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1. Introduction. Upon reading the paper Efficient Likelihood Estimation in
State Space Models by Cheng-Der Fuh I found a number of problems in the for-
mulations and a number of mathematical errors. Together, these findings cast doubt
on the validity of the main results in their present formulation. A reformulation and
new proofs seem quite involved.

The paper, Efficient Likelihood Estimation in State Space Models deals with as-
ymptotic properties of the maximum likelihood estimate in hidden Markov models.
The hidden Markov chain is Xn, and the observed process is ξn where ξn condi-
tioned on the past and the hidden process depends on (Xn, ξn−1) only. The ap-
proach used is to add an iterated function system Mn, and to consider the Markov
process (Xn, ξn,Mn). This is very much akin to the method in Douc and Matias
[1], and I will use this article as a background for my comments.

2. Problems.

2.1. Definition of iterated function system. The first basic definition in the pa-
per is a function Pθ (ξj ) : M → M that maps a function h ∈ M into a new function
in M (page 2031),

Pθ (ξj )h(x) =
∫
y∈X

pθ(x, y)f (ξj ; θ |y, ξj−1)h(y)m(dy).

[It is unclear why the author states that Pθ (ξj ) is a function on (X ×Rd)×M where
X is the state space of the Markov chain.] The paper next defines the composition
Pθ (ξj+1) ◦ Pθ (ξj )h by first applying Pθ (ξj+1) to h and then applying Pθ (ξj ) to
the result. Using these two definitions we have

Pθ (ξn) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)πθ

=
∫

πθ(xn)

{ 1∏
j=n

pθ (xj−1, xj )f (ξj ; θ |xj , ξj−1)m(dxj )

}
f (ξ0; θ |x0)m(dx0).
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The argument presented in the paper then appears to assume that this expression
depends on some x and performs an integration before claiming that the result is
the joint density pn(ξ0, . . . , ξn; θ). This is clearly not correct since πθ(xn) appears
in the expression instead of πθ(x0).

Following the work of Douc and Matias [1] one would instead use the definition

Pθ (ξj )h(x) =
∫
y∈X

pθ(y, x)f (ξj ; θ |y, ξj−1)h(y)m(dy);(1)

that is, the integration is with respect to the first variable in pθ(y, x) instead of
the second. Changing the definition of Pθ (ξ0) correspondingly and using ordinary
composition of functions, one finds that pn(ξ0, . . . , ξn; θ) equals the integral of
Pθ (ξn)◦· · ·◦Pθ (ξ1)◦Pθ (ξ0)πθ with respect to xn+1. However, making this change
necessitates a new proof for the first part of Lemma 3 on page 2056. Comparing
with Douc and Matias ([1], Proposition 1) we see that this is one of the places
where the latter authors use the stronger assumptions of that paper on the Markov
chain.

Turning to the iterated function system, Fuh’s paper defines this as

Mn = Pθ (ξn) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)

[formula (5.6), page 2045]. Taking this literally, and using the definitions in Fuh’s
paper, this is actually a mapping that takes a function as input and turns it into
a constant. Instead Mn should be a function obtained by applying a mapping to
Mn−1. This is achieved when using the definition suggested in (1) and adding πθ

to the right-hand side of Mn above.

2.2. Harris recurrence of iterated function. Whether or not we make the
changes suggested in the previous subsection, Mn, defined on page 2045, is re-
lated to the density of (ξ0, . . . , ξn). Making the change suggested in (1) above we
have precisely Mn(xn+1) = p(xn+1, ξ0, . . . , ξn). Such an expression will typically
tend to either zero or infinity. However, in Lemma 4 on page 2046 Fuh claims that
(Xn, ξn,Mn) is a Harris recurrent Markov chain. It is difficult to pinpoint the exact
origin of this problem. The Harris recurrence is established in Lemma 4 which in
its formulation uses a measure Q from Theorem 1 (in the formulation there are
two Q’s, but these are different). So we need to establish Theorem 1 before prov-
ing Lemma 4. In Lemma 3 it is stated that the Markov iterated function system
satisfies Assumption K. In Remark 1 (page 2035) Fuh says that Assumption K
is different from the assumptions of Theorem 1. He then goes on to say that if
Assumption K is supplemented with the extra assumption that (Yn,Mn) is a Har-
ris recurrent Markov chain, then Theorem 1 still holds. This, therefore, seemingly
looks like a circular argument.

Comparing again with Douc and Matias [1] they consider instead Mn(xn+1) =
p(xn+1|ξ0, . . . , ξn). However, if we make this change we have introduced a new
iterated function system, and a revised version of Lemma 3 is needed which pre-
sumably will lead to a different set of assumptions.
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2.3. Asymptotic properties of score function and observed information. The
asymptotic normality of the score function is stated in Lemma 6 (page 2048). In the
proof of Lemma 6 (page 2060) the author appeals to Corollary 1. The latter gives
a central limit theorem for a sum of the form

∑n
j=1 g(Mj). However, the paper

wants to use this result on the sum
∑n

j=1
∂
∂θ

g(Mj−1,Mj ). This looks innocent, but
since θ appears in the iteration of Mn this is not on the form

∑n
j=1 g̃(Mj−1,Mj).

Instead one needs to consider a new iterated function system. This is what is done
in Appendix D of Douc and Matias [1].

Similarly, it is stated that the proof of the main Theorem 5 follows a standard
argument. However, comparing with Douc and Matias [1] (Appendix D.3) it seems
that yet another iterated function system is needed to deal with the convergence of
the observed information.

2.4. Generality of conditions. Assumption C5 on page 2043 restricts the de-
pendency of the observed process on the hidden process. For the example consid-
ered in (b) on page 2044 one needs to consider

sup
y,z∈X

f (ξ0; θ |y)f (ξ1; θ |y, ξ0)

f (ξ0; θ |z)f (ξ1; θ |z, ξ0)

= sup
y,z∈X

exp{−1/2(ξ0 − y)2 − 1/2(ξ1 − y)2}
exp{−1/2(ξ0 − z)2 − 1/2(ξ1 − z)2}

= sup
y,z∈X

exp{z2 − y2 + (ξ0 + ξ1)(y − z)} = ∞.

Thus C5 is not satisfied (this seems to be contrary to the claim on page 2054 line 8
from the bottom).
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