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Posterior predictive arguments in favor of the
Bayes-Laplace prior as the consensus prior for

binomial and multinomial parameters

Frank Tuyl∗, Richard Gerlach† and Kerrie Mengersen‡

Abstract. It is argued that the posterior predictive distribution for the binomial
and multinomial distributions, when viewed via a hypergeometric-like representa-
tion, suggests the uniform prior on the parameters for these models. The argument
is supported by studying variations on an example by Fisher, and complements
Bayes’ original argument for a uniform prior predictive distribution for the bino-
mial. The fact that both arguments lead to invariance under transformation is
also discussed.
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A Introduction

Interval estimation of the binomial parameter θ, representing the true probability of
a success, is a problem of long standing in statistical inference. In the case of prior
ignorance, or no knowledge about θ, a noninformative prior can be used to ‘let the data
speak for themselves’. Such a prior has been called a consensus prior and aims to be
suitable as a standard for scientific communication (Bernardo 2005). However, there is
some debate as to the optimal choice for the binomial parameter. Bernardo and Ramon
(1998) stated a nice desideratum for a noninformative prior: “Proper or improper, what
must be required from non-subjective priors is that, for any data set, they lead to sen-
sible, data-dominated, posterior distributions.” Four ‘plausible’ noninformative priors
were listed by Berger (1985, p.89): the Bayes-Laplace beta(1, 1), the Jeffreys/reference
beta( 1

2 , 1
2 ), the Haldane beta(0, 0) and Zellner’s prior (which is U-shaped but not a beta

density).

Bayes (1763) applied the uniform prior to derive the beta posterior that is the
normalised binomial likelihood function. It is not well known that Bayes favored this
prior as a result of considering the observable random variable x as opposed to the
unknown parameter θ, which is an important difference (Edwards 1978; Stigler 1982).
In modern terms, what Bayes clearly proposed as a reasonable representation of prior
ignorance (p.392: “. . . that concerning such an event I have no reason to think that, in
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a certain number of trials, it should rather happen any one possible number of times
than another.”), is a uniform prior predictive distribution

p(x) =
∫ 1

0

p(θ)p(x|θ)dθ =
1

n + 1
, x = 0, . . . , n,

from which p(θ) = 1 follows under mild conditions. For further details, see Stigler
(1982) who emphasised that consequently Bayes did not appeal to the ‘suspect principle
of insufficient reason’, i.e. the notion that lack of knowledge about a parameter implies
a uniform prior.

Given actual data x, the posterior predictive distribution of an unobserved quantity
y is

p(y|x) =
∫

p(y|θ)p(θ|x)dθ,

which is a powerful Bayesian tool for forecasting purposes. Rather than, for example,
‘plugging in’ the maximum likelihood estimate, integration is applied across all possible
values of θ, thereby incorporating parameter uncertainty.

The aim of this paper is to show that the posterior predictive distributions for
the binomial and multinomial models also suggest the uniform beta(1, 1) or Bayes-
Laplace (B-L) prior as the natural representation of prior ignorance, and thus a suitable
consensus prior. Geisser (1984) already gave a convincing argument in favor of the
uniform prior based on hypergeometric sampling. This clearly supports, but is different
from, the argument presented here. There is no denying, however, that the current
objective Bayesian choice is the Jeffreys/reference beta( 1

2 , 1
2 ) prior (Box and Tiao 1973;

Bernardo and Smith 1994), so our comparisons focus on these two priors.

The main arguments are given in Section 2, supported by examples derived from
Fisher (1973). Invariance of the B-L prior is discussed in Section 3.

B Main arguments

A hypergeometric-like representation of the posterior predictive distribution is given for
the binomial model, followed by the generalisation to the multinomial case.

B.1 Binomial model

For the binomial model the posterior predictive distribution describes the probability
of y successes in m trials given x successes in n trials. The general beta(a, b) prior leads
to the beta-binomial distribution:

p(y|m,x, n) =
(

m

y

)
Γ(n + a + b)Γ(y + x + a)Γ(m + n− y − x + b)

Γ(x + a)Γ(n− x + b)Γ(m + n + a + b)
.

Using factorials instead of gamma functions, Thatcher (1964) referred to y as having
a negative hypergeometric distribution, presumably based on the re-arrangement (not
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given by Thatcher)

p(y|m,x, n) =

(
y + x + a− 1

y

)(
m + n− y − x + b− 1

m− y

)

(
m + n + a + b− 1

m

) , (1)

which generalises the expressions by Geisser (1993, p.52) and Jaynes (2003, p.563),
which are for a = b = 1 only; Geisser (1984) gave expressions for a = b = 1

2 and
(a = 0, b = 1

2 ).

Similar to the negative binomial, the negative hypergeometric representation of the
posterior predictive distribution of y given by (1) can be seen as the product of two
probabilities:

p(y|m,x, n) =
n + a + b− 1

m + n + a + b− 1

(
y + x + a− 1

y

)(
m + n− y − x + b− 1

m− y

)

(
m + n + a + b− 2

m

) . (2)

This representation, which, as far as we know, has not appeared before, gives an in-
teresting view of the beta-binomial. It also implies that, for integer values of a and
b, it can be evaluated easily in any software packages that provide the hypergeometric
distribution.

The hypergeometric-like component of (2) suggests the uniform prior (a = b = 1),
leading to symmetry in y and x. Applying this prior the resulting multiplier (n +
1)/(m+n+1) is sensible as well: for example, the ratio of p(y|m,x, n) and p(x|n, y, m)
is (n+1)/(m+1), which simply reflects the fact that y and x have m+1 and n+1 possible
values, respectively. This ratio is 1 when m = n so that p(y|n, x, n) equals p(x|n, y, n);
as illustrated below, this is eminently reasonable, but follows from the uniform prior
only.

We support this argument with an example by Fisher (1973, p.137) who stated, “The
likelihood of observing 14 successes out of 21 as judged by data showing 3 successes out
of 19, is exactly the same as the likelihood in prospect of observing 3 successes out of
19, judged on the basis of experience of 14 successes out of 21.” (In the same section
Fisher emphasised that likelihood is different from probability.) While it is tempting
to interpret the two statements as conditional, this kind of equality only eventuates
from Fisher’s unconditional approach here: based on (2), conditional (i.e. posterior)
probabilities such as these are not generally the same when n and m are not the same;
this follows immediately from considering, for example, n large and m very small.

As referred to in the Introduction, the B-L beta(1, 1) and Jeffreys beta( 1
2 , 1

2 ) priors
are two of a set of four plausible priors (Berger 1985, p.89). The other two are the Zellner
and Haldane priors. The Zellner prior is proportional to θθ(1−θ)1−θ and is proper with
normalisation constant 1.6186, which is also the pdf value at the extremes, making it
a less extreme U-shape than the Jeffreys prior. The Haldane prior is beta(0, 0) and
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improper, so that for x = 0 or x = n the posterior predictive (1) or (2) is not defined.
This follows from the impropriety of the posterior distribution, which, as Bernardo
(1979) noted, is less than adequate.

In Table B.1 the posterior predictive probabilities induced by these four priors are
compared for 11 scenarios, comprising Fisher’s scenario (Case 1) and a variation on it
(Case 2), followed by some extreme data outcomes (Cases 3 and 4) and a simple example
with m = n (Case 5).

beta(1, 1) beta( 1
2
, 1
2
) beta(0, 0) ∝ θθ(1− θ)(1−θ)

Case y m x n Bayes-Laplace Jeffreys Haldane Zellner
1a 14 21 3 19 0.000619 0.000461 0.000328 0.000500
1b 3 19 14 21 0.000681 0.000645 0.000606 0.000649
2a 14 20 3 20 0.000255 0.000186 0.000130 0.000204
2b 3 20 14 20 0.000255 0.000235 0.000214 0.000238
3a 1 1 10 10 0.9167 0.9545 N/A 0.9278
3b 10 10 1 1 0.1667 0.3364 N/A 0.2150
3c 9 10 1 1 0.1515 0.1602 N/A 0.1673
4a 0 1 10 10 0.0833 0.0455 N/A 0.0722
4b 10 10 0 1 0.0152 0.0160 N/A 0.0167
5a 4 4 2 4 0.1190 0.1289 0.1429 0.1259
5b 2 4 4 4 0.1190 0.0663 N/A 0.0979

Table 1: Posterior predictive scenarios: p(y|m,x, n)

Although the Case 1 probabilities are quite small, it is easy to see the relative
differences. Of course, no general statement can be made about the ‘correctness’ of
the priors based on this scenario alone, though clearly the B-L results are closest to
conforming with Fisher’s statement. This is due to the scenario Fisher chose, which
we slightly adjusted so that m = n (Case 2). As expected, the B-L probabilities are
now the same for 2a and 2b, and we argue that 14/20 given 3/20 should indeed be
as unexpected as 3/20 given 14/20. In contrast, given a beta(a, a) prior with a < 1
(Jeffreys and Haldane), the probability of the latter exceeds that of the former, and
the reverse applies when a > 1; i.e. if the future event is more ‘aligned’ with the prior
than the past event, in terms of being closer to or further away from an extreme, it has
greater probability than the reverse case. This appears to leave a = 1 as the only beta
prior that ‘lets the data speak for themselves’. In the remainder we discuss differences
between B-L and Jeffreys only, with the Zellner values typically between the two and
the Haldane values mostly non-existent.

Cases 3, 4 and 5 support the argument that the B-L prior leads to more natural
posterior predictive probabilities than the Jeffreys prior; the same conclusions are drawn
from larger samples. Note that the B-L differences between a and b for Cases 1, 3 and
4 are purely due to the (n + 1)/(m + 1) factor: in Cases 3 and 4, for example, this is
11/2 = 5.5. As expected, this causes quite a large difference between the B-L a and
b scenarios. This difference is smaller under the Jeffreys prior, but these results are
difficult to justify; for example, in Case 3b the probability of 0.3364, given the evidence
of only one observation, is more than 20 times greater than the Case 4b probability
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based on one failure instead of one success. Moving from Case 3b to 3c there is a big
reduction in the Jeffreys posterior predictive probability, and a small reduction in the
B-L probability, when reducing the number of successes in the future experiment of
size 10 by only one; in the absence of prior information a small reduction would be
expected here. Case 5 is a very simple m = n example based on whether x = n = 4
is the future or the historical event. We suggest that the close to doubling of the
Jeffreys posterior predictive probabilities, favoring the more extreme future event (with
no difference between the B-L probabilities), is again undesirable.

B.2 Multinomial model

The multivariate extension of the beta(a, a) prior is a Dirichlet distribution with all
parameters equal to a. Based on the uniform distribution that again follows from a = 1,
Jaynes (2003, p.570) gave the corresponding predictive distribution most elegantly as

p(y1, . . . , yc|x1, . . . , xc) =

(
y1 + x1

y1

)
. . .

(
yc + xc

yc

)

(
m + n + c− 1

m

) ,

where m =
∑c

i=1 yi and n =
∑c

i=1 xi. Again we can write this as a hypergeometric-like
distribution with a correction factor (normalisation constant) instead:

p(y1, . . . , yc|x1, . . . , xc) =
(n + 1) . . . (n + c− 1)

(m + n + 1) . . . (m + n + c− 1)

(
y1 + x1

y1

)
. . .

(
yc + xc

yc

)

(
m + n

m

) ,

so that
p(y1, . . . , yc|x1, . . . , xc)
p(x1, . . . , xc|y1, . . . , yc)

=
(n + 1) . . . (n + c− 1)
(m + 1) . . . (m + c− 1)

.

As before, we consider it reasonable that when m = n, this ratio is 1, which follows
from the uniform prior only. For the Dirichlet(a, . . . , a) prior and m = n this ratio is

p(y1, . . . , yc|x1, . . . , xc)
p(x1, . . . , xc|y1, . . . , yc)

=
c∏

i=1

Γ(yi + a)Γ(xi + 1)
Γ(yi + 1)Γ(xi + a)

instead. Compare, for example, the extreme outcome y1 = n with the balanced xi
.=

n/c, which is a generalisation of Case 5 above. It is straightforward to show that for
the Jeffreys prior (a = 1

2 ) this ratio is O(n
1
2 (c−1)), which thus grows with n as well as

c, a clear example of posterior probability being pushed towards the extremes.

C Discussion

This paper has aimed to show that in the case of the binomial model, similar to Bayes’
(1763) argument for a uniform prior predictive distribution, the posterior predictive
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distribution also implies the uniform prior as the correct representation of prior ig-
norance. This was achieved by showing desirable symmetry in a hypergeometric-like
representation of this distribution, supported by predictive probabilities resulting from
the Bayes-Laplace beta(1, 1) prior that seem more logical and acceptable than those re-
sulting from the Jeffreys beta( 1

2 , 1
2 ) prior, which places undue weight near the extremes.

It may be worthwhile to address the notion that the B-L prior lacks invariance
under nonlinear transformations, in contrast with the Jeffreys prior. See, for example,
Phillips (1991) and Agresti and Min (2005) who, referring to the latter, stated, “Unlike
a uniform prior, it is still the appropriate prior for a one-to-one transformation of the
parameter space (e.g., Box and Tiao, 1973, p. 32, 41-42).”

It is easy to see, however, that to adhere to the uniform prior predictive distribution
suggested by Bayes (1763), a one-to-one function φ = φ(θ) requires the prior choice
p(φ) = |dθ/dφ|. Consider, for example, the pdf for the odds φ = θ/(1− θ):

p(x|φ) =
(

n

x

)
φx

(1 + φ)n
, x = 0, . . . , n, 0 < φ < ∞.

Applying the uniform prior to another function of θ, Fisher (1973, p.16) considered it to
contain an “arbitrary element”. To apply the uniform prior to just any transformation
would seem inadequate indeed, and here p(φ) ∝ 1 leads to a non-normalisable posterior
for x = n and even x = n − 1. However, there is nothing arbitrary about the prior
p(φ) = (1 + φ)−2, which again leads to p(x) = (n + 1)−1.

This confirms that invariance is not the unique privilege of the Jeffreys prior, which
is based on p(φ) = p(θ)|dθ/dφ| (Box and Tiao 1973, p.43). We note that Huzurbazar
(1976) already gave additional invariance rules that are possible in the presence of
sufficient statistics; these rules, when applied to the binomial distribution, lead to either
beta(0, 0) or beta(1, 1) priors.

The invariance implied by Bayes’ argument was not made explicit by Edwards (1978)
or Stigler (1982). Although it may have been considered to be obvious, it appears that
this property is not generally understood. For example, the corresponding prior for the
log odds η = log{θ/(1− θ)} is

p(η) =
eη

(1 + eη)2
,

about which Welsh (1996, p.80) stated: “This is a symmetric density with mode at the
origin (corresponding to θ = 1

2 ) which suggests that we believe θ is more likely to be
near 1

2 than 0 or 1. That is, the values of θ are not equally likely on the logit scale and
we seem to have prior knowledge about θ.” However, applying this argument to the
earlier transformation φ = θ/(1 − θ) would be to suggest that based on the mode at
φ = 0, values of θ near 0 are more likely than values near 1! Clearly all that happens
as a result of the odds transformation is that the probability density from 0 < θ < 1

2 is
transferred to 0 < φ < 1, and the density from 1

2 < θ < 1 to 1 < φ < ∞, without the
introduction of any “prior knowledge about θ” over and above that represented by the
uniform prior on θ.
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In the context of the relative risk ρ = θ1/θ2, Hashemi et al. (1997) made a similar
claim when they stated, “. . . a uniform prior on the θi does not transform to a non-
informative prior on the measure of risk. For example, if one assigns a uniform prior to
the θi, then the density function for ρ has height 0 for ρ < 0, 1

2 in (0, 1) and 1/2ρ2 for
ρ > 1 (that is, the prior for ρ is informative).” Again, this prior is entirely equivalent
for ρ < 1 and ρ > 1, as no information was introduced beyond the (invariant) uniform
priors on the θi, and here maintains the desirable flat p(x1, x2).

The symmetry argument for the binomial’s posterior predictive distribution sug-
gested in this paper is similar to Bayes’ argument for a uniform prior predictive distri-
bution, again leading to an invariant prior.
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