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Modal Clustering in a Class of Product
Partition Models

David B. Dahl∗

Abstract. This paper defines a class of univariate product partition models for
which a novel deterministic search algorithm is guaranteed to find the maximum
a posteriori (MAP) clustering or the maximum likelihood (ML) clustering. While
the number of possible clusterings of n items grows exponentially according to
the Bell number, the proposed mode-finding algorithm exploits properties of the
model to provide a search requiring only n(n+1) computations. No Monte Carlo is
involved. Thus, the algorithm finds the MAP or ML clustering for potentially tens
of thousands of items, whereas it can only be approximated through a stochastic
search. Integrating over the model parameters in a Dirichlet process mixture
(DPM) model leads to a product partition model. A simulation study explores
the quality of the clustering estimates despite departures from the assumptions.
Finally, applications to three specific models — clustering means, probabilities,
and variances — are used to illustrate the variety of applicable models and mode-
finding algorithm.

Keywords: Bayesian nonparametrics, Dirichlet process mixture model, model-
based clustering, maximum a posteriori clustering, maximum likelihood clustering,
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1 Introduction

This paper considers a class of univariate product partition models (Hartigan 1990;
Barry and Hartigan 1992) whose properties are such that a proposed algorithm is guar-
anteed to find the global maximum a posteriori (MAP) clustering of the posterior clus-
tering distribution. The MAP clustering is the clustering estimate that minimizes the
posterior expectation of the 0-1 loss function. With a minor modification, the method
can also find the maximum likelihood (ML) clustering.

When seeking the MAP (or ML) clustering, an exhaustive evaluation of every possi-
ble clustering is impossible except in trivially-small problems. The number of possible
clusterings of n items grows exponentially according to B(n), the Bell number for n
items (Bell 1934; Rota 1964). For example, a naive exhaustive search for a sample size
of n = 200 would require more than B(n) > 10275 evaluations of a density (one for each
clustering). A stochastic algorithm could be used to approximate the mode, but this
typically requires major computational resources and does not provide any guarantee
of attaining the mode. In contrast, the algorithm proposed in this paper requires only
n(n + 1)/2 evaluations and is guaranteed to find the modal clustering. When n = 200,
for example, the proposed method finds the mode in only 20,100 density evaluations,
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which takes a fraction of a second on a common desktop computer. The proposed al-
gorithm is feasible for much larger datasets, providing a cluster estimate for tens of
thousands of items in seconds or minutes.

The method assumes an univariate sufficient statistic for each item and exploits
properties of product partition models. Product partition models (reviewed in Section
2.1) have the feature that both the likelihood and the prior distribution (up to a nor-
malizing constant) are products over components. Hence, the posterior distribution
of a random partition is proportional to a product over partition components. These
facts, together with some regularity conditions on the component likelihood and prior,
motivate the deterministic search algorithm. Section 2.2 shows that conjugate Dirichlet
process mixture (DPM) models, a popular class of Bayesian nonparametric models, are
related to product partition models (Quintana and Iglesias 2003). Specifically, integrat-
ing over the latent model parameters in a conjugate DPM model leads to a product
partition model with a particular cohesion.

The MAP clustering is often used as a clustering estimate in Bayesian model-based
clustering procedures (e.g. Broët et al. 2002; Kim et al. 2006; Li et al. 2007). From a
decision theory perspective, the MAP clustering is the optimal Bayes estimate of the
clustering under the 0-1 loss function, where no loss is incurred if the clustering estimate
equals the true clustering and a loss of one is incurred for any other clustering estimate
(Bernardo and Smith 1994). Some authors have criticized the 0-1 loss function and
have proposed clustering estimators based on pairwise probabilities that items belong
to the same cluster. Medvedovic and Sivaganesan (2002) and Medvedovic et al. (2004)
proposed a procedure based on hierarchical clustering of the pairwise probabilities.
Dahl (2006) and Lau and Green (2007) proposed clustering estimates minimizing a
loss function from Binder (1978). These methods require sampling from the posterior
clustering distribution (through, for example, Markov chain Monte Carlo). It it shown
in a simulation study and various examples that the MAP clustering is often comparable
to that of other clustering methods. The key advantage of the MAP clustering in our
class of models, however, is that the optimal clustering is guaranteed to be found quickly
while other methods may require time-consuming posterior simulation or be infeasible.

The mode-finding algorithm itself is presented in Section 3, along with a general
strategy for verifying that a particular univariate model satisfies the conditions necessary
for the proposed algorithm. Section 4 provides several univariate, conjugate DPM
mixture models satisfying the conditions necessary for the mode-finding algorithm. The
mode-finding algorithm for these models is implemented in the “modalclust” contributed
package to R (R Development Core Team 2008) available from the author’s website.
A simulaton study is detailed in Section 5, which compares both the quality of the
clustering estimates and the CPU time to existing methods. Section 6 gives three
illustrations of the mode-finding algorithm for clustering estimation, explores robustness
to the setting of the hyperparameters, and compares to other methods. Section 7
provides some concluding comments.
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2 Product Partition and Dirichlet Process Mixture Mod-
els

2.1 Product Partition Models

A clustering of n objects can be represented by a set partition π = {S1, . . . , Sq} of
a set S0 = {1, . . . , n} having the following properties: (1) Si 6= ∅ for i = 1, . . . , q,
(2) Si ∩ Sj = ∅ for i 6= j, and (3) ∪q

j=1Sj = S0. The sets S1, . . . , Sq are referred
to as partition components. When S0 = {1, 2, 3}, for example, there are five possible
partitions, namely:

{{1, 2, 3}} {{1}, {2, 3}} {{1, 2}, {3}} {{1, 3}, {2}} {{1}, {2}, {3}}.

The set partition {1, 2, 3} indicates that all three objects belong to the same component,
while {1}, {2}, {3} is the partition placing each object into its own component. The Bell
number (Bell 1934; Rota 1964) B(n) is the number of possible partitions of n objects
and has the recurrence relation B(n + 1) =

∑n
k=0

(
n
k

)
B(k), where B(0) = 1.

Interest lies in probability models for sufficient statistics y = {yi | i ∈ S0} that are
parameterized by a set partition π. In the context of cluster analysis, a set partition
π defines a clustering for observed sufficient statistics y and the partition components
S1, . . . , Sq are called clusters.

Product partition models, introduced by Hartigan (1990) and Barry and Hartigan
(1992), are a class of probability models parameterized by a set partition. These models
assume that items in different partition components are independent. That is, the likeli-
hood for a partition π = {S1, . . . , Sq} with observed sufficient statistics y = (y1, . . . , yn)
is a product over components:

p(y|π) =
q∏

j=1

f(ySj ), (1)

where ySj is the vector of observations corresponding to the items of component Sj .
The component likelihood f(yS) — that is, the likelihood contribution from a compo-
nent S — is defined for any non-empty component S ⊂ S0 and can take any form. The
partition π is the only parameter under consideration. Any other parameters that may
have been involved in the model have been integrated over their prior. One consequence
of eliminating other parameters is that the issue of bias estimators of the mixture pa-
rameters is completely avoided (Bryant and Williamson 1978, 1986; Celeux and Govaert
1993). Specific examples of f(yS) are given in Section 4.

The prior distribution for a partition π is also taken to be a product over the partition
components (up to a normalizing constant):

p(π) ∝
q∏

j=1

h(Sj), (2)
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where h(Sj) ≥ 0 is defined for each non-empty S ⊂ S0 and is called the component cohe-
sion. (Throughout the text, the symbol “∝” denotes proportionality as a function of the
partition π.) The mode-finding algorithm is applicable for several classes of cohesions
h(S). This paper discusses three instances: (1) h(S) = 1, which gives a uniform prior
over all set partitions, (2) h(S) = λ, which treats clusters equally regardless of their
size and favors models with few clusters when λ < 1, and (3) h(S) = η0Γ(|S|), which
gives the prior associated with conjugate Dirichlet process mixture (DPM) models given
below.

All inference concerning π is made from the posterior distribution p(π|y). By Bayes
theorem, the posterior distribution is proportional to a product over partition compo-
nents:

p(π|y) ∝ p(y|π)p(π) ∝
[ q∏

j=1

f(ySj )
][ q∏

j=1

h(Sj)
]

=
q∏

j=1

f(ySj )h(Sj). (3)

2.2 Dirichlet Process Mixture Models

The Dirichlet process mixture (DPM) model is a popular nonparametric Bayesian
model. The model is reviewed below and shown to lead to a product partition model
as a result of integrating away the model parameters. The connection between product
partition models and DPM models was first shown by Quintana and Iglesias (2003).

In its simplest form, the DPM model assumes that observed data y = (y1, . . . , yn)
is generated from the following hierarchical model:

yi | θi ∼ p(yi|θi)
θi | F ∼ F

F ∼ DP(η0F0),
(4)

where p(y|θ) is a known parametric family of distributions (for the random variable y)
indexed by θ, and DP(η0F0) is the Dirichlet process (Ferguson 1973) centered about the
distribution F0 and having mass parameter η0 > 0. The notation is meant to imply the
independence relationships (e.g., y1 given θ1 is independent of the other yi’s, the other
θi’s, and F ).

Blackwell and MacQueen (1973) show that θ = (θ1, . . . , θn) follows a general Polya
urn scheme and may be represented in the following manner:

θ1 ∼ F0

θi | θ1, . . . , θi−1 ∼ η0F0 +
∑i−1

j=1 ψθj

η0 + i− 1
,

(5)

where ψµ is the point mass distribution at µ. Notice that (5) implies that θ1, . . . , θn may
share values in common, a fact that is used below in an alternative parameterization of
θ. The model in (4) is simplified by integrating out the random mixing distribution F
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over its prior distribution in (5). Thus, the model in (4) becomes:

yi | θi ∼ p(yi|θi)
θ ∼ p(θ) given in (5).

(6)

An alternative parameterization of θ is given in terms of a partition π = {S1, . . . , Sq}
of S0 = {1, . . . , n} and a vector of component model parameters φ = {φ1, . . . , φq}, where
φ1, . . . , φq are paired with S1, . . . , Sq, respectively. Equation (5) implies that the prior
distribution p(π) can be written as:

p(π) = ηq
0

q∏

j=1

Γ(|Sj |)
/ n∏

i=1

(η0 + i− 1) ∝
q∏

j=1

η0Γ(|Sj |), (7)

where |S| is the number of items of the component S and Γ(x) is the gamma function
evaluated at x. Notice that (7) is proportional to the product over partition components
as required by (2), where h(S) = η0Γ(|S|) in the specific case of DPM models. The
specification of the prior under this alternative parameterization is completed by noting
that φ1, . . . , φq are independently drawn from F0. Thus, θ is equivalent to (π, φ) and
the model in (4) and (6) may be expressed as:

yi | π,φ ∼ p(yi| φ1I{i ∈ S1}+ . . . + φqI{i ∈ Sq} )
π ∼ p(π) given in (7)
φj ∼ F0,

(8)

where I{A} is the indicator function for event A and φ1, . . . , φq are independent and
identically distributed F0.

2.3 Conjugate DPM Models

If p(y|φ) and F0 in (4) and (8) are chosen such that F0 is conjugate to p(y|φ) in φ,
the component model parameters φ may be integrated away analytically. In a normal-
normal DPM model, this technique was first used by MacEachern (1994) and has been
shown to greatly improve the efficiency of Gibbs sampling (MacEachern 1994) and se-
quential importance sampling (MacEachern et al. 1999). Neal (1992) used this technique
for models of categorical data.

Upon integrating out φ, the likelihood p(y|π) is given as a product over components
in π:

p(y|π) =
q∏

j=1

f(ySj ) (9)

where:

f(ySj ) =
|Sj |∏

i=1

∫
p(ySi

j
|φj)p(φj |yS1

j
, . . . , ySi−1

j
)dφj , (10)
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where Si
j is the ith integer of Sj and p(φj |yS1

j
, . . . , ySi−1

j
) is the posterior distribution

of a cluster model parameter φj based on data preceding ySi
j

and the prior F0. Notice
that (9) conforms to the likelihood definition for the product partition model in (1).

3 Mode-Finding Procedure

This section details the proposed mode-finding algorithm. First, a class of product
partition models is defined. Then, the mode-finding algorithm for this class is explained.
Finally, the validity of the algorithm is established and its efficiency is discussed.

3.1 Class of Models

The mode-finding algorithm applies to product partition models whose component like-
lihood f(yS) in (1) has univariate sufficient statistics y = (y1, . . . , yn) and which satisfy
a condition given below. This condition is essential for the algorithm to be valid when
finding the maximum likelihood clustering πML, i.e., the mode of the likelihood. If a
second condition also holds, the algorithm is also valid for finding the MAP clustering
πMAP, i.e., the mode of the posterior distribution. Before stating these conditions, the
definition of overlapping components needs to be introduced:

Definition 1 (Overlapping Components). Two partition components Si and Sj are said
to be overlapping if Si contains an integer between the smallest and largest integers of
Sj , or vice versa. For example, Si = {1, 3} and Sj = {2} are overlapping components,
but Si = {1} and Sj = {2, 3} are not overlapping.

The conditions relevant to the mode-finding algorithm are now presented:

Condition 1. Without loss of generality, reorder the univariate sufficient statistics such
that y1 ≤ . . . ≤ yn. If components Si and Sj overlap, then there exists two other
components S∗i and S∗j , representing a reallocation of the items of Si and Sj in which
the number of items of each is preserved respectively, such that:

f(ySi)f(ySj ) ≤ f(yS∗i )f(yS∗j ).

Section 4 provides three representative models that satisfy Condition 1, namely,
a normal-normal model, a binomial-beta model, and a gamma-gamma model. Data
analysis examples with these models are given in Section 6. For now, it is important to
note an immediate implication of Condition 1 is that, for two overlapping components Si

and Sj , repeated reallocation of their items will lead to two more-likely components in
which the original sizes are preserved and the components are nonoverlapping. Further,
among all partitions of a given number of components with given sizes, Condition 1
implies that the mode must not contain overlapping components. Thus, the global
mode of the likelihood p(y|π) in (1) can be found by simply considering all the partitions
that do not contain overlapping components. This is a key feature of the mode-finding
algorithm.
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Condition 2. The cohesion h(S) introduced in (2) depends, at most, only on the number
of items contained in S.

Condition 2 implies that reallocating items as in Condition 1 leaves the cohesion of
the components unchanged. Thus, Conditions 1 and 2 imply that there exists a global
mode of the posterior distribution p(π|y) in (3) that does not contain overlapping
clusters. The proposed mode-finding algorithm is based on this essential fact.

3.2 Algorithm

An algorithm to find πMAP, the partition that maximizes the posterior distribution
p(π|y), is now introduced. This algorithm is valid if Conditions 1 and 2 hold. Condition
2 is satisfied for the three cohesions given in Section 2.1 and can typically be verified
for others by trivial inspection. If only Condition 1 is met, the algorithm is still valid
when finding πML, the partition which maximizes the likelihood p(y|π). It may not be
obvious how to verify Condition 1 for a particular f(yS). Appendix 8 presents a general
strategy for verifying Condition 1. Specific models for which Conditions 1 and 2 hold
— i.e., for which the mode-finding algorithm applies — will be discussed in Section 4.
The quality of the clustering results, when the algorithm is applied to data for which
the conditions may not hold, is explored in a simulation study of Section 5.

In explaining the algorithm, the idea of an incomplete modal partition is helpful:

Definition 2 (Incomplete Modal Partition). A partition πk
MAP of {1, . . . , k} is said to be

an incomplete modal partition for p(π|y), the posterior for the partition of {1, . . . , n}
in (3), if:

p(π = πk ∪ {Sq} | y) ≤ p(π = πk
MAP ∪ {Sq} | y)

for all partitions πk of {1, . . . , k}, where Sq = {k + 1, . . . , n}. An incomplete modal
partition for p(y|π) is similarly defined and denoted πk

ML.

The incomplete modal partition πk
MAP is the partition that maximizes (3) assuming

the only items are 1, . . . , k (i.e., ignoring k +1, . . . , n). Note that πn
MAP is exactly equal

to πMAP, the mode of the posterior distribution p(π|y). Likewise, πn
ML equals πML, the

mode of likelihood p(y|π).

There could be cases of multiple partitions of {1, . . . , k} satisfying Definition 2, al-
though this quickly become highly unlikely as k increases. Nevertheless, these several
partitions could be noted and considered in the algorithm that follows. This situation
may or may not lead to multiple global modes of posterior distribution p(π|y), de-
pending on whether k and k + 1 belong to unique components in the global mode(s) of
p(π|y). Since the posterior distribution (3) is proportional to a product over partition
components, the incomplete modal partition is the optimal allocation of items 1, . . . , k
assuming k and k + 1 belong to different clusters, regardless of the size of n.

The key proposition can now be stated:

Theorem 4. If Conditions 1 and 2 hold, then πk
MAP can be found among the following
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k candidates:

{{1, . . . , k}}
π1

MAP ∪ {{2, . . . , k}}
...

πk−2
MAP ∪ {{k − 1, k}}

πk−1
MAP ∪ {{k}}.

Proof. Consider the optimal allocation for the integer k in terms of Definition 2. By
definition, k cannot be allocated with {k + 1, . . . , n}. Therefore, k belongs to a compo-
nent of size m, where 1 ≤ m ≤ k. By Conditions 1 and 2, this component containing k
must be {k −m + 1, . . . , k}, otherwise k would belong to a component which overlaps
with some other component. The only remaining integers that need to be allocated are
1, 2, . . . , k −m. By Definition 2, these are optimally allocated as πk−m

MAP. Therefore, the
incomplete modal partition of {1, . . . , k} is πk−m

MAP ∪ {{k −m + 1, . . . , k}}, which is one
of the k candidates listed in the statement of the proposition.

Having this proposition, the mode-finding algorithm for πMAP is easily stated as:

Algorithm for Finding πMAP: Note that π1
MAP = {{1}}, by definition. For k =

1, . . . , n, take the union of {{k + 1, . . . , n}} with each of the k candidates for πk
MAP from

Proposition 4 and set πk
MAP equal to the candidate which yields the maximum value

of p(π|y) in (3). Upon finding πn
MAP, note that this is indeed πMAP, the maximizer of

p(π|y).

Proposition 4 and the mode-finding algorithm relate to the mode πMAP of the pos-
terior distribution. If Condition 2 is not met, the algorithm may still be used to find
the mode of the likelihood πML by simply setting h(S) = 1 (i.e., using a uniform prior
on clusterings) in (3).

3.3 Efficiency

An implementation of the algorithm can be very fast since only n(n + 1)/2 density
evaluations are required, despite the much faster growth of the Bell number. This can
be seen by noting that k ranges from 1, . . . , n and that, for each k, there are only
k candidates to consider. Section 6 provides several applications which require only
seconds or minutes to find the modal clustering of thousands or tens of thousands of
items.

The reference implementation — found in the “modalclust” contributed package to
R (R Development Core Team 2008) on the author’s website — also takes advantage of
caching to avoid repeating computations. At step k, the contributions to p(π|y) in (3)
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from items k +1, . . . , n are the same and need not be reevaluated. The k candidates for
πk

MAP are πl−1
MAP ∪ {{l, . . . , k}} for l = 1, . . . , k. Using the cached values from previous

steps for the contributions to p(π|y) from π1
MAP, . . . , πk−1

MAP, the only new computations
relate to the subsets {l, . . . , k} for l = 1, . . . , k, namely: f(y{l,...,k}) h({l, . . . , k}), for
l = 1, . . . , k. In conjugate DPM models satisfying Conditions 1 and 2, this can be
implemented such that the cost of evaluating one of the candidates is independent of k
and n, yielding an O(n2) algorithm. Examining (7) and (10), it can be seen that:

f(y{l,...,k})h({l, . . . , k}) = f(y{l,...,k−1})h({l, . . . , k − 1})
×

[ ∫
p(yk|φ)p(φ|y1, . . . , yk−1)dφ · (k − l)

]
.

(11)

Using cached values of f(y{l,...,k−1})h({l, . . . , k−1}) and cached values of the associated
sufficient statistics, the only new calculation is the second line of (11), whose complexity
is independent of k and n.

4 Specific Models

This section details three specific models for which the mode-finding algorithm is appli-
cable. All DPM models have the prior distribution given in (7) which satisfies Condition
2. The key to applying the algorithm to these models is verifying that p(y|θ) and F0

yield a likelihood component in (10) satisfying Condition 1. A formal proof for one
of the three models is provided in Appendix 9. Each model assumes that the suffi-
cient statistics y = (yi, . . . , yn) are univariate. Within cluster S, let y1

S , . . . , y
|S|
S denote

these statistics. The mode-finding algorithm for these three conjugate DPM models is
implemented in the R contributed package “modalclust.”

4.1 Normal-Normal Model

The normal-normal model assumes that p(y|φ) is the normal distribution with unknown
mean φ and known variance σ2 and F0 is the normal distribution (for the random
variable φ) with known mean µ and known variance τ2. In this model:

p(φ|y1
S , . . . , yi−1

S ) = N
(

φ

∣∣∣∣
σ2µ + τ2

∑i−1
j=1 yj

S

σ2 + (i− 1)τ2
,

(
σ2τ2

σ2 + (i− 1)τ2

)−1 )
,

where N(x|a, b) is the density of the normal distribution with mean a and variance b−1

evaluated at x. By conjugacy, f(yS) in (10) is itself the following normal distribution:

f(yS) =
|S|∏

i=1

N
(

yi
S

∣∣∣∣
σ2µ + τ2

∑i−1
j=1 yj

S

σ2 + (i− 1)τ2
,

(
σ2τ2

σ2 + (i− 1)τ2
+ σ2

)−1 )
. (12)

Using the strategy of Appendix 8, it can be shown algebraically that f(yS) in (12)
satisfies Condition 1.
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4.2 Binomial-Beta Model

The binomial-beta model assumes that p(y|φ) is the binomial distribution having un-
known success probability φ and known number of trials N and F0 is the beta distri-
bution (for the random variable φ) with known parameters γ0 and γ1. In this model,
p(φ|y1

S , . . . , yi−1
S ) = Beta(φ|γ∗0 , γ∗1), where γ∗0 = γ0 +

∑i−1
j=1 yj

S , γ∗1 = γ1 + (i − 1)N −∑i−1
j=1 yj

S , and Beta(x|a, b) is the density of the beta distribution having mean a/(a + b)
evaluated at x. By conjugacy, f(yS) in (10) is the product of beta-binomial distribu-
tions:

f(yS) =
|S|∏

i=1

β(γ∗0 + yi
S , γ∗1 + N − yi

S)
β(γ∗0 , γ∗1)β(yi

S + 1, N − yi
S + 1)(N + 1)

, (13)

where β(x, z) = Γ(x)Γ(z)/Γ(x + z) is the beta function. The proof that f(yS) in (13)
satisfies Condition 1 is provided in Appendix 9.

4.3 Gamma-Gamma Model

The gamma-gamma model assumes that p(yi|φ) is the gamma distribution having known
shape a and unknown scale φ and F0 is also a gamma distribution (for the random
variable φ) with known shape a0 and known scale ν. In this model, p(φ|y1

S , . . . , yi−1
S ) =

Gamma(φ|a0 +(i−1)a, ν+
∑i−1

j=1 yj
S), where Gamma(x|a, b) is the density of the gamma

distribution having mean ab−1 evaluated at x. By conjugacy, f(yS) in (10) is:

f(yS) =
|S|∏

i=1

(yi
S)a−1(ν +

∑i−1
j=1 yj

S)a0+(i−1)a−1

(ν +
∑i

j=1 yj
S)a0+ia−1

Γ(a0 + ia)
Γ(a)Γ(a0 + (i− 1)a)

. (14)

Following Appendix 8, it can be shown that f(yS) in (14) satisfies Condition 1.

5 Simulation Study

To investigate the quality of the clustering estimates and the associated computing
time, a simulation study was conducted for the mode-finding algorithm applied to the
normal-normal model of Section 4.1. The simulation suggests that, despite being based
on the 0-1 loss function, the MAP clusterings are often comparable to clusterings from
other algorithms.

Three data generating scenarios were considered, each being a four- or five-component
mixture of normal components. The mixture weights w, means µ, and standard devia-
tions σ are given in Table 1. The scenarios were chosen to explore clustering performance
under both favorable and unfavorable conditions for the proposed method. Scenario I is
ideally suited for the normal-normal model with the DPM prior since: (1) the mixture
weights yield clusterings that are typical of realizations from the Dirichlet process and
much more likely under the DPM prior in (7) than under a uniform clustering prior,
and (2) the assumption of equal variances of the normal-normal model is satisfied. The
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variances are also equal in Scenario II, but the weights are such that the true clusters
are much less likely under DPM prior than the true clusterings were in Scenario I (i.e.,
more than 10126 less likely). Finally, Scenario III examines the robustness of the modal
clustering procedure since the equal variances assumption is violated and true cluster-
ings are again relatively unlikely under the DPM prior. For each scenario, 1,000 random
samples were obtained and the true clustering was recorded by noting the component
giving rise to each data point. Each scenario was repeated 50 times.

The mode-finding algorithm was applied to the data using the cohesion from con-
jugate DPM models with η0 = 1.0 (denoted “ModalClust(DPM)” in the simulation
results) and the cohesion h(S) = λ = 0.851000 (denoted “ModalClust(Alt)”). The value
of 0.851000 for λ was found empirically to provide a compromise between fitting the
data and the desire for parsimony. The hyperparameters of the normal-normal model
in Section 4.1 were set as σ2 = (s/4)2, µ = x, and τ2 = s2, where x and s2 were the
sample mean and variance.

The mode-finding algorithm was compared to the following clustering procedures:
(1) MCLUST (Fraley and Raftery 1999), using both the equal (“E”) and unequal (“V”)
variances specifications, as implemented in the R contributed package “mclust.” BIC
(Schwarz 1978) was used to choose among models with one to six mixture components.
(2) Hierarchical clustering (Hartigan 1975), using Euclidean distance and agglomera-
tion methods “complete” and “ward,” as implemented in the default “stats” package
of R. Estimated clusterings were obtained by cutting the tree at the true number of
components. (3) k-means clustering (MacQueen 1967; Hartigan and Wong 1979), as
implemented in the default “stats” package of R and setting k to the true number of
components and using ten random starts.

The accuracy of the estimated clusterings to the true clusterings were accessed using
the adjusted Rand index (Rand 1971; Hubert and Arabie 1985), as recommended by
Milligan and Cooper (1986). Larger values for the adjusted Rand index correspond to
better agreement, with 1.0 indicating perfect concordance. The simulation results are
given in Table 1, including the average adjusted Rand index, the average number of
(occupied) clusters, and the average CPU times with accompanying margins of error
from 95% confidence intervals (if the standard error exceeded 0).

Several observations can be made from the simulation results. First, the modal
clustering procedure with the DPM prior performs very well in Scenario I, as expected.
The proposed procedure is among the best in Scenario II. Although some algorithms
perform better, Scenario III demonstrates that the proposed procedure is somewhat
robust to violations of the assumption of unequal variances. In terms of CPU time,
k-means is clearly a very fast algorithm, regardless of the scenario. MCLUST and the
proposed procedure are also substantially faster than the other methods. In summary,
the modal clustering procedure has comparable performance in terms of the adjusted
Rand index and can be substantially better than other methods.
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Table 1: Simulation results from several clustering methods in three scenarios.

Scenario I: w = (0.60, 0.23, 0.08, 0.08, 0.01), µ = (0.0, 2.0, 1.0,−1.0,−1.5)
σ = (0.33, 0.33, 0.33, 0.33, 0.33)

Adj. Rand Index No. Clusters CPU Time
1. ModalClust(DPM) 0.820 ± 0.007 4.88 ± 0.20 0.191 ± 0.016
2. MCLUST(E) 0.733 ± 0.037 3.82 ± 0.23 0.131 ± 0.009
3. HCLUST(complete) 0.575 ± 0.034 5.00 2.194 ± 0.008
4. MCLUST(V) 0.543 ± 0.018 3.00 0.229 ± 0.018
5. ModalClust(Alt) 0.490 ± 0.008 4.98 ± 0.04 0.159 ± 0.011
6. k-means 0.488 ± 0.005 5.00 0.025 ± 0.001
7. HCLUST(ward) 0.450 ± 0.022 5.00 2.051 ± 0.006

Scenario II: w = (0.25, 0.25, 0.25, 0.25), µ = (−3,−1, 1, 3)
σ = (0.75, 0.75, 0.75, 0.75)

Adj. Rand Index No. Clusters CPU Time
1. k-means 0.673 ± 0.007 4.00 0.023 ± 0.001
2. ModalClust(DPM) 0.670 ± 0.007 4.14 ± 0.10 0.183 ± 0.010
3. MCLUST(E) 0.664 ± 0.014 3.92 ± 0.08 0.109 ± 0.006
4. ModalClust(Alt) 0.647 ± 0.018 4.18 ± 0.11 0.156 ± 0.009
5. HCLUST(ward) 0.601 ± 0.017 4.00 2.054 ± 0.006
6. MCLUST(V) 0.542 ± 0.023 3.20 ± 0.13 0.161 ± 0.008
7. HCLUST(complete) 0.510 ± 0.021 4.00 2.186 ± 0.007

Scenario III: w = (0.25, 0.25, 0.25, 0.25), µ = (−3,−1, 1, 3)
σ = (1.00, 0.25, 1.00, 0.50)

Adj. Rand Index No. Clusters CPU Time
1. MCLUST(V) 0.793 ± 0.006 4.00 0.138 ± 0.006
2. HCLUST(ward) 0.734 ± 0.013 4.00 2.049 ± 0.008
3. ModalClust(Alt) 0.680 ± 0.007 4.00 0.151 ± 0.009
4. k-means 0.680 ± 0.007 4.00 0.022 ± 0.001
5. ModalClust(DPM) 0.629 ± 0.008 4.66 ± 0.14 0.187 ± 0.009
6. MCLUST(E) 0.621 ± 0.009 4.20 ± 0.16 0.097 ± 0.007
7. HCLUST(complete) 0.545 ± 0.021 4.00 2.186 ± 0.007

6 Illustrations

In this section the three models of Section 4 are used with the mode-finding algorithm to
illustrate: (1) interesting applications of the algorithm, (2) computational feasibility for
large datasets, (3) ability to examine multivariate aspects of the clusters, (4) robustness
to the hyperparameter settings in the prior, and (5) similarities and differences with
other clustering algorithms.
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6.1 Normal-Normal Illustration: Differential Gene Expression

A common experimental design for microarray experiments is a replicated, two-treatment
comparison. In searching for differentially expressed genes, data analysis often starts
with an exploratory analysis. Broët et al. (2002) provide a clustering algorithm based
on a gene-specific univariate score (i.e., the difference in the average expression in the
two groups). Genes lying in small, extreme clusters provide evidence of being differen-
tially expressed and warrant further attention. Their method is based on a Bayesian
finite mixture model with an unknown number of Gaussian components and is fit using
reversible-jump MCMC (Green 1995; Richardson and Green 1997). The model in Sec-
tion 4.1 is similar to that of Broët et al. (2002), with the exception that the component
standard deviation in the normal-normal DPM model must be known and constant for
all clusters.

The proposed modal clustering algorithm is computationally trivial for Broët et al.
(2002) dataset of 4,608 genes, taking only a couple of seconds on a common worksta-
tion. The method, however, scales well to very large datasets. Recent microarrays are
able to measure the expression of an increasing number of genes. For example, the
Affymetrix GeneChip HG-U95 contains over 54,000 probe sets. Applying the Bayesian
finite mixture model of Broët et al. (2002) through reversible-jump MCMC for such
data is computationally challenging. Even the simpler method of hierarchical cluster-
ing for such data is challenging since 11 gigabytes of RAM would be required to hold
the upper-triangular part of a distance matrix of doubles for the 54,000 probe sets. In
contrast, the modal clustering algorithm finds the MAP clustering in a few minutes.

6.2 Binomial-Beta Illustration: Labor Force Participation

This section uses the binomial-beta model of Section 4.2 to demonstrate that, although
the algorithm is defined for univariate sufficient statistics, the multivariate aspect of
the resulting clusters can be examined. Economists and policy makers are interested in
studying the relationship between labor force participation and a variety of demographic
variables. United States Census data was obtained from the IPUMS-USA project
(http://usa.ipums.org). Random samples of 100 individuals were obtained for each
of 4,320 groups defined by all possible combinations of race (non-hispanic white, other),
gender (male, female), age (45 levels: 25-69 years old), educational attainment (no high
school degree, high school degree, some college, college degree), home ownership status
(yes, no), and census year (1980, 1990, 2000).

Using notation from Section 4.2, the number of working individuals in each group
was modeled as a random realization from a binomial distribution with unknown success
probability φ and N = 100 trials. The mass parameter η0 was set to 1.0 and a uniform
prior was chosen for φ (i.e., γ0 = 1, γ1 = 1). Note that this model assumes that the
4,320 demographic groups are exchangeable. That is, the Dirichlet process prior implies
that the prior probability that any two groups are clustered is uniform across all pairs
of groups. A more sophistical model might use a clustering model in which groups
with similar profiles have higher a priori probability of belonging to the same cluster.
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Figure 1: Means of demographic variables by clusters identified using the modal clus-
tering algorithm in the labor force participation example.
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Nevertheless, as seen below, the data is able to overcome the naive clustering prior and
the analysis results in interpretable clusters.

The modal clustering was obtained in several seconds on a workstation. Averages
for the demographic variables in each cluster are shown in Figure 1. Several interesting
facts about labor force participation and the multivariate demographic variables are
apparent. For example, the highest probability of labor force participation — 98% — is
found in cluster 1, which contains 238 profile groups consisting of young, white, generally
well-educated, males who own homes. This contrasts with, for example, cluster 5 which
only has a 45% labor force participation and is made up largely of women, who are
either poorly educated or close to retirement age.

In terms of the sensitivity of the results to the hyperparameters of the prior, the
modal clustering was unchanged when η0 varied from 0.1, 1.0, to 18 and used with
any of the following settings: (1) γ0 = 0.1, γ1 = 0.1, (2) γ0 = 1.0, γ1 = 1.0, and (3)
γ0 = 2.4, γ1 = 1.2. Further, clustering results from k-means and hierarchical clustering
were obtained (as described in Section 5, except eight clusters were found to match
the modal clustering). k-means was much faster than the mode-finding algorithm but
inconsistent with itself — in 100 replications, the mean adjusted Rand index between two
clusterings from k-means was only 0.62± 0.02. For the three agglomeration methods of
hierarchical clustering, the clustering using “complete” agglomeration had the highest
adjusted Rand index (0.76) with the modal clustering and took five times longer to
compute than the modal clustering.

6.3 Gamma-Gamma Illustration: Clustering of Variances

This section demonstrates how the gamma-gamma model of Section 4.3 and the pro-
posed modal clustering algorithm can be used to cluster variances from replicated DNA
microarray experiments. Affymetrix provides test data containing 24 samples from
their Human Genome U133 microarray having 22,277 probesets (simply called “genes”
below). The data is background-corrected and normalized using the Robust Multichip
Averaging (RMA) method of Irizarry et al. (2003) as implemented in the “affy” package
of BioConductor (Gentleman et al. 2004). This multivariate data with n = 24 samples
on G = 22, 277 genes was reduced to sample variances s2

1, . . . , s
2
G.

The goal is to cluster sample variances s2
1, . . . , s

2
G into groups such that genes within

the same cluster are likely to have equal population variances. For each gene g, let
σ2

g denote its population variance. Under normal theory, (n − 1)s2
g/σ2

g has a chi-
square distribution with degrees of freedom n − 1. This implies that s2

g is distributed
Gamma(s2

g | a, θg), where a = (n−1)/2 is known and θg = (n−1)/(2σ2
g) is unknown. A

clustering based on equality of σ2
1 , . . . , σ2

G is equivalent to clustering based on equality
of θ1, . . . , θG. By default, let the mass parameter η0 be 1.0. As for the hyperparameters
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Table 2: Summary of clustering of variances in DNA microarray data.

Cluster Size Median Variance
1 49 0.00004
2 57 0.00027
3 733 0.00138
4 4644 0.00376
5 15013 0.00965
6 1747 0.02180
7 3 0.07143
8 2 0.24480
9 3 1.07472

10 26 2.70382

a0 and ν in Section 4.3, a default choice might be:

a0 =
x2

s2
+ 2

ν =
2x3

(n− 1)s2
+

2x

n− 1
,

(15)

where x and s2 are the sample mean and variance of the variances s2
1, . . . , s

2
G. This

choice for a0 and ν makes the prior expected value and prior variance of the unknown
variance for a cluster equal to the sample mean and variance of the variances.

The mode-finding algorithm yields a clustering of the 22,277 genes in just over a
minute on a standard workstation. The clustering is summarized in Table 2. The
method finds a few large clusters as well as several small clusters to accommodate
extreme variances. The robustness of the procedure to the specification of the hyperpa-
rameters a0 and ν is investigated in a sensitivity analysis. Recall that x and s2 represent
the sample mean and variance of the variances s2

1, . . . , s
2
G and are used to set a0 and ν

in (15). A sensitivity analysis investigates the concordance — in terms of the adjusted
Rand index — between the clustering from the default settings and those obtained from
all possible combinations of doubling and halving x and s2 and varying the mass param-
eter η0 over 0.5, 1.0, and 5.0. The results are summarized in Table 3, which indicates
robustness to the mass parameter and variance, but moderate sensitivity to a0 and ν
in (15) through the mean x.
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Table 3: Sensitivity of results as measured by the adjusted Rand index between the
modal clustering using the default settings and the modal clustering for various alter-
native specifications of the hyperparameters.

Mass η0

Mean Variance 0.5 1.0 5.0
1
2x 1

2s2 0.96 0.96 0.96
s2 0.96 0.96 0.96
2s2 0.96 0.96 0.96

x 1
2s2 1.00 1.00 1.00
s2 1.00 1.00 1.00
2s2 1.00 1.00 1.00

2x 1
2s2 0.84 0.84 0.84
s2 0.84 0.84 0.84
2s2 0.84 0.84 0.84

7 Conclusion

This paper defines a class of univariate product partition models and proposes a de-
terministic search algorithm that is guaranteed to find the MAP clustering or the ML
clustering. The method is able to produce the modal clustering for thousands of items,
whereas an exhaustive or stochastic search would be infeasible for all but trivially-small
problems. Several univariate, conjugate DPM models satisfy the conditions necessary
to apply the algorithm. The strengths of the method are its speed, simplicity, and guar-
antee of finding the mode. One limitation of the method is that it requires a univariate
sufficient statistic for each item. Extensions to the multivariate case have been elusive.

Note our algorithm can only provide the posterior probability in (3) for the MAP
partition up to a normalizing constant. When the number of items is very small (e.g.,
n ≤ 20), enumerating all partitions is feasible and the posterior probability of any
partition can be computed. Even so, experience shows that the posterior probability
itself is not particularly interesting — it is usually very close to zero because many
alternative partitions capture some of the same information seen in the MAP partition.

8 Appendix: Verifying Condition 1 for Modal Clustering

Recall that the sufficient statistics have been reordered such that y1 ≤ . . . ≤ yn. Suppose
that Si and Sj are two overlapping components. Let a and c be the smallest and largest
integers in Si and let b be the smallest integer in Sj . Since Si and Sj are overlapping
components, assume (without loss of generality) that a < b < c (otherwise, interchange
Si and Sj when defining a, b, and c).

Let S[
i = (Si \ {a}) ∪ {b} and S[

j = (Sj \ {b}) ∪ {a}. That is, define S[
i and S[

j from
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Si and Sj by simply swapping a and b. Likewise, define S]
i and S]

j by swapping c and
b in Si and Sj . Notice that swapping integers preserves the number of items in each
component.

Condition 1 is satisfied if:

f(ySi)f(ySj ) ≤ f(yS[
i
)f(yS[

j
) (16)

or:
f(ySi)f(ySj ) ≤ f(yS]

i
)f(yS]

j
). (17)

Consider two mutually exclusive and exhaustive cases. The first case assumes that
f(yS[

i
)f(yS[

j
) ≤ f(yS]

i
)f(yS]

j
). Exploiting properties of the particular f(yS), show that

this implies (17). The second case is the complement of the first: f(yS[
i
)f(yS[

j
) >

f(yS]
i
)f(yS]

j
). Again, using properties of the particular f(yS), show that this second

case implies (16). Thus, (16) or (17) holds and, therefore, Condition 1 is satisfied.

This strategy can be used to verify Condition 1 from each of these three models in
Section 4. Implementation details are provided in Appendix 9 for one of the models.

9 Appendix: Binomial-Beta Model Satisfies Condition 1

Proof. The proof that f(yS) of the binomial-beta model, found in (13), satisfies Con-
dition 1 follows the notation and reasoning in Appendix 8. Two cases are considered.

Case 1. Suppose f(yS[
i
)f(yS[

j
) ≤ f(yS]

i
)f(yS]

j
). Notice that S[

i and S[
j differ from S]

i

and S]
j only in their allocation of a and c. (Both S[

i and S]
i contain b.) Thus, after

taking the logarithm of both sides and simplifying, the supposition of Case 1 reduces
to:

δi(yc) + δj(ya) ≤ δi(ya) + δj(yc), (18)

where:

δi(y) = lnΓ(γ0 + σi + y) + lnΓ(γ1 + |Si|N − σi − y)
δj(y) = lnΓ(γ0 + σj + y) + lnΓ(γ1 + |Sj |N − σj − y),

and:

σi =
|Si|∑

k=1

ySk
i

+ yb − ya − yc σj =
|Sj |∑

k=1

ySk
j
− yb .

The goal is to show the supposition of Case 1 implies f(ySi)f(ySj ) ≤ f(yS]
i
)f(yS]

j
),

which reduces to:

δi(ya + yc − yb) + δj(yb) ≤ δi(ya) + δj(yc). (19)
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Since the gamma function is log-convex and the sum of convex functions is itself convex,
δi(y) and δj(y) are convex. Also, it follows that ya ≤ ya + yc − yb ≤ yc since a < b < c
and y1 ≤ . . . ≤ yn. Letting λ = (yc − yb)/(yc − ya), the left-hand-side of (19) is:

δi((1− λ)ya + λyc) + δj(λya + (1− λ)yc). (20)

Convexity of δi(y) and δj(y) guarantees that (20) is less than or equal to:

δi(ya) + δj(yc) + λ[(δi(yc) + δj(ya))− (δi(ya) + δj(yc))]. (21)

By (18), the third term of (21) is non-positive and thus (21) is less than or equal to the
right-hand-side of (19). Thus, (19) is established.
Case 2. Suppose f(yS[

i
)f(yS[

j
) > f(yS]

i
)f(yS]

j
). By similar reasoning as that of Case

1, it can be shown that this supposition implies f(ySi
)f(ySj

) ≤ f(yS[
i
)f(yS[

j
).

Since one of the two cases must hold, Condition 1 is established.
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