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Sample Size Calculation for Finding Unseen
Species

Hongmei Zhang∗ and Hal Stern†

Abstract. Estimation of the number of species extant in a geographic region has
been discussed in the statistical literature for more than sixty years. The focus
of this work is on the use of pilot data to design future studies in this context.
A Dirichlet-multinomial probability model for species frequency data is used to
obtain a posterior distribution on the number of species and to learn about the dis-
tribution of species frequencies. A geometric distribution is proposed as the prior
distribution for the number of species. Simulations demonstrate that this prior dis-
tribution can handle a wide range of species frequency distributions including the
problematic case with many rare species and a few exceptionally abundant species.
Monte Carlo methods are used along with the Dirichlet-multinomial model to per-
form sample size calculations from pilot data, e.g., to determine the number of
additional samples required to collect a certain proportion of all the species with
a pre-specified coverage probability. Simulations and real data applications are
discussed.

Keywords: Generalized multinomial model, Bayesian hierarchical model, Markov
Chain Monte Carlo (MCMC), Dirichlet distribution, geometric distribution.

1 Introduction

The “species problem” is a term used to refer to studies in which objects are sampled
and categorized with interest on the number of categories represented. Research re-
lated to the species problem dates back to the 1940’s. Corbet (1942) proposed that a
mathematical relation exists between the number of sampled individuals and the total
number of observed species in a random sample of insects or other animals. Fisher et al.
(1943) developed an expression for the relationship using a negative binomial model.
Their proposed relationship works well over the whole range of observed abundance,
and gives a very good fit to practical situations.

The focus of most statistical research on the species problem has been to estimate
the number of unseen species. Bunge and Fitzpatrick (1993) give a review of numerous
statistical methods to estimate the number of unseen species. Some notable references
are mentioned briefly here. Good and Toulmin (1956) address the estimation of the
expected number of unseen species based on a Poisson model. Efron and Thisted (1976)
use two different empirical Bayes approaches, both based on a similar Poisson model,
to estimate the number of unseen words in Shakespeare’s vocabulary. Pitman (1996)
proposes species sampling models utilizing a Dirichlet random measure. The negative
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binomial model proposed by Fisher et al. (1943) is also discussed there. Boender and
Rinnooy Kan (1987) suggest a Bayesian analysis of a multinomial model that can be
used to estimate the number of species. Their model is the starting point for the work
presented in this paper.

As seen from the references above, previous applications of the species problem have
included animal ecology where individual animals are sampled and categorized into
species (Fisher, Corbet, and Williams (1943)), and word usage where individual words
are sampled and each word defines its own category (Efron and Thisted (1976)). More
recent studies extend the species problem to applications in bioinformatics (Morris,
Baggerly, and Coombes (2003)), where the sample items might be DNA fragments and
each sequenced DNA segment represents a unique sequence. Our work is motivated by
a bioinformatics problem of this type. Some other studies focus on drawing inferences
for abundant species or rare species, e.g. Cao et al. (2001) and Zhang (2007). For
consistency with the earlier literature, we use the familiar terminology of animals and
species.

In this paper, we use the model of Boender and Rinnooy Kan (1987), a generalized
multinomial model, as our starting point. The major contribution of this paper is to
address sample size calculation for future data collection based on a pilot study. The
goal is to determine the sample size in order to achieve a specified degree of population
coverage. Non-parametric Bayesian methods have been developed for a related problem,
inferring from a given data set the probability of discovering new species, e.g. Tiwari
and Tripathi (1989) and Lijoi et al. (2007). In these studies the total number of species
is either assumed to be known or to be infinite. The method proposed in this paper,
on the other hand, is a two-phase design with the first phase used to infer the number
of species and the second phase to estimate the required sample size. The sample size
required to achieve a specified degree of population coverage is obtained by Monte Carlo
simulations.

The first step is a fully Bayesian approach to drawing inferences regarding the pa-
rameters for a generalized Dirichlet-multinomial model for species frequency data. The
posterior distribution of the model parameters is used in our Monte Carlo simulation
method for sample size determination. For parametric Bayesian analysis of species fre-
quency data selecting an appropriate prior distribution for the number of species in the
population is very important (see, for example, Zhang and Stern (2005)). The prior
distributions proposed by previous studies (Zhang and Stern (2005); Boender and Rin-
nooy Kan (1987)) perform poorly in situations in which a population has many rare
species (each with very small number of representatives) and a few abundant species.
In this case, as indicated by Sethuraman (1994) and discussed in Zhang and Stern
(2005), the proportions of each species in the population are crowded at the vertexes of
a multi-dimensional simplex such that most proportions are close to zero. For this type
of population, inferences for the number of species in the population are often unrealis-
tic. In this paper, we propose to use a geometric distribution as the prior distribution
for the number of species. Geometric distributions have been used in many studies,
but we have not seen any applications to the species problem. The geometric prior
distribution can be used to reflect prior beliefs about the minimum number of species
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in the population and prior belief about the range within which the number of species
is believed to lie. The flexibility provided in this manner seems to allow the geometric
prior distribution to adapt well to different species frequency distributions.

The rest of the paper is organized as follows. In Section 2, we review the hierarchical
Bayesian model for species data, describe our choice of prior distributions, and state the
conditions required to guarantee a proper posterior distribution for our model. Section
3 focuses on posterior inferences for the model’s parameters. Issues related to the
implementation of MCMC are also discussed. In Section 4, we develop a Monte Carlo
simulation approach for designing future data collection. Section 5 provides results for
a simulated data set where the proposed approach works reasonably well. Sensitivity of
results to the choice of prior distribution is also discussed. We apply our method to a
bioinformatics data set in Section 6. Finally we summarize our results in Section 7.

2 A Dirichlet-multinomial model

2.1 The likelihood function

Let yi denote the number of observed animals of species i in a sample of size N . Suppose
so is the number of different species observed and S is the number of species in a
population. Then y = {y1, y2, ..., yso} is one way to represent the observed sample.
An alternative description for data of this type based on frequency counts has often
been used in the literature. Let xo ≤ N be the maximum frequency over all observed
species and nx be the number of species captured x times, x = 1, 2, ..., xo. Then n =
(n1, n2, · · · , nxo) is another way to represent the sample with

N =
xo∑

x=1

xnx =
so∑

i=1

yi .

Here we motivate and describe the generalized multinomial probability model for y
of Boender and Rinnooy Kan (1987). To start we introduce notation ycomplete for the S-
dimensional vector of species counts. The basic sampling model for the counts ycomplete

is multinomial with the probability for species i to be captured as θi, i = 1, · · · , S.
There are several possible interpretations for the θi’s. If we assume all animals are
equally likely to be caught, then θi represents the relative proportion of species i among
the animal population. If not, then θi combines the likelihood of being caught and the
abundance. If the number of species S is known, the population size of animals is large,
and each species has a reasonably large number of representatives in the population, then
a plausible model for ycomplete is the multinomial distribution with parameters N and
θ = {θ1, · · · , θS}, i.e. ycomplete|θ, S ∼ Mult(N, θ), where ycomplete = {y1, y2, ..., yS}.
When S is not known, however, we don’t know the dimension of ycomplete. Then it makes
sense to consider the observed data y = {y1, y2, ..., yso} which only indicates counts for
the so species that have been observed. There is a complication in that y provides counts
but does not indicate which elements of θ correspond to the observed species. Though
subtle, this point is important in that it invalidates the usual multinomial likelihood.
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Since the correspondence between the yi’s and θi’s can not be determined, the data y
represent a generalized multinomial distribution where we sum over all possible choices
for the so observed species. Let W (so) denote all subsets {i1, . . . , iso} of so distinct
species labels from {1, . . . , S}, then the conditional distribution of y given θ and S can
be expressed as

Pr(y|θ, S) =
1∏N

x=1 nx!

N !
y1!...yso

!

∑

{i1,··· ,iso}∈W (so)

θi1
y1 ...θiso

yso (1)

which is the same result as the one given by Boender and Rinnooy Kan (1987).

The above model assumes infinite population sizes, which can produce limitations
in practice. A hypergeometric formulation, which recognizes the finiteness of the pop-
ulations, seems more appropriate in this context. However, due to computational inef-
ficiency of using hypergeometric models, we use model (1) to describe the distribution
of counts y, implicitly assuming that population sizes are large enough to validate the
assumptions of multinomial distributions.

2.2 Prior distribution for θ

We model θ given S as a random draw from a symmetric Dirichlet distribution with
parameter α, which is a conjugate prior distribution for the multinomial distribution.
We write

θ|S, α ∼ Dirichlet(1Sα) (2)

with

p(θ|S, α) =
Γ(Sα)

Γ(α)S
(

S∏

i=1

θi)

α−1

where 1S is a vector length S with all entries equal to one, and θ = {θ1, · · · , θS}
with

∑S
i=1 θi = 1. For a symmetric Dirichlet distribution, E(θi) = 1/S, so the prior

distribution of θ assumes all species are a priori equally likely (in expectation) to be
captured. The prior variance for each θi is V ar(θi) = (1/S)(1− 1/S)(1/(Sα + 1)). The
variance of θi becomes smaller as α grows, and tends to 0 as α approaches to infinity. In
the limiting case of α being infinity, θi = 1/S and animals from each species are equally
likely to be captured. Smaller values of α correspond to greater variation among the
elements of θ. Small α can yield many small elements in the vector θ, which corresponds
to the case in which the population has many rare species. The reason for this is that as
α gets smaller, the vector of θi’s generated from Dirichlet(1Sα) is more concentrated
on the vertices of the S-dimensional simplex containing vectors θ that sum to one
(Sethuraman (1994); Zhang and Stern (2005)). For instance, with S = 2 the Dirichlet
distribution reduces to a Beta distribution. When α is small, the density function is
U-shaped, with density concentrated near 0 and 1 for both of the proportions. We
obtain further insight by considering the distribution of θ in three dimensions. Figure 1
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shows the distribution of θ in three dimensions for α = 1, 0.01, 0.001. When α is larger
(e.g. α = 1), the probability values are distributed evenly on the simplex. As α gets
smaller, θi’s tend to move toward the vertices of the simplex which have value 1 or 0,
which implies more smaller elements in the vector θ will be generated from the Dirichlet
distribution.

(0,0,1)

(1,0,0)

(0,1,0)

(0,0,1)

(0,1,0)

(1,0,0)

(a) α = 1 (b) α = 0.01

(1,0,0)

(0,1,0)

(0,0,1)

(c) α = 0.001

Figure 1: Distribution of θ for different α’s

One might expect this prior to be a bit unrealistic in that we likely know that some
species are a priori more likely to be observed than others. The reason for choosing a
symmetric Dirichlet distribution is that we do not know S, so we have no information
to distinguish any of the θ′is, i = 1, · · · , S, from any of the others. In this case, the prior
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distribution for θ has to be exchangeable. A possible solution that can address known
heterogeneity but retain exchangeability is to consider a mixture of two symmetric
Dirichlet distributions corresponding to two different subpopulations, abundant species
and scarce species. This approach is used by Morris et al. (2003) in the case when S is
known.

2.3 Prior distribution for S and α

We apply a fully Bayesian approach to analyzing species frequency data and conclude
model specification by giving prior distributions for S and α.

We specify independent prior distributions for S and α. The two parameters become
dependent in their joint posterior distribution as is shown below in Section 2.4. For S
we would like to use a relatively flat prior distribution without specifying a strict upper
bound on the number of species. We find it useful to have the prior probability density
be a decreasing function of S so that there is a slight preference for smaller number of
species (this is discussed further in Section 5.5). A prior distribution for S with these
characteristics is the geometric distribution with probability mass function

Pr(S) = f(1− f)S−Smin , S ≥ Smin, (3)

where Smin is a specified minimum number of species and f is the geometric probability
parameter. Because of Theorem 1 (below) we generally take Smin = 2, the smallest value
for the number of observed species that yields a proper posterior distribution for our
model. One interpretation for the parameter f is as the prior probability that there
are exactly Smin species but this would not ordinarily be a quantity that scientists
are able to specify. Instead we propose to obtain a suitable value of f by specifying
a plausible maximum value Smax for the number of unique species and a measure of
prior certainty that S lies between Smin and Smax. The value of Smax will usually
be suggested by scientific collaborators as in our application. Under the geometric
distribution Pr(Smin ≤ S ≤ Smax) = 1 − (1 − f)Smax−Smin which can be inverted to
find f for specified values of Smin, Smax and the prior certainty. For instance, if we
would like to express high confidence, say probability .999 that S is between Smin = 2
and Smax = 10000, then we find f = .0007. On the other hand if we are less confident,
say 95% certain that the true number of species is in this interval, then f = .0003. Note
that despite the name we have assigned, we do not assume that Smax is an actual upper
bound. Smax is a device used for elicitation of the geometric probability parameter
f . Alternative prior distributions for S (and α) are described below. The sensitivity
of posterior inferences to different choices of f and to different prior distributions is
considered in Section 5.

The parameter α is important in characterizing the distribution of frequencies. As
discussed in an earlier section, large α values lead to uniform distributions and small
α leads to a skewed distribution with a few popular species and many rare species. As
we don’t have much information on α we follow an approach that appears to provide
a relatively noninformative hyperprior distribution. We note that the prior standard
deviation for each element of θ is roughly proportional to 1/

√
α. By setting a noninfor-
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mative prior distribution on this quantity, p(1/
√

α) ∝ 1, and doing a change of variable,
we obtain a hyperprior distribution for α, i.e.

p(α) = α−
3
2 , α > 0. (4)

This is not a proper hyperprior distribution but the following theorem indicates that
the posterior distribution is a proper distribution under fairly weak conditions.

Theorem 1: For the model defined by (1) through (4), the posterior distribution
p(S, α|y) is proper if at least two species are captured, i.e. so ≥ 2.

Proof: The proof is included in the Appendix.

Naturally other prior distributions are possible and several have appeared in the
literature. For example, Zhang and Stern (2005) use a noninformative prior for S, which
is discrete uniform distribution on an interval of plausible values, and they use the same
prior distribution of α that we use here. However, as discussed by Zhang and Stern
(2005), this set of prior distributions can provide misleading posterior inferences when
data are consistent with a small value of α. Another set of prior distributions is given
by Boender and Rinnooy Kan (1987), where independent proper prior distributions on
S and α are proposed:

Pr(S) ∝
{

1, S < Scut
1

(S−Scut+1)2 , S ≥ Scut
, (5)

where Scut is a positive number to be set, and

p(α) =
{

1/2, α ≤ 1
1/2α−2, α > 1 , (6)

which was earlier proposed by Good (1965). When using this set of prior distributions,
as indicated by Boender and Rinnooy Kan (1987) and also by our later simulation
results, the posterior inferences can be very sensitive to the choice of Scut, especially
when data suggest small values of α. We comment on the sensitivity of results to the
prior distributions P (S, α) further in the data analyses of Section 5.

2.4 The posterior distribution

The joint posterior distribution of θ, S, and α for the probability model specified in (1)
through (4) is, up to a normalizing constant,

p(θ, S, α|y) ∝ Pr(y|θ, S)p(θ|S, α)Pr(S)p(α)

∝ [
1∏N

x=1 nx!

N !

y1!...yso !

∑

{i1,··· ,iso}∈W (so)

θi1
y1 ...θiso

yso ]
Γ(Sα)

Γ(α)S

s∏
i=1

θα−1
i

(1− f)S−Sminα−
3
2
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where, S ∈ {max(so, Smin),max(so, Smin) + 1, · · · }, α > 0. It should be noted that the
posterior distribution is defined over both continuous (for α and θ) and discrete (for S)
sample spaces.

The joint posterior distribution can be factored as

p(θ, S, α|y) = p(θ|y, S, α)p(S, α|y), (7)

where p(θ|y, S, α) is the conditional posterior distribution of θ given S and α,

p(θ|y, S, α) ∝ [
∑

{i1,··· ,iso}∈W (so)

θi1
y1 · · · θiso

yso ]
S∏

i=1

θα−1
i

=
∑

{i1,··· ,iso}∈W (so)


θi1

y1+α−1 · · · θiso

yso+α−1
S∏

j=1
j 6∈{i1,...,iso}

θα−1
j


 . (8)

Note that the conditional posterior distribution of θ is proportional to the sum of S!/(S−
so)! Dirichlet densities. Also note that every Dirichlet distribution in the summation is
identical up to permutation of the species indices.

The other factor in (7), p(S, α|y), is

p(S, α|y) ∝ S!
(S − so)!

Γ(Sα)
Γ(N + Sα)

Γ(y1 + α) · · ·Γ(yso + α)
(Γ(α))so

(1− f)Sα−
3
2 , (9)

S ∈ {max(so, Smin),max(so, Smin) + 1, · · · }, α > 0.

This can be obtained in either of two ways, as the quotient p(θ, S, α|y)/p(θ|S, α,y),
or by integrating out θ from the joint distribution p(y, θ|S, α) and working with the
reduced likelihood p(y|S, α).

3 Posterior inferences

3.1 Posterior inferences for S and α

The posterior distribution of S and α as given by (9) is difficult to study analytically. In-
stead we use MCMC, specifically a Gibbs sampling algorithm with Metropolis-Hastings
steps for each parameter, to generate draws from the joint posterior distribution. In
applications we run multiple chains from dispersed starting values. Convergence of the
sampled sequences is evaluated using the methods developed by Gelman and Rubin
(1992a,b) and described for example by Gelman et al. (2003).

The conditional posterior distribution of S given y and α and the conditional pos-
terior distribution of α given y and S, up to a normalizing constant, are
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Pr(S|y, α) ∝ S!
(S − so)!

Γ(Sα)
Γ(N + Sα)

(1− f)S ,

S ∈ {max(so, Smin), max(so, Smin) + 1, · · · },
p(α|y, S) ∝ Γ(Sα)

Γ(N + Sα)
Γ(y1 + α) · · ·Γ(yso

+ α)
(Γ(α))so

α−
3
2 , α > 0, (10)

respectively. For Metropolis-Hastings steps for these parameters we used jumping or
transition distributions that are essentially random walks. Specifically, the jumping
function for iteration t for S is a discrete uniform distribution centered at the (t− 1)th

sampled point; and the jumping function for α is selected as a log-normal distribu-
tion with location parameter being the logarithm of the (t − 1)th draw. The jumping
distributions are discussed more fully in the Appendix.

3.2 Posterior inference for θ

In this paper, posterior inference of θ is not of interest, but as it may be relevant for other
applications we discuss it briefly. The conditional posterior distribution p(θ|S, α,y)
given by (8) is a mixture of S!/(S − so)! Dirichlet distributions, one for each choice
of the so observed species from among the S total species. The component Dirichlet
distributions are identical up to permutation of the category indices. Because of this
feature of the mixture, each θi actually has the same marginal posterior distribution.
This makes interpretation of θi difficult. We can however talk about posterior inference
for a θ corresponding to a particular value of yi > 0. For example, if we define θyi

as the θ corresponding to an observed species with frequency yi then p(θyi |y, S, α) is
Beta(yi+α, N−yi+(S−1)α). The marginal posterior distribution, p(θyi |y), is obtained
by averaging this beta distribution over the posterior distribution of S and α that is
obtained in Section 3.1.

4 Planning for future data collection

The previous section describes an approach to obtaining posterior inferences for S, α, θ.
This section considers an additional inference question. Suppose it is possible to collect
additional data beyond the initial N observations. Then one might be interested in
questions related to the design of future data collection efforts, such as, “What is the
probability of observing at least 90% of all species if the current data are augmented
by an additional M animals?”, or the closely related question “How large an addi-
tional sample is required in order to observe at least 90% of all species with a specified
confidence level?”. This section addresses the answer to these types of questions.
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4.1 A relevant probability calculation

Let p denote the proportion of species we want to capture (e.g. p = 0.9), then the
probability of capturing at least pS species conditional on the N observed animals and
M additional animals, denoted as π(M), can be written as

π(M) = Pr((so + Snew) ≥ pS|M,y), (11)

where Snew is the number of previously unseen species observed in the M additional
samples. Let y∗ denote the additional data from the M additional observations. The
probability (11) can be expressed as an integral over the unknown parameters S, α, θ,
and the yet-to-be-observed data y∗,

π(M) =
∫

y∗

∫

θ

∫

α

∫

S

I(so + Snew ≥ pS)p(S, α, θ,y∗|M,y) dS dα dθ dy∗. (12)

Here I is an indicator function which is easily determined given the counts y and y∗,
and the value of S. To describe a Monte Carlo approach to evaluating this integral we
first observe that

p(S, α, θ,y∗|M,y) = p(y∗|θ, S, M)p(θ|y, S, α)p(S, α|y),

where p(y∗|θ, S, M) is a multinomial density function, p(θ|y, S, α) is a mixture of Dirich-
let distribution function, and p(S, α|y) is given above in (9). Given this factorization,
the integration (summation in the case of S) in (12)can be carried out by first obtaining
posterior draws of S and α and then applying the specified conditional distributions for
θ and y∗. As is shown below in Section 4.2, sampling θ from a mixture of Dirichlet dis-
tribution is no more difficult than sampling θ from a Dirichlet distribution. We do not
expect that the high dimension of θ will cause any problem in the numerical integration
process.

Carrying out the integration for a variety of values of M identifies a π(M) curve and
allows us to identify the smallest sample size for which π(M) exceeds a given target.
This approach provides a point estimate for the needed sample size but does not provide
a great deal of information about the uncertainty in such an estimate. Instead, we find
it useful to examine the function π(M) for a variety of S, α values, i.e.

π(M |S, α) = Pr((so + Snew) ≥ pS|M,y, S, α)

=
∫

y∗

∫

θ
I(so + Snew ≥ pS)p(θ,y∗|M,y, S, α)dθdy∗. (13)

Examining π(M) in this way allows us to use the posterior distribution of S, α to convey
uncertainty about our estimate of M . The function π(M |S, α) is a complicated function
of S and α, and an analytical form of its posterior distribution is not possible. Instead,
we use a Monte Carlo approach to estimate the posterior distribution of π(M |S, α).
Specifically, for each posterior draw of S and α, we estimate the quantity π(M |S, α)
by averaging over θ and y∗. The posterior distribution of π(M |S, α) is obtained by
repeating the Monte Carlo evaluation for the available draws of S and α.
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4.2 Monte Carlo simulation procedure

The Monte Carlo approach to evaluating π(M |S, α) in (13) is made explicit by apply-
ing the identity p(θ,y∗|M,y, S, α) = p(y∗|θ, S, M)p(θ|y, S, α), where we have assumed
that y∗ is conditionally independent of α and y given M, θ, and S. The assumption
of conditional independence is based on the consideration that θ and S fully define
the probability vector for multinomial sampling of y∗. The algorithm for computing
π(M |S, α) for a given S, α pair is then given by the following steps. For t = 1, · · · , T ,

1) generate θ(t) from p(θ|y, S, α) (a mixture of Dirichlet distributions)
2) generate y∗(t) from a Multinomial distribution with parameters M and θ(t)

3) define It = 1, if (so + Snew) ≥ pS, and It = 0 otherwise.

Estimate π(M |S, α) with 1
T

∑T
t=1 It and repeat steps 1 to 3 for as many different values

of M as desired.

For each given pair of S, α, the result can be viewed as a curve giving the probability
of covering a proportion p of the species as a function of M . If k posterior draws of S, α
are available, then there are totally k such curves.

The Monte Carlo algorithm is conceptually straightforward but a number of imple-
mentation details are noteworthy. First, recall that the posterior distribution of θ given
y, S, α is a mixture of Dirichlet distributions. All of the Dirichlet distributions in the
mixture are identical up to permutation of the indices (i1, i2, · · · , iS). Sampling from
the mixture distribution requires that one pick a set of labels from W (so) to correspond
to the observed species and then simulate from the relevant component of the mixture
distribution. The subsequent steps in the algorithm would then be done conditional on
this choice of labels. In practice, because we are not interested in a specific θi or yi, it is
equally valid to arbitrarily assign labels to the observed species and proceed. A second
noteworthy detail concerns efficiency. Steps 1 and 2 of the algorithm propose to use
only a single draw of y∗ for each θ. It is natural to ask whether the algorithm might
be improved by selecting multiple y∗ vectors for each θ, perhaps thereby estimating a
separate curve for each θ. Our simulation results suggest however that variation among
the curves corresponding to different θ’s for fixed S and α is relatively small and con-
sequently the algorithm described above works best. Lastly, we note that step 3 of the
Monte Carlo simulation procedure requires determining the number of new species by
counting the number of positive y∗i ’s whose θi’s correspond to species with yi = 0 (or
equivalently to Dirichlet parameter α). In practice it is possible to save a considerable
amount of computing time by embedding iteration over the sample size M within the
above loop (instead of running the above loop separately for each M).
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4.3 The probability of species coverage and the required sample size

The Monte Carlo algorithm yields a collection of curves, each showing π(M |S, α) as a
function of M . For any M these curves yield a posterior distribution of the quantity
π(M) = Pr((so + Snew) ≥ pS|M,y). Posterior summaries, e.g., point estimates or
posterior intervals can be constructed from this estimated posterior distribution.

Another practical question is how to find the minimum sample size required to
observe at least a proportion p of all species with a specified probabilty q. We denote
this value as Mq; it too can be viewed as a function of S and α. The posterior distribution
of Mq is determined easily using the Monte Carlo approach. For each (S, α) pair we
have developed an estimated curve showing π(M) vs M . For each such curve we identify
the smallest value of M such that π(M |S, α) ≥ q. The collection of identified sample
sizes provides an estimated posterior distribution for Mq.

5 Simulations

To demonstrate our method we begin by simulating a single data set with N = 2000
observations for which S is known. In a later section, we consider the effect of increasing
the sample size.

5.1 Data

The data are N = 2000 observations simulated from a multinomial distribution with
S = 2000 species in the population and θ a random sample from a Dirichlet distribution
with α = 1. The distribution of θ is then uniform over all vectors with

∑S
i=1 θi = 1.

Table 1 and Figure 2 describe the data as the number of species that appear exactly x
times, x = 1, 2, · · · , xo.

In this sample, the largest frequency xo = 11 and the number of observed species is
so = 965.

Table 1: Species frequencies

x 1 2 3 4 5 6 7 8 9 10 11
# species 451 268 116 61 35 16 5 7 2 3 1

5.2 Posterior inference for S

We used the approach described in Section 3 to find the posterior distribution of S
and α given the simulated data. We assume the plausible upper limit on S is Smax =



H. Zhang and H. Stern 775

2 4 6 8 10

0
10

0
20

0
30

0
40

0

Frequency

Nu
m

be
r o

f s
pe

cie
s

Figure 2: The distribution of frequencies for the simulated data

10000 with prior belief about 0.999 that Smin ≤ S ≤ Smax. This gives the value of
f in our geometric prior distribution as f = 0.0007. In a later section, Section 5.5,
we evaluate the effect of choosing different values of f (i.e. different geometric prior
distributions). The posterior inferences in this section are based on 4000 draws from
the posterior distribution after a MCMC burn-in period of 4000 iterations. Figure 3
shows a contour plot of the joint posterior distribution of S and α. The distribution
has a single mode around S = 1800 and α = 1.0. Figure 4 and 5 are histograms of
the posterior distribution of S and α. The posterior mean of S is 1844. A 95% central
posterior interval for S is (1559, 2301). The true value, S = 2000, is contained in the
interval. Note that the method of Efron and Thisted (1976) based on the Poisson-
Gamma model yields a similar estimate of S which is Ŝ = 1639 with standard error
226. A 95% central posterior interval of α is (0.64,1.69), which includes the true value
α = 1. The posterior mean of α is 1.07.

5.3 Sample size calculation for future sampling

As discussed in Section 4, we can estimate the probability of observing a proportion
p of the total number of species given an additional M animals, and the sample size
required to ensure that future sampling covers a specified proportion of the species with
a given probability of coverage. As a first step we estimate π(M |S, α) for M = 2000
to 30000 in steps of size 20 for a number of (S, α) pairs. Each point of the π(M |S, α)
vs M curve is based on T = 1500 Monte Carlo evaluations in order to make the Monte
Carlo simulation error of a given probability less than 0.015.

Figure 6 is a plot giving π(M |S, α) for 100 draws of (S, α) from the posterior distri-
bution p(S, α|y) (including more curves makes the figure more difficult to read). Each
curve in the figure shows the relationship between the probability of seeing 90% of the
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Figure 3: Contour plot for the data from S = 2000, α = 1 with N=2000 (f = 0.0007)

species and the additional sample size M for a single posterior draw of S and α. From
the figure, we can see the curves are spread out especially for larger coverage probabili-
ties, which implies large uncertainty about the probability of seeing 90% of the species
with a given M , and also large uncertainty about the minimum sample size required
to see at least 90% of the species for a specified confidence level π. This reflects the
uncertainty about the parameter α which has a very substantial impact on the species
frequency distribution. Posterior draws with large α values will tend to have smaller S
values, and hence greater likelihood of observing 90% of the species with M additional
animals. These values correspond to the curves on the left in Figure 6. A small α
suggests the true S is larger, so we are less likely to observe 90% of the species with M
additional animals.

Probability of observing at Least pS species with M additional animals

We next use the curves in Figure 6 to draw posterior inference for the probability
of observing at least 0.9S species with M additional observations. Table 2 gives the
posterior median of π(M) and a 90% central posterior interval for π(M) for a range of M
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values. These inferences are based on k = 100 (S, α) pairs chosen randomly among the
4000 posterior samples. Figure 7 shows the posterior median and pointwise 90% central
posterior intervals graphically for M ranging from 400 to 20000. Posterior intervals for
a given value of M tend to be wide when M is relatively small (e.g. M = 5000), but
the length of the intervals decreases quickly with the increase of M . This reflects the
form of Figure 6; for a given M most curves have probability values of attaining the
target number of species near zero (if that value of M is relatively small compared to
the value of S on which the curve is based) or near one (if the value of M is relatively
large compared to the relevant value of S).

Table 2: Estimates of π(M) for different M values

M 5000 8000 10000 12000
π̂(M) 0.52 1 1 1

90% emp. post. int. (0, 1) (0.02, 1) (0.48, 1) (0.75,1)
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Required sample size to capture at least pS species with coverage probability 0.9

Recall that for the simulated data the initial sample of 2000 animals captured approxi-
mately half the species. How many additional animals have to be collected if we want
to see at least 0.9S species with probability q = 0.9? Once again the Monte Carlo sim-
ulations in Figure 6 can be used to answer the question. Drawing a horizontal line with
coverage probability q = 0.9, the intersection points of the horizontal line and the curves
give estimates of Mq, one from each curve. The distribution of these values provides the
desired posterior inferences. The posterior median is 5330, and an empirical 90% cen-
tral posterior interval is (2980, 13080). Table 3 gives the posterior median of the needed
sample size together with 90% central posterior intervals for various values of the target
proportion of species (p) and the desired coverage probability (q). As the proportion
of the species to be captured (p) increases, the number of additional samples required
increases quickly, which is natural because the more common species have undoubtedly
been observed. Further, as indicated in the table, for each p, the sample size required
to achieve different coverage probabilities (q) changes slowly. This is once again due to
the pattern observed in Figure 6, in which all curves display a similar trend: there is a
steep increase in the probability of coverage q near a threshold value of M (though this
threshold varies depending on S and α).
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Figure 6: The relationship between probability π(M |S, α) and additional sample size M
(N=2000)

Table 3: Size of additional sample required to obtain a fraction p of the total species with
probability q

Probability of covering specified fraction (q)
Fraction of species (p) 0.5 0.7 0.9

0.7 810 830 870
(290, 1570) (310, 1630) (330, 1700)

0.8 1940 2000 2090
(1060, 3540) (1100, 3660) (1120, 3840)

0.9 5010 5190 5330
(3020, 10960) (3140, 11760) (2980, 13080)
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Figure 7: Trace of the estimated coverage probabilities. The middle line connects the posterior
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posterior intervals

5.4 Effect of sample size

Having demonstrated the approach for a sample of size 2000 from our hypothetical
population in Sections 5.1 through 5.3, we now demonstrate the impact of increasing
the sample size. One would expect the inferences to become more precise. We simulate
a data set with size N = 10000 from the same population as before, i.e. α = 1, S = 2000.
For this sample, the highest frequency is xo = 45, and the number of observed species
is so = 1663, which is more than 80% of the total number of species.

In this example, the value of f is also selected as f = 0.0007. The posterior mean for
S is 2030 with 95% central posterior interval (1948, 2129). The posterior mean for α is
0.93, and a 95% central posterior interval for α is (0.80, 1.08). Both intervals are much
narrower than for the case with N = 2000. Figure 8 shows the posterior distribution
of π(M |S, α) with p = 0.9 (i.e. capturing 90% of all species) for 100 (S, α) pairs and a
number of M values. There is much less variation than is present in Figure 6.
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Figure 8: The relationship between probability π(M |S, α) and additional sample size M
(N = 10000)

The posterior median of Mq for q = 0.9 is 1880 and a 90% central posterior interval
is (1240, 2700). The required sample size is smaller because a larger number of species
are observed in the pilot sample. In addition the posterior interval is much narrower
than that based on N = 2000 observations.

5.5 Effect of prior distribution

As in any Bayesian analysis, it is critical to consider the impact of the choice of prior
distribution on the inferences obtained. That is especially true here with the prior distri-
bution for S and α. This section addresses comparisons between our prior distribution
and others in the literature, as well as some practical issues associated with the use of
our prior distribution.

In section 2.3, two other choices of prior distributions for S and α were mentioned.
One is the proposal of Boender and Rinnooy Kan (1987) to use proper prior distribution
functions for S and α, and the other suggested by Zhang and Stern (2005), where a
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uniform distribution with an upper bound is assigned to S and a vague prior distribution
is given to α (the same as the prior distribution for α that is used here). We applied
the Dirichlet-generalized multinomial model with their prior distributions on the same
simulated data discussed in Section 5.1. The posterior inferences for S and α are listed
in Table 4, which indicates the results from these two alternative prior distributions are
consistent with the results using the geometric prior distribution for S. The findings
regarding species coverage and sample size are also similar across different methods.

We next discuss the effect of different choices of f on the posterior inferences for
the simulated data. As noted earlier, different values of f imply different degrees of
confidence that we might have with respect to the suggested range of S, with larger
values of f corresponding to higher prior confidence of S being between Smin and the
plausible Smax. Table 4 lists various choices of f for Smin = 2 and Smax = 10000,
the corresponding probability of S ∈ (Smin, Smax), and the posterior inferences of S
and α that result from this choice of f . The results suggest that as long as f is not
too big (i.e. our prior belief in Smax is not too extreme), the posterior inferences for
the parameters are consistent across different values of f and all agree reasonably well
with the true values. We also observe that the larger the value of f , the stronger
our prior information favors small values of S. This is reflected in the inferences; the
posterior mean decreases as f increases. As f increases the prior distribution puts more
probability mass on smaller values of S and thus the posterior mean will decrease.

The preceding discussion concerns the simulated data discussed in Section 5.1 where
the population essentially does not have any rare species. The three different prior
distribution choices give similar results in this case. However, as noted in Section 2.3,
the methods of Boender and Rinnooy Kan (1987) and Zhang and Stern (2005) both
have difficulty in inferring the number of species if the sample is consistent with small
α values in the population. We use simulated data to demonstrate and compare the
three methods in this context. A random sample is drawn from a population with a
large number of rare or infrequent species. The same scenario given in section 5.1 is
applied and a data set with N = 2000 observations is drawn from a population with
α = 0.01, S = 2000. In this data set, the number of observed species is so = 94 and the
highest frequency is xo = 155, which implies the population has some very abundant
species but many more rare or hard to capture species (Zhang and Stern (2005)). The
value of f is selected as before, i.e., f = .0007 corresponding to high confidence (.999)
that the true number of species is between Smin = 2 and the suggested Smax = 10000.
The posterior inferences from the three methods are listed in Table 5; posterior means
are given along with 95% central posterior intervals in parentheses. The results listed
in Table 5 demonstrate the poor performance using the prior distributions of Boender
and Rinnooy Kan (1987) and Zhang and Stern (2005). For the new prior distribution,
with f = 0.0007, the posterior inferences are consistent with the true values. We notice
that the posterior inferences seem more sensitive to the choice of f in this context than
in the high α case. We also find that the posterior interval of S using the geometric
prior distribution is wide, which implies large uncertainty on the value of S due to the
large number of rare species in the population. The inferences can be improved if more
information is available to help construct an informative prior distribution of S.
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Table 4: Posterior inferences on S and α from different methods (95% posterior intervals are
in the parentheses)

Ŝ α̂
Boender and Rinnooy Kan (1987)

Scut = 500 1833 1.08
(1597, 2160) (0.72, 1.55)

Scut = 1000 1817 1.1
(1573, 2122) (0.74, 1.62)

Zhang and Stern (2005)
1866 1.09

(1576, 2337) (0.64,1.75)
Geometric prior

p(Smin ≤ S ≤ Smax) f Ŝ α̂
0.63 0.0001 1870 1.03

(1556, 2320) (0.61, 1.69)
0.90 0.00023 1865 1.04

(1574, 2335) (0.61, 1.69)
0.999 0.0007 1844 1.07

(1559, 2301) (0.64, 1.69)
0.9999 0.001 1842 1.07

(1537, 2252) (0.64, 1.70)
≈ 1 0.002 1803 1.12

(1537, 2252) (0.70, 1.32)
≈ 1 0.003 1782 1.16

(1530, 2153) (0.72, 1.81)
≈ 1 0.006 1721 1.26

(1501, 2022) (0.82, 1.93)
≈ 1 0.01 1660 1.39

(1467, 1909) (0.93, 2.09)
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Table 5: Posterior inferences on S and α from different methods when population α is small
(α = 0.01)

Ŝ α̂
Boender and Rinnooy Kan (1987)

Scut = 50 297 0.12
(129, 1021) (0.021, 0.31)

Scut = 500 318 0.087
(151, 490) (0.045, 0.23)

Scut = 5000 1506 0.023
(174, 4611) (0.0044, 0.18)

Zhang and Stern (2005)
5159 0.0054

(451, 9822) (0.0019, 0.052)
Geometric prior

f=0.0002 2548 0.013
(247, 9100) (0.0022, 0.11)

f=0.0005 2307 0.014
(270, 7323) (0.0027, 0.096)

f=0.0007 2180 0.014
(267, 6734) (0.0030, 0.098)

f=0.001 1650 0.017
(255, 5280) (0.0038, 0.11)
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6 Application to sequence data

6.1 Description of the data

This work was motivated by a bioinformatics problem arising during a genome sequenc-
ing project. Details of the technological approach are not particularly crucial here – for
one thing, the approach is no longer used by the company. A key issue that came up dur-
ing the project was the desire to identify the unique elements in a set of DNA fragments.
The unique elements could be easily determined by sequencing all of the fragments but
this is not necessarily cost effective if there is a lot of duplication. One strategy under
consideration proposed sequencing a small sample of fragments and recording the fre-
quency with which each unique sequence was found. Framed in this way the problem is
directly analogous to our species problem. The hope is that based on the small sample
it will be possible to determine how large of a sequencing effort to mount.

A prototype data set was provided with sample size N = 1677 and so = 644, in which
there were 440 species each observed once and 1 species observed 76 times. Figure 9
shows the pattern of the data in terms of frequencies. The figure shows a very sharp
decreasing pattern in the distribution of frequencies, which is different from that of our
simulated data in Section 5.1 and more like the small α case discussed at the end of
Section 5.5. A few “species” occur with high frequencies, and a very high proportion of
the observed species only occur once. This is the type of data that typically indicates a
small value of α that can cause difficulties for the generalized multinomial model.
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Figure 9: The distribution of the frequencies for the DNA sequence data
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Figure 10: Contour plot for the true data

6.2 Applying the model

We apply the method proposed in previous sections to the DNA segments data. Our
collaborator suggested the maximum value of S be S = 10000. With the value of f
selected as f = 0.0007, as discussed earlier, our prior confidence of S between 2 and
10000 is 0.999. Figure 10 is a contour plot for the posterior distribution of S and α,
which clearly shows one mode around S = 12000. The posterior mean for S is 12111. A
95% central posterior interval of S is (7246, 19637). The posterior mean for α is 0.033
and its 95% central posterior interval is (0.020, 0.056).

Note that although the prior confidence of S in the interval (2,10000) is 0.999, the
posterior distribution is concentrated above 10000. This suggests that the data provide
overwhelming evidence of a large number of rare species. As seen in the next section,
this inference results in our determination that extremely large sample sizes are required
to collect even a small fraction of the total number of species.
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6.3 Sample size calculation for future sampling

We use the Monte Carlo simulation approach discussed in Section 4.2 to carry out
the sample size calculation. The posterior inferences for S suggests a large number of
distinct DNA sequences in the population. The posterior inference of α implies that the
population has a large number of rare species. We thus expect a large sample is needed
even for modest species coverage. Table 6 lists the estimated sample sizes in order to see
10% or 15% of all the distinct DNA sequences with different probabilities of coverage.
Similar patterns are observed as in the simulations: the change in the required sample
sizes across different coverage probabilities (q) is small for a given target fraction (p).
On the other hand, the required sample sizes and the uncertainty both increase quickly
with small increase in the target fraction of species (p). Due to the large number of rare
species in the population the inferences obtained here are of limited value commercially;
an extremely large sample size is required to see a substantial fraction of the species.

Table 6: Additional sample sizes needed to collect 10% or 15% of all distinct DNA sequences

Probability of covering specified fraction (q)
Fraction of species (p) 0.5 0.9

0.10 1900 2200
(400, 6425) (450, 7488)

0.15 7000 7500
(2600, 23500 ) (2800, 27000)

7 Summary

A multinomial-Dirichlet model is proposed for the analysis of data in which individ-
ual objects belong to different categories. The prior distribution for the number of
categories is selected to be a geometric distribution with probability parameter set to
reflect our confidence that the number of categories lies in a predetermined range. The
multinomial-Dirichlet model with this prior distribution seems to work well over a range
of scenarios. A new Monte Carlo simulation algorithm is introduced for determining
the minimum size of an additional sample required to capture a certain proportion of
categories in the population with specified coverage probability. Simulation results show
that sample size calculation in this way is feasible. An application to a DNA segments
data set indicates the applicability of the proposed method but also suggests continued
difficulty with the problematic case with many rare species. Future study is needed
to extend the model to address situations where the distribution of species is not well
approximated by our model, e.g. where the relative proportion of rare species is high.
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Appendix

A.1 Proof of Theorem 1

The joint posterior distribution of S and α, as derived in Section 2, is

p(S, α|y) ∝ S!
(S − so)!

Γ(Sα)
Γ(N + Sα)

Γ(y1 + α) · · ·Γ(yso + α)
(Γ(α))so

α−
3
2 , (14)

for S ≥ so and 0 < α < ∞. We find the conditions required to insure that
∑

S=so

∞
∫ ∞

0

p(S, α|y)dα < ∞,

by obtaining an upper bound on the integral over α for each S.

For each S, choose ε > 0 such that Sε < 1. We then consider the integral over two
intervals (0, ε) and (ε,∞).

On the interval (0, ε):

Recall that for the gamma function we have Γ(1 + z) = zΓ(z). This and other
properties of the gamma function yield the following results.

1. Γ(α) = Γ(1 + α)/α (α > 0)

2. If yi ≥ 1 and α < ε < 1, then Γ(yi + α) < max(Γ(yi + 1), 1)

3. Define γmin > 0 as the minimum value of the gamma function on the interval
(1,2), then Γ(1 + α) ≥ γmin for 0 ≤ α < 1.

4. Γ(Sα) = Γ(1 + Sα)/(Sα) < 1/(Sα) since Sα < Sε < 1.

5. If so ≥ 2, then we must have N ≥ 2 so that Γ(N + Sα) > Γ(N)

Applying these equalities and inequalities gives
∞∑

S=so

∫ ε

0

p(S, α|y)dα

<

Smax∑

S=so

S!
(S − so)!

∫ ε

0

∏so

i=1 max(Γ(yi + 1), 1)
γso

minΓ(N)
1

Sα
αso−3/2(1− f)Sdα

=
Smax∑

S=so

(S − 1)!
(S − so)!

(1− f)S

∫ ε

0

Cyαso−5/2dα

where Cy = [
∏so

i=1 max(Γ(yi+1), 1)]/[γso
minΓ(N)] is a constant depending only on y. For

so ≥ 2 the integral near zero is finite and thus so is the sum since the prior distribution
of S is proper.
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On the interval (ε,∞):

Repeated application of the recurrence Γ(1 + z) = zΓ(z) yields

p(S, α|y) ∝ S!
(S − so)!

∏so

i=1

∏yi

j=1(yi + α− j)
∏N

j=1(Sα + N − j)
α−3/2(1− f)S

=
S!(1− f)S

(S − so)!
α−3/2

SN

∏so

i=1

∏yi

j=1(1 + (yi−j)
α )

∏N
j=1(1 + (N−j)

Sα )

<
S!(1− f)S

(S − so)!
α−3/2

SN

so∏

i=1

yi∏

j=1

(1 +
(yi − j)

ε
)

The final product is a constant in terms of S and α and the remaining terms yield
a finite integral over α and sum over S.

Combining the information from the two intervals, we conclude that the posterior
distribution is proper if so ≥ 2, i.e., there are at least two categories observed.

A.2 Jumping functions for S and α

Metropolis-Hastings jumping function for S

The jumping function for S is a symmetric discrete uniform distribution centered at
S(t−1) (an asymmetric distribution is used if S(t−1) is near the limit of its range) with
width parameter b(t−1). Take S(∗) as the proposed value of S when jumping from S(t−1).
The jumping distribution can be written as

S(∗)|S(t−1) ∼
{

DUNIF (S(t−1) − b(t−1), S(t−1) + b(t−1)), S(t−1) ≥ so + b(t−1)

DUNIF (so, S
(t−1) + b(t−1)), S(t−1) < so + b(t−1),

where the second two lines represent the cases where the current draw is near the bound-
ary of the parameter space. The width parameter b(t−1) is selected to be proportional
to the current value S(t−1).

Metropolis-Hastings jumping function for α

We use a normal jumping distribution on the logarithm of α. Define φ = log(α). Let
φ(t−1) denote the current sampled point, and φ(∗) be the candidate point generated
from the jumping distribution. The jumping distribution for φ is

φ(∗)|φ(t−1) ∼ N(φ(t−1), V 2)

where the standard deviation V is chosen to make the jumping function efficient. In
practice, V is selected based on a pilot sample to achieve acceptance rate near 0.44, the
optimal rate suggested by Gelman et al. (2003).
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