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Improved Criteria for Clustering Based on the
Posterior Similarity Matrix

Arno Fritsch∗ and Katja Ickstadt†

Abstract. In this paper we address the problem of obtaining a single clustering
estimate ĉ based on an MCMC sample of clusterings c(1), c(2) . . . , c(M) from the
posterior distribution of a Bayesian cluster model. Methods to derive ĉ when the
number of groups K varies between the clusterings are reviewed and discussed.
These include the maximum a posteriori (MAP) estimate and methods based on
the posterior similarity matrix, a matrix containing the posterior probabilities that
the observations i and j are in the same cluster. The posterior similarity matrix
is related to a commonly used loss function by Binder (1978). Minimization of
the loss is shown to be equivalent to maximizing the Rand index between esti-
mated and true clustering. We propose new criteria for estimating a clustering,
which are based on the posterior expected adjusted Rand index. The criteria are
shown to possess a shrinkage property and outperform Binder’s loss in a simulation
study and in an application to gene expression data. They also perform favorably
compared to other clustering procedures.

Keywords: adjusted Rand index, cluster analysis; Dirichlet process mixture model;
Markov chain Monte Carlo

1 Introduction

Given a sample of clusterings c(1), c(2) . . . , c(M) from the posterior distribution p(c|y)
of a Bayesian cluster model, where the sample is the output of a Markov Chain Monte
Carlo (MCMC) algorithm, it is often desirable to summarize the sample with a single
clustering estimate ĉ. Here a clustering is defined as a vector of allocation variables
c = (c1, . . . , cn)′. The estimation task is complicated by the fact that the intuitive
estimator for the posterior probability that observation i belongs to cluster k,

P (ci = k|y) ≈ 1
M

M∑
m=1

I{c(m)
i =k} , (1)

with i = 1, . . . , n and k = 1, . . . , K, does not lead to sensible results when applied to
the unprocessed sample of clusterings. So one cannot simply assign each observation
to the cluster k that maximizes (1), as is done in discriminant analysis. This is due to
the problem of “label switching”, which means that during the MCMC run the labels
associated with the clusters change. Methods that deal with label switching, e.g. the
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relabeling algorithm of Stephens (2000), a post-processing algorithm that intends to find
a coherent assignment of cluster labels, require K to be fixed. If K varies between the
clusterings a possible solution is to choose a clustering based on the posterior similarity
matrix P (ci = cj |y), an n× n matrix that contains the pairwise probabilities that two
observations belong to the same cluster. This approach is taken, for example, in the
Bayesian cluster models for microarray data by Dahl (2006) and Medvedovic, Yeung,
and Bumgarner (2004).

In Section 2 a short overview of Bayesian model-based cluster analysis in general is
given and in Section 3 possible ways of deriving ĉ with a varying number of clusters K
are considered. This includes the MAP and methods based on the posterior similarity
matrix. The approach by Medvedovic et al. and the loss function proposed by Binder
(1978) are considered. We will point out a relation of the loss function to the Rand
index for comparing clusterings and discuss possible problems with its use. New criteria
for estimating a clustering from an MCMC sample are introduced, which are based on
maximizing the posterior expected adjusted Rand index, thus improving upon Binder’s
loss. Techniques for optimizing the criteria will also be considered. The new criteria are
shown to perform favorably in choosing a clustering estimate close to the true clustering
in a simulation study and in an application to gene expression data in Section 4.

2 Background: Bayesian model-based cluster analysis

Cluster analysis, the attempt to group previously unstructured data so that the ob-
servations in a group are more similar to each other than to observations from other
groups, has been a valuable tool in statistics for a long time. Classical methods such
as hierarchical clustering or K-means remain popular, although it is difficult to assess
the statistical properties of the solutions provided by these methods. It is, for example,
hard to quantify the uncertainty of the allocation of an observation to a specific group
or the probability that two observations belong to the same group. Model-based cluster
methods offer an alternative. It is assumed that the observations yi in each cluster are
generated by a distribution p(yi|θk) with a group specific parameter vector θk. Prob-
lems in model-based cluster analysis concern the estimation of the θk’s, of the cluster
weights φk = P (ci = k), of the number of clusters K and of the vector of allocations c.
Estimation can be done using the EM-algorithm to compute maximum likelihood (ML)
estimators (Dempster et al. 1977), or alternatively Bayesian methods can be employed
by assigning a prior distribution to all parameters. Inference on the posterior distri-
bution of parameters can again be based on the EM-algorithm to derive maximum a
posteriori (MAP) estimates. This approach is taken, for example, in the MCLUST pro-
cedure of Fraley and Raftery (2002), who also provide a review of model-based cluster
methods in general. Another possibility is to use Markov chain Monte Carlo methods
to obtain a sample of the posterior distribution. This has the advantage that, instead of
using a single estimate of the parameters, their uncertainty can be taken into account.
MCMC approaches also allow to fit rather complex models. It is possible to estimate
the number of groups K at the same time as the other parameters, either by using the
reversible jump algorithm in a finite mixture model as shown by Richardson and Green
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(1997) or by letting the θk be (unique) realizations of a Dirichlet process prior (Ferguson
1973) with mass parameter α and base measure G0, which results in an infinite mixture
model. Although Dirichlet process (DP) mixture models have been developed as flexible
nonparametric models for random distributions (see, e.g., Dunson (2008) for a variety
of applications), they can also be used for clustering, similarly to finite mixture models.
For the Dirichlet process each observation yi has an associated parameter (vector) θi

which follow the Polya urn scheme

θi+1|θ1, . . . , θi ∼ 1
α + i

i∑

j=1

δ(θj) +
α

α + i
G0 , (2)

with δ(θj) indicating the point measure on θj (Blackwell and MacQueen 1973). θi+1

is thus either equal to one of the previous θi’s or is drawn from G0. The positive
probability of sharing the parameter value with previous observations induces a cluster-
ing. The Dirichlet process prior can be extended in many ways, for example with the
two-parameter Poisson-Dirichlet process (Pitman and Yor 1997), general stick-breaking
priors (Ishwaran and James 2001) or generalized gamma process priors (Lijoi et al.
2007). A recent review on prior models for Bayesian cluster analysis is provided by Lau
and Green (2007).

Other implementations of complex Bayesian cluster models allow for outlier detec-
tion (Quintana and Iglesias 2003), simultaneous clustering and variable selection (Kim
et al. 2006; Tadesse et al. 2005), improving the power of multiple testing by cluster-
ing correlated observations (Dahl and Newton 2007), or clustering transcription factor
binding motifs of varying width (Jensen and Liu 2008).

In the MCMC run label switching occurs if the sampler actually converges to the
posterior distribution. If the cluster labels are assumed to be exchangeable, a permu-
tation of cluster labels does not change the likelihood of a clustering. For a model that
has priors p(θk) and p(φk) that are equal for all k, each of the K! permutations of labels
is associated with a posterior mode of equal height. All of these modes will be visited
if the MCMC sampler runs long enough.

It is easy to see that label switching does not affect the posterior similarity matrix
with elements P (ci = cj |y) which can therefore be estimated from the MCMC sample
by

πij = P (ci = cj |y) ≈ 1
M

M∑
m=1

I{c(m)
i =c

(m)
j } . (3)

In (3) the number of groups K does not have to be fixed. Because of the symmetry of
the posterior similarity matrix it suffices to regard entries with i < j.

3 Clustering with a varying number of groups

Some current approaches for clustering with a varying number of components are re-
viewed in Subsection 3.1 while new criteria are introduced in Subsection 3.2. The new
criteria and some of the current approaches require maximization over a set of candidate
clusterings c∗, which will be discussed in Subsection 3.3.
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3.1 Current approaches

Maximum a posteriori (MAP) clustering

As mentioned above the posterior density is invariant to a permutation of the labels. A
simple solution to the label switching problem with a varying number of groups is thus
to take as ĉ the clustering c∗ that maximizes the posterior density, as it is not important
from which of the equivalent modes this clustering stems. The MAP estimate is known
to minimize the posterior expectation of the 0-1 loss function, where no loss is made if
ĉ is exactly equal to c (up to a permutation of the labels) and the loss is 1 in any other
case.

Ad hoc approach of Medvedovic et al. (2004)

Medvedovic et al. (2004) employ classical agglomerative hierarchical clustering, as, for
example, described in Kaufman and Rousseuw (1990), to obtain an estimate ĉ, using
1−πij , the posterior probability that the observations i and j are not clustered together,
as the distance between the observations i and j. If K is known they use average linkage
and cut the dendrogram at K groups. For unknown K they use complete linkage and
cut the dendrogram at a distance of 1−ε, for small, positive ε. For two distinct clusters
Ck and Ck′ then there is at least one pair of observations (i, j) with ci = k and cj = k′,
such that πij < ε. In this paper we will employ ε = 0.01.

Although this approach has been criticized as being rather ad hoc, it has to be
acknowledged that 1 − πij is a sensible distance measure. We found that 1 − πij is a
topological pseudometric for the space of observations, as it fulfills the conditions

1− πii = 0 (4)
1− πij = 1− πji (5)

and (1− πij) ≤ (1− πik) + (1− πjk) . (6)

While (4) and (5) are straightforward to see, a proof that the triangle inequality (6) is
valid can be found in Appendix 6. 1 − πij is not a metric since 1 − πij = 0 does not
imply that the observations i and j are equal.

Binder’s loss function

Binder (1978) was the first to consider loss functions based on pairwise occurences of
observations, i.e.

L(c∗, c) =
∑

i<j

`1 · I{c∗i 6=c∗j }I{ci=cj} + `2 · I{c∗i =c∗j }I{ci 6=cj} , (7)

with positive constants `1 and `2. c∗ is a proposed clustering estimate and the ma-
trix containing I{c∗i =c∗j } is a known 0-1 matrix, which will be referred to as estimated
similarity matrix. The unknown true clustering c has a similarity matrix containing
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I{ci=cj}. Since E(I{ci=cj}|y) = πij , the posterior similarity matrix can be seen as the
similarity matrix of the posterior expected clustering E(c|y).

The quotient `1/`2 determines the preferred kind of clustering. If `1 À `2 the loss
is minimized if all observations are in one cluster, whereas for `2 À `1 the minimum
is attained if all observations are in their own singleton cluster. When there is no
particular preference with regard to the two types of errors a pragmatic solution is to
set `1 = `2 = 1 and thus to penalize the two types of errors equally. This approach
is taken by Hurn et al. (2003) in the context of a switching regression model. In the
following we will refer to the `1 = `2 = 1 case of (7) as Binder’s loss.

The posterior expectation of this loss can be written as

E(L(c∗, c)|y) =
∑

i<j

|I{c∗i =c∗j } − πij | , (8)

i.e. the sum of absolute deviations of the estimated similarity matrix to the posterior
similarity matrix. The estimated clustering ĉ can be taken as the clustering c∗ minimiz-
ing (8). Because of the linearity of the loss function the same expression is obtained if
the loss function is computed between estimated and posterior expected clustering, so
that

E(L(c∗, c)|y) = L(c∗, E(c|y)) . (9)

With Binder’s loss function a loss of 1 is made whenever a pair of observations
is treated differently in the estimated clustering c∗ than in the true c. The loss is
thus the sum of disagreements in the treatment of pairs of observations between the
estimated and true clustering. If the number of disagreements and agreements between
two clusterings is denoted by D and A, then D + A =

(
n
2

)
. Rand (1971) used A/

(
n
2

)
as

a general measure for the similarity of two clusterings, a number that is known as the
Rand index. The Rand index of estimated and true clustering R(c∗, c) is thus given by

R(c∗, c) = 1− L(c∗, c)(
n
2

) .

The clustering ĉ that minimizes the posterior expectation of Binder’s loss in equation
(8) also maximizes the posterior expected Rand index with the true clustering and,
considering equation (9), the Rand index of estimated and posterior expected clustering.

Dahl’s criterion

Dahl (2006) used ∑

i<j

(I{c∗i =c∗j } − πij)2 , (10)

as a criterion to be minimized to obtain an estimate ĉ. Minimization of (8) and (10) is
equivalent, which can be seen by writing

∑

i<j

|I{c∗i =c∗j } − πij | =
∑

i<j

(πij − 2 · I{c∗i =c∗j }πij + I{c∗i =c∗j }) ,
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and ∑

i<j

(I{c∗i =c∗j } − πij)2 =
∑

i<j

(π2
ij − 2 · I{c∗i =c∗j }πij + I{c∗i =c∗j }) .

The difference between these sums is
∑

i<j πij(1− πij), which does not depend on
the estimated clustering, so that minimization of Dahl’s criterion is equivalent to the
minimization of Binder’s loss.

3.2 New criteria for clustering

Derivation and Motivation

Table 1: The contingency table of two clusterings.

Clustering V
Class v1 · · · vL

∑
u1 n11 · · · n1L n1.

Clustering U
...

...
...

...
uK nK1 · · · nKL nK.∑

n.1 · · · n.L n

Although the Rand index is not an unsensible measure to compare clusterings one of its
drawbacks is that the number of expected chance agreements of the clusterings depends
heavily on the number of groups in each clustering, their sizes, and the overall number
of observations. To overcome this problem Hubert and Arabie (1985) considered the
contingency table of the two clusterings shown in Table 1 and proposed an adjusted
Rand index, where the index is corrected for its expected value under the assumption
of random sampling of the nkl from fixed marginal sizes nk. and n.l, i.e. assuming a
generalized hypergeometric distribution for the contingency table. The adjusted Rand
has the usual form of an index corrected for chance:

Index - Expected Index
Maximum Index - Expected Index

.

It has a maximum value of 1 and its value is 0 if the Rand index equals its expected
value. Negative values are possible, but uninteresting as they indicate less agreement
than expected by chance. Hubert and Arabie (1985) derive the following formula for
the adjusted Rand index:

∑
k,l

(
nkl

2

)−∑
k

(
nk.

2

)∑
l

(
n.l

2

)
/
(
n
2

)
1
2 [

∑
k

(
nk.

2

)
+

∑
l

(
n.l

2

)
]−∑

k

(
nk.

2

) ∑
l

(
n.l

2

)
/
(
n
2

) . (11)

Another problem with the Rand index is its large variance which is considerably lowered
by the adjusted Rand index, as found by Milligan and Cooper (1986). Among several
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other indices they recommend the adjusted Rand for the comparison of clusterings. It
is still one of the most popular measures used for this purpose. In a Bayesian context
it is for example used by Dahl (2006) and Medvedovic et al. (2004) for the evaluation
of their simulation studies.

If, like Dahl and Medvedovic et al., one deems the adjusted Rand index to be prefer-
able as a measure of association to the Rand index it might be preferable to try to
maximize the adjusted Rand index of estimated and true clustering AR(c∗, c) instead
of R(c∗, c), as is done with the minimization of Binder’s loss. We thus take AR(c∗, c)
as an utility function to be maximized. Suppose that the estimated and true clustering
corresponds to clustering U and V in Table 1, respectively. In that case the equations

∑
k

(
nk.

2

)
=

∑

i<j

I{c∗i =c∗j } ,

∑
l

(
n.l

2

)
=

∑

i<j

I{ci=cj} and

∑
k,l

(
nkl

2

)
=

∑

i<j

I{c∗i =c∗j }I{ci=cj} ,

hold. AR(c∗, c) can then be written as
∑

i<j I{c∗i =c∗j }I{ci=cj} −
∑

i<j I{c∗i =c∗j }
∑

i<j I{ci=cj}/
(
n
2

)
1
2 [

∑
i<j I{c∗i =c∗j } +

∑
i<j I{ci=cj}]−

∑
i<j I{c∗i =c∗j }

∑
i<j I{ci=cj}/

(
n
2

) .

This expression depends of course on the unknown true clustering c. When taking the
posterior expectation to obtain an expression that can be computed given an potential
clustering estimate c∗ and the MCMC sample c(1), c(2) . . . , c(M) we can utilize either
side of equation (9) leading to either E(AR(c∗, c)|y) or AR(c∗, E(c|y)). Unlike Binder’s
loss AR(c∗, c) is not a linear function of the I{ci=cj} so these two expressions are related
but not the same.

Maximizing E(AR(c∗, c)|y) over c∗ leads to a clustering that has maximum posterior
expected adjusted Rand index with the true clustering. This can be approximated from
the MCMC sample by

1
M

M∑
m=1

AR(c∗, c(m)) , (12)

with AR(c∗, c(m)) being computed by equation (11).
The adjusted Rand index with the posterior expected clustering AR(c∗, E(c|y)) is given
by the expression

∑
i<j I{c∗i =c∗j }πij −

∑
i<j I{c∗i =c∗j }

∑
i<j πij/

(
n
2

)
1
2 [

∑
i<j I{c∗i =c∗j } +

∑
i<j πij ]−

∑
i<j I{c∗i =c∗j }

∑
i<j πij/

(
n
2

) , (13)

where the πij are estimated from the MCMC sample via equation (3). These two
slightly different criteria have been introduced since both have distinctive advantages.
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Expression (13) requires the computation of the posterior similarity matrix, but can
then be evaluated a lot faster than (12), which is advantageous if the criterion needs
to be calculated for many different c∗. We also found (13) to be more amenable to a
theoretical study. Expression (12) on the other hand does not require the computation
of the posterior similarity matrix, which can be preferable for large n, where this matrix
gets too large to be stored. And one can argue that maximizing E(AR(c∗, c)|y) is a more
standard approach than maximizing AR(c∗, E(c|y)). Practically, however, we found in
our applications that maximization of either criterion leads to nearly identical results.
For simplicity we will in the following refer to both criteria as PEAR for Posterior
Expected Adjusted Rand.

A possible disadvantage of using PEAR as an optimality criterion is that the adjusted
Rand index is 0 if one of the compared clusterings consists of only one cluster or of all
singletons. As there will always be clusterings c∗ leading to positive values of (12) or
(13) these extreme clusterings will never be chosen as ĉ.

A shrinkage property

It is instructive to consider the behavior of Binder’s loss and PEAR, if there were no
restrictions for the I{c∗i =c∗j }, i.e. all I{c∗i =c∗j } could be set individually to 0 or 1 without
regard of the other indicator functions. From equation (8) it is clear that for Binder’s
loss the optimal solution in that case is simply to set I{c∗i =c∗j } = 1, if πij ≥ 0.5. In the
case of PEAR it can be seen that for the expression (13) if ` of the I{c∗i =c∗j } are 1 and
the rest 0, the maximum is attained if the I{c∗i =c∗j } = 1 correspond to the ` highest πij .
Denoting with π(i) the ith largest πij and letting

∑
i<j πij/

(
n
2

)
= π̄.., the maximum of

(13) is then given by the maximum of

PEAR∗(`) =
∑`

i=1 π(i) − ` π̄..

1
2` (1− 2π̄..) + 1

2

(
n
2

)
π̄..

(14)

for ` = 0, 1, . . . ,
(
n
2

)
. It can be shown that at the value `∗ for which (14) is maximal there

is a threshold t such that π(`∗) = min{π(i) : π(i) ≥ t} and that the following relation
holds:

π̄.. < t < 0.5 if π̄.. < 0.5
t = 0.5 if π̄.. = 0.5

π̄.. > t > 0.5 if π̄.. > 0.5 . (15)

Compared to Binder’s loss, where t is always 0.5, the threshold for setting I{ci=cj}=1
is shrunk towards the mean of the πij . PEAR thus adjusts to the amount of clustering
found in the data. If overall only few πij are large, the conditions on putting two
observations in one cluster are less strict, e.g. two observations i and j might be clustered
together if πij is only 0.4. The opposite applies if overall many πij are large. A proof
of (15) can be found in Appendix 7.
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3.3 Optimization of criteria

Unlike the method of Medvedovic et al. (2004) the criteria MAP, the expectation of
Binder’s loss and PEAR have to be optimized over several c∗ to obtain a clustering
estimate ĉ. As it is not feasible to compute the criteria for all possible clusterings of
the n observations, a small set of candidate clusterings c∗ that will lead to a close to
optimal solution is needed. A simple solution taken for example by Dahl (2006) is to
take the MCMC sample c(1), c(2) . . . , c(M) as this set.

Another possibility of a small set of clusterings with potentially good values that
will be considered here is given by the clusterings obtained by the hierarchical clustering
approach with distances 1 − πij of Medvedovic et al.. The criteria can be computed
for the clusterings on every level of the hierarchy and ĉ taken to be the optimal among
these. For the special case of the expectation of Binder’s loss and the clusterings c∗

from the hierarchical clustering with average linkage it is not difficult to show that the
optimal ĉ among the c∗’s is always obtained by cutting the dendrogram at 0.5, so that
in this case it is not necessary to compute the criterion for all c∗.

More sophisticated optimization methods could of course be applied. For the expec-
tation of Binder’s loss Lau and Green (2007) realized that it suffices to minimize the
linear functional ∑

i<j

I{c∗i =c∗j }(1− 2πij) .

Using the constraints that for all triples (i, j, k), if I{c∗i =c∗j } = 1 then I{c∗i =c∗k} = I{c∗j =c∗k},
they formulate the minimization of the expected loss as a binary integer programming
problem, which can be solved exactly. Practically this is only feasible for small n as the
number of variables grows quadratically and the number of constraints cubically in n.
Even the algorithm to obtain an approximate solution given by Lau and Green involves
already solving n binary integer programming problems with O(n) variables and O(n2)
constraints in each iteration.

Other optimization methods that could be used for all criteria include for example
greedy search or simulated annealing algorithms.

4 Applications

We test the performance of the discussed approaches to find an estimated clustering ĉ
that is close to the true clustering by fitting a simple Dirichlet process mixture model
with normal components to simulated data and gene expression data.

The minimization of the posterior expectation of Binder’s loss (Eqn. (8)) will be
referred to as MinBinder, the maximization of PEAR (Eqn. (13)) as MPEAR and the
complete linkage method for unknown K of Medvedovic et al. as MedvComp. Using
Equation (12) for PEAR leads to nearly identical results. As a benchmark we also show
results obtained with the MCLUST procedure mentioned in Chapter 2 which is fitted
as implemented in the R package mclust using the default settings. Computation times
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refer to a desktop computer with 3 GHz and 2 GB RAM.

4.1 Prior setting of Dirichlet process mixture model

Here we briefly discuss the prior for the important hyperparameter α of the DP mixture
model. Further details on the model, the prior settings and implementation can be
found in Appendix 9.

From (2) it can be seen that α controls the prior clustering behavior and should
therefore be assigned a prior distribution. A variety of priors have been proposed for
α, including Gamma (Escobar and West 1995), inverse Gamma (Medvedovic et al.
2004) and inverse Beta distributions (Griffin and Steel 2006). The choice of the prior
is usually guided by considering the induced prior on the number of components K,
which depends only on α and n, see Antoniak (1974) for details. Since our inference
is based on πij = P (ci = cj |y) we rather consider the induced prior on P (ci = cj),
given by P (ci = cj) = 1/(1 + α). We will use the Ga(δ1, δ2) prior of Escobar and West
(1995), if values of δ1 and δ2 that induce a suitable prior on 1/(1 + α) can be found.
Alternatively a Beta(v1, v2) distribution can be assigned directly to 1/(1 + α), leading
to a Beta distribution of the second kind for α (Johnson et al. 1995, p.248).

4.2 Simulation study

Setup

The simulated data are 3-dimensional with 8 clusters, where the cluster means are
given by the 8 possible values of (±δ,±δ,±δ)T . Observations are obtained by adding
independent standard normal errors to the cluster means. As δ determines how well
the clusters are separated, we use values of δ = 0.5, 1.0, 1.5, 2.0 to get data sets that
range from ones with largely overlapping to ones with fairly well separated clusters. One
scenario with equal cluster sizes is simulated, where each cluster contains 50 observations
and one with unequal sizes where half of the clusters contain 20 and the other half 80
observations. For each combination of δ and cluster size 10 data sets are generated.
To investigate how the clustering methods perform in extreme cases, data sets are also
generated for δ = 0, so that all observations come from the same normal component. A
scenario were each observation comes from its own component is simulated by setting
δ = 2 and extending the dimensionality of the data to 9, giving 512 observations with
distinct cluster means.

The model described in Appendix 9 is fitted to the data sets with the hyperparam-
eters a, b and v fixed at 1. A Ga(4, 2) prior is used for α. If there are cluster structures
in the data most pairs of observations will not share a cluster and the Ga(4, 2) prior
assigns most of the prior mass for 1/(1 + α) to values between 0.1 and 0.6. As judged
by trace plots of the number of clusters burn-in seems to be rather quick and after
discarding the first 1000 iterations the algorithm is run for 50,000 iterations of which
every 100th is used for the estimation of the posterior similarity matrix. It takes about
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8 minutes to run the model for one data set.

Results

Table 2: Mean minimal value of posterior expectation of Binder’s loss found with dif-
ferent optimization methods for the equal cluster size data.

All observations (n=400) Half of observations (n=200)
Draws Comp Avg Draws Comp Avg Lau&Green

δ=0.5 21527 21561 21544 5368 5378 5366 5363
δ=1.0 24477 24457 24315 6112 6095 6075 6062
δ=1.5 10087 8842 8639 2487 2175 2143 2141
δ=2.0 4465 3843 3739 1016 913 895 894

Draws refers to minimization over the MCMC sample, Comp and Avg to the minimization
over all levels of the hierarchical clustering with complete/average linkage and Lau&Green to
the optimization method proposed by Lau and Green (2007), which could not be applied to

all observations.

First we take a look at the performance of the different optimization procedures
mentioned in Section 3.3. Table 2 shows the average minimal value found for the poste-
rior expectation of Binder’s loss with different approaches. Using the R package lpSolve
as done by Lau and Green (2007) to implement their algorithm it was not possible to
apply the algorithm to all 400 observations, as the optimization problems required at
each iteration got too large to be handled by the software. We therefore tested the
approach by only considering a part of the posterior similarity matrix corresponding to
the first half of observations from each true cluster. For these 200 observations it took
the algorithm of Lau and Green about 30-40 minutes to finish for each data set. The
algorithm did succeed in finding clusterings with the lowest value, but is closely fol-
lowed by the hierarchical clustering with average linkage, which took less than a second
to compute. Note also that minimization of the criterion over the drawn clusterings
does lead to minimal values that are much higher than for the other methods. Similar
results have also been found for the unequal cluster size data and for the optimization
of the criteria MAP and MPEAR (results not shown). In the following we take the best
clustering over all optimization methods as ĉ for each criterion.

To evaluate how close the ĉ of the different criteria are to the true clustering c
adjusted Rand indices of estimated and true clustering are computed. Figure 1 shows
these for the data with equal and unequal cluster sizes. In the case of δ = 2, i.e. for
well separated clusters, all methods perform comparably. When the clusters are more
overlapping MPEAR can be seen to give estimates closer to the true clustering than
the other approaches. It gives notably better results than MinBinder, which it is meant
to improve. This might be the case because the mentioned shrinkage effect comes into
play. It is probably most beneficial if there are many πij ’s close to 0.5, which is not the
case for δ = 2. For δ = 0.5 most of the MCMC clusterings consist of only one cluster
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Figure 1: Adjusted Rand Index with true clustering for clusterings estimated with five
different methods. Left: Data with clusters of equal sizes. Right: Data with clusters of
unequal sizes.

so that none of the estimation criteria can find meaningful cluster structure. The other
methods also put all observations into one cluster for higher values of δ. MedvComp
and MCLUST do this for δ equal to 1.0, MAP already for δ = 1.5. In the case of MAP
this can be explained by the high prior probability that the Dirichlet process places on
allocating all observations to one component as can be inferred from formula (22). The
likelihood has to be quite high to counteract this.

For the data sets with only one true cluster all criteria except MPEAR correctly
assign all observations to one cluster. As noted PEAR will never be maximal at one
cluster and thus places some observations into other clusters, with most observations
still being in one large cluster. For the data where all observations come from distinct
components the MCMC output of the DP mixture model consists again mostly of clus-
terings with only one cluster and the criteria based on its output accordingly put all
observations into one cluster. While this might look like a flaw of the DP mixture model,
it can be argued that all observations in one cluster or all in singleton clusterings are
just different ways of expressing that no cluster structures have been found in the data.

The mean number of clusters found by the different methods are shown in Table 3.
It can be seen that for the higher values of δ the estimate obtained with MinBinder has
a lot more clusters than the 8 truly present. This is also the case for MPEAR, but not
as extreme. When the other methods do not put all observations in one cluster their



A. Fritsch and K. Ickstadt 379

Table 3: Mean number of clusters found in the simulation study.
Equal Cluster Sizes

MAP MinBinder MPEAR MedvComp MCLUST
δ=0.5 1.0 1.4 6.5 1.0 1.0
δ=1.0 1.0 5.2 3.4 1.0 1.0
δ=1.5 1.0 89.1 12.7 6.6 3.4
δ=2.0 8.1 23.7 12.2 8.0 8.0

Unequal Cluster Sizes
MAP MinBinder MPEAR MedvComp MCLUST

δ=0.5 1.0 2.5 5.9 1.0 1.0
δ=1.0 1.0 35.1 4.8 1.1 1.1
δ=1.5 1.7 72.2 14.3 5.2 4.6
δ=2.0 8.1 23.6 13.4 7.5 8.2

Extreme Case Data
MAP MinBinder MPEAR MedvComp MCLUST

One Cluster 1.0 1.0 7.8 1.0 1.0
Singletons 1.0 1.0 7.7 1.0 4.3

estimates have less than the true number of clusters for δ = 1.5 and are on average
approximately correct for δ = 2.

The tendency of MinBinder and MPEAR to overestimate the number of clusters can
be explained by the fact that many observations are put in singleton or in very small
clusters. Table 4 shows the mean number of singletons and larger clusters for the two
criteria. It can be seen that on average both methods are close to the correct number
of (large) clusters for δ equal to 1.5 and 2. MinBinder produces many singletons. An
example of this is given in Figure 2 in Appendix 8. It shows the πij for an observation i
that is put in a singleton cluster by both MinBinder and MPEAR and for an observation
that is clustered by itself only by MinBinder. In the latter case it can be seen that the
shrunken threshold t on πij of MPEAR leads to the observation being assigned to the
correct cluster.

Table 4: Mean number of singletons and large clusters (more than 10 observations) for
equal cluster size data.

MPEAR MinBinder
Singletons Large Clusters Singletons Large Clusters

δ=0.5 2.5 2.2 0.1 1.0
δ=1.0 0.2 3.0 1.6 2.2
δ=1.5 2.0 8.1 66.5 8.9
δ=2.0 3.8 8.0 12.1 8.0
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A sensitivity analysis of the simulation study concerning the number of MCMC
iterations, different prior settings of the DP mixture model and different performance
measures is given in Appendix 10.

4.3 Yeast galactose data

Table 5: Adjusted Rand index with true clustering for yeast galactose data. (Results
for replicates are averages over the four replications.)

MAP MinBinder MPEAR MedvComp MCLUST
All data 0.952 0.952 0.952 0.952 0.937

Replicates 0.903 0.906 0.908 0.907 0.841

The different estimation approaches are compared on gene expression data from a
study on the galactose pathway (Ideker et al. 2001). Microarrays were used to measure
mRNA concentrations under 20 different conditions in growing yeast, with the experi-
ment being replicated four times. We use the same subset of 205 genes already employed
by Medvedovic et al. (2004) and Qin (2006). The subset reflects four functional cate-
gories of the Gene Ontology (Gene Ontology Consortium 2000), which will be assumed
to represent the true clustering. This true clustering consists of two large groups con-
taining 83 and 93 genes and two small ones with 14 and 15 genes. While Medvedovic
et al. and Qin used the original data for clustering we employ the first two principal
components instead. The first two PCs explain a large part of the variation of the data
and show clear cluster structures when plotted. Overall we obtain better results than
reported by Medvedovic et al. and Qin. Since principal components are uncorrelated
and the variances are comparable in our case the simple DP mixture model seems to
be appropriate and is fitted to the PCs derived from each single experimental replicate
and from the average expression over the four replicates.

Table 5 gives the adjusted Rand indices with the true clustering for MCLUST and
the DP mixture model. MPEAR gives the highest indices, while MCLUST performs
a bit worse indicating that the DP mixture model is indeed appropriate for the data.
Examining the produced clustering estimates ĉ it turns out that, besides wrong alloca-
tion of some single observations, one of the small groups is either joined with the other
small group or with one of the large groups by all methods.

A sensitivity analysis similar to the one for the simulation study described in Ap-
pendix 10 is also conducted. Fitting the DP mixture model with a vague prior on α
does not change the results of Table 5 much (data not shown), however with additional
Gamma priors on the hyperparameters b and v different results are obtained as shown
in Table 6. MPEAR and MinBinder give higher adjusted Rand indices when the model
is fit to all data but the indices are lower for the single replicates, a bit more so for
MinBinder than for MPEAR. The results for MAP and MedvComp are not so much
affected. Looking at the estimates ĉ this seems to be the case because MPEAR and
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Table 6: Adjusted Rand index with true clustering for yeast galactose data fitted with
additional hyperpriors on the b, v parameters. (Results for replicates are averages over
the four replications.)

MAP MinBinder MPEAR MedvComp MCLUST
All data 0.960 0.966 0.966 0.960 0.937

Replicates 0.908 0.802 0.815 0.895 0.841

MinBinder can now successfully separate all four groups, only assigning some observa-
tions to small or singleton clusters, which as in the simulation study does happen more
often for MinBinder than MPEAR. The two criteria however also split one of the large
groups for some of the replicates, leading to the lower adjusted Rand indices. MAP and
MedvComp still join one small group with the other or a large group but do not split
one of the large groups. To see whether the employed model with diagonal covariances
is not overly simplistic we fit a DP mixture model with a general covariance matrix as
an additional sensitivity analysis. We used the function DPdensity of the R package
DPpackage (Jara et al. 2009) with a Ga(4, 2) prior on α and the other hyperparameters
set according to Bensmail et al. (1997). The results (data not shown) are comparable to
the ones of Table 6, indicating that the simple DP mixture is appropriate for the data.

5 Conclusions and outlook

In this paper we considered ways of choosing a clustering estimate ĉ in Bayesian model-
based cluster analysis based on an MCMC sample of clusterings with a varying number
of groups K. We proposed new criteria that maximize the adjusted Rand index with the
true clustering. The PEAR criteria could be shown to possess a shrinkage property and
performed well in a simulation study and in a real data set application, where estimated
clusterings closer to the truth than the ones resulting from minimizing Binder’s loss
could be found. They also compared favorably to the clusterings obtained using MAP,
an ad hoc criterion of Medvedovic et al. (2004) and MCLUST. A disadvantage of the
PEAR criteria is that they never select a clustering with only one group or with all
singleton groups as ĉ. Therefore we would generally recommend to use them instead of
Binder’s loss unless a large fraction of the MCMC clusterings c(1), c(2) . . . , c(M) consist
of either of the extreme clusterings, in which case minimization of Binder’s loss seems
more appropriate.

For optimization of the criteria it turned out that hierarchical clustering with 1−πij

as distance and average linkage is a quick way to get a good approximation to the
optimum. In the minimization of the posterior expectation of Binder’s loss it gave ĉ’s
with almost as low values as obtained with the optimization algorithm of Lau and Green
(2007) but took less than one second to compute instead of 30 minutes. Besides the
algorithm of Lau and Green one of the clusterings obtained by cutting the hierarchical
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cluster tree with average linkage at different levels was chosen as best by the different
criteria in almost all cases. Optimizing the criteria only over the clusterings observed
in the MCMC sample performed worse and seems not to be a very good way to obtain
an estimate ĉ. Some theoretical justification for employing the hierarchical approach is
given by the fact that (1 − πij) could be shown to be a pseudometric for the space of
observations.

Although the PEAR criterion was derived having in mind the adjusted Rand index
as a performance measure it also gives good results for other criteria for comparing
estimated and true clustering, as found in the sensitivity analysis of the simulation
study (see Appendix 10). Minimization of the posterior expectation of the distance
between estimated and true clustering could nevertheless be done with other measures
for comparing clusterings, e.g. the entropy based ”variation of information”-distance
proposed by Meilă (2007) and we plan to do so in future research.

The post-processing methods based on the posterior similarity matrix can be used on
the MCMC output of any Bayesian clustering model not just on the simple DP mixture
model used in this paper for illustrative purposes. The results of the sensitivity analyses
indicate that the methods are fairly robust to changes in the underlying model, at least
if there are clear cluster structures in the data, i.e. for the cases δ = 1.5 and δ = 2 in
the simulation study and the galactose data. If there a no clear cluster structures we
have found the results to be sensitive to the prior distribution of α.

We are currently preparing an R package mcclust containing methods for post-
processing an MCMC sample of clusterings and code for the simple Dirichlet process
mixture model.

6 Appendix: Proof of triangle inequality (6)

It is to show that

(1− πij) ≤ (1− πik) + (1− πjk)
⇐⇒ πij ≥ πik + πjk − 1 .

Proof : In every possible clustering the observations i,j and k are grouped according
to one of the patterns

I : {i, j, k} II : {i, j}, {k} III : {i}, {j, k}
IV : {i, k}, {j} V : {i}, {j}, {k} .

Then the following equations hold

πij = P (I|y) + P (II|y) (16)
πjk = P (I|y) + P (III|y) (17)
πik = P (I|y) + P (IV|y) (18)

1 = P (I|y) + · · ·+ P (V|y) , (19)
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and with (17) and (18) one obtains

πjk + πik − 1 = 2 · P (I|y) + P (III|y) + P (IV|y)− 1
(16)
= P (I|y) + P (III|y) + P (IV|y)− P (II|y) + πij − 1

(19)
= −2 · P (II|y)− P (V|y) + πij

≤ πij

7 Appendix: Proof of shrinkage property (15)

The conditions on π(`∗) for PEAR∗ of equation (14) to take its maximum are consid-
ered. This is done by considering under what conditions PEAR∗(`) is greater than
PEAR∗(`− 1). Recall that π(i) is the ith largest πij . Then

PEAR∗(`) ≥ PEAR∗(`− 1)

⇐⇒
∑`

i=1 π(i) − ` π̄..

1
2` (1− 2π̄..) + 1

2

(
n
2

)
π̄..

≥
∑`−1

i=1 π(i) − (`− 1) π̄..

1
2 (`− 1) (1− 2π̄..) + 1

2

(
n
2

)
π̄..

⇐⇒ π(`)[(`− 1)(1− 2π̄..)] +
(

n

2

)
π̄.. ≥ (1− 2π̄..)

`−1∑

i=1

π(i) +
(

n

2

)
π̄2

..

⇐⇒
(

n

2

)
π̄..(π(`) − π̄..) ≥ (1− 2π̄..)

`−1∑

i=1

(π(i) − π(`)) . (20)

For π̄.. ≤ 0.5 the last inequality is decreasing on the left side with rising ` and increasing
on the right, so that PEAR∗ has a unique maximum (or two maxima at adjacent values).
The uniqueness of the maximum can also be shown for π̄.. > 0.5, but the proof is rather
technical and is omitted here.
The threshold t can be determined by setting (20) to equality

(
n

2

)
π̄..(t− π̄..) = (1− 2π̄..)

`−1∑

i=1

(π(i) − t) . (21)

Since
∑`−1

i=1 (π(i) − t) > 0 it follows that

t > π̄.. if π̄.. < 0.5
t = π̄.. if π̄.. = 0.5
t < π̄.. if π̄.. > 0.5 .
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To prove the relation of t to 0.5 we solve (21) for t and show that for π̄.. < 0.5 it is
smaller than 0.5:

(1− 2π̄..)
∑`−1

i=1 π(i) +
(
n
2

)
π̄2

..

(1− 2π̄..)(`− 1) +
(
n
2

)
π̄..

< 0.5

⇐⇒ (1− 2π̄..)
`−1∑

i=1

2π(i) < (`− 1) +
(

n

2

)
(1− 2π̄..)

⇐⇒
`−1∑

i=1

(2π(i) − 1) <

(
n

2

)
π̄.. .

The maximum that the term on the left can take is (` − 1), this is the case if the first
(`−1) π(i) are equal to 1. As

(
n
2

)
π̄.. =

∑
i π(i), the term on the right is at least as large.

Equality holds, if π(i) = 1 for i ≤ `− 1 and all other π(i) = 0.
For π̄.. > 0.5 the direction of the inequality is changed when dividing by (1 − 2π̄..), so
that the proof is complete.

8 Appendix: Additional graph
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Figure 2: Pairwise posterior probabilities πij for two observations i. Equal cluster size
data with δ = 2 and π̄..=0.119. Left: Observation is put into its own cluster by MPEAR
and MinBinder. Right: Observation is put into its own cluster only by MinBinder. Lines
indicate thresholds t for MPEAR ( - - - ) and MinBinder (· · · ), t is described in Section
3.2.
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9 Appendix: Simple Dirichlet process mixture model

The used model is similar to the one proposed by Qin (2006). It assumes

y|µ, τ ∼ Nd(µ, τ−1Id)
µ, τ |G ∼ G

G ∼ DP (α, p(µ, τ)) ,

with random probability measure G. Clustering is induced on common values of (µ, τ).
The centering distribution is chosen as a conjugate Normal-Gamma

p(µ, τ) = p(µ|τ)p(τ)
= Nd(0, τ−1v−1Id)Ga(a, b) ,

which considerably simplifies Gibbs sampling of the class indicators. An iteration of the
MCMC algorithm consists of one conjugate Gibbs scan and three split-merge proposals
as described by Dahl (2005). We found that the latter are beneficial in reducing the
autocorrelation of the chain.

Setting of the hyperparameter α is discussed in Section 4.1. Priors can be assigned
to v and either a or b as well. Convenient choices that lead to full conditionals of known
form are Gamma priors for v and b.

Since the model is conjugate it is possible to analytically integrate out the parameters
µ and τ and use the marginal posterior of the allocations p(c∗|y) ∝ p(y|c∗)p(c∗) in
computing the posterior density to find the MAP. For the Dirichlet process the prior
probability on the allocations is given by

p(c∗) =
∏K

k=1 α Γ(nk)∏n
i=1(α + i− 1)

, (22)

with nk being the number of observations in cluster k (Quintana and Iglesias 2003), for
formulas for p(y|c∗) see Dahl (2005). If priors have been assigned to the hyperparameters
a draw of their value given c∗ is also taken into account in computing the posterior
density.

Application of the model is of course only sensible if one is looking for spherical
clusters. In other cases the model could be extended in various fashions by using a more
flexible likelihood or centering distribution as might be necessary in certain clustering
problems. It suffices for our purpose of comparing various ways of post-processing an
MCMC sample of clusterings.

The model is implemented in the statistical software R (R Development Core Team
2009) where C functions are called for the time-demanding Gibbs sampling and split-
merge steps.
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9.1 Details on MCMC sampler

The conditional distribution of ci given all other indicators c−i and y is given by

P (ci = k|c−i, y) ∝ nk,−i

α + n− 1

∫
N(yi|µ, τ)p(µ, τ |yk,−i) dµ dτ (23)

P (ci = K + 1|c−i, y) ∝ α

α + n− 1

∫
N(yi|µ, τ)p(µ, τ) dµ dτ , (24)

where K is the number of clusters in c−i, nk,−i is the number of c−i = k and yk,−i

are the corresponding observations. Conditioning on current draws of any of the hy-
perparameters α, b and v that is assigned a prior distribution is also assumed. Since
p(µ|τ)p(τ) = Nd(0, τ−1v−1I)Ga(a, b) the integral in (24) can be solved by first integrat-
ing with respect to µ, leading to p(yi|ci = K + 1, τ) = Nd(0, τ−1(1 + v−1)I) and then
using results of Bernardo and Smith (1994, p.140) to obtain

p(yi|ci = K + 1) = td(0,
b

a
(1 + v−1)I, 2a) ,

where td(η, Σ, ν) is the d-dimensional Student t-distribution with expectation η (for
ν > 1) and variance ν

ν−2Σ (for ν > 2).
The integral in (23) can be solved by first employing standard results in Bayesian
inference to give p(µ|τ, yk,−i)p(τ |yk,−i) = Nd(µ∗, τ−1v∗−1I)Ga(a∗, b∗), where

µ∗ =
nk,−i

v + nk,−i
ȳk,−i

v∗ = v + nk,−i

a∗ = a + dnk,−i/2

b∗ = b +
1
2
[
∑
j 6=i

cj=k

yT
j yj − v∗µ∗T µ∗] .

Applying the same reasoning as above one then obtains

p(yi|ci = k, c−i, yk,−i) = td(µ∗,
b∗

a∗
(1 + v∗−1)I, 2a∗) .

If the hyperparameter α is assigned a Ga(δ1, δ2) prior the Gibbs sampling scheme
of Escobar and West (1995) is employed.
A Beta(v1, v2) prior on 1/(1 + α) induces

p(α) =
Γ(v1 + v2)
Γ(v1)Γ(v2)

αv2−1(1 + α)−(v1+v2) ,

leading to a full conditional depending only on K and n

p(α|K, n) ∝ αK+v2−1

(1 + α)(v1+v2)

Γ(α)
Γ(α + n)
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which is updated with a random walk Metropolis algorithm on log(α).
If v is assigned a Ga(γ1, γ2) prior its full conditional is given by a

Ga(γ1 +
K · d

2
, γ2 +

1
2

K∑

k=1

τk · µT
k µk) ,

where µk, τk are sampled for each cluster from the Nd(µ∗, τ−1v∗−1I)Ga(a∗, b∗) distri-
bution given above. Similarly, if b is assigned a Ga(η1, η2) prior the its full conditional
is a Ga(η1 + K · a, η2 +

∑K
k=1 τk).

10 Appendix: Sensitivity analysis of simulation study

To evaluate the effect of the number of MCMC iterations some of the data sets have
been fitted with twice the number of iterations, which did not improve the results (data
not shown). More iterations seemed only to be beneficial if the optimization of the
criteria is done solely over the drawn clusterings c(1), c(2) . . . , c(M), where in some case
better scoring clusterings could be found.

Table 7: Average adjusted Rand index with the true clustering for equal cluster size
data and different prior settings.

δ = 1.5
Prior MAP MinBinder MPEAR MedvComp

Standard 0.000 0.485 0.601 0.476
Gamma b,v 0.000 0.393 0.568 0.456

Vague α 0.000 0.414 0.547 0.326
Fixed α 0.000 0.428 0.592 0.550

δ = 2
Prior MAP MinBinder MPEAR MedvComp

Standard 0.836 0.824 0.837 0.833
Gamma b,v 0.784 0.793 0.821 0.827

Vague α 0.838 0.826 0.840 0.835
Fixed α 0.831 0.820 0.831 0.836

To investigate the effect that the underlying clustering model has on the estimated
clusterings the DP mixture model is also fit to the simulated data with different priors
for the hyperparameters. The first modification consists of placing additional Ga(1, 1)
priors on both b and v. For the second setting the Ga(4, 2) on α is replaced by a
vague prior. In a clustering context a good choice for a vague prior seems to be to let
P (ci = cj) = 1/(1 + α) ∼ Beta(1, 1), leading to p(α) = (1 + α)−2. The last setting has
a fixed α = 4.

Table 7 shows the average adjusted Rand indices that resulted from applying the
estimation methods to the output of the model with the different priors for the equal
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cluster size data and δ equal to 1.5 and 2. For δ = 2 the results are relatively robust for
all criteria. In the case of δ = 1.5 the average adjusted Rand indices are generally a bit
worse for the ”Gamma b, v” and ”Vague α” setting, indicating that here the added prior
flexibility makes it harder to find the true cluster structure. The results of MPEAR
are the least affected by the different priors and still lead to the best average result.
The results for δ equal to 0.5 and 1 do not change much compared to the standard
prior (data not shown), except that for δ = 1 and the ”Vague α” setting none of the
criteria can find any cluster structure and that the results are better for MinBinder and
MPEAR for the ”Fixed α” setting.

A similar pattern is found for the unequal cluster size data while the results for the
extreme case data sets are not affected by the different priors.

We also looked at the results for other performance measures than the adjusted Rand.
Using instead the original Rand index both MinBinder and MPEAR give better results
than the other criteria, with the two criteria performing very similar. If a performance
measure derived from different ideas like the entropy based ”variation of information”-
distance proposed by Meilă (2007) is employed the results of the simulation study still
do not change much (data not shown).
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