), are solvable if and only if
ρ(tanh(β))2 > 1. The situation changes dramatically for graphs, as shown in [21,
28].

Theorem 5.9. For both Poisson random graphs and random regular graphs, re-
construction is solvable for zero magnetic field, ferromagnetic Ising models, if and
only if ρ tanh(β) > 1.

In physicists’ language, the ferromagnetic phase transition occurring at ρ ×
tanh(β) = 1, cf. Section 2, “drives” the reconstruction threshold. The proof of
reconstructibility for ρ tanh(β) > 1 essentially amounts to finding a bottleneck in
Glauber dynamics. As a consequence it immediately implies that the mixing time
is exponential in this regime. We expect this to be a tight estimate of the threshold
for exponential mixing.

On the other hand, for a zero magnetic field, Ising spin-glass, the tree and
graph thresholds do coincide. In fact, for such a model on a Galton–Watson tree
with Poisson(2γ ) offspring distribution, reconstruction is solvable if and only if
2γ (tanh(β))2 > 1 (see [25]). The corresponding graph result is:

Theorem 5.10. Reconstruction is solvable for Ising spin-glasses of zero magnetic
field, on Poisson random graph of density parameter γ , provided 2γ (tanh(β))2 >

1, and it is unsolvable if 2γ (tanh(β))2 < 1.

5.3 Proof of main results

Hereafter, let Bi (t) = {j ∈ [n] :d(i, j) ≤ t}, Bi (t) = {j ∈ [n] :d(i, j) ≥ t}, and
Di (t) ≡ Bi (t) ∩ Bi (t) (i.e., the set of vertices of distance t from i). Further, par-
tition the edges of Gn between the subgraphs Bi (t) and Bi (t) so edges between
two vertices from Di (t) are all in Bi (t), and excluded from Bi (t).

Beyond the almost sure convergence of the law of B∅(t) to the corresponding
Galton–Watson tree of depth-t , rooted at ∅ (which as explained before, is a conse-
quence of Proposition 2.6), the proof of Theorem 5.4 relies on the following form
of independence between B∅(t) and B∅(t) for Poisson random graphs.

Proposition 5.11. Let Gn be a Poisson random graph on vertex set [n] and density
parameter γ . Then, conditional on B∅(t), B∅(t) is a Poisson random graph on
vertex set [n] \ B∅(t − 1) with same edge distribution as Gn.

Proof. Condition on B∅(t) = G(t), and let G(t − 1) = B∅(t − 1) (notice that this
is uniquely determined from G(t)). This is equivalent to conditioning on a given
edge realization between the vertices k, l such that k ∈ G(t − 1) and l ∈ G(t).
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The graph B∅(t) has as vertices the set [n] \ G(t) and its edges are those (k, l) ∈
Gn such that k, l /∈ G(t − 1). Since the latter set of edges is disjoint from the one
we are conditioning upon, the claim follows by the independence of the choice of
edges taken into Gn. �

We also need to bound the tail of the distribution of the number of vertices in
the depth-t neighborhood of ∅. This can be done by comparison with a Galton–
Watson process.

Proposition 5.12. Let ‖B∅(t)‖ denote the number of edges (counting their mul-
tiplicities), in depth-t neighborhood of the root in a Poisson random graph Gn

of density γ . Then, for any λ > 0 there exists finite gt (λ, γ ) such that, for any n,
M ≥ 0

P{‖B∅(t)‖ ≥ M} ≤ gt (λ, γ )λ−M. (5.7)

Proof. Notice that, because of the symmetry of the graph distribution under per-
mutation of the vertices, we can and shall fix ∅ to be a deterministic vertex.
Starting at ∅ we explore Gn in breadth-first fashion and consider the sequence
of random variables Et = ‖B∅(t)‖. Then, for each t ≥ 0, the value of Et+1 − Et

is, conditional on B∅(t), upper bounded by the sum of |D∅(t)| × |B∅(t)| i.i.d.
Poisson(2γ /n) random variables. Since |B∅(t)| ≤ n and |D∅(t)| ≤ Et − Et−1 for
t ≥ 1 (with |D∅(0)| = 1), it follows that Et is stochastically dominated by |T(t)|,
where T(t) is a depth-t Galton–Watson tree with Poisson(2γ ) offspring distribu-
tion. By Markov’s inequality,

P{‖B∅(t)‖ ≥ M} ≤ E
{
λ|T(t)|}λ−M.

To complete the proof, recall that gt (λ, γ ) ≡ E{λ|T(t)|} is the finite solution
of the recursion gt+1(λ, γ ) = λξ(gt (λ, γ ), γ ) for ξ(λ, γ ) = e2γ (λ−1) and
g0(λ, γ ) = λ. �

In order to prove Theorem 5.4 we will first establish that, under condition (5.4),
any (fixed) subset of the variables {X1, . . . ,Xn} is (approximately) uniformly dis-
tributed. This is, at first sight, a surprising fact. Indeed, the condition (5.4) only
provides direct control on two-variables correlations. It turns out that two-variables
correlations control k-variable correlations for any bounded k because of the sym-
metry among X1, . . . ,Xn. To clarify this point, it is convenient to take a more
general point of view.

Definition 5.13. For any distribution μ(·) over X n (where X is a generic mea-
sure space), and any permutation π over the set {1, . . . , n} let μπ(·) denote the
distribution obtained acting with π on X × · · · × X .

Let μ(·) be a random probability distribution over X × · · · × X . We say that μ

is stochastically exchangeable if μ is distributed as μπ for any permutation π .
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Proposition 5.14. Suppose (5.4) holds for a finite set X and the type νn of two
i.i.d. replicas X(1), X(2) from a sequence of stochastically exchangeable random
measures μ(n) on X n. Then, for any fixed set of vertices i(1), . . . , i(k) ⊆ [n] and
any ξ1, . . . , ξk ∈ X , as n → ∞,

E
{∣∣μ(n)

i(1),...,i(k)(ξ1, . . . , ξk) − |X |−k
∣∣2} → 0. (5.8)

Proof. Per given replicas X(1), X(2), we define, for any ξ ∈ X and i ∈ [n],
Qi (ξ) =

{
I
(
X

(1)
i = ξ

) − 1

|X |
}{

I
(
X

(2)
i = ξ

) − 1

|X |
}

and let Q(ξ) = n−1 ∑n
i=1 Qi (ξ) denote the average of Qi (ξ) over a uniformly ran-

dom i ∈ [n]. Since

Q(ξ) = �νn(ξ, ξ) − |X |−1
∑
x′

�νn(ξ, x′) − |X |−1
∑
x′

�νn(x
′, ξ),

it follows from (5.4) and the triangle inequality, that E{Q(ξ)2} → 0 as n → ∞.
Further, |Q(ξ)| ≤ 1, so by the Cauchy–Schwarz inequality we deduce that for any
fixed, nonempty U ⊆ [n], b ∈ U , and ξa ∈ X ,∣∣∣∣E{ ∏

a∈U

Q(ξa)

}∣∣∣∣ ≤ E|Q(ξb)| → 0.

Next, fixing i(1), i(2), . . . , i(k) and U ⊆ [k], let

YU ≡ E

{ ∏
a∈U

(
I
(
Xi(a) = ξa

) − |X |−1)|μ}
,

where E{·|μ} denotes the expectation with respect to the measure μ(·) of the repli-
cas X(1), X(2), that is, at fixed realization of μ = μ(n). Note that by the stochastic
exchangeability of μ, and since supξ |Q(ξ)| ≤ 1, we have that for any nonempty
U ⊆ [k],

E{Y 2
U } = E

{ ∏
a∈U

Qi(a)(ξa)

}
= E

{ ∏
a∈U

Q(ξa)

}
+ �U,n,

where |�U,n| is upper bounded by the probability that |U | ≤ k independent uni-
form in [n] random variables are not distinct, which is O(1/n). Thus, E{Y 2

U } → 0
as n → ∞, for any fixed, nonempty U ⊆ [k].

The proof of the proposition is completed by noting that Y∅ = 1 and

μi(1),...,i(k)(ξ1, . . . , ξk) = ∑
U⊆[k]

|X ||U |−kYU ,

hence by the Cauchy–Schwarz inequality,

E
{∣∣μi(1),...,i(k)(ξ1, . . . , ξk) − |X |−k

∣∣2} ≤ ∑
∅ �=U,V ⊆[k]

E|YUYV | ≤ 2k
∑

∅ �=U⊆[k]
E{Y 2

U }



206 A. Dembo and A. Montanari

goes to zero as n → ∞. �

The following lemma is the key for relating the solvability of the reconstruction
problem to its tree-solvability.

Lemma 5.15. For any graphical model μ = μGn,ψ , any vertex ∅ ∈ [n], and all
t ≤ �, ∣∣∥∥μ∅,B∅(t) − μ∅ × μB∅(t)

∥∥
TV − ∥∥μ<

∅,B∅(t)
− μ<

∅ × μ<
B∅(t)

∥∥
TV

∣∣
(5.9)

≤ 5|X ||B∅(�)|∥∥μ>
D∅(�) − ρD∅(�)

∥∥
TV,

where for any U ⊆ [n], we let ρU(xU) = 1/|X ||U | denote the uniform distribution
of xU , with μ<

U denoting the marginal law of xU for the graphical model in which
the edges of B∅(�) are omitted, whereas μ>

U denotes such marginal law in case all
edges of B∅(�) are omitted.

Proof. Adopting hereafter the shorthands B(t), B(t), and D(t) for B∅(t), B∅(t),
and D∅(t), respectively, recall that by the definition of these sets there are no edges
in Gn between B(t) and B(t)\D(t). Hence, �(t, x) of equation (5.2) depends only
on xD(t) and, consequently,∥∥μ∅,B(t) − μ∅ × μB(t)

∥∥
TV = ∑

x

μB(t)

(
xB(t)

)
�(t, x)

= ∑
x

μD(t)

(
xD(t)

)∥∥μ∅|D(t)

(·|xD(t)

) − μ∅(·)∥∥TV.

By the same reasoning also∥∥μ<
∅,B(t)

− μ<
∅ × μ<

B(t)

∥∥
TV = ∑

x

μ<
D(t)

(
xD(t)

)∥∥μ<
∅|D(t)

(·|xD(t)

) − μ<
∅(·)∥∥TV.

Since ∅ ∈ B(t) ⊆ B(�), the conditional law of x∅ given xD(t) is the same under
the graphical model for Gn and the one in which all edges of B(�) are omitted.
Further, by definition of the total variation distance, the value of ‖μU − μ<

U‖TV
is nondecreasing in U ⊆ B(�). With the total variation distance bounded by one,
it thus follows from the preceding identities and the triangle inequality that the
left-hand side of equation (5.9) is bounded above by

‖μ∅ − μ<
∅‖TV + 2

∥∥μD(t) − μ<
D(t)

∥∥
TV ≤ 3

∥∥μB(�) − μ<
B(�)

∥∥
TV.

Next, considering the distribution μB(�)(z) on the discrete set Z = X B(�), notice
that, as a consequence of equation (1.4) and of the fact that B(�) and B(�) are edge
disjoint,

μB(�)(z) = f (z)ρ2(z)∑
z′∈Z f (z′)ρ2(z′)

, (5.10)
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for the [0,1]-valued function f = μ<
B(�) on Z , and the distribution ρ2 = μ>

B(�) on
this set. Clearly, replacing ρ2 in the right-hand side of (5.10) by the uniform distri-
bution ρ1 = ρ on Z , results with

∑
z′∈Z f (z′)ρ1(z

′) = 1/|Z| and in the notations
of (3.24), also with ρ̂1 = f . We thus deduce from the latter bound that∥∥μB(�) − μ<

B(�)

∥∥
TV ≤ 3

2
|Z|∥∥μ>

B(�) − ρB(�)

∥∥
TV,

and the proof of the lemma is complete upon noting that μ>
B(�) deviates from the

uniform distribution only in terms of its marginal on D(�). �

Proof of Theorem 5.4. Fixing t ≤ �, let �n denote the left hand side of equa-
tion (5.9). We claim that its expectation with respect to the Poisson random
model Gn vanishes as n → ∞. First, with �n ≤ 1 and supn P(‖B∅(�)‖ ≥ M) → 0
as M → ∞, see Proposition 5.12, it suffices to prove that for any finite M , as
n → ∞,

E
{
�nI

(‖B∅(�)‖ < M
)} → 0.

Decomposing this expectation according to the finitely many events {B∅(�) = H},
indexed by rooted, connected, multigraphs H of less than M edges (counting mul-
tiplicities), we have by (5.9) that

E
{
�nI

(‖B∅(�)‖ < M
)} ≤ 5|X |M ∑

‖H‖<M

E
{∥∥μ>

D∅(�) − ρD∅(�)

∥∥
TV|B∅(�) = H

}
,

and it is enough to show that each of the terms on the right-hand side vanishes as
n → ∞.

Recall Proposition 5.11 that each term in the sum is the expectation, with respect
to a Poisson graphical model of density γ over the collection [n] \ B∅(� − 1) of at
least n − M vertices. The event {B∅(�) = H} fixes the set D = D∅(�) whose finite
size depends only on the rooted multigraph H. By Proposition 5.14 we thus deduce
that conditional on this event, the expected value of

‖μ>
D − ρD‖TV = 1

2

∑
xD

∣∣μ>
D (xD) − |X |−|D|∣∣,

vanishes as n → ∞. To recap, we have shown that for any t ≤ �, the expected
value of the left-hand side of equation (5.9) vanishes as n → ∞.

In view of Definition 5.1, this implies that the reconstruction problem is solvable
for {Gn} if and only if inft lim sup�→∞ lim supn→∞ P{An(t, �, ε)} > 0 for some
ε > 0, where An(t, �, ε) denotes the event∥∥μ<

∅,B∅(t)
− μ<

∅ × μ<
B∅(t)

∥∥
TV ≥ ε.

Recall that μ<(·) is the canonical measure for the edge-independent random
specification on the random graph B∅(�) and that almost surely the uniformly
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sparse Poisson random graphs {Gn} converge locally to the Galton–Watson tree T
of Poisson(2γ ) offspring distribution. Applying Lemma 2.16 for the uniformly
bounded function I(An(t, �, ε)) of B∅(�) and averaging first under our uni-
form choice of ∅ in [n], we deduce that P{An(t, �, ε)} → P{A∞(t, �, ε)}, where
A∞(t, �, ε) denotes the event on the left-hand side of (5.3). That is, {Gn} is solv-
able if and only if inft lim sup�→∞ P{A∞(t, �, ε)} > 0 for some ε > 0, which is
precisely the definition of tree-solvability. �

Proof of Theorem 5.8. Following [45], this proof consists of four steps:
(1) It is shown in [53] that for regular trees of degree 2γ the reconstruction

threshold γr,tree(q) for proper q-colorings grows with q → ∞ as in (5.6). In the
large γ limit considered here, a Poisson(2γ ) random variable is tightly concen-
trated around its mean. Hence, as noted in [53], the result (5.6) extends straight-
forwardly to the case of random Galton–Watson trees with offspring distribution
Poisson(2γ ).

(2) Given two balanced proper q-colorings x(1), x(2) of Gn (a q-coloring is
balanced if it has exactly n/q vertices of each color), recall that their joint type is
the q-dimensional matrix ν(·, ·) such that ν(x, y) counts the fraction of vertices
i ∈ [n] with x

(1)
i = x and x

(2)
i = y. Let Zb(ν) denote the number of balanced pairs

of proper q-colorings x(1), x(2) of Gn with the given joint type ν. For γ ≤ q logq −
O(1), while proving Theorem 4.4 it is shown in [4] that EZb(ν)/EZb(ν) → 0
exponentially in n (where ν(x, y) = 1/q2 denotes the uniform joint type).

(3) The preceding result implies that, for any ε > 0 and some nonrandom
δn(ε) → 0, the uniform measure over proper q-colorings of an instance of the
random Poisson multigraph Gn is with high probability (ε, δn)-spherical (see Def-
inition 4.1). Notice that this implication is not straightforward as it requires bound-
ing the expected ratio of Zb(ν) to the total number of pairs of proper q-colorings.
We refer to [45] for this part of the argument.

(4) As mentioned in Remark 5.6, by Theorem 5.4 the latter sphericity condition
yields that with high probability the q-colorings reconstruction problem is solvable
if and only if it is tree-solvable. Therefore, the result of step (1) about the tree-
reconstruction threshold γr,tree(q) completes the proof. �
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