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Comments on Article by Yin

Ming-Hui Chen∗ and Sungduk Kim†

We would like to congratulate the author for a nice development of the Bayesian
Generalized Method of Moments (BGMM). BGMM is a natural extension of the classical
GMM. On the one hand, BGMM enjoys asymptotic properties and estimation efficiency
of GMM; on the other hand, BGMM has a better computational property due to the
recent advance in Markov chain Monte Carlo (MCMC) sampling. Therefore, BGMM is
potentially very useful when the parameter estimation is of primary interest especially
in statistical analysis of correlated, longitudinal or repeated measurement data.

The BGMM is primarily based on the moment conditions, instead of the likelihood.
Thus, the “likelihood” used in constructing the “posterior distribution” in the BGMM is
not the usual model-based likelihood function. This may be advantageous when the true
likelihood is difficult to derive. However, in the BGMM framework, formal Bayesian
model comparisons cannot be carried out as the likelihood function or the predictive
distribution is not defined. Since the construction of the BGMM is primarily based on
the marginal distribution model, the success of the BGMM in estimating the regression
coefficients for the correlated data heavily relies on an adequate specification of the
moment conditions. An immediate practical question is: how many moment conditions
or what moment conditions need to be specified in order to capture the true correlation
matrix? We suspect that when the moment conditions are not correctly specified, the
standard deviations of Bayesian estimators based on the BGMM can be over-stated or
under-stated especially when the sample size is relatively small. As the models cannot
be compared via a usual Bayesian model comparison criterion such as the Bayes factor or
the Deviance Information Criterion (Spiegelhalter et al. (2002)) and the true correlation
structure is unknown in the BGMM, it becomes quite challenging and difficult to know
how many C(j)’s are needed in order to achieve reliable standard deviations of the
Bayesian estimators. Although the author has proposed several possible choices of
C(j)’s, this issue has not been fully addressed. A BGMM estimator is asymptotically
unbiased. However, the BGMM may fail to accurately estimate the certainty of a
Bayesian estimator, which may be a major concern for using the BGMM.

To gain a better understanding of the BGMM and to further examine the perfor-
mance of this method, we have conducted three simulation studies. In all simulations, we
consider the similar regression model used in Section 3.3 with K = 4 and two covariates
(Z1ik, Z2ik), i.e.,

Yik = β0 + β1Z1ik + β2Z2ik + εik.

The covariate distributions for (Z1ik, Z2ik) are the same as those given in Section 3.3.
That is, Z1ik ∼ N(0, 1) and Z2ik ∼ Bernoulli(0.5). The true parameter values are
β0 = 0.2, β1 = 0.5 and β2 = −0.5. Also, 500 data sets of sample size n = 50 were
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generated in all simulations.

Simulation I. In this simulation, we basically repeated the simulation conducted in
Section 3.3. Instead of n = 100, we used n = 50. The true correlation matrix is
IR = (1−ρ)I+ρ11T with ρ = 0.5. For the full Bayesian approach, the priors are specified
as follows: ρ ∼ U(−1, 1), σ2 ∼ IG(0.0001, 0.0001), and β = (β0, β1, β2)T ∼ N(0, 1000I).
The results are shown in Table 1. In addition to “Ave”, “ESD”, and “ASD” reported in
the paper, we also reported “MSE”, which was obtained by averaging the squares of the
differences between the parameter estimates and the true parameter over 500 replicated
data sets. From Table 1, we see that BGMM works well with a single moment condition
specified by C(1) = I even when the true correlation matrix IR is not an identity matrix.
The MSE’s are comparable for all three methods.

Method Parameter True Ave ESD ASD MSE
BGMM (I) β0 0.2 0.1958 0.1064 0.1196 0.0113

β1 0.5 0.5044 0.0716 0.0784 0.0051
β2 -0.5 -0.5026 0.0718 0.0759 0.0052

BGMM (I + Exch) β0 0.2 0.1932 0.1138 0.1185 0.0130
β1 0.5 0.5007 0.0564 0.0618 0.0032
β2 -0.5 -0.5040 0.0590 0.0595 0.0035

Full Bayesian β0 0.2 0.1954 0.1058 0.1024 0.0112
β1 0.5 0.5011 0.0554 0.0667 0.0031
β2 -0.5 -0.5023 0.0592 0.0658 0.0035

Table 1: Comparison between the BGMM and full Bayesian approach with the data
generated from the model with an exchangeable correlation matrix.

Simulation II. Instead of an exchangeable correlation matrix for IR in Simulation I,
we consider

IR =




1.0 0.5 0.3 0.9
0.5 1.0 −0.5 0.7
0.3 −0.5 1.0 −0.1
0.9 0.7 −0.1 1.0




and the variances are 0.2, 9, 15, and 5 for Yi1, . . . , Yi4, respectively, in this simu-
lation. Let Σ = Var(Yi), where Yi = (Yi1, . . . , Yi4)T . For the full Bayesian ap-
proach, the priors are specified as follows: Σ ∼ Inv-Wishart(ν0, Λ0) with ν0 = 1 and
Λ0 = diag(0.0001, 0.0001, 0.0001, 0.0001), and β = (β0, β1, β2)T ∼ N(0, 1000I). The
results are reported in Table 2. Unlike Simulation I, when the true correlation matrix is
not exchangeable, the standard deviations based on BGMM (I) or BGMM (I + Exch)
are much larger than those obtained from the full Bayesian approach. In this case,
adding C(2) (Exch) does not seem to improve the standard deviations at all. In addi-

tion, we also tried BGMM (I + Exch + C(3)), where C(3) =




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


. The
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resulting ESD’s are 0.2012, 0.1926, and 0.1868 for β0, β1, and β2, respectively. These
ESD’s are still much larger than those obtained from the full Bayesian approach. Thus,
more moment conditions are needed for this case.

Method Parameter True Ave ESD ASD MSE
BGMM (I) β0 0.2 0.1917 0.1882 0.2029 0.0354

β1 0.5 0.5066 0.1902 0.2036 0.0361
β2 -0.5 -0.5061 0.2039 0.2015 0.0415

BGMM (I + Exch) β0 0.2 0.1862 0.2007 0.2015 0.0404
β1 0.5 0.5031 0.2013 0.2010 0.0405
β2 -0.5 -0.5039 0.2088 0.2006 0.0435

Full Bayesian β0 0.2 0.1998 0.0153 0.0148 0.0002
β1 0.5 0.5003 0.0115 0.0110 0.0001
β2 -0.5 -0.5008 0.0121 0.0110 0.0002

Table 2: Comparison between the BGMM and full Bayesian approach with the data
generated from the model with a general correlation matrix.

Simulation III. In the first two simulations, the true correlation matrix is the same
across all 50 observations. In this simulation, we consider an usual special case in
which the data were generated from a Brownian motion process model. Specifically,
for observation i, we generated ti1, ti2, ti3, and ti4 independently from U(0, 100). For
notional convenience, we assume ti1 < ti2 < ti3 < ti4. Then, the true covariance matrix
of Yi was specified as

Σi = σ2




ti1 ti1 ti1 ti1
ti1 ti2 ti2 ti2
ti1 ti2 ti3 ti3
ti1 ti2 ti3 ti4




with σ2 = 1. Under this setting, all true correlation matrices are different across
different observations. We suspect that it may be more difficult for the BGMM to
capture such observation-varying correlation matrices. Similar to Simulation I, for the
full Bayesian approach, we specify the priors as follows: σ2 ∼ IG(0.0001, 0.0001) and
β = (β0, β1, β2)T ∼ N(0, 1000I). Table 3 shows the results. From this table, we see
that the BGMM performs much worse than the full Bayesian approach. However, we
can see an improvement of BGMM (I + Exch) over BGMM (I) in terms of ESD, ASD
and MSE except for β0.

In all three simulations, we have also tried n = 100. Except for Simulation I, the
ESD’s and ASD’s obtained from the BGMM remain much larger than those obtained
from the full Bayesian approach. Therefore, a much larger sample size n and more mo-
ment conditions may be needed for the linear regression models with the true correlation
matrices given in Simulations II and III. Finally, we would like to mention that when the
dimension of regression coefficients increases, we have experienced slow convergence of
the Metropolis algorithm. We suspect that the Metropolis algorithm within the Gibbs
sampler may not work well when the dimension of the parameters is relatively large
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Method Parameter True Ave ESD ASD MSE
BGMM (I) β0 0.2 0.1567 0.7991 0.8302 0.6391

β1 0.5 0.5114 0.4833 0.4998 0.2332
β2 -0.5 -0.5278 0.4970 0.4865 0.2473

BGMM (I + Exch) β0 0.2 0.1515 0.8180 0.8133 0.6702
β1 0.5 0.4892 0.3311 0.3280 0.1095
β2 -0.5 -0.5283 0.3371 0.3134 0.1142

Full Bayesian β0 0.2 0.1851 0.2823 0.1918 0.0798
β1 0.5 0.5021 0.1232 0.0841 0.0152
β2 -0.5 -0.5045 0.1233 0.0829 0.0152

Table 3: Comparison between the BGMM and full Bayesian approach with the data
generated from a Brownian motion process model.

due to the complexity of the posterior distribution in the BGMM. Some recent develop-
ment on MCMC sampling such as Kou et al. (2006) and Liang et al. (2007) and general
MCMC sampling strategies discussed in Chen et al. (2000) may all be useful in order
to develop a more efficient MCMC sampling algorithm from the posterior distribution
in the BGMM.
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