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Abstract. Convergence in Mallows distance is of particular interest when
heavy-tailed distributions are considered. For 1 ≤ α < 2, it constitutes an al-
ternative technique to derive Central Limit type theorems for non-Gaussian
α-stable laws. In this note, for properly stabilized martingale sums and se-
quences of φ-mixing random variables, we establish Mallows convergence
to stable laws. Sufficient conditions are presented in the setting of familiar
Lindeberg-like conditions and extend earlier results for the independent case.

1 Introduction

For α > 0, the Mallows (1972) α-distance between two cumulative distribution
functions FX and FY is given by

dα(FX,FY ) = inf
(X,Y )

(
E(|X − Y |α)

)1/α
, (1)

where the infimum is taken over all random vectors (X,Y ) with marginal distribu-
tions FX and FY , respectively X ∼ FX and Y ∼ FY . The Mallows distance, also
known as the Wasserstein metric, satisfies the metric relations

dα
α (FX,FY ) ≤ dα

α (FX,FZ) + dα
α (FZ,FY ), 0 < α ≤ 1, (2)

and

dα(FX,FY ) ≤ dα(FX,FZ) + dα(FZ,FY ), α ≥ 1. (3)

The connection between convergence in Mallows distance and the convergence

in distribution (
d→) was established by Bickel and Freedman (1981): for α ≥ 1

and for distribution functions F0 and {Fn}n≥1 satisfying
∫ |x|α dFj (x) < ∞, j =

0,1,2, . . . , we have

dα(Fn,F0)→
n

0 ⇔ Fn
d→ F0 and

∫
|x|α dFn(x)→

n

∫
|x|α dF0(x). (4)

This fact was used by Johnson and Samworth (2005) to establish Central
Limit type theorems for stable laws. And was further explored by Barbosa and
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Dorea (2009) to derive Lindeberg-like conditions for sequences of independent
random variables X1,X2, . . . :

1

n

n∑
j=1

E
{|Xj − Yj |α1

(|Xj − Yj | > bn(2−α)/(2α))} → 0 ∀b > 0, (5)

where Y1, Y2, . . . are independent copies of an α-stable random variable Y . More
specifically, for α ≥ 1 and Sn = X1 +· · ·+Xn, there exist stabilizing constants {cn}
such that dα(Fn,FY )→

n
0, where Y ∼ FY and Sn−cn

n1/α ∼ Fn.

In this note, for 1 < α < 2, we extend this result for a martingale setting and for
mixing sequences of random variables {Xn}n≥1 satisfying

|P(A ∩ B) − P(A)P (B)| ≤ φ(n)P (A)P (B) with φ(n) ↓ 0 (6)

for all k ≥ 1, all A ∈ Fk = σ(X1, . . . ,Xk) and all B ∈ F ∞
k+n = σ(Xk+n,

Xk+n+1, . . .). Theorems 1 and 2 exhibit Lindeberg-like conditions that assure the
desired convergence.

2 Preliminaries and auxiliary results

First, we state some properties for stable distributions [see, e.g., Samorodnitsky
and Taqqu (2000)]. For 0 < α ≤ 2, we say that Y is an α-stable random variable, or,
equivalently possesses an α-stable distribution, if for any n ≥ 2, there are a positive
number an and a real number dn such that

Y1 + Y2 + · · · + Yn
d= anY + dn, (7)

where Y1, Y2, . . . , Yn are independent copies of Y and d= stands for equality in
distribution.

Proposition 1. If Y has an α-stable distribution then:

(a) E(|Y |α′
) < ∞ for 0 < α′ < α and in (7) we can take an = n1/α .

(b) If α > 1 there exists a real number μ (shift parameter) such that μ = EY

and dn = μ(n − n1/α).

A key point to our proofs is the use of moment inequalities. In Proposition 2, we
gather some needed moment inequalities that include Bahr–Essen’s inequality for
independent random variables and Burkholder’s martingale inequality [see, e.g.,
de la Peña (1990) or Hall and Heyde (1980)].

Proposition 2. (a) For random variables ξ1, ξ2, . . . and Sn = ξ1 +· · ·+ξn we have

E{|Sn|α} ≤
n∑

j=1

E{|ξj |α}, 0 < α ≤ 1, (8)



130 E. G. Barbosa and C. C. Y. Dorea

and

E{|Sn|α} ≤ nα−1
n∑

j=1

E{|ξj |α}, α ≥ 1. (9)

(b) If, in addition, ξ1, ξ2, . . . are independent then

E{|Sn − E(Sn)|α} ≤ 2
n∑

j=1

E{|ξj − E(ξj )|α}, 1 < α ≤ 2. (10)

(c) And, if {Sn} is a martingale then there exists a constant C(α) > 0 such that

E{|Sn|α} ≤ C(α)E

{[
n∑

j=1

ξ2
j

]α/2}
, α > 1. (11)

Next, we derive the corresponding inequality for φ-mixing sequences.

Lemma 1. Let {ξn}n≥1 be a sequence of φ-mixing random variables satisfying (6)
and assume that E(ξn) = 0 and supn E(|ξn|) ≤ M < ∞. Then, for α > 1, there
exists a constant C(α) > 0 such that for all 0 < mn < n, kn = [n/mn] and all
bn > 0 we have

E{|Sn|α} ≤ C(α)

{
mα

nbα
nkα/2

n + (mnknφ(mn)M)α

(12)

+ mα−1
n

n∑
j=1

E
[|ξj |α1

(|ξj | > bn − φ(mn)M
)]}

.

Proof. (a) Let Fn = σ(ξ1, . . . , ξn) and let ln = n − knmn. Define

Ui(j) = ξimn+j − E
(
ξimn+j |F(i−1)mn+j

)
(13)

and

Vi(j) = E
(
ξimn+j |F(i−1)mn+j

)
. (14)

Since ξimn+j is F ∞
imn+j -measurable we have from (6) and Roussas and Ioan-

nides (1987),

|Vi(j)| ≤ φ(mn)E(|ξimn+j |) ≤ φ(mn)M a.s. (15)

(a.s.: almost surely).
(b) Write

Sn =
mn∑
j=1

ξj +
mn∑
j=1

kn−1∑
i=1

Ui(j) +
mn∑
j=1

kn−1∑
i=1

Vi(j) +
ln∑

l=1

ξknmn+l . (16)
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Since α > 1, from (9) we derive

E|Sn|α ≤ 4α−1[E|An|α + E|Bn|α + E|Cn|α + E|Dn|α], (17)

E|An|α ≤ mα−1
n

mn∑
j=1

E|ξj |α and E|Dn|α ≤ lα−1
n

ln∑
l=1

E|ξknmn+l|α. (18)

From (15) we have

E|Cn|α ≤ mα−1
n (kn − 1)α−1

mn∑
j=1

kn−1∑
i=1

E|Vi(j)|α

(19)
≤ (mnknφ(mn)M)α.

(c) Fix j and let Zk(j) = ∑k
i=1 Ui(j). Since E(|ξimn+j |) ≤ M we have

E(|Ui(j)|) ≤ 2M and E(|Zk(j)|) < ∞. From (13) we have E{Zk+1(j)|
F(k−1)mn+j } = Zk(j) a.s. Thus {Zk(j), Fkmn+j } is a martingale. From inequal-
ity (11) there exists C′(α) > 0 such that for j = 1, . . . ,mn we have

E

∣∣∣∣∣
kn−1∑
i=1

Ui(j)

∣∣∣∣∣
α

≤ C′(α)E

{[
kn−1∑
i=1

U2
i (j)

]α/2}

≤ C′(α)E

{[
(kn − 1)b2

n +
kn−1∑
i=1

U2
i (j)1

(|Ui(j)| > bn

)]α/2}

≤ C′(α)

[
(kn − 1)α/2bα

n +
kn−1∑
i=1

E
{|ξimn+j |α1

(|ξimn+j | > bn − φ(mn)M
)}]

,

where for the last inequalities we have used (8), (13), (15) and the fact that

1
(|Ui(j)| > bn

) ≤ 1
(|ξimn+j | > bn − φ(mn)M

)
. (20)

It follows that

E|Bn|α ≤ C′(α)

[
mnk

α/2
n bα

n

+ mα−1
n

mn∑
j=1

kn−1∑
i=1

E
{|ξimn+j |α (21)

× 1
(|ξimn+j | > bn − φ(mn)M

)}]
.
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(d) Using the inequality (18) and arguing as above we obtain

E|An|α ≤ mα−1
n

[
mnb

α
n +

mn∑
j=1

E
{|ξj |α1

(|ξj | > bn − φ(mn)M
)}]

(22)

and

E|Dn|α ≤ lα−1
n

[
lnb

α
n +

ln∑
l=1

E
{|ξknmn+j |α1

(|ξknmn+j | > bn − φ(mn)M
)}]

. (23)

Finally, from (17) and (19)–(23) we get (12) with C(α) = 4α−1C′(α). �

3 Martingale sums and mixing sequences

For 1 < α < 2 we seek conditions under which there exit constants {cn} such that

lim
n→∞dα(Fn,FY ) = 0,

S
(X)
n − cn

n1/α
∼ Fn, (24)

where S
(X)
n = X1 + · · · + Xn and FY is an α-stable distribution.

From (1) and Proposition 1 we can replace FY by the distribution of

S
(Y )
n − (n − n1/α)EY

n1/α
, (25)

where S
(Y )
n = Y1 + · · ·+Yn and Y1, . . . , Yn are independent copies of Y . It follows

that, by taking

cn =
n∑

j=1

E(Xj − Yj ) − (n − n1/α)EY (26)

the Mallows convergence (24) can be assured if

1

n
E{|Sn|α} = 1

n
E

{∣∣∣∣∣
n∑

j=1

[(Xj − Yj ) − E(Xj − Yj )]
∣∣∣∣∣
α}

→
n

0. (27)

As in the independence case Lindeberg-like condition will be considered.

Condition 1. Let 1 < α < 2 and let Y be an α-stable random variable. For Y1,
Y2, . . . independent copies of Y and {Yn}n≥1 independent of {Xn}n≥1, assume that

lim
n→∞

1

n

n∑
j=1

E
{|Xj − Yj |α1

(|Xj − Yj | > bn(2−α)/(2α))} = 0 ∀b > 0. (28)
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Theorem 1. Assume that Condition 1 holds and that {S(X)
n , Fn}, Fn = σ(X1, . . . ,

Xn), is a martingale. Then (24) holds with cn given by (26). Moreover,

S
(X)
n − cn

n1/α

d→ Y. (29)

Proof. (a) First, note that it is enough to prove (27). The arguments above show
that Mallows convergence (24) follows from (27). Also, since

E|(Xj − Yj ) − E(Xj − Yj )|α ≤ 2αE|(Xj − Yj )|α (30)

it follows that the pair {(Xn −EXn)} and {(Yn −EYn)} satisfies (28). And we may
take E(Xj − Yj ) = 0.

(b) Let E(Xj − Yj ) = 0. Since {Yn}n≥1 is independent of {Xn}n≥1 then for

Sn = S(X)
n − S(Y )

n and Gn = σ((X1, Y1), . . . , (Xn,Yn)). (31)

We have a martingale {Sn, Gn}. Let Zj = Xj − Yj . From inequality (11) there
exists C(α) > 0 such that

E|Sn|α ≤ C(α)E

{[
n∑

j=1

Z2
j

]α/2}

≤ C(α)E

{[
b2n2/α +

n∑
j=1

Z2
j 1

(|Zj | > bn(2−α)/(2α))]α/2}
.

Since α/2 ≤ 1 we have from (8)

E|Sn|α ≤ C(α)

[
bαn +

n∑
j=1

E
{|Zj |α1

(|Zj | > bn(2−α)/(2α))}]. (32)

Then we obtain (27) by letting b → 0. To prove (29) we make use of (4). Note
that E|Xn| < ∞, E|Y | < ∞ and d1(Fn,FY ) ≤ dα(Fn,FY ). Since dα(Fn,FY ) → 0
result follows. �

Example 1. This example illustrates that Condition 1 cannot be weakened even

in the independent case. Let Y be α-stable, 1 < α < 2, and assume that Y
d= −Y

(symmetrical distribution). For Y1, Y2, . . . independent copies of Y and θ = 2−α
2α

define

Xj = Yj + jθ1(Yj ≥ 0) − jθ1(Yj < 0).

Then, for 1 ≤ j ≤ n we have

|Xj − Yj | = jθ ≤ nδ for δ >
2 − α

2α
.
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We have (28) satisfied for δ > 2−α
2α

in place of 2−α
2α

. Since Y is symmetrical, by

Proposition 1, we can take dn = 0 and Y1 +Y2 +· · ·+Yn
d= n1/αY . By (26) we have

cn = 0. We will show that Sn

n1/α

d→ Y does not hold and hence dα(FSn/n1/α ,FY )
→
n 0.

To see this, let ξn = Xn − Yn. Then P(ξn ≤ 0) = P(ξn ≥ 0) = 1
2 ,

n∑
j=1

E{1(|ξj | > n1/α)} = 0

and

1

n2/α

n∑
j=1

E{ξ2
j 1(|ξj | ≤ n1/α)} ≈ 1

2θ + 1

(
1 − 1

n2/α

)
→
n 0.

By Theorem 5.2.3 from Chung (1974) we cannot have ξ1+···+ξn

n1/α →
n

0 a.s. It follows

that, Sn

n1/α

d→ Y .

Theorem 2. Assume that Condition 1 holds and that {Xn} is a φ-mixing sequence
satisfying (6) with

∑
n≥1 nγ φ(n) < ∞ ∀γ . In addition, assume that supn E|Xn| ≤

M < ∞ and that for some ε > 0 and some 0 < δ < 2−α
2α

we have satisfied

lim
n→∞

1

n1−ε

n∑
j=1

E{|Xj − Yj |α1(|Xj − Yj | > bnδ)} = 0 ∀b > 0. (33)

Then (24) and (29) hold.

Proof. (a) Since α > 1 we have E(Yn) < ∞. From the independence of {Yn}
and {Xn} we have for Fn = σ(X1, . . . ,Xn)

E{Yn+m − E(Yn+m)|Fn} = 0 ∀n,∀m. (34)

As in the proof of Theorem 1 we may assume that E(Xj −Yj ) = 0. It follows that∣∣E{Xn+m − Yn+m|Fn}
∣∣

= ∣∣E{Xn+m − E(Xn+m) − [Yn+m − E(Yn+m)]|Fn}
∣∣ (35)

= |E{Xn+m|Fn}| ≤ φ(m)M.

(b) From Lemma 1 and (35) we can write

E|Sn|α
n

≤ C(α)

[
mα

nbα
nk

α/2
n

n
+ (mnknφ(mn)M)α

n

+ mα−1
n

n

n∑
j=1

E
{|Xj − Yj |α1

(|Xj − Yj | > bn − φ(mn)M
)}]

.
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Let bn = bnδ , mn = [nβ] � nβ and kn = [n/nβ] � n1−β , where β = ε ∧
(2[2−α

2α
− δ]) > 0. Since α[1

2 + β
2 + δ] ≤ 1

α
we have

mα
nbα

nk
α/2
n

n
= bαnα[1/2+β/2+δ]

n
→ 0 as n → ∞. (36)

Also, since
∑

k≥1 k(1/β)(1−1/α)φ(k) < ∞ we have

(mnknφ(mn)M)α

n
= (

m(1/β)(1−1/α)
n φ(mn)M

)α →
n

0. (37)

From (33) and the facts

(
bn − φ(mn)M

) ≥ bnδ and
mα−1

n

n
≤ m

β
n

n
≤ 1

n1−ε
(38)

we get

mα−1
n

n

n∑
j=1

E
(|Xj − Yj |α1(|Xj − Yj | > bnδ)

)→
n

0. (39)

Thus, (24) and (29) follow. �

Remark 1. (a) As shown in the proof of Theorem 1, the hypothesis of {Xn}
and {Yn} being independent were used to establish

E
{(

Xn+1 − E(Xn+1)
) − (

Yn+1 − E(Yn+1)
)|(X1, Y1), . . . , (Xn,Yn)

}
(40)

= 0 a.s.

The independency hypothesis can be dropped if this is assumed.
(b) Similarly, for Theorem 2 the independence assumption was used to derive

the bound (35). It can be replaced by a weaker one,∣∣E{Xn+m − Yn+m|(X1, Y1), . . . , (Xn,Yn)} − E{Xn+m − Yn+m}∣∣
(41)

≤ φ(m)M a.s.

(c) The condition
∑

n≥1 nγ φ(n) < ∞ on the mixing fuction is satisfied for
any geometric function φ(n) = βρn with 0 < ρ < 1. Also, any stationary ergodic
Markov chains, {Xn}n≥1, satisfy mixing conditions of the type

|P(A ∩ B) − P(A)P (B)| ≤ φ(n)P (A) with φ(n) ↓ 0 (42)

for all k ≥ 1, all A ∈ Fk = σ(X1, . . . ,Xk), all B ∈ F ∞
k+n = σ(Xk+n,Xk+n+1, . . .)

and φ(n) = βρn for some β > 0 and 0 < ρ < 1 [cf. Roussas and Ioannides (1987)].
As of now, it is unclear whether similar moment bounds, as in Lemma 1, can be
shown for Markov chains. For some applications, that includes estimation of ruin
probability for risk processes with dependent claim sizes, we refer the reader to
Ferreira (2009).
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