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Rejoinder

Guosheng Yin∗

I would like express my deep thanks to the Editor-in-Chief of Bayesian Analysis,
Dr. Brad Carlin, for organizing these extensive discussions of my work on the Bayesian
generalized method of moments (GMM). I am also grateful to the outstanding discus-
sants: Drs. Ming-Hui Chen and Sungduk Kim, and Dr. Ciprian Crainiceanu for their
insightful and stimulating comments on my article. In response to the suggestions from
the discussants, I present some related computational issues, and also numerically ex-
amine the Bayesian GMM in the context of the least squares estimation and quantile
regression. Many distributions are characterized by only the first and second moments,
based on which the likelihood can be completely recovered. The Bayesian GMM is a
robust, general and widely applicable approach, especially when there is not enough
information to derive the likelihood.

1 Computational Issues

In the Bayesian GMM, the posterior distribution of the model parameters is quite
complicated, and typically is not log-concave. Thus, I agree with Drs. Chen and Kim
that the convergence of the Metropolis algorithm may be slow. In the frequentist GMM
(Hansen 1982), β̂ is computed via a two-stage iterative procedure by inserting the
estimator obtained from the previous step, say k − 1, into the covariance matrix, such
that at the kth step, minimizing

Q(k)
n (β) = UT

n (β)Σ−1
n (β̂(k−1))Un(β)

with respect to β is much easier. A more efficient Markov chain Monte Carlo (MCMC)
algorithm along the line of the two-stage iterative procedure is currently under devel-
opment.

The Bayesian GMM is based on the moment conditions, instead of the likelihood,
which can be applied as long as the moments are correctly specified. However, finding
the correct moments is more difficult for longitudinal or clustered data because of the
existing correlations, and is particularly challenging when the underlying correlation
structure is complicated, as shown in the numerical studies by Drs. Chen and Kim.
Although the Bayesian GMM with a working independence model is able to provide
valid inferences, it may be less efficient, as in the case of the generalized estimating
equation (GEE). Through personal communications with Drs. Chen and Kim, we agree
that greater caution is required when selecting the appropriate moments. In some
circumstances, the concatenated moments may have redundant information that would
cause singularity of the covariance matrix. To resolve this, one can either delete the
redundant rows or simply use the Moore-Penrose generalized inverse matrix when the

∗Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston,
TX, mailto:gsyin@mdanderson.org

c© 2009 International Society for Bayesian Analysis DOI:10.1214/09-BA407REJ

mailto:gsyin@mdanderson.org�


218 Rejoinder

covariance matrix is not of full rank.

Regarding Dr. Crainiceanu’s comment on the motivation, the Bayesian and frequen-
tist GMMs indeed produce quite similar results. However, when the dimensionality of
β is high, it may be numerically difficult to minimize Qn(β) simultaneously over a
large parameter space. The Bayesian GMM turns the multi-dimensional minimization
problem into a series of one-dimensional Gibbs sampling procedures, and the posterior
samples can be used for Bayesian inferences.

Dr. Crainiceanu also raised issues with the normalizing term, proper posterior dis-
tribution, and sampling the αj ’s. The intuition behind the Bayesian GMM is that
Qn(β) follows a chi-squared distribution, which means that it behaves exactly like
−2 log{L(y|β)} in the usual likelihood ratio tests. Therefore, a pseudo-likelihood func-
tion L̃(y|β) can be constructed as

L̃(y|β) ∝ exp
{
−1

2
Qn(β)

}
= exp

{
−1

2
UT

n (β)Σ−1
n (β)Un(β)

}
. (1)

By noting that the sample moment Un(β) typically converges to a multivariate nor-
mal distribution, there is a normalizing term (2π)−p/2|Σn(β)|−1/2. To address Dr.
Crainiceanu’s comment on the normalizing term and the associated computational is-
sues, I conducted numerical studies in Sections 2 and 3, and found that it does not have
much impact on the estimation as long as the kernel is in the form of (1).

Once the pseudo-likelihood L̃(y|β) replaces the true likelihood function L(y|β), the
normalizing constant for the posterior distribution is

c−1(y) =
∫

exp
{
−1

2
UT

n (β)Σ−1
n (β)Un(β)

}
π(β)dβ,

where π(β) is the prior distribution for β. Because there exists a minimizer for Qn(β)
under the regularity conditions (Hansen 1982), L̃(y|β) has an upper bound so that c(β)
is finite. This leads to a proper posterior distribution for β.

With correlated data, after splitting the moment conditions corresponding to each
basis matrix C(j), the αj ’s drop out because the moments have a mean of zero:

Un(1)(β) =
1
n

n∑

i=1

Di
T A−1/2

i C(1)A
−1/2
i (yi − µi)

...

Un(J)(β) =
1
n

n∑

i=1

Di
T A−1/2

i C(J)A
−1/2
i (yi − µi).

This is an example of overidentification, when there are more moments than the number
of unknown parameters. This situation provides an opportunity to enhance the estima-
tion efficiency, by concatenating the J moments, Un(β) = {UT

n(1)(β), . . . ,UT
n(J)(β)}T .
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2 Least Squares Estimation

In the usual linear regression model, yi = βT Zi + εi, where yi is the outcome variable,
Zi is the covariate vector, and εi is the random error. The well-known least squares
estimator (LSE) is obtained by minimizing the `2 norm

∑n
i=1(yi − βT Zi)2. It can be

cast in the maximum likelihood estimation under the assumption that εi ∼ N(0, σ2).
However, the LSE does not require a normal distribution for the error, which simply
minimizes the discrepancy between the observed values and the predicted values mea-
sured by the `2 norm, regardless of the distribution of the error. In the Bayesian GMM,
the moment corresponding the LSE is

Un(β) =
1
n

n∑

i=1

Zi(yi − βT Zi).

To examine the impact of different error distributions on the Bayesian GMM, I
conducted simulation studies in the LSE framework. I considered the linear regression
model,

y = β0 + β1Z1 + β2Z2 + ε,

with the true parameter values β0 = 0.2, β1 = 0.5, β2 = −0.5, and covariates Z1 ∼
N(0, 1) and Z2 ∼ Bernoulli(0.5). The error took five different distributions: ε ∼
N(0, 0.25), ε ∼ Cauchy or t(1), ε ∼ t(3), ε ∼ Laplace, and a heteroscedastic error
ε = εZ1 with ε ∼ N(0, 0.25), respectively.

With sample sizes n = 100 and 200, I carried out 1,000 simulations. For each
data replicate, 10,000 posterior samples were drawn for the Bayesian inference. For
comparison, I also implemented the Bayesian GMM with the moment “normalizing
constant” (nc=|Σn(β)|−1/2), and the usual Bayesian likelihood-based method assuming
a normal error. I took noninformative prior distributions for all of the model parameters,
i.e., βk ∼ N(0, 10, 000), for k = 0, 1, 2; and σ−2 ∼ Gamma(0.0001, 0.0001).

The results in Table 1 show essentially no difference in the posterior estimates ob-
tained from the two Bayesian GMMs, with or without the term nc=|Σn(β)|−1/2. When
the error follows a normal distribution, the Bayesian likelihood method performs slightly
better than the Bayesian GMM because the model is correctly specified. When the tails
of the error distribution are heavier, such as in the Cauchy distribution, all of the meth-
ods do not produce consistent estimates. For the heteroscedastic error, i.e., the variance
of the error is correlated with covariate Z1, the coverage probability of β1 is much lower
when using the Bayesian likelihood approach. However, the Bayesian GMM does not
rely on an assumption of homoscedastic errors, thus it still gives the correct variance
estimate and allows the coverage probability to maintain the nominal level.

3 Quantile Regression

In contrast to the mean regression model, quantile regression is robust and gives an
overall assessment of the covariate effects instead of examining only the central covariate
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Table 1: Comparison between the Bayesian GMM, the Bayesian GMM with the nor-
malizing constant |Σn(β)|−1/2 (w/nc), and the full Bayesian likelihood method with
respect to the least squares estimation.

β0 = 0.2 β1 = 0.5 β2 = −0.5
n Bayesian Error Ave ESD ASD CP Ave ESD ASD CP Ave ESD ASD CP

100 GMM Normal .199 .072 .074 95.6 .497 .051 .056 96.3 −.498 .103 .104 95.4
t(3) .204 .227 .235 95.8 .511 .165 .177 97.6 −.508 .334 .337 95.0
Cauchy .395 1.401 1.574 98.6 .431 1.185 1.273 98.3 −.785 1.801 2.348 98.8
Laplace .214 .366 .390 96.1 .506 .283 .310 96.6 −.523 .504 .546 96.0
Hetero .196 .066 .073 97.3 .499 .080 .094 97.6 −.496 .094 .104 97.3

GMM Normal .199 .071 .073 95.4 .497 .051 .054 96.1 −.498 .103 .103 95.3
(w/nc) t(3) .205 .227 .232 95.5 .510 .164 .171 97.1 −.509 .332 .332 94.6

Cauchy .378 1.332 1.525 98.1 .448 1.093 1.199 98.1 −.760 1.719 2.281 98.5
Laplace .214 .367 .385 96.2 .506 .282 .301 96.2 −.522 .505 .540 95.6
Hetero .196 .067 .072 96.7 .499 .082 .088 95.6 −.496 .095 .102 96.6

Likelihood Normal .199 .071 .072 95.1 .497 .050 .051 95.4 −.498 .103 .102 95.1
(Normal) t(3) .204 .230 .235 95.1 .509 .168 .167 95.4 −.508 .333 .332 94.5

Cauchy .458 1.535 1.895 98.2 .387 1.288 1.526 95.4 −.769 1.733 2.325 98.5
Laplace .214 .371 .384 95.7 .506 .284 .288 94.9 −.522 .508 .537 95.2
Hetero .195 .069 .071 94.5 .499 .086 .050 74.6 −.496 .099 .101 95.0

200 GMM Normal .200 .049 .051 95.3 .499 .035 .037 95.5 −.499 .070 .072 95.4
t(3) .202 .172 .170 95.4 .506 .120 .125 96.0 −.509 .238 .244 95.6
Cauchy .387 1.386 1.546 98.1 .451 1.114 1.206 98.2 −.761 1.858 2.316 98.8
Laplace .210 .275 .286 96.6 .513 .198 .209 95.9 −.512 .392 .404 95.4
Hetero .198 .049 .051 95.8 .501 .059 .063 97.2 −.498 .070 .072 94.3

Likelihood Normal .200 .049 .050 95.5 .499 .035 .036 94.2 −.499 .070 .071 95.2
(Normal) t(3) .202 .173 .172 95.2 .505 .122 .121 95.6 −.509 .239 .243 96.0

Cauchy .445 1.518 1.885 98.2 .432 1.264 1.511 96.1 −.746 1.815 2.315 98.5
Laplace .210 .276 .284 96.1 .513 .198 .202 95.7 −.512 .393 .400 95.2
Hetero .198 .050 .050 95.3 .501 .061 .036 72.4 −.498 .071 .071 94.4

Ave is the average of the posterior means over 1,000 simulations, ESD is the empirical
standard deviation, ASD is the average of the posterior standard deviations, and CP(%)
is the coverage probability of the 95% credible intervals.
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Table 2: Comparison between the Bayesian GMM, the Bayesian GMM with the nor-
malizing constant |Σn(β)|−1/2 (w/nc), and the full Bayesian likelihood method with
respect to the median regression.

β0 = 0.2 β1 = 0.5 β2 = −0.5
n Bayesian Error Ave ESD ASD CP Ave ESD ASD CP Ave ESD ASD CP

100 GMM Normal .201 .077 .094 97.6 .500 .055 .071 97.1 −.501 .112 .134 97.5
t(3) .204 .186 .214 97.0 .496 .122 .158 98.5 −.507 .256 .305 97.5
Cauchy .190 .241 .278 96.1 .510 .185 .222 97.4 −.503 .341 .397 97.7
Laplace .192 .302 .370 97.2 .495 .242 .295 96.9 −.476 .436 .527 97.4
Hetero .200 .040 .047 96.1 .498 .078 .083 95.8 −.500 .056 .067 97.0

GMM Normal .200 .077 .094 97.6 .500 .055 .071 97.3 −.501 .112 .135 97.6
(w/nc) t(3) .204 .186 .215 96.9 .496 .122 .158 98.5 −.507 .256 .307 97.5

Cauchy .191 .241 .280 96.6 .509 .185 .223 97.6 −.503 .341 .399 97.9
Laplace .192 .302 .372 97.5 .495 .243 .297 96.9 −.475 .436 .530 97.6
Hetero .200 .040 .047 96.0 .497 .077 .083 95.6 −.501 .056 .069 96.9

Likelihood Normal .200 .069 .153 1 .500 .055 .119 1 −.495 .097 .213 1
(Laplace) t(3) .203 .185 .240 98.3 .495 .121 .169 99.5 −.508 .259 .341 98.9

Cauchy .193 .227 .266 98.1 .510 .169 .195 97.6 −.503 .324 .376 97.8
Laplace .191 .300 .308 95.7 .493 .228 .226 95.1 −.478 .428 .437 96.0
Hetero .201 .038 .121 1 .497 .076 .130 99.8 −.499 .053 .171 1

200 GMM Normal .200 .056 .066 97.1 .500 .040 .048 96.8 −.499 .080 .094 97.4
t(3) .206 .129 .146 97.3 .501 .089 .106 97.6 −.505 .178 .207 97.6
Cauchy .201 .162 .181 96.4 .508 .115 .136 97.7 −.501 .225 .256 97.2
Laplace .193 .222 .247 96.5 .503 .154 .187 97.7 −.477 .316 .352 96.4
Hetero .200 .025 .027 94.8 .499 .054 .057 95.8 −.500 .035 .039 95.6

Likelihood Normal .200 .055 .113 1 .501 .040 .081 1 −.498 .079 .160 1
(Laplace) t(3) .206 .131 .168 99.1 .501 .090 .119 99.5 −.506 .182 .237 98.7

Cauchy .201 .157 .184 97.7 .508 .111 .132 98.1 −.502 .220 .260 98.1
Laplace .195 .218 .213 94.7 .501 .150 .153 95.9 −.481 .307 .303 94.0
Hetero .200 .025 .079 1 .498 .054 .090 99.9 −.500 .036 .113 1

Ave is the average of the posterior means over 1,000 simulations, ESD is the empirical
standard deviation, ASD is the average of the posterior standard deviations, and CP(%)
is the coverage probability of the 95% credible intervals.
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effects (Koenker and Bassett 1978). More importantly, quantile regression does not
assume any distribution on the error, except for a conditional quantile of zero.

The τth (0 < τ < 1) quantile regression model takes the form of qτ (yi|Zi) = βT Zi,
where qτ (yi|Zi) is the conditional τth quantile given Zi, and qτ (εi|Zi) = 0 with the
distribution of the error εi unspecified. The estimator β̂ can be obtained by minimizing

n∑

i=1

ρτ (yi − βT Zi), (2)

where the check function ρτ (u) = u{τ − I(u < 0)}. Therefore, quantile regression is not
a likelihood-based approach, and a Bayesian counterpart appears to be nonintuitive.

The check function is closely related to the asymmetric Laplace distribution (ALD)
with a density function f(y|µ, τ) = τ(1− τ) exp {−ρτ (y − µ)}, where µ is the location
parameter. Minimizing (2) is equivalent to maximizing the likelihood function of yi by
assuming yi from an ALD with µ = βT Zi.

Focusing on the median regression with τ = 1/2, I carried out simulation studies with
the Bayesian GMM. In this case, the usual least absolute deviation (LAD) estimator is
obtained by minimizing the `1 norm,

∑n
i=1 |yi − βT Zi|, and the corresponding sample

moment is

Un(β) =
1
n

n∑

i=1

Zi{I(yi − βT Zi ≥ 0)− 1/2}.

The simulation setups in the LAD are the same as those in the LSE, whereas the full
Bayesian likelihood approach assumes an ALD error distribution.

The results, summarized in Table 2, indicate that the point estimates using both
the Bayesian GMM and the Bayesian likelihood method are generally consistent. When
the true error distribution is a Laplace distribution that exactly matches the model
error assumption, the Bayesian likelihood method performs the best in terms of the
variance estimate and the coverage probability. In other scenarios, the variances using
the Bayesian likelihood approach are overestimated, which leads to coverage probabil-
ities close to 1. In contrast, the Bayesian GMM reasonably maintains the coverage
probabilities at the nominal level. With n = 100, the Bayesian GMM also inflates the
variance estimates; as n increases to 200, the variance estimates improve. In summary,
the Bayesian GMM is more robust as it produces reasonable estimates under various
error distributions; whereas the Bayesian likelihood approach assuming a Laplace error
appears to be quite sensitive to the model assumption.
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