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Gaussian graphical models are semi-algebraic subsets of the cone of pos-
itive definite covariance matrices. Submatrices with low rank correspond to
generalizations of conditional independence constraints on collections of ran-
dom variables. We give a precise graph-theoretic characterization of when
submatrices of the covariance matrix have small rank for a general class of
mixed graphs that includes directed acyclic and undirected graphs as special
cases. Our new trek separation criterion generalizes the familiar d-separation
criterion. Proofs are based on the trek rule, the resulting matrix factorizations
and classical theorems of algebraic combinatorics on the expansions of deter-
minants of path polynomials.

1. Introduction. Given a graph G, a graphical model is a family of probabil-
ity distributions that satisfy some conditional independence constraints which are
determined by separation criteria in terms of the graph. In the case of normal ran-
dom variables, conditional independence constraints correspond to low rank sub-
matrices of the covariance matrix � of a special type. Thus for Gaussian graphical
models, the graphical separation criteria correspond to special submatrices of the
covariance matrix having low rank.

Consider first the case where G is a directed acyclic graph. In this case, a con-
ditional independence statement XA ⊥⊥ XB |XC holds for every distribution con-
sistent with the graphical model if and only if C d-separates A from B in G. For
normal random variables the conditional independence constraint XA ⊥⊥ XB |XC

is equivalent to the condition rank�A∪C,B∪C = #C where �A∪C,B∪C is the sub-
matrix of the covariance matrix � with row indices A ∪ C and column indices
B ∪ C. However, the drop of rank of a general submatrix �A,B does not necessar-
ily correspond to a conditional independence statement that is valid for the graph,
and will not, in general, come from a d-separation criterion. Our main result for di-
rected graphical models is a new separation criterion (t-separation) which gives a
complete characterization of when submatrices of the covariance matrix will drop
rank and what the generic lower rank of that matrix will be.
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One of the main reasons for searching for necessary and sufficient conditions
for matrices to drop rank comes from the search for a unified perspective on rank
conditions implied by the d-separation criterion and the tetrad representation the-
orem [12], which characterizes 2 × 2 vanishing determinants in directed acyclic
graphs. The t-separation criterion unifies both of these results under a simple and
more general umbrella.

A second reason for introducing t-separation is that it provides a new set of
tools for performing constraint-based inference in Gaussian graphical models. This
approach was pioneered by the TETRAD program [10] where vanishing tetrad
constraints are used to infer the structure of hidden variable graphical models.
The mathematical underpinning of the TETRAD program is the above-mentioned
tetrad representation theorem [12]. In fact, the impetus for this project was a desire
to develop a better understanding of the tetrad representation theorem. The original
proof of the tetrad representation theorem is lengthy and complicated, and some
simplifications appear in subsequent work [11, 13]. Our result has the advantage of
being considerably broader, while our proof is more elementary. The notion that al-
gebraic determinantal constraints could be useful for inferring graphical structures
is further supported by recent results on the distribution of the evaluation of deter-
minants of Wishart matrices [4] which would be an essential tool for developing
Wald-type tests in this setting.

Section 2 gives the setup of Gaussian graphical models and states the main
results on t-separation. To describe the main result we need to recall the notion of
treks which are special paths in the graph G. These are the main objects used in
the trek rule, a combinatorial parametrization of covariance matrices that belong
to the Gaussian graphical model. We make a special distinction between general
treks and simple treks and introduce two trek rules. These results are probably
well known to experts but are difficult to find in the literature. Then we make
precise the t-separation criterion and state our main results about it. This section
is divided into subsections: stating our results first for directed graphical models,
then undirected graphical models and finally the more general mixed graphs. The
purpose for this division is twofold: it extracts the two most common classes of
graphical models and it mirrors the structure of the proof of the main results.

Section 3 is concerned with the proofs of the main results. The main idea is to
exploit the trek rule which expresses covariances as polynomials in terms of treks
in the graph G. The expansion of determinants of matrices of path polynomials
is a classical problem in algebraic combinatorics covered by the Gessel–Viennot–
Lindström lemma, which we exploit in our proof. The final tool is Menger’s theo-
rem on flows in graphs.

2. Treks and t-separation. This section provides background on and defin-
itions of treks as well as the statements of our main results on t-separation for
Gaussian graphical models. We describe necessary and sufficient conditions for
directed and undirected graphs first, and then address the general case of mixed
graphs. The proofs in Section 3 also follow the same basic format.
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2.1. Directed graphs. Let G be a directed acyclic graph with vertex set
V (G) = [m] := {1,2, . . . ,m}. We assume G is topologically ordered, that is, we
have i < j whenever i → j ∈ E(G). A parent of a vertex j is a node i ∈ V (G)

such that i → j is an edge in G. The set of all parents of a vertex j is denoted
pa(j). Given such a directed acyclic graph, one introduces a family of normal ran-
dom variables that are related to each other by recursive regressions.

To each node i in the graph, we introduce a random variable Xi and a random
variable εi . The εi are independent normal random variables εi ∼ N (0, φi) with
φi > 0. We assume that all our random variables have mean zero for simplicity.
The recursive regression property of the DAG gives an expression for each Xj in
terms of εj , those Xi with i < j and some regression parameters λij assigned to
the edges i → j in the graph

Xj = ∑
i∈pa(j)

λijXi + εj .

From this recursive sequence of regressions, one can solve for the covariance
matrix � of the jointly normal random vector X. This covariance matrix is given
by a simple matrix factorization in terms of the regression parameters and the
variance parameters φi . Let � be the diagonal matrix � = diag(φ1, . . . , φm). Let
L be the m × m upper triangular matrix with Lij = λij if i → j is an edge in G,
and Lij = 0 otherwise. Set � = I − L where I is the m × m identity matrix.

PROPOSITION 2.1 ([9], Section 8). The variance–covariance matrix of the
normal random variable X = N (0,�) is given by the matrix factorization

� = �−���−1.

Given two subsets A,B ⊂ [m], we let �A,B = (σab)a∈A,b∈B be the submatrix
of covariances with row index set A and column index set B . If A = B = [m],
we abbreviate and say that �[m],[m] = �. Conditional independence statements
for normal random variables can be detected by investigating the determinants of
submatrices of the covariance matrix [13].

PROPOSITION 2.2. Let X ∼ N (μ,�) be a normal random variable, and let
A, B , and C be disjoint subsets of [m]. Then the conditional independence state-
ment XA ⊥⊥ XB |XC holds for X, if and only if �A∪C,B∪C has rank C.

Often in the statistical literature, the conditional independence conditions of a
normal random variable are specified by saying that partial correlations are equal
to zero. Proposition 2.2 is just an algebraic reformulation of that standard charac-
terization.

A classic result of the graphical models literature is the characterization of pre-
cisely which conditional independence statements hold for all densities that belong
to the graphical model. This characterization is determined by the d-separation cri-
terion.
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DEFINITION 2.3. Let A, B and C be disjoint subsets of [m]. The set C di-
rected separates or d-separates A and B if every path (not necessarily directed) in
G connecting a vertex i ∈ A to a vertex j ∈ B contains a vertex k that is either:

1. a noncollider that belongs to C or
2. a collider that does not belong to C and has no descendants that belong to C,

where k is a collider if there exist two edges a → k and b → k on the path and a
noncollider otherwise.

THEOREM 2.4 (Conditional independence for directed graphical models [7]).
A set C d-separates A and B in G if and only if the conditional independence
statement XA ⊥⊥ XB |XC holds for every distribution in the graphical model asso-
ciated to G.

Combining Proposition 2.2 and Theorem 2.4 gives a characterization of when
all the (#C + 1) × (#C + 1) minors of a submatrix �A∪C,B∪C must vanish. How-
ever, not every vanishing subdeterminant of a covariance matrix in a Gaussian
graphical model comes from a d-separation criterion, as the following example
illustrates.

EXAMPLE 2.5 (Choke point). Consider the graph in Figure 1 with five ver-
tices and five edges. In this graph, the determinant |�13,45| = 0 for any choice of
model parameters. However, this vanishing rank condition does not follow from
any single d-separation criterion/conditional independence statement that is im-
plied by the graph.

Our main result is an explanation of where these extra vanishing determinants
come from, for Gaussian directed graphical models. Before we give the precise
explanation in terms of treks, we want to first explain how they enter the story.

DEFINITION 2.6. A trek in G from i to j is an ordered pair of directed paths
(P1,P2) where P1 has sink i, P2 has sink j , and both P1 and P2 have the same
source k. The common source k is called the top of the trek, denoted top(P1,P2).
Note that one or both of P1 and P2 may consist of a single vertex, that is, a path
with no edges. A trek (P1,P2) is simple if the only common vertex among P1 and

FIG. 1.
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P2 is the common source top(P1,P2). We let T (i, j) and S(i, j) denote the sets of
all treks and all simple treks from i to j , respectively.

Expanding the matrix product for � in Proposition 2.1 gives the following trek
rule for the covariance σij :

σij = ∑
(P1,P2)∈T (i,j)

φtop(P1,P2)λ
P1λP2,(1)

where for each path P , λP is the path monomial of P defined by

λP := ∏
k→l∈P

λkl.

There is another rule for parameterizing the covariance matrices which involves
sums over only the set S(i, j) of simple treks. To describe this, we introduce an
alternate parameter ai associated to each node i in the graph and defined by the
rule

ai = σii = ∑
(P1,P2)∈T (i,i)

φtop(P1,P2)λ
P1λP2 .

With the definition of the alternate parameter ai , this leads to the parametrization,
called the simple trek rule,

σij = ∑
(P1,P2)∈S(i,j)

atop(P1,P2)λ
P1λP2 .(2)

The simple trek rule is also known as Wright’s method of path analysis [14]. While
we will depend most heavily on the trek rule in this paper, the simple trek rule also
has its uses. In particular, the simple trek rule played an important role in the study
of Gaussian tree models in [13].

The fact that treks arise in the expressions for σij suggests that any combinato-
rial rule for the vanishing of a determinant �A,B should depend on treks in some
way. This leads us to introduce the following separation criterion that involves
treks.

DEFINITION 2.7. Let A, B , CA, and CB be four subsets of V (G) which need
not be disjoint. We say that the pair (CA,CB) trek separates (or t-separates) A

from B if for every trek (P1,P2) from a vertex in A to a vertex in B , either P1
contains a vertex in CA or P2 contains a vertex in CB .

REMARK. The following facts follow immediately from Definition 2.7:

1. Since a trek may consist of a single vertex v, or more precisely a pair of
paths with zero edges, we must have A ∩ B ⊂ CA ∪ CB whenever (CA,CB)

t-separates A from B .
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2. The pair (CA,CB) t-separates A from B if and only if the pair (CB,CA)

t-separates B from A.
3. Each of the pairs (A,∅) and (∅,B) always t-separate A from B , so we can

always find a t-separating set of size min(#A,#B). Our results in this paper
will show that t-separation gives nontrivial restrictions on the covariance matrix
when #CA + #CB < min(#A,#B).

The combinatorial notion of t-separation allows us to give a complete charac-
terization of when submatrices of the covariance matrix can drop rank. This is the
main result for Gaussian directed graphical models; it will be proved in Section 3.1.

THEOREM 2.8 (Trek separation for directed graphical models). The submatrix
�A,B has rank less than or equal to r for all covariance matrices consistent with
the graph G if and only if there exist subsets CA,CB ⊂ V (G) with #CA +#CB ≤ r

such that (CA,CB) t-separates A from B . Consequently,

rk(�A,B) ≤ min{#CA + #CB : (CA,CB) t-separates A from B}
and equality holds for generic covariance matrices consistent with G.

Here and throughout the paper, the term generic means that the condition holds
on a dense open subset of the parameter space. Since rank conditions are algebraic,
this means that the set where the inequality is strict is an algebraic subset of para-
meter space with positive codimension (see [2] for background on this algebraic
terminology).

EXAMPLE 2.9 (Choke point, continued). Returning to the graph from Exam-
ple 2.5, we see that (∅, {4}) t-separates {1,3} from {4,5} which implies that the
submatrix �13,45 has rank at most one for every matrix that belongs to the model.
Thus t-separation explains this extra vanishing minor that d-separation misses.

Readers familiar with the tetrad representation theorem will recognize that {4}
is a choke point between {1,3} and {4,5} in G. In particular, Theorem 2.8 includes
the tetrad representation theorem as a special case.

COROLLARY 2.10 (Tetrad representation Theorem [12]). The tetrad σikσjl −
σilσjk is zero for all covariance matrices consistent with the graph G if and only
if there is a node c in the graph such that either ({c},∅) or (∅, {c}) t-separates
{i, j} from {k, l}.

Since conditional independence in a directed graphical model corresponds to the
vanishing of subdeterminants of the covariance matrix, the t-separation criterion
can be used to characterize these conditional independence statements, as well.
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THEOREM 2.11. The conditional independence statement XA ⊥⊥ XB |XC

holds for the graph G if and only if there is a partition CA ∪ CB = C of C such
that (CA,CB) t-separates A ∪ C from B ∪ C in G.

PROOF. The conditional independence statement holds for the graph G if and
only if the submatrix of the covariance matrix �A∪C,B∪C has rank #C. By trek
separation for directed graphical models, this holds if and only if there exists a pair
of sets DA and DB , with #DA + #DB = #C such that (DA,DB) t-separates A∪C

from B ∪ C. Among the treks from A ∪ C to B ∪ C are the lone vertices c ∈ C.
Hence C ⊆ DA ∪ DB . Since #DA + #DB = #C, we must have DA ∪ DB = C and
these two sets form a partition of C. �

Theorem 2.11 immediately implies that d-separation is a special case of
t-separation. Yanming Di [3] found a direct combinatorial proof of this fact af-
ter we made a preliminary version of this paper available.

COROLLARY 2.12. A set C d-separates A and B in G if and only if there is
a partition C = CA ∪ CB such that (CA,CB) t-separates A ∪ C from B ∪ C.

While t-separation includes d-separation, and the vanishing minors of condi-
tional independence, as a special case, it also seems to capture some new vanishing
minor conditions that do not follow from d-separation. The most interesting cases
of this seem to occur when CA ∩ CB �= ∅.

EXAMPLE 2.13 (Spiders). Consider the graph in Figure 2 which we call a
spider.

Clearly, we have that ({c}, {c}) t-separates A from B , so that the submatrix
�A,B has rank at most 2. Although this rank condition must be implied by CI rank
constraints on � and the fact that � is positive definite, it does not appear to be
easily derivable from these constraints.

FIG. 2.
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2.2. Undirected graphs. For Gaussian undirected graphical models, the allow-
able covariance matrices are specified by placing restrictions on the entries of the
concentration matrix. In particular, let G be an undirected graph, with edge set E.
We consider all covariance matrices � such that (�−1)ij = 0 for all i − j /∈ E(G).

As in the case of directed acyclic graphs, it is known that conditional inde-
pendence constraints characterize the possible probability distributions for pos-
itive densities [7]. Indeed, in the Gaussian case, the pairwise constraints Xi ⊥⊥
Xj |X[m]\{i,j} for i − j /∈ E(G) characterize the distributions that belong to the
model. As in the case of directed graphical models, general conditional indepen-
dence constraints XA ⊥⊥ XB |XC are characterized by a separation criterion.

If A, B and C are three subsets of vertices of an undirected graph G, not neces-
sarily disjoint, we say that C separates A and B if every path from a vertex in A

to a vertex in B contains some vertex of C.

THEOREM 2.14 (Conditional independence for undirected graphical mod-
els [7]). For disjoint subsets A,B, and C ⊆ [m] the conditional independence
statement XA ⊥⊥ XB |XC holds for the graph G if and only if C separates A and B .

Since conditional independence for normal random variables corresponds to
the vanishing of the minors of submatrices of the form �A∪C,B∪C it is natural to
ask what conditions determine the vanishing of an arbitrary minor �A,B . We will
show that the path separation criterion also characterizes the vanishing of arbitrary
minors for the undirected graphical model.

THEOREM 2.15. The submatrix �A,B has rank less than or equal to r for
all covariance matrices consistent with the graph G if and only if there is a set
C ⊆ V (G) with #C ≤ r such that C separates A and B . Consequently,

rk(�A,B) ≤ min{#C :C separates A and B}
and equality holds for generic covariance matrices consistent with G.

Note that the sets A,B and C need not be disjoint in Theorem 2.15. We will
provide a proof of Theorem 2.15 in Section 3.2, using the combinatorial expan-
sions of determinants. Unlike in the case of directed acyclic graphs, we do not find
any new constraints that were not trivially implied by conditional independence.

2.3. Mixed graphs. In this section, we describe our results for general classes
of mixed graphs, that is, graphs that can involve directed edges i → j , undirected
edges i − j and bidirected edges i ↔ j . We assume that in our mixed graphs there
is a partition of the vertices of the graph U ∪ W = V (G), such that all undirected
edges have their vertices in U , all bidirected edges have their vertices in W and
any directed edge with a vertex in U and a vertex in W must be of the form u → w
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where u ∈ U and w ∈ W . With all of these assumptions on our mixed graph, we
can order the vertices in such a way that all vertices in U come before the vertices
in W , and whenever i → j is a directed edge, we have i < j . We assume that the
subgraph on directed edges in acyclic. Note that we allow a pair of vertices to be
connected by both a directed edge i → j and a bidirected edge i ↔ j or undirected
edge i − j . With this setup, both ancestral graphs [9] and chain graphs [1] occur
as special cases.

Now we introduce three matrices which are determined by the three different
types of edges in the graph. We first let � be the matrix with rows and columns
indexed by V (G) which is defined by �ii = 1, �ij = −λij if i → j ∈ E(G) and
�ij = 0 otherwise. Each λij is a real parameter associated to a directed edge in G,
though they no longer necessarily have the interpretation of regression coefficients.
Next, we let K be a symmetric positive definite matrix, with rows and columns
indexed by U , such that Kij = 0 if i − j /∈ E(G). Each entry Kij with i �= j is
a parameter associated to an undirected edge in G. Finally, we let � = (φij ) be
a symmetric positive definite matrix, with rows and columns indexed by W , such
that φij = 0 if i ↔ j /∈ E(G). Each φij with i �= j is a parameter associated to a
bidirected edge in G.

From the three matrices �, K and �, defined as above, we obtain the following
covariance matrix of our mixed graphical model:

� = �−�
(

K−1 0
0 �

)
�−1.

Note that this representation parametrizes the Gaussian ancestral graph model in
the case where G is an ancestral graph [9], and chain graph models under the
alternative Markov property [1], when G is a chain graph.

We use a path expansion in Section 3.3 to express this factorization as a power
series of sums of paths, analogous to the polynomial expressions in terms of treks
that appeared in the purely directed case in Section 2.1. In the precise formulation
given in Section 3.3, we will need the following generalized notion of a trek.

A trek between vertices i and j in a mixed graph G is a triple (PL,PM,PR) of
paths where:

1. PL is a directed path of directed edges with sink i;
2. PR is a directed path of directed edges with sink j ;
3. PM is either:

• a path consisting of zero or more undirected edges connecting the source of
PL to the source of PR , or

• a single bidirected edge connecting the source of PL to the source of PR .

A trek (PL,PM,PR) is called simple if each of PL, PM and PR is self-avoiding,
and the only vertices which appear in more than one of the segments PL, PM ,
and PR are the sources of PL and PR .
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The set of all treks between i and j is denoted by T (i, j) and the set of all
simple treks is S(i, j). Note that T (i, j) might be infinite because we allow the
path PM to have cycles. On the other hand, S(i, j) is always finite.

DEFINITION 2.16. A triple of sets of vertices (CL,CM,CR) t-separates A

from B in the mixed graph G if for every simple trek (PL,PM,PR) with the sink
of PL in A and the sink of PR in B , we have that PL contains a vertex in CL, PR

contains a vertex in CR or PM is an undirected path that contains a vertex in CM .

Note that the mixed graph definition of t-separation reduces to the directed
acyclic graph version of t-separation when G is a DAG and reduces to ordinary
graph separation when G is an undirected graph.

THEOREM 2.17 (t-separation for mixed graphs). The matrix �A,B has rank
at most r for all covariance matrices consistent with the mixed graph G if and
only if there exist three subsets CL,CM,CR with #CL + #CM + #CR ≤ r such that
(CL,CM,CR) t-separates A from B . Consequently,

rk(�A,B) ≤ min{#CL + #CM + #CR : (CL,CM,CR) t-separates A from B}
and equality holds for generic covariance matrices consistent with G.

Since conditional independence statements for Gaussian graphical models cor-
respond to special low rank submatrices of the covariance matrix, Theorem 2.17
also gives a characterization of when conditional independence statements for
these mixed graph models hold.

COROLLARY 2.18. The conditional independence statement XA ⊥⊥ XB |XC

holds for the Gaussian graphical model associated to the mixed graph G, if and
only if there is a partition C = CL ∪CM ∪CR such that (CL,CM,CR) t-separates
A ∪ C from B ∪ C.

PROOF. The conditional independence statement holds if and only if
�A∪C,B∪C has rank #C. By Theorem 2.17 this happens if and only there exists
(DL,DM,DR) with #DL + #DM + #DR ≤ #C that t-separate A ∪ C and B ∪ C.
But since C ⊆ DL ∪ DM ∪ DR , this occurs if and only if C = DL ∪ DM ∪ DR is
a partition of C. �

It is worth noting, however, that unlike in the case of directed acyclic graphs
and undirected graphs, conditional independence statements and vanishing minors
are not enough to characterize the covariance matrices that come from the model.
See the example in Section 8.3.1 of [9].
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3. Proofs. In this section, we consider the elements λij , φij and kij as poly-
nomial variables or indeterminates. When we speak about det�A,B we mean to
speak of this polynomial as an algebraic object without reference to its evaluation
at specific values of λij , φij and kij . Thus the statement that det�A,B is identically
equal to zero means that the determinant is equal to the zero polynomial or power
series.

3.1. Proof of Theorem 2.8 (directed graphs). Let G be a directed acyclic graph
with vertex set V (G) = [m]. We assign to each edge i → j in G the parameter λij .
Let L be the m × m matrix given by Lij = λij if i → j is an edge in G and
Lij = 0 otherwise. Set � = I − L, where I is the m × m identity matrix. We
assign to each vertex i ∈ [m] the parameter φi , and let � be the diagonal matrix
� = diag(φ1, . . . , φm).

The entries of the matrix �−1 have a well-known combinatorial interpretation
in terms of the directed acyclic graph G.

PROPOSITION 3.1. For each path P in the directed acyclic graph G, set λP =∏
k→l∈P λkl . Then

(�−1)ij = ∑
P∈P(i,j)

λP ,

where P(i, j) is the set of all directed paths from i to j .

LEMMA 3.2. Suppose that A,B ⊆ [m] with #A = #B . Then det�A,B is
identically zero if and only if for every set S ⊂ [m] with #S = #A = #B , either
det(�−1)S,A = 0 or det(�−1)S,B = 0.

PROOF. Since � = �−���−1, we have �A,B = (�−�)A,[m]�(�−1)[m],B .
We can calculate det�A,B by applying the Cauchy–Binet determinant expansion
formula twice on this product. In particular, we obtain

det�A,B = ∑
R,S⊆[m]

det(�−�)A,R det�R,S det(�−1)S,B,

where the sum runs over subsets R and S of cardinality #A = #B . Since � is
a diagonal matrix, det�R,S = 0 unless R = S, in which case we let φS denote
det�S,S = ∏

s∈S φs .
Thus we have the following expansion of det�A,B :

det�A,B = ∑
S⊆[m]

det(�−�)A,S det(�−1)S,BφS

= ∑
S⊆[m]

det(�−1)S,A det(�−1)S,BφS.
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Since each monomial φS appears in only one term in this expansion, the result
follows. �

To prove the main theorem, we need two classical results from combinatorics.
The first is Lemma 3.3, the Gessel–Viennot–Linström lemma, which gives a com-
binatorial expression for expansions of subdeterminants of the matrix �−1. The
second is Theorem 3.6, Menger’s theorem, which describes a relationship between
nonintersecting path families and blocking sets in a graph.

LEMMA 3.3 (Gessel–Viennot–Lindström lemma [6, 8]). Suppose G is a di-
rected acyclic graph with vertex set [m]. Let R and S be subsets of [m] with
#R = #S = 	. Then

det(�−1)R,S = ∑
P∈N(R,S)

(−1)PλP,

where N(R,S) is the set of all collections of nonintersecting systems of 	 directed
paths in G from R to S, and (−1)P is the sign of the induced permutation of
elements from R to S. In particular, det(�−1)R,S = 0 if and only if every system of
	 directed paths from R to S has two paths which share a vertex.

Consider a system T = {T1, . . . , T	} of 	 treks from A to B , connecting 	 dis-
tinct vertices ai ∈ A to 	 distinct vertices bj ∈ B . Let top(T) denote the multiset
{top(T1), . . . , top(T	)}. Note that T consists of two systems of directed paths, a
path system PA from top(T) to A and a path system PB from top(T) to B . We say
that T has a sided intersection if two paths in PA share a vertex or if two paths in
PB share a vertex.

PROPOSITION 3.4. Let A and B be subsets of [m] with #A = #B . Then

det�A,B = 0,

if and only if every system of (simple) treks from A to B has a sided intersection.

PROOF. Suppose that det�A,B = 0, and let T be a trek system from A to B . If
all elements of the multiset top(T) are distinct, then Lemma 3.2 implies that either
det(�−1)top(T),A = 0 or det(�−1)top(T),B = 0. If top(T) has repeated elements,
then these determinants are zero, since there are repeated rows. Then Lemma 3.3
implies that there is an intersection in the path system from top(T) to A or in the
path system from top(T) to B which means that T has a sided intersection.

Conversely, suppose that every trek system T from A to B has a sided intersec-
tion, and let R ⊆ [m] with #R = #A = #B . If R = top(T) for some trek system T
from A to B , then either the path system from top(T) to A or the path system from
top(T) to B has an intersection. If R is not the set of top elements for some trek
system T, then there is no path system connecting R to A or there is no path system
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connecting R to B . In both cases, Lemma 3.3 implies that either det(�−1)R,A = 0
or det(�−1)R,B = 0. Lemma 3.2 then implies that det�A,B = 0.

We note that it is sufficient to check the systems of simple treks. Given a trek
T from i to j , let LE(T ) denote the unique simple trek from i to j whose edge
set is a subset of the edge set of T . Now if each simple trek system T has a sided
intersection, then every trek system does, namely the intersection coming from
LE(T). �

We define a new DAG associated to G, denoted G̃, which has 2m vertices
{1,2, . . . ,m} ∪ {1′,2′, . . . ,m′} and edges i → j if i → j is an edge in G, j ′ → i′
if i → j is an edge in G and i ′ → i for each i ∈ [m].

PROPOSITION 3.5. Treks in G from i to j are in bijective correspondence
with directed paths from i′ to j in G̃. Simple treks in G from i to j are in bijective
correspondence with directed paths from i′ to j in G̃ that use at most one edge
from any pair a → b and b′ → c′ where a, b, c ∈ [m].

PROOF. Every trek is the union of two paths with a common top. The part
of the trek from the top to i corresponds to the subpath with only vertices in
{1′, . . . ,m′}, and the part of the trek from the top to j corresponds to the subpath
with only vertices in {1, . . . ,m}. The unique edge of the form k′ → k corresponds
to the top of the trek. Excluding pairs a → b and b′ → c′ implies that a trek never
visits the same vertex b twice. �

Menger’s theorem (or, more generally, the Max-Flow–Min-Cut theorem) now
allows us to turn our sided crossing result on G into a blocking characterization
on G̃.

THEOREM 3.6 (Vertex version of Menger’s theorem). The cardinality of the
largest set of vertex disjoint directed paths between two nonadjacent vertices u and
v in a directed graph is equal to the cardinality of the smallest blocking set where
a blocking set is a set of vertices whose removal from the graph ensures that there
is no directed path from u from v.

PROOF OF THEOREM 2.8. We first focus on the case where det�A,B = 0 so
that the rank is at most k − 1 where k = #A = #B . According to Proposition 3.4,
every system of k treks from A to B must have a sided intersection. That is, the
number of vertex disjoint paths from A′ to B is at most k − 1 in the graph G̃.
We add two new vertices to G̃, one vertex u that points to each vertex in A′ and
one vertex v such that each vertex in B points to v. Thus there are at most k − 1
vertex disjoint paths from u to v. Applying Menger’s theorem, there is a blocking
set W in G̃ of cardinality k − 1 or less. Set CA = {i ∈ [m] : i ′ ∈ W } and CB = {i ∈
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[m] : i ∈ W }. Then it is clear that #CA +#CB ≤ k −1, and these two sets t-separate
A from B .

Conversely, suppose there exist sets CA and CB with #CA +#CB ≤ k −1 which
t-separate A from B . Then W = {i : i ∈ CB} ∪ {i′ : i ∈ CA} is a blocking set be-
tween u and v as above. Applying Menger’s theorem, since #W ≤ k − 1, there is
no vertex disjoint system of k paths from A′ to B . Thus every trek system from A

to B will have a sided intersection, so that det�A,B = 0 by Proposition 3.4.
From the special case of determinants, we deduce the general result, because

if the smallest blocking set has size r , there exists a collection of r disjoint paths
between any subset of A and any subset of B , and this is the largest possible
number of paths in such a collection. This means that all (r + 1) × (r + 1) minors
of �A,B are zero, but at least one r × r minor is not zero. Hence �A,B has rank r

for generic choices of the λ and φ parameters. �

3.2. Proof of Theorem 2.15 (undirected graphs). To prove Theorem 2.15, we
will introduce Lemma 3.7, a limited analogue of the Gessel–Viennot–Lindström
lemma for graphs which are not necessarily acyclic. This version is a direct corol-
lary of Theorem 6.1 in [5] which, for the sake of simplicity, we do not state in full
generality.

Let G be a directed graph, not necessarily acyclic. Let W be the matrix given
by Wij = wij if i → j is an edge in G and Wij = 0 otherwise. By standard notions
in algebraic graph theory, we can expand the matrix (I − W)−1 as a formal power
series in terms of the wij . In particular,

(I − W)−1
ij = ∑

P∈P(i,j)

wP ,

where P(i, j) is the set of all (possibly infinitely many) paths from i to j in G.
This is just Proposition 3.1 in the general case.

Let A = {a1, . . . , a	} and B = {b1, . . . , b	} be subsets of [m] with the same
cardinality. The determinant det((I − W)−1)A,B can be written simply in an ex-
pression that involves cancelation as

det
(
(I − W)−1)

A,B = ∑
τ∈S	,Pi∈P(ai ,bτ(i))

sign(τ )

	∏
i=1

wPi .(3)

Deciding whether this formula is nonzero amounts to showing whether or not all
terms cancel in this formula. This leads to the following version of the Gessel–
Viennot–Lindström lemma [5].

LEMMA 3.7. Let G be a directed graph. Let A = {a1, . . . , a	} and B =
{b1, . . . , b	} be subsets of [m] with the same cardinality. Then (det(I − W)−1)A,B

is identically zero if and only if every system of 	 directed paths from A to
B has two paths which share a vertex. Further, if there is a set of 	 paths
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P1, . . . ,P	 from A to B which do not have a common vertex, then wP1 · · ·wP	

appears as a monomial with a nonzero coefficient in the power series expansion of
det((I − W)−1)A,B .

For an undirected graph G, we associate to each edge i−j in G a parameter ψij .
Then let �ij = ψij if i − j is an edge in G and �ij = 0 otherwise. Let Ĝ be the
directed graph formed by replacing each undirected edge in G with two directed
edges of weight ψij , one in each direction.

COROLLARY 3.8. For this symmetric matrix � , the determinant det((I −
�)−1)A,B is identically zero if and only if every system of 	 = #A = #B directed
paths from A to B in Ĝ has two paths which share a vertex.

PROOF. Lemma 3.7 immediately implies that if every system of directed paths
in Ĝ has a crossing, then det((I − �)−1)A,B is identically zero, by specialization.

To show the converse, we need to verify that, for a fixed A and B , each system
P consisting of self-avoiding paths, no two of which intersect, is the unique system
of its weight ψP. While Ĝ may have multiple path systems of the same weight ψP,
they must all consist of the same undirected edges in G, and any such system in Ĝ

can be obtained from any other by switching the directions of some of the paths.
Then, since no two of the paths intersect, we see that there is only one such system
with the correct orientation of paths, since A and B are fixed. �

PROOF OF THEOREM 2.15. We write � = K−1 = D−1(I −�)−1D−1 where
D is the diagonal matrix of standard deviations, D = diag(

√
σ11, . . . ,

√
σmm). We

can treat the entries �ij = kij · √
σiiσjj as free parameters. It suffices to prove a

vanishing determinant condition locally near a single point in the parametrization,
so we assume that � is small so that we can use the power series expansion,
(I − �)−1 = I + � + �2 + �3 + · · · . Applying Cauchy–Binet as before, we
obtain

det�A,B = ∑
R,S⊆[m]

det(D−1)A,R det
(
(I − �)−1)

R,S det(D−1)S,B

= det(D−1)A,A det
(
(I − �)−1)

A,B det(D−1)B,B,

since det(D−1)A,R = 0 if A �= R and det(D−1)S,B = 0 if B �= S. Now,
det(D−1)A,A �= 0 and det(D−1)B,B �= 0, and Corollary 3.8 completes the proof.

�

3.3. Proof of Theorem 2.17 (mixed graphs). Recall that covariance matrices
consistent with a mixed graph G all have the form

� = �−�
(

K−1 0
0 �

)
�−1.
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Our first step is a standard argument in the graphical models literature, which
allows us to reduce to the case where there are no bidirected edges in the graph.
This can be achieved by subdividing the bidirected edges; that is, for each bidi-
rected edge i ↔ j in the graph, where i ≤ j , we replace i ↔ j with a vertex vi,j ,
directed edges vi,j → i and vi,j → j . The graph G̃ obtained from G by subdivid-
ing all of its bidirected edges is called the bidirected subdivision of G. If G has
only directed and bidirected edges, then G̃ is called the canonical DAG associated
to G.

PROPOSITION 3.9. Let A,B ⊂ V (G) be two sets of vertices such that #A =
#B .

1. The generic rank of �A,B is the same for matrices compatible with G or G̃.
2. There exists a triple (CL,CM,CR) with #CL+#CM +#CR = r that t-separates

A from B in G if and only if there is a triple (DL,DM,DR) with #DL +#DM +
#DR = r that t-separates A from B in G̃.

PROOF. (1) It suffices to prove that the two parametrizations have the same
Zariski closure (see [2] for the definition and background). This will follow by
showing that near the identity matrix, the two parameterizations give the same
family of matrices. Locally near the identity matrix, the matrix expansion for �

can be expanded as a formal power series in the entries of K , � and �. The
expansion for σij can be expressed as a sum over all treks T (i, j) between i and
j in G. This follows by using the matrix expansions for paths in �−1 and K−1 as
we have used in Sections 3.1 and 3.2.

Similarly, the expansion for σ̃ij is the sum over all treks in G̃. Now set

φij = φ̃vi,j ,vi,j
λ̃vi,j ,i λ̃vi,j ,j and φii = φ̃ii + ∑

j↔i

φ̃vi,j ,vi,j
λ̃2

vi,j ,i .

This transformation shows that these two parametrizations have the same Zariski
closure, since they yield the same formula via sums over the treks in G and G̃,
respectively. The point is that since we assume that we are close to the identity
matrix, it is also possible to go back and forth between G and G̃ parameters. In
particular, since we are close to the identity matrix, φij is small. So we can choose
φ̃vi,j ,vi,j

= ε > 0 and set λ̃vi,j ,i = √|φij |ε and λ̃vi,j ,j = sign(φij )
√|φij |ε. The small

size of the φij guarantee that we can find a positive φii satisfying the second equa-
tion. The smallness of ε guarantees that � is positive definite.

(2) Any t-separating set in G is clearly a t-separating set in G̃. Suppose that
(DL,DM,DR) is a minimal t-separating set in G̃; that is, if any vertex is deleted
from (DL,DM,DR) we no longer have a t-separating set. It is easy to see that
DM will not contain any vertices vi,j in a minimal t-separating set of G̃, so that
DM ⊂ V (G). It clearly suffices to show that each minimal t-separating set in G̃ is
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a t-separating set in G. We define

CL = (
DL ∩ V (G)

) ∪ {i :vi,j ∈ DL},
CM = DM,

CR = (
DR ∩ V (G)

) ∪ {j :vi,j ∈ DR}.
If our t-separating set in G̃ contains none of the vertices vi,j , then it is clearly a
t-separating set in G; otherwise, the way that i and j are chosen in {i :vi,j ∈ DL}
and {j :vi,j ∈ DR} is important. Given a vertex vi,j in the t-separating set, let
T (vi,j ) denote the set of treks T = (TL,TM,TR) from A to B such that TL ∩DL =
{vi,j } or TR ∩ DR = {vi,j }. Since (DL,DM,DR) is minimal, we see that T (vi,j )

must be nonempty. This implies that in every trek T = (TL,TM,TR) ∈ T (vi,j ), up
to relabeling, i occurs in TL, whose sink lies in A, and j occurs in TR , whose sink
lies in B . For if there were a trek from A to B in T (vi,j ) that had j in TL or i

in TR , we could patch two halves of these treks together to find a trek from A to
B that did not have a sided intersection with (DL,DM,DR). If i lies in TL and
j lies in TR in such treks, then we add i to CL when vi,j ∈ DL, and we add j

to CR when vi,j ∈ DR . Then the triple (CL,CM,CR) has #CL + #CM + #CR ≤
#DL + #DM + #DR and also t-separates A from B . �

REMARK. The parameterization using the bidirected subdivision G̃ typically
yields a smaller set of covariance matrices than the original graph G. However,
these sets have the same dimension and the same Zariski closure.

Before getting to the general case of mixed graphs, we first need to handle the
special case of mixed graphs that do not have undirected edges.

LEMMA 3.10. Suppose that G is a mixed graph without undirected edges.
The matrix �A,B has rank at most r for all covariance matrices consistent with the
mixed graph G if and only if there exist subsets CL,CR ⊂ V (G) with #CL+#CR ≤
r such that (CL,∅,CR) t-separates A from B .

PROOF. Due to Proposition 3.9, this immediately reduces to the case of di-
rected acyclic graphs, so that we may apply Theorem 2.8. �

Now that we have removed the bidirected edges, we assume that our matrix
factorization has the following form:

� = �−�K−1�−1

and we prepare to apply the Cauchy–Binet determinant expansion formula. That
is, for two subsets A,B ⊆ [m], with #A = #B , we have

det�A,B = ∑
S⊆[m]

∑
T ⊆[n]

det(�−�)A,S · det(K−1)S,T · det(�−1)T ,B,(4)
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where the sums range over the sets S,T ⊂ [m] with #S = #T = #A = #B .
We say that a set of treks {(PLi

,PMi
,PRi

) : i ∈ [	]} has a sided-crossing if there
are indices i1 �= i2 ∈ [	] such that either PLi1

and PLi2
share a vertex, PMi1

and
PMi2

share a vertex or PRi1
and PRi2

share a vertex.

LEMMA 3.11. Let #A = #B = r . Suppose that every system of r treks from A

to B in a mixed graph G (consisting of directed and undirected edges) has a sided
crossing. Then for every S,T ⊂ V (G) with #S = #T = r , we have det(�−�)A,S ·
det(K−1)S,T · det(�−1)T ,B = 0.

PROOF. Consider the trek systems from A to B that consist of a directed path
system PL from S to A, an undirected path system PM from S to T and a directed
path system PR from T to B . We call such a system of treks an (S, T )-trek system
from A to B .

We claim that if every trek system from A to B has a sided crossing, then ei-
ther all (S, T )-trek systems have a crossing in PL, all (S, T )-trek systems have a
crossing in PM or all (S, T )-trek systems have a crossing in PR . Suppose this is
not the case; then there is a directed path system from S to A with no crossing, an
undirected path system from S to T with no crossing and a directed path system
from T to B with no crossing, yielding an (S, T )-trek system from A to B with no
sided crossing.

Applying the claim, along with the directed and undirected versions of the
Gessel–Viennot–Lindström lemma (Lemma 3.3 and Corollary 3.8), we deduce
that one of det(�−�)A,S , det(K−1)S,T , or det(�−1)T ,B is identically zero. This
implies that their product is zero. �

Lemma 3.11 is enough to handle one direction of Theorem 2.17. For the other
direction, we need slightly more machinery. Using our presentation for undirected
graphs, we can write

K−1 = D−1(I − W)−1D−1,

where D is the diagonal matrix of standard deviations, and Wij = wij = wji if
i − j ∈ E(G), and Wij = 0 otherwise. Thus,

� = �−�D−1(I − W)−1D−1�−1.

Using the standard argument of algebraic graph theory, we can expand this near
the identity matrix as a power series,

σij = ∑
(PL,PM,PR)∈T (i,j)

λPLd−1
s(PL)w

PM d−1
s(PR)λ

PR,
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where s(P ) denotes the source of the directed path P . Thus if A = {a1, . . . , a	}
and B = {b1, . . . , b	},

det�A,B = ∑
τ∈S	,(PLi

,PMi
,PRi

)∈T (ai ,bτ(i))

sign(τ )

(5)

×
	∏

i=1

λPLi d−1
s(PLi

)w
PMi d−1

s(PRi
)λ

PRi .

LEMMA 3.12. Suppose that there exists a system of treks from A = {a1, . . . ,

a	} to B = {b1, . . . , b	} without sided crossing. Then det�A,B is not zero.

PROOF. If such a system of treks exists, then there also exists a τ ∈ S	 and
a system of simple treks Ti = (PLi

,PMi
,PRi

) ∈ S(ai, bτ(i)), i = 1, . . . , 	 without
sided intersection. Let G′ be the graph obtained from G by deleting all edges that
do not appear in any of the Ti . The determinant of the matrix obtained from �A,B

by setting all parameters corresponding to edges outside G′ equal to zero is exactly
the determinant of the corresponding matrix �′

A,B for G′; it suffices to show that
this latter determinant is nonzero.

To do this, we construct a third graph G′′ from G′ by introducing, for each
i for which PMi

is not empty, a bidirected edge s(PLi
) ↔ s(PRi

) with la-
bel φs(PLi

),s(PMi
) and deleting all undirected edges. By Lemma 3.10 we have

det�′′
A,B �= 0. But then this determinant remains nonzero after specialising the

parameters φs(PLi
),s(PMi

) to the monomials d−1
s(PLi

)w
PMi d−1

s(PRi
); here we use that,

as the PMi
are disjoint, these 	 monomials contain disjoint sets of variables. The

resulting nonzero expression is the subsum of the G′-analogue of (5) over all terms
for which the W -part of the monomial equals

∏	
i=1(w

PMi )εi for some exponents
ε1, . . . , ε	 ∈ {0,1}. Indeed, if a system of treks (T ′

i = (P ′
Li

,P ′
Mi

,P ′
Ri

))i from A to

B in G′ has
∏	

i=1(w
PMi )εi as the W -part of its monomial, then since the PMi

are
self-avoiding and mutually disjoint, the nonempty middle parts P ′

Mi
form the sub-

set of the nonempty PMi
for which εi equals 1 (potentially up to traversing some

of these paths in the opposite direction). Hence the trek monomial of (T ′
1, . . . , T

′
	)

comes, under the specialization above, from the monomial of a unique trek in G′′
of the same sign. This proves that det�′

A,B is nonzero, whence the lemma follows.
�

PROOF OF THEOREM 2.17. By Proposition 3.9 we can assume that there are
no bidirected edges in G. It suffices to handle the case where #A = #B = r + 1.
Lemmas 3.11 and 3.12 imply that det�A,B = 0 if and only if every system of 	

treks from A to B has a sided intersection. We wish to apply Menger’s theorem.
To do this, we introduce a new graph G̃ with 3m vertices, namely {1, . . . ,m} ∪
{1′, . . . ,m′} ∪ {1′′, . . . ,m′′}. This is analogous to our previous definitions of G̃, but
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accounts for both directed and undirected edges. The edge set of G̃ consists of
precisely those edges,

• i → j and j ′ → i′, where i → j is a directed edge of G,
• i ′′ → j ′′ and j ′′ → i′′, where i − j is an undirected edge of G and
• i ′ → i ′′ and i ′′ → i, where i ∈ [m] is a vertex of G.

Treks between i and j in G are in bijective correspondence with directed paths
between i ′ and j in G̃. Thus, the vertex version of Menger’s theorem implies that
there must exist C′

L ⊆ {1′, . . . ,m′}, C′′
M ⊆ {1′′, . . . ,m′′} and CR ⊆ {1, . . . ,m} such

that every path from A′ to B in G′′ intersects one of these sets, and such that
#C′

L + #C′′
M + #CR ≤ r . But then the triple (CL,CM,CR) t-separates A from B

in G where CL = {c : c′ ∈ C′
L} and CM = {c : c′′ ∈ C′′

M}. �

4. Conclusions and open problems. We have shown that the t-separation cri-
terion can be used to characterize vanishing determinants of the covariance matrix
in Gaussian directed and undirected graphical models and mixed graph models.
These results have potential uses in inferential procedures with Gaussian graphical
models, generalizing procedures based on the tetrad constraints [10] in directed
graphical models. The tetrad constraints are the special case of 2×2 determinants.
Both referees have pointed out that these results also extend to graphical models
with cycles, by applications of the more general version of the Gessel–Viennot–
Lindström lemma for general graphs [5]. We have focused on the case of directed
acyclic graphs because these are the most familiar in the graphical models litera-
ture.

Our results suggest a number of different research directions. For example, for
which mixed graphs is it true that vanishing low rank submatrices characterize
the distributions that belong to the model? This is known to hold for both acyclic
directed graphs and undirected graphs, but can fail in general mixed graphs.

Another open problem is to determine what significance the t-separation cri-
terion has for graphical models with not necessarily normal random variables, in
particular, for discrete variables. It would be worthwhile to determine whether t-
separation can be translated into constraints on probability densities for graphical
models with more general random variables.

Acknowledgments. We thank Mathias Drton for suggesting this problem to
us. The referees and associate editor provided many useful comments which have
led to this improved version. Jan Draisma, who was originally an anonymous ref-
eree on this paper, provided the first proof of Theorem 2.17 which was a conjecture
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