
The Annals of Statistics
2010, Vol. 38, No. 3, 1638–1664
DOI: 10.1214/09-AOS743
© Institute of Mathematical Statistics, 2010

SUCCESSIVE NORMALIZATION OF RECTANGULAR ARRAYS

BY RICHARD A. OLSHEN1 AND BALA RAJARATNAM2

Stanford University

Standard statistical techniques often require transforming data to have
mean 0 and standard deviation 1. Typically, this process of “standardization”
or “normalization” is applied across subjects when each subject produces a
single number. High throughput genomic and financial data often come as
rectangular arrays where each coordinate in one direction concerns subjects
who might have different status (case or control, say), and each coordinate
in the other designates “outcome” for a specific feature, for example, “gene,”
“polymorphic site” or some aspect of financial profile. It may happen, when
analyzing data that arrive as a rectangular array, that one requires BOTH the
subjects and the features to be “on the same footing.” Thus there may be
a need to standardize across rows and columns of the rectangular matrix.
There arises the question as to how to achieve this double normalization.
We propose and investigate the convergence of what seems to us a natural
approach to successive normalization which we learned from our colleague
Bradley Efron. We also study the implementation of the method on simulated
data and also on data that arose from scientific experimentation.

1. Introduction. This paper is about a method for normalization, or regular-
ization, of large rectangular sets of numbers. In recent years many statistical efforts
have been directed towards inference on such rectangular arrays. The exact geome-
try of the array matters little to the theory that follows. Positive results apply to the
situation where there are at least three rows and at least three columns. We explain
difficulties that arise when either numbers only two. Scenarios to which methodol-
ogy studied here applies tend to have many more rows than columns. Data can be
from gene expression microarrays, SNP (single nucleotide polymorphism) arrays,
protein arrays, alternatively from large scale problems in imaging. Often there is
one column per subject with rows consisting of real numbers (as in expression).
Subjects from whom data are gathered may be “afflicted,” or not, with a condition
that, while heritable, is far from Mendelian. A goal is to find rows, better groups
of rows, by which to distinguish afflicted subjects from other subjects. One can be
led to testing many statistical hypotheses simultaneously, thereby separating rows
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into those that are “interesting” for further follow-up and those that seem not to be.
Genetic data tend to be analyzed by test “genes” (rows), beginning with their being
“embedded” in a chip, perhaps a bead. There may follow a subsequent molecule
that binds to the embedded “gene”/molecule. A compound that makes use of the
binding preferences of nucleotides and to which some sort of “dye” is attached is
then “poured.” The strength of binding depends upon affinity of the “gene” or at-
tached molecule and the compound. Laser light is shined on the object into which
the test “gene” has been embedded; and from its bending, the amount of bound
compound is assessed from which the amount of the “gene” is inferred. The basic
idea is that a different afflicted status may lead to different amounts of “gene.”

With the cited formulation and ingenious technology, data may still suffer from
problems that have nothing to do with differences between groups of subjects or
with differences between “genes” or groups of them. There may be differences
in background—by column, or even by row. Perhaps also “primers” (compounds)
vary across columns for a given row. For whatever reasons, scales by row or col-
umn may vary in ways that do not enable biological understanding. Variability
across subjects could be unrelated to afflicted status.

Think now of the common problem of comparing variables that can vary in their
affine scales. Because covariances are not scale-free, it makes sense to compare
in dimensionless coordinates that are centered at 0, that is, where values of each
variable have respective means subtracted off and are scaled by respective standard
deviations. That way, each variable is somehow “on the same footing.”

Standardization, or normalization, studied here is done precisely so that both
“subjects” and “genes” are “on the same footing.” We recognize one might require
only that “genes” (or some “genes”) be on the same footing, and the same for “sub-
jects.” The successive transformations studied here apply when one lacks a priori
opinions that might limit goals. Thus, “genes” that result from the standardization
we study are transformed to have mean 0 and standard deviation 1 across all sub-
jects while the same is true for subjects across all “genes.” How to normalize? One
approach is to begin with, say, row, though one could as easily begin with columns.
Subtract respective row means and divide by respective standard deviations. Now
do the same operation on columns, then on rows, and so on. Remarkably, this
process tends to converge, even rapidly in terms of numbers of iterations, and to a
set of numbers that have the described good limiting properties in terms of means
and standard deviations, by row and by column.

In this paper we show by examples how the process works and demonstrate for
them that indeed it converges. We also include rigorous mathematical arguments as
to why convergence tends to occur. Readers will see that the process and perhaps
especially the mathematics that underlies it are not as simple as we had hoped
they would be. This paper is only about convergence which is demonstrated to be
exponentially fast (or faster) for examples. The mathematics here does not apply
directly to “rates.” The Hausdorff dimension of the limit set seems easy enough to
study. Summaries will be reported elsewhere.
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2. Motivating example. We introduce a motivating example to ground the
problem that we address in this paper. Consider a simple 3-by-3 matrix with en-
tries generated from a uniform distribution on [0, 1]. We standardize the initial
matrix X(0) by row and column, first subtracting the row mean from each entry
and then dividing each entry in a given row by its row standard deviation. The ma-
trix is then column standardized by subtracting the column mean from each entry
and then by dividing each entry by the respective column standard deviation. In
this section, these four steps of row mean polishing, row standard deviation pol-
ishing, column mean polishing and column standard deviation polishing require
one iteration in the process of attempting to row and column standardize the ma-
trix. After one such iteration, the same process is applied to resulting matrix X(1)

and the process repeated with the hope that successive renormalization will even-
tually yield a row and column standardized matrix. Hence these fours steps are
repeated until “convergence” which we define as the difference in the Frobenius
norm between two consecutive iterations being less than 10−8.

In order to illustrate this numerically, we start with the following 3-by-3 matrix
with independent entries generated from a uniform distribution on [0, 1] and repeat
the process described above:

X(0) =
⎡
⎣0.1182 0.7069 0.4145

0.9884 0.9995 0.4648
0.5400 0.2878 0.7640

⎤
⎦ .(1)

The successive normalization algorithm took 9 iterations to converge. The initial
matrix, the final solution and relative (and log relative) difference for the 9 itera-
tions are given below (see also Figure 1):

X(final) =
⎡
⎣−1.2608 1.1852 0.0756

1.1852 0.0757 −1.2608
0.0756 −1.2608 1.1852

⎤
⎦ ,(2)

Successive Difference =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iteration no. Difference log(difference)
1 8.7908 2.1737
2 0.5018 −0.6895
3 0.0300 −3.5057
4 0.0019 −6.2862
5 0.0001 −9.0607
6 0.0000 −11.8337
7 0.0000 −14.6064
8 0.0000 −17.3790
9 0.0000 −20.1516

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(3)

The whole procedure of 9 iterations takes less than 0.15 seconds on a standard
modern laptop computer. We also note that the final solution has effectively 3
distinct entries. When other random starting values are used, we observe that con-
vergence patterns can vary in the sense that convergence may not be monotonic.



SUCCESSIVE NORMALIZATION OF RECTANGULAR ARRAYS 1641

FIG. 1. Relative differences at each iteration on the log scale—3-by-3 dimensional example.

The plots in Figure 2 capture the type of convergence patterns that are observed in
our simple 3-by-3 example.

Despite the different convergence patterns that are observed, when our succes-
sive renormalization is repeated with different starting values, a surprising phe-
nomenon surfaces. It always seems that the process converges, and, moreover, the
convergence is very rapid. One is led naturally to ask whether this process will al-
ways converge and if so under what conditions. These questions lay the foundation
for the work in this paper.

3. Preliminaries. We establish the notation that we will use by re-visiting a
normalization/standardization method that is traditional for multivariate data. If
the main goal of a normalization of a rectangular array is achieving zero row and
and column averages, then a natural approach is to “mean polish” the row (i.e.,
subtract the row mean from every entry of the rectangular array), followed by a
column “mean polish.” This cycle of successive row and column polishes is re-
peated until the resulting rectangular array has zero row and and column averages.
The following theorem proves that this procedure attains a double mean standard-
ized rectangular array in one iteration where an iteration is defined as constituting
one row mean polish followed by one column mean polish.

LEMMA 3.1. Given an initial matrix X(0), an iterative procedure to cycle
through repetitions of a row mean polish followed by a column mean polish un-
til convergence terminates in one step.
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FIG. 2. Convergence patterns for the 3-by-3 example.

PROOF. Let X(0) be an n × k matrix, and define the following:

X(0) = [
X

(0)
ij

]
,

X̄
(0)
i· = 1

k

k∑
j=1

X
(0)
ij .
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Now the first part of the iteration, termed as a “row mean polish,” subtracts from
each element its respective row mean:

X(1) = [
X

(1)
ij

]= X
(0)
ij − X̄

(0)
i· .

The second step of the iteration, termed a “column mean polish,” subtracts from
each element of the current matrix its respective column mean:

X(2) = [
X

(2)
ij

]= X
(1)
ij − X̄

(1)
·j ,

where

X̄
(1)
·j = 1

n

n∑
i=1

X
(1)
ij .

After the second step of the iteration it is clear that the columns sum to zero;
the previous operation enforces this. In order to prove that the iterative procedure
terminates at the second part of the iteration it is sufficient to show that the rows
of the current iterate sum to zero. Now note that

X(2) = [
X

(2)
ij

]
= [

X
(1)
ij

]− X̄
(1)
·j

= (
X

(0)
ij − X̄

(0)
i·
)−

(
1

n

n∑
r=1

X
(1)
rj

)

= (
X

(0)
ij − X̄

(0)
i·
)−

(
1

n

n∑
r=1

(
X

(0)
rj − X̄(0)

r·
))

.

It remains to show that the row sum of this matrix X(2) expressed as the elements
of X(0) sum to zero. So

k∑
j=1

X
(2)
ij =

k∑
j=1

(
X

(0)
ij − X̄

(0)
i·
)− k∑

j=1

(
1

n

n∑
r=1

(
X

(0)
rj − X̄(0)

r·
))

= (
kX̄

(0)
i· − kX̄

(0)
i·
)− 1

n

n∑
r=1

k∑
j=1

(
X

(0)
rj − X̄(0)

r·
)

= (
kX̄

(0)
i· − kX̄

(0)
i·
)− 1

n

n∑
r=1

(
kX̄(0)

r· − kX̄(0)
r·
)

= 0 − 0

= 0.

Note that the above double standardization is implicit in a 2-way ANOVA, and,
though not explicitly stated, it can be deduced from the work of Scheffé [9]. It is
nevertheless presented here, first, in order to introduce notation; second, as it is not
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available in this form above in the ANOVA framework; and third, for the intuition
it gives since it is a natural precursor to the subject of work in the remainder of this
paper. �

3.1. Example 1 (cont.): A 3-by-3 example with only mean polishing. We pro-
ceed to illustrate the previous theorem on the motivating example given after the
introduction and draw contrasts between the two approaches. As expected the suc-
cessive normalization algorithm terminates in one iteration. The initial matrix, the
final solution and the column and row standard deviations of the final matrix are
given below:

Y (0) =
⎡
⎣0.1182 0.7069 0.4145

0.9884 0.9995 0.4648
0.5400 0.2878 0.7640

⎤
⎦ ;(4)

Y (column-polished) =
⎡
⎣−0.4307 0.0422 −0.1333

0.4396 0.3347 −0.0829
−0.0089 −0.3769 0.2162

⎤
⎦ ;(5)

Y (row-polished) = Y (final) =
⎡
⎣−0.2568 0.2161 0.0407

0.2091 0.1043 −0.3134
0.0477 −0.3204 0.2727

⎤
⎦ ;(6)

Std(columns) = [ 0.1932 0.2311 0.2410 ] ;(7)

Std(rows) =
⎡
⎣0.1952

0.2257
0.2445

⎤
⎦ .(8)

We note that, unlike the motivating example, and as expected, the row and column
means are both 0, but the standard deviations of the rows and the columns are not
identical, let alone identically 1. Since mean polishing has already been attained,
and we additionally require that row and column standard deviations to be 1, it is
rather tempting to row and column standard deviation polish the terminal matrix
Y (final) above. We conclude this example by observing the simple fact that doing
so results in the loss of the zero row and column averages.

3.2. The 2-by-2 problem. We now examine the successive row and column
mean and standard deviation polishing for a 2 × 2 matrix and hence illustrate
that for the results in this paper to hold true, the minimum of row (k) and col-
umn dimension (n) of the matrix under consideration must be at least 3, that is,
min(k, n) ≥ 3. Consider the following general 2 × 2 matrix:

X(0) =
(

a b

c d

)
.

If a < b and c < d , then after one row normalization,

X(1) =
(−1 1

−1 1

)
;
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so the variance of its values, denoted by (S(1)
j )2, is 0. Therefore, allowing for both

inequalities to be reversed, and, assuming that, for example, a, b, c and d are
i.i.d. with continuous distribution(s), then P((S(1)

j )2 = 0) = 1/2; in which case the
procedure is no longer well defined.

A moment’s reflection shows that if X is n × 2 with n odd, then after each row
normalization, each column has an odd number of entries; each entry being −1 or
+1. However, each row has exactly one −1 and one +1. Thus (S(m)

i −S(m+1)
j )2 →

0 occurs only on a set of product Lebesgue measure 0. With min(k, n) ≥ 3, both
tend to 1 a.e. as m ↗ ∞. Henceforth, assume min(k, n) ≥ 3.

4. Theoretical considerations. For a matrix X as defined, take x ∈ Rn×k . Let
λ denote Lebesgue measure on Rn×k and P be the probability on the coordinates
that renders them i.i.d. That is, Xij (xij ) = xij . Xij are i.i.d. N(0,1). What is more,
for any orthogonal linear transformation O that preserves orthogonality, OX ∼ X,
that is, OX is distributed as X (see Anderson [1] and Muirhead [8]).

Because λ and P are mutually absolutely continuous, if C = {algorithm for
successive row and column normalization converges}, then P(C) = 1 iff λ(Rn×k \
C) = 0, though only one direction is used.

For the remainder, assume that P governs X. Positive results will be obtained for
3 ≤ min(n, k) ≤ max(n, k) < ∞. Our arguments require notation, to which we turn
our attention now. We redefine the notation and symbols introduced in Lemma 3.1
as we now bring in row and column standard deviation polishing. Define X = X(0):

X(0)
i· = 1

k

k∑
i=1

Xij ;

(
S(0)

i

)2 = 1

k

k∑
j=1

(
Xij − X̄(0)

i·
)2

=
(

1

k

k∑
j=1

X2
ij

)
− (X̄(0)

i·
)2;

X(1) = [
X(1)

ij

]
, where X(1)

ij = (
Xij − X̄(0)

i·
)
/S(0)

i ;
a.s. (S(0)

i )2 > 0 since k ≥ 3 > 1.
By analogy, set

X(2) = [
X(2)

ij

]
where X(2)

ij = (
X(1)

ij − X̄·j
)
/ S(1)

j ;

X̄(1)
·j = 1

n

n∑
i=1

X(1)
ij ;

(
S(1)

j

)2 = 1

n

n∑
i=1

(
X(1)

ij − X̄(1)
·j
)2

.
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Arguments sketched in what follows show that a.s. (S(1)
j )2 > 0 since n ≥ 3.

For m odd, X(m)
ij = (X(m−1)

ij − X̄(m−1)
i· )/ S(m−1)

i with X̄(m−1)
i· and (S(m−1)

i )2 de-
fined by analogy to previous definitions.

For m even, X(m)
ij = (X(m−1)

ij − X̄(m−1)
·j )/ S(m−1)

j , again with X̄(m−1)
·j and S(m−1)

j

defined by analogy to earlier definitions.

Back to the general problem. We first note that because the process we study is
a coordinate process, there is no difference between regular conditional probabil-
ities and regular conditional distributions (see Durrett [4], Section 4.1.c, pages 33
and 229–331 for more details). They can be computed as densities with re-
spect to Lebesgue measure on a finite Cartesian product × Sph(q) where q = k

refers to after row normalization and where q = n if subsequent to column nor-
malization. In a slight abuse of notation, for any positive integer q we define
Sph(q) = {x ∈ Rq :‖x‖2 = q} where the norm is the usual Euclidean norm.

Let {rij : i = 1, . . . , n; j = 1, . . . , k} be a set of n · k rational numbers, not all 0.
Obviously,

P

( ⋃
r1,...,rnk

∑
i,j

rij Xij = 0
)

= 0.

An inductive argument involving conditional densities shows that

P

( ∞⋃
m=1

⋃
r1,...,rnk

∑
i,j

rij X(m)
ij = 0

)
= 0.(9)

Consequently

P

(( ∞⋂
m−1

n⋂
i=1

(
S(2m)

i

)2
> 0

)
∩
( ∞⋂

m=1

k⋂
j=1

(
S(2m−1)

j

)2
> 0

))
= 1.

Further, a.s. X(m) is defined and finite for every m.
What we know that the t distribution (Efron [5]) and geometric arguments re-

quire that X(1) can be viewed as having probability distribution on Rn×k that is
the n-fold product of independent uniform distributions on Sph(k)×· · ·× Sph(k).
For the sake of clarity we note again that conditional probabilities are always taken
to be “regular” and concentrated on the relevant product of spheres. Readers will
note that in the cited arguments for

∑
i,j rij X(m)

ij , (S(2m)
i )2 and (S(2m−1)

j )2, relevant
conditional probabilities and densities are used. Of course, after the mth row stan-
dardization X(2m−1) = [X(2m−1)

ij : i = 1, . . . , n; j = 1, . . . , k], and analogously for

column standardization and X(2m).
As an aside, write g1(X) = X(1) on {min(S(0)

i )2 > 0}. Elsewhere, let g1(X) = 0.
Necessarily g1 depends on X only through its direction in Rn×k . Equivalently, g1
is a function of X that is homogeneous of degree 0. Moreover, g1(X) ∼ g1(OX)
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for all orthogonal linear O on Rn×k . X(1) has independent rows, each uniformly
distributed on Sph(k).

We turn now to study X(2m−1)
ij as m increases without bound. Note first that for

m = 1,2, . . . ,X(2m−1) has joint distribution that is unchanged if two columns of
X are transposed, therefore if two columns of X(2m−1) are transposed. Since every
permutation is a product of transpositions, X(2m−1) is column exchangeable. Each
is also row exchangeable.

Write π for a permutation of the integers {1, . . . , k}; let � be the finite σ -field
of all subsets of {π}. The marginal probability induced on {π} from the joint dis-
tribution of (X, {π}) is discrete and uniform, assigning probability 1/k! to each π .
Write G(i)

2m−1 to be the σ -field,

F
([(

X(q)
ij

)2 : j = 1, . . . , k;q = 2m − 1,2m + 1, . . .
])× �.

THEOREM 4.1. E{(X(1)
iπ(1))

2|G2m−1} = (X(2m−1)
iπ(1) )2 a.s. for m = 1,2, . . . .

PROOF. Write (X(2m−1)
iπ(1) )2 =∑k

l=1(X
(2m−1)
il )2I[π(1)=l] where IA is the indica-

tor function of the event A. Obviously, (X(2m−1)
iπ(1) )2 is G(i)

2m−1 measurable; {αq1,q2}
is a set of real numbers, doubly indexed by {αq1,q2) ∈ F ; F is a finite subset of

{1, . . . , k} × {1,2, . . .}. Form B = {(X(2m−1+q2)
iq1

)2 ≤ αq1,q2; (q1, q2) ∈ F }.
Note that G(i)

(2m−1) is generated by {B × Q}, B of the cited form and Q ∈ �. In

particular, each B × Q ∈ G(i)
2m−1. Proof of our claim is complete if we show that

for m = 2,3, . . . , ∫
B×Q

(
X(2m−1)

iπ(1)

)2 =
∫
B×Q

(
X(1)

iπ(1)

)2
.

The left-hand side of the display can be expressed as

E

{
k∑

l=1

(
X(2m−1)

il

)2
I[π(1)=l]I[π∈Q]IB

}
= E

{
IB

k∑
l=1

(
X(2m−1)

il

)2
I[π(1)=l]Iπ∈Q]

}
.

Now, for any π , the expression inside the sum is k if π ∈ Q and 0 if not. So, the
expectation factors into P(B)P (Q). Retracing steps shows clearly that (X(2m−1)

il )2

in the computation just completed could be replaced by (X(1)
il )2 with equalities

remaining true. The claim is now proven. �

Convergence of (X(m)
ij )2. The backwards martingale convergence theorem (see

Doob [3]) entails that (X(2m−1)
iπ(1) )2 converges a.s. as m → ∞. So, for each fixed
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j ∈ {1, . . . , k}, (X(2m−1)
iπ(1) )2I[π(1)=j ] converges a.s. It follows that [(X(2m−1)

ij )2] con-
verges a.s. as m → ∞.

If previous arguments are perturbed so that π denotes a permutation of
{1, . . . , n} with (X(1)

iπ(1))
2 replaced by (X(2)

π(1)j )
2, G(i)

2m−1 by G(i)
2m, (X(2m−1)

iπ(1) )2 by

(X(2m)
π(1)j )

2 and
∑k

l=1(X
(2m−1)
il )2 by

∑n
l=1(X

(2m)
lj )2, then one concludes that also

[(X(2m)
ij )2] converges a.s. as m → ∞. Without further argument it is unclear if the

a.s. limits along odd, respectively even, indices are the same; and it is crucial to
what remains that this is in fact true.

Obviously,
⋂∞

m=1 G(i)
2m−1 =⋂∞

m=1 G(i)
2m, so in a certain sense measurability is the

same. Obviously, too, randomization of index is by columns in the first case and
by rows in the second. But now a path to the required conclusion presents itself.
Given our success in proving a.s. convergence along odd indices after randomizing
columns and along even indices randomizing rows, and given that a requirement
of our approach is that these two limits be identical a.s., perhaps there is a path
which would allow for the simultaneous randomizing of both columns and rows.
Fortunately, that is the case. Thus, let π1 be a permutation of {1, . . . , n} and π2

be a permutation of {1, . . . , k}. With obvious product formulation of governing
probability mechanism and further obvious formulation of decreasing σ -fields, as
an example of what can be proved,

E
((

X(1)
π2(1)π2(1)

)2|G2
)= (

X(2)
π1(1)π2(1)

)2 a.s.

From this arguments for the display there are several paths by which one con-
cludes that a.s., simultaneously for all (i, j), [(X(m)

ij )2] converges. Dominated con-
vergence requires that the limit random matrix has expectation 1 in all coor-
dinates. As a consequence of this convergence, a.s. and simultaneously for all
(i, j), [(X(2m+1)

ij )2] − [(X(2m)
ij )2] → 0 as m → ∞.

Convergence of [X(m)
ij ]. We turn now to key ideas in extending our argument

that [(X(m)
ij )2] converges almost surely simultaneously to the same conclusion with

the square removed. To limit notational complexity, we study first only odd indices
as m grows without bound. Conclusions are identical for even indices, and by
extension for indices not constrained to be odd or even.

A first necessary step is to show that for arbitrary j ,

P
{
lim
m

(
S

(2m+1)
j

)2
> 0

}
= 1.

To that end, let A be the event [limm(S
(2m−1)
j )2 = 0]. Obviously, A =

{x : (S(2m−1)
j )2 → 0} = {x :S(2m−1)

j → 0} regardless of square roots taken. We
show that P {A} = 0.
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By way of contradiction, suppose that P {A} > 0. Write

(
S

(2m−1)
j

)2 = 1

n

n∑
l=1

(
X(2m−1)

lj

)2 − (X̄(2m−1)
·j

)2
.

We know that the first term tends to 1 a.s. on A. Therefore, also the sec-
ond term tends to 1 a.s. on A. Since for m > 1, X(2m−1)

lj is bounded a.s.,
limm maxl(X

(2m−1)
lj )(x) is a finite-valued random variable C = C(x). Simple con-

siderations show that the only possibilities are that for all l, C = +1 or C = −1
a.s. Similar arguments show that limm minl(X

(2m−1)
lj )(x) is +1 or −1. It is clear

that there is no sequence {mk} of {m} along which

−1 < lim
m

min
l

(
X(2mk−1)

lj

)
(x) ≤ lim

m
max

l

(
X(2mk−1)

lj

)
(x) < 1.

It follows that limm X(2m−1)
lj exists a.s. on A and that the limit of the sequence

is +1 or −1 on A.
Recall that X ∼ −X, and this equality is inherited by all joint distributions of

X(m). However, when X is replaced by its negative, any limit of X(2m−1)
lj becomes

its negative; a.s. convergence is a property of the probability distribution of X,
and {x : X(2m−1)

lj converges} = {x :−X(2m−1)
lj converges}. Therefore, the only pos-

sibility is that (X
(2m−1)

·j )2 → 0 and (S
(2m−1)
j )2 → 1. The upshot is that P {A} = 0;

P {limm(S
(2m−1)
j )2 > 0} = 1.

Again, let us fix j . Consider a sample path of {X(2mq−1)} along which

limm(S
(2mq−1)

j )2 = D > 0. Clearly, {i : limmq |X(2mq−1)

ij | > 0} �= ∅. Indeed, let

E = E(j) = {i : for some {mq} = {mq(i)}, limmq(i)|X(2mq−1)

ij | > 0}. Row and col-

umn exchangeability of X(m) necessarily means that the cardinality of E is at
least 2.

Let i0 �= i1 ∈ E. Because min(n, k) ≥ 3, there is a further subsequence of
{{mq(i)}}—again, for simplicity, write it as {mq}—along which

lim
mq

∣∣X(2mq−1)

i0j

∣∣ and lim
mq

∣∣X(2mq)

i0j

∣∣ both exist;

lim
mq

∣∣X(2mq−1)

i1j

∣∣ and lim
mq

∣∣X(2mq)

i1j

∣∣ both exist and

lim
mq

∣∣X(2mq)

i0j
− X

(2mq−1)

i1j

∣∣ exists and is positive.

The first two requirements can always be met off of the set of probability 0
implicit in (9). That the third can be met as well is a consequence of the argument
just concluded. In any case, if there were no such subsequence, then our proof
would be complete because all X(m)

ij for j fixed tend to the same number. But now,
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write (
X

(2mq)

i0j
− X

(2mq−1)

i0j

)− (X(2mq)

i1j
− X

(2mq−1)

i1j

)
= (

X
(2mq−1)

i0j
− X

(2mq−1)

i1j

)(
S

(2mq−1)

j − 1
)
/S

(2mq−1)

j .

Since (X
(2mq)

i0j
)2 − (X

(2mq−1)

i0j
)2 → 0 a.s., and likewise with i0 replaced by i1, the

first expression of the immediately previous display has limit 0. Thus, so too does

the second expression. This is possible only if S
(2mq−1)

j → 1 (where we have taken
the positive square root). Further,

X
(2mq)

i0j
− X

(2mq−1)

i0j
= X

(2mq−1)

i0j
(S

(2mq−1)

j − 1) + X̄
(2mq−1)

·j
S

(2mq−1)

j

.

As a corollary to the above, one sees now that X̄
(2mq−1)

·j → 0. Since the original
{mq} could be taken to be an arbitrary subsequence of {m}, we conclude that:

• S
(2mq−1)

j → 1 a.s.,

• X̄
(2mq−1)

·j → 0 a.s. and

• X(m)
ij converges a.s.

Now replace arguments for (i) and (ii) on columns by analogous arguments on
rows. Deduce that every infinite subsequence of positive integers has a subse-
quence along which our desired conclusion obtains.

5. Properties of successive normalization. We now comment on theoretical
properties of successive normalization. In particular, we elaborate on the generality
of the result by showing that the Gaussian assumption is not necessary and serves
only as a convenient choice of measure. We also discuss convergence in Lebesgue
measure and the domains of attraction of successive normalization.

5.1. Choice of probability measure. Write λ for Lebesgue measure on Rn×k .
Thus x ∈ Rn×k is an n × k rectangular array of real numbers. Let P be a mea-
sure on the Borel sets of B of Rn×k that is mutually absolutely continuous
with respect of λ. By this we mean that if B ⊂ Rn×k is Borel measurable, then
λ(B) = 0 iff P(B) = 0. One obvious example of such a P is the measure on B
that renders its nk coordinates i.i.d. Gaussian. If xrc is the (r, c) coordinate of
X ∈ Rn×k , and P (r,c) is the marginal measure of P on its (r, c) real coordinate,
then P (r,c)((−∞, x0]) = �(x0) where � is the standard normal cumulative dis-
tribution function. This is what we mean by P henceforth. The i.i.d. specification
requires that P is an nk-fold product of identical probabilities, and because P

is now defined uniquely for all product rectangles, it is defined uniquely for all
B ∈ B. It is obvious that � being mutually absolutely continuous with respect to
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one-dimensional Lebesgue measure means that the product measure P is mutually
absolutely continuous with respect to the nk-fold Borel product measure λ.

Now, let f1, f2, . . . be a sequence of B-measurable functions, Rn×k → Rn×k .
Then {fm converges} = {limfm = limfm simultaneously for all nk coordinates}.
When fm(x) converges, then limfm(x) = (limfm(x))I{fm converges}, where for any
set C, IC is its indicator. Because each fm is B-measurable, limfm(x) is also B-
measurable. If we are given that {fm} converges P -almost everywhere, then {fm

converges} is a Borel set of P -measure 1. Its complement has P -measure 0 and,
therefore, λ measure 0. It follows that {fm} converges except for a Borel subset of
Rn×k of Lebesgue measure 0.

In the present paper, the (r, c) coordinate of {fm} is the set of successive normal-
izations of the initial real entry multiplied by the indicator of the subset of Rn×k

that is {successive normalizations possible}. The latter is clearly a Borel subset
of Rn×k of P -measure 1, so its complement is a Borel set of λ-measure 0. It is
immaterial for convergence whether the first initialization is by row or by column.
Readers should note that any study of asymptotic properties of {fm} under P may
show that {fm(x)} has properties such as row and column exchangeability, where
the coordinate functions are taken to be random variables. They should note, too,
that: (i) changing the original measure to one more conducive to computation is
standard, and is what happens with “exponential tilting” as it applies to the study
of large deviations of sums; (ii) the interplay between measure and topology, as is
utilized here, is a standard approach in probability theory that is applied seldom to
statistical arguments; the lack thus far owes only to necessity.

5.2. Convergence in pth mean for Lebesgue measure. Whenever standard-
ization is possible, after one standardization the sum over all nk coordinates of
squares of respective values is bounded by nk, it follows from dominated con-
vergence that as m grows without bound, each term converges not only P -almost
everywhere but also in pth mean for every ∞ > p ≥ 1 so long as P remains the
applicable measure. Because λ is not a finite measure, convergence in pth mean
for underlying measure λ does not follow. It is impossible for such convergence to
apply to Lebesgue measure on the full Euclidean space Rn×k . This is because there
is a set of positive Lebesgue measure whose members are not fixed points for nor-
malization by both rows and columns. No matter which normalization comes first
in any infinite, alternating sequence, the normalization is invariant to fixed scale
multiples of each x ∈ Rn×k , and, in particular, to fixed scale multiples of x in the
set of positive Lebesgue measure just described. Obviously, no further arguments
are required; and convergence in pth mean is immediate if Lebesgue measure λ is
restricted to a bounded subset of Rn×k .

5.3. Domains of attraction. Reviewers of research presented here have won-
dered if we can describe simply what successive and alternating normalization
does to rectangular arrays of data, beyond introductory comments about putting
rows and columns on an equal footing and the analogy to computing correlation
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from covariance. We begin our reply here though details await further research and
a subsequent paper. Please remember invariance to either row or column normal-
ization (when possible) to scale multiples of x ∈ Rn×k . In other words, results of
normalization are constant along rays defined by these multiples, and without loss
of generality we can assume that x lies in an n-fold product of Sph(k) where each
of the n components is orthogonal to the linear one-dimensional subspace of Rk

consisting of its equiangular line; call it Sph(k)\{1}. Thus, without loss we assume
that the object under study is X(m) subject to a row normalization of the process of
successive normalization. We study only subsets of the n-fold product space that
was described and that is complementary to {⋃∞

m=1
⋃

r1,...,rk

∑
i,j ri,j X(m) = 0}

where {rij } are rational. The set in braces just before the comma has P -measure 0,
and we know that on its complement, X(m) can be defined for all m = 1,2, . . . .

Because normalization always involves subtraction of a mean and division by
a standard deviation and because each X(m) is row and column exchangeable, the
limiting process we study here when P applies seems, at first glance, to be analo-
gous to “domains of attraction” as that notion applies to sequences of i.i.d. random
variables. One obvious difference is that here limits are almost sure, unlike distri-
bution. While a.s. limits of X(m) are shown to have row and column means 0 and
row and column standard deviations 1, n×k arrays of real numbers with this prop-
erty are obviously the only fixed points of the alternating process studied here. The
Hausdorff dimension of the set of fixed points is not difficult to compute, but we
have been unable thus far to give rigorously supported conditions for the domain
of attraction (in the sense described) of each fixed point. The simple case for which
domains of attraction for limits in distribution were described was a major devel-
opment in the history of probability (see Feller [6], Gnedenko and Kolmogorov
[7], Zolotarev [10]). We report some intuitive results, and next we look at a math-
ematical question that arose in our study of domains of attraction for which at
present we have only a heuristic argument.

Is there a set E ⊂ Rn×k for which P(E) = 1; X(m)(x) converges for x ∈ E, and
for each fixed i lim Xij (x) �= lim Xij ′(x) for all j �= j ′ if x ∈ E? Clearly one could
ask the equivalent question for each fixed j , and a corresponding subset E′ ⊂
Rn×k . We conjecture the existence of E ∩ E′. However, arguments available thus
far do not confirm existence rigorously. Therefore, suggestions regarding domains
of attraction as X(m) grows without bound should be taken as only heuristic for
now.

Given that (S(m)
i )2 → 1 on a subset of Rn×k with complementary P -measure 0,

therefore Lebesgue measure 0, almost surely ultimately [meaning for m = m(x)

large enough], row normalization does not perturb the (strict) sort of any row.
By analogy, almost surely ultimately column normalization does not perturb the
(strict) sort of any column. Thus, a.s. ultimately, successive and alternative row
and column normalization do not perturb any row or column sort. This joint strict
sort determines an open subset of Rn×k . If we restrict ourselves to rows, then we
may speak more precisely of n-fold products of sorts of members of Sph(k) \ {1}.
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For a fixed row there are k! strict sorts of the squared entries. Given a fixed sort
of the squares there are, say, f (k) assignments of sign to the square roots of the k

entries so that the sum of entries for that row is 0. For any assignments of signs to
the necessarily nontrivial values of the k squares that renders the sum of entries for
the row 0, there is always a scaling so that the sum of squares is any fixed value so
that the variance of the set of numbers in that row is 1. One computes f (3) = 2;
f (4) = 4; and so on. Computation of the exact value of f (k) is slightly tricky and
is not reported here. For all k, f (k) ≥ 2. To summarize, for each fixed row there are
a.s. ultimately f (k)k! disjoint (open) invariant sets following row normalization,
making for [f (k)k!]n a.s. ultimately (open) invariant sets simultaneously for all n
rows. If we count a.s. ultimately invariant sets subsequent to column normaliza-
tion, then entirely analogous arguments result in a.s. ultimately [f (n)n!]k disjoint
(open) sets simultaneously for all columns.

From computations, after a row normalization the surface area of the sphere
in k-space orthogonal to the equiangular line—that corresponds to only one row

of X(m)—has surface area ≈
√

(2
e
)( 2πe

k−3) < 1 for k ≥ 21. The expression → 0 as
k ↗ ∞. Even for k = 4, the quantity is only about 14.7 (larger than the actual
value). Remember that there are at most [f (k)k!] a.s. ultimately nonempty “in-
variant sets” for row normalization. Thus one sees that for k large the quantity
(

surface area Sph(k)
|invariant sets of Sph(k)|)

n is nearly 0.

6. Computational results and applications. We include three examples to
highlight and illustrate some computational aspects of our iterative procedure. The
first two examples are studies by simulation whereas the third example is an im-
plementation on a real dataset.

For the simulation study, we consider a 3-by-3 matrix and a 10-by-10 matrix
both with entries generated independently from a uniform distribution on [0, 1].
For a given matrix, the algorithm computes/calculates the following 4 steps at each
iteration:

(a) mean polish the column,
(b) stand deviation polish the column,
(c) mean polish the row and
(d) stand deviation polish the row.

These fours steps, which constitute one iteration, are repeated until “converg-
ence”—which we define as when the difference in some norm-squared (the
quadratic/Frobenius norm in our case) between two consecutive iterations is less
than some small prescribed value—which we take to be 0.00000001 or 10−8.

6.1. Example 2: Simulation study on a 10-by-10 dimensional example. We
proceed now to illustrate the convergence of the successive row and column mean–
standard deviation polishing for the simple 10-by-10 dimensional example cited.
The algorithm took 15 iterations to converge. The initial matrix, the final solution,
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and relative (and log relative) difference for the 15 iterations follow:

X0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8145 0.3551 0.7258 0.3736 0.0216
0.7891 0.9970 0.3704 0.0875 0.9106
0.8523 0.2242 0.8416 0.6401 0.8006
0.5056 0.6525 0.7342 0.1806 0.7458
0.6357 0.6050 0.5710 0.0451 0.8131
0.9509 0.3872 0.1769 0.7232 0.3833
0.4440 0.1422 0.9574 0.3474 0.6173
0.0600 0.0251 0.2653 0.6606 0.5755
0.8667 0.4211 0.9246 0.3839 0.5301
0.6312 0.1841 0.2238 0.6273 0.2751

(10)
0.2486 0.0669 0.2178 0.6766 0.6026
0.4516 0.9394 0.1821 0.9883 0.7505
0.2277 0.0182 0.0418 0.7668 0.5835
0.8044 0.6838 0.1069 0.3367 0.5518
0.9861 0.7837 0.6164 0.6624 0.5836
0.0300 0.5341 0.9397 0.2442 0.5118
0.5357 0.8854 0.3545 0.2955 0.0826
0.0871 0.8990 0.4106 0.6802 0.7196
0.8021 0.6259 0.9843 0.5278 0.9962
0.9891 0.1379 0.9456 0.4116 0.3545

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Xfinal =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.2075 0.2139 0.8939 0.2661 −2.0026
−0.0736 1.7222 −1.2202 −1.0461 0.6465
0.8858 −0.8659 0.8816 0.7930 0.9515

−0.9296 1.5223 0.6537 −0.7661 0.9476
−0.8358 0.8041 −0.7288 −2.0057 1.0328
1.4926 0.1374 −1.2120 1.1351 −0.5035

−0.5156 −0.7494 1.5647 0.2025 0.5610
−1.8680 −1.1055 −0.6428 0.9269 0.3515
0.3596 −1.0158 0.8070 −0.5547 −1.1339
0.2771 −0.6632 −0.9973 1.0490 −0.8509

(11) −0.5881 −1.2477 −0.4157 1.1023 0.5705
−0.8172 0.5144 −1.1740 1.3022 0.1458
−0.9498 −1.6621 −1.1469 1.0831 0.0298
0.9361 0.5467 −1.3402 −1.3775 −0.1931
1.4824 0.5929 0.0202 0.2768 −0.6390

−1.2741 0.1766 1.3125 −1.1642 −0.1005
0.2646 1.3840 −0.0059 −0.7521 −1.9537

−0.8323 1.2448 0.1167 0.8827 0.9259
0.1669 −0.5895 1.0581 −1.0805 1.9828
1.6114 −0.9601 1.5752 −0.2727 −0.7685

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Successive Difference
(12)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Iteration no. Difference log(difference)
1 84.1592 4.4327
2 1.2860 0.2516
3 0.1013 −2.2897
4 0.0144 −4.2402
5 0.0029 −5.8434
6 0.0007 −7.2915
7 0.0002 −8.6805
8 0.0000 −10.0456
9 0.0000 −11.4000
10 0.0000 −12.7492
11 0.0000 −14.0955
12 0.0000 −15.4403
13 0.0000 −16.7841
14 0.0000 −18.1272
15 0.0000 −19.4699

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We note once more how the relative differences decrease linearly on the log scale
(though empirically) and how this is again suggestive of the rate of convergence.
As both the figure (see Figure 3) and the vector of relative differences indicate,
there is a substantial jump at iteration 2, and then the curve behaves linearly.

FIG. 3. Relative differences at each iteration on the log scale—10-by-10 dimensional example.
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The whole procedure takes about 0.37 seconds on a standard modern laptop
computer and terminates after 15 iterations. It might appear that the increase in the
number of iterations increases with increase in dimension. For instance, the num-
ber of iterations goes from 9 to 15 as we go from dimension 3 to 10. We should,
however, bear in mind that when we go from dimension 3 to 10 the “tolerance
level” is kept constant at 0.00000001. The number of elements that must be close
to their respective limiting values, however, goes from 9 in the 3-dimensional case
and to 100 in the 10-dimensional case. The rapidity of convergence was explored
further, and the process above was repeated over 1000 simulations. The conver-
gence proves to be stable in the sense that the mean and standard deviation of
the number of steps until convergence over the 1000 simulations are 14.5230 and
2.0331, respectively. A histogram of the number of steps till convergence is given
below (Figure 4).

A closer look at the vector of successive differences suggests that the “bulk of
the convergence” is achieved during the first iteration. This seems reasonable since
the first steps render the resulting columns, then the rows and the members of their
respective unit spheres (and even within cited subsets of them). Convergence then
is only within these spheres. Our numerical results also indicate the the sequence
of matrices X(i) changes most drastically during this first iteration. It suggests that
mean polishing to a larger extent is responsible for the rapidity of convergence

FIG. 4. Distribution of the number of steps to convergence.
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and is reminiscent of the result in Lemma 3.1 which states that if only row and
column mean polishing are performed, then convergence is achieved immediately.
We explore this issue further by looking at the distance between X(1) and X(final)

and compare it to the distance between X(0) and X(final). The ratio of these two
distances follows:

Ratio = dist(X(1),X(final))

dist(X(0),X(final))
.

For our 10-by-10 example, we simulated 1000 initial starting values and imple-
mented our successive normalization procedure. The average value of the distance
from the first iterate to the limit as a proportion of the total distance to the limit
from the starting value is only 2.78%. One could interpret this heuristically as
saying that on average the crucial first step does as much as 97.2% of the work
towards convergence. We therefore confirm that the bulk of the convergence is
indeed achieved in the first step (termed as a “one-step analysis” from now on-
wards). The distribution of the ratio defined above is graphed in the histogram
below (Figure 5). We also note that none of the 1000 simulations yielded a ratio of
over 10%.

Yet a another illuminating perspective of our successive normalization tech-
nique is obtained when we track the number of sign changes in the individual

FIG. 5. Distribution of distance to limit after 1-step as a proportion of distance to limit from ini-
tial-step.



1658 R. A. OLSHEN AND B. RAJARATNAM

TABLE 1
Distribution of the occurrence of sign changes

Iteration no. Relative frequency Relative cumulative frequency

1 94.97% 94.97%
2 3.15% 98.12%
3 1.03% 99.15%
4 0.40% 99.55%
5 0.20% 99.75%
6 0.12% 99.87%
7 0.05% 99.92%
8 0.03% 99.95%
9 0.02% 99.97%

10 and above 0.03% 100.00%

Total 100.00% –

entries of the matrices from one iteration to the next. Please remember that this
is related to the “invariant sets” that were described in Section 5.3. Naturally, one
would expect the vast majority of sign changes to occur in the first step as the
bulk of the convergence is achieved during this first step. We record the number of
sign changes at each iteration, as a proportion of the total number of sign changes
until convergence, over 1000 simulations, in our 10-by-10 case. The results are
illustrated in the table below3 (see Table 1). An empirical study of the occurrence
of the sign changes reveals interesting heuristics. We note that on average 95% of
sign changes occur during the first step and an additional 3% in the next step. The
table also demonstrates that as much as 99% of sign changes occur during the first
three iterations. When we examine infrequent cases where there is a sign change
well after the first few iterations, we observe that the corresponding limiting value
is close to zero thus indicating that a sign change well into the successive normal-
ization technique (i.e., a change from positive to negative or vice versa) amounts
to a very small change in the actual magnitude of the corresponding value of the
matrix.

We conclude this example by investigating more thoroughly whether the dimen-
sions of the matrices have an impact on either the rapidity of convergence and/or
on the one-step analysis. The following table gives the mean and standard devi-
ations of the number of iterations needed for convergence for various values of
the dimension of the matrix, denoted by p and n when keeping the total number of

3Since the number of iterations to convergence depends on the starting point, the length of the
vector of the number of sign changes will vary accordingly. We summarize this vector by averaging
over all the 1000 simulations the relative frequency of the number of sign changes for the first nine
iterations. The first nine iterations were chosen as each of the 1000 simulations required at least 9
iterations to converge.
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TABLE 2
Rapidity of convergence and one-step analysis for various

p and n combinations

p 3 4 5 10

n 33 25 20 10

mean(count) 34.0870 22.3500 18.0720 14.5790
std(count) 5.3870 3.3162 2.5477 2.1099

mean(ratio) 2.7026 2.5812 2.6237 2.7207
std(ratio) 1.8483 1.5455 1.4768 1.2699

cells in the matrix constant.4 Once more our successive normalization procedure is
applied to 1000 uniform random starting values. Results of this exercise are given
in the table below (see Table 2).

We find that when n and p are close, convergence appears to be faster, keeping
everything else constant. Interestingly enough, a one-step analysis performed for
the different scenarios above tends to suggest that the one-step ratio, defined as the
distance from the first iterate to the limit as a proportion of the total distance to
the limit from the starting value, seems largely unaffected by the row or column
dimension of the problem.

6.2. Example 3: Simulation study on a 5-by-5 dimensional example. We now
proceed to further investigate the successive normalization procedure when one
begins with column mean-standard deviation polishing followed by row mean-
standard deviation polishing or vice versa on a simple 5-by-5 dimensional exam-
ple. The theory developed in the previous sections proves convergence of the suc-
cessive normalization procedure whether the first normalization that is performed
on the matrix is row polishing or column polishing.

The algorithm took 30 iterations to converge when one begins with column
mean-standard deviation polishing, and when one begins with row mean-standard
deviation polishing it took 26 iterations to converge. The initial matrix, the final
solutions, log relative differences and their respective plots for both approaches are
given below (see Figure 6):

X0 =

⎛
⎜⎜⎜⎜⎝

0.6565 0.2866 0.7095 0.4409 0.8645
0.3099 0.3548 0.9052 0.8758 0.0210
0.3316 0.5358 0.8658 0.8650 0.0768
0.1882 0.9908 0.1192 0.3552 0.3767
0.1007 0.0282 0.9553 0.6311 0.1492

⎞
⎟⎟⎟⎟⎠ ,(13)

4Or approximately constant.
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X
final
starting with column polishing

(14)

=

⎛
⎜⎜⎜⎜⎝

1.6360 −0.4320 −0.7863 −1.0548 0.6371
0.1093 −1.2446 0.9477 1.2170 −1.0295

−0.6979 1.1193 −0.1716 1.1399 −1.3897
0.2748 1.2421 −1.3091 −1.0112 0.8034

−1.3223 −0.6848 1.3192 −0.2907 0.9786

⎞
⎟⎟⎟⎟⎠ ,

X
final
starting with row polishing

(15)

=

⎛
⎜⎜⎜⎜⎝

1.4956 −0.4243 −0.7386 −1.1620 0.8293
0.3816 −0.9267 0.5915 1.3267 −1.3731

−1.2158 1.1775 0.1052 0.9966 −1.0634
0.3478 1.2181 −1.4096 −0.9138 0.7573

−1.0092 −1.0446 1.4514 −0.2475 0.8499

⎞
⎟⎟⎟⎟⎠ ,

Successive Difference
(16)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Difference log(difference)
starting with starting with

Iteration no. column polishing row polishing
1 2.9646 3.0255
2 −0.5858 0.2539
3 −1.5082 −0.8731
4 −1.8814 −1.4650
. . . . . . . . .

. . . . . . . . .

24 −15.0375 −17.0730
25 −15.7028 −17.8229
26 −16.3679 −18.5728
27 −17.0331 −
28 −17.6983 −
29 −18.3635 −
30 −19.0287 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As expected, the final solutions are different. The simulations were repeated
with different initial values, and we note that the convergence patterns (as illus-
trated in Figure 6) are similar whether the procedure starts with column polishing
or row polishing, though the actual number of iterations required to converge can
vary.

6.3. Example 4: Gene expression data set: 20426-by-63 dimensional exam-
ple. We now illustrate the convergence of the successive row and column mean–
standard deviation polishing for a real-life gene expression example, a 20426-by-
63 dimensional example. This dataset arose originally from a study of human in-
stent restenosis by Ashley et al. [2]. The algorithm took considerably longer in
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FIG. 6. Relative differences at each iteration on the log scale for 5-by-5 dimensional exam-
ple (a) starting with column polishing (b) starting with row polishing.

terms of time and computer resources but converged in eight iterations. The ini-
tial matrix and the final are too large to display, but the relative (and log relative)
differences for the eight iterations are given subsequently:

Successive Difference
(17)

= 1.0e+005 ∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Iteration no. Difference log (difference)
1 1.0465 11.5583
2 0.0008 4.4030
3 0.0000 −0.2333
4 0.0000 −4.7582
5 0.0000 −9.2495
6 0.0000 −13.7130
7 0.0000 −18.1526
8 0.0000 −22.5717

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note once more how the relative differences decrease linearly on the log scale
(though empirically) and is once again suggestive of the rate of convergence. As
both the figure (see Figure 7) and the vector of relative differences indicates, there
is a jump between iteration 1 and 2 and then the curve behaves linearly.

Additionally the whole procedure takes about 853.2 seconds or approximately
14.22 minutes on a desktop computer5 versus 0.4 seconds for the 10-by-10 exam-
ple. However, the algorithm terminates after only eight iterations. In this example
the number of iterations does NOT change with the increase in dimensionality. It
may make sense to investigate this behavior more thoroughly, empirically, using

52 GHz Core 2 Duo processor and 2 GB of RAM.
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FIG. 7. Relative differences at each iteration on the log scale—20426-by-63 dimensional example.

simulation for rectangular but not square matrices. It seems that the ratio of the two
dimensions or the minimum of the two dimensions may play a role. We should also
bear in mind that the tolerance level, which is the sum of the individual differences
squared, has been kept constant at 0.00000001.

7. Conclusion. In this section we attempt to lend perspective to our results
and to point the way for future developments. Readers please note that for rec-
tangular n × k arrays of real numbers with min(k, n) ≥ 3, the technique begin-
ning with rows (alternatively columns) and successively subtracting row (column)
means and dividing resulting differences, respectively, by row (column) stan-
dard deviations converges for a subset of Euclidean Rn×k whose complement
has Lebesgue measure 0. The limit is row and column exchangeable given the
Gaussian probability mechanism that applies in our theoretical arguments. We do
not offer other information on the nature of the exact set on which successive it-
erates converge. A single “iteration” of the process we study has four steps, two
each, respectively, for rows and columns. Note that on the set for which the algo-
rithm converges, convergence seems remarkably rapid, exponential or even faster,
perhaps because after a half an iteration, the rows (alternately columns) lie as n (re-
spectively k) points on the surface of the product of relevant unit spheres. Further
iterations adjust only directions, not lengths.

Viewing the squares of the entries as the terms of a backwards martingale shows
maximal inequalities for them, and therefore implicitly contains information on
“rates of convergence” of the squares; but these easy results appear far from the
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best one might establish. Our arguments for (almost everywhere) convergence of
the original signed entries do not have information regarding rates of convergence.
One argues easily that if successive iterates converge, and no limiting entry is 0,
then after finitely many steps (the number depending on the original values and
the limiting values), signs are unchanged. In our examples of small dimension,
evidence of this can be made explicit. In particular we observe empirically that
the vast majority of sign changes that are observed do indeed take place in the first
few iterations. Any sign changes that are observed well after the first few iterations
correspond to sign changes around entries with limiting values close to zero. We
also have no information on optimality in any sense of the iterated transformations
we study. One reason for our thinking that our topic is inherently difficult is that
we were unable to view successive iterates as “contractions” in any sense familiar
to us.

If we take any original set of numbers, and multiply each number by the realized
value of a positive random variable with arbitrarily heavy tails, then convergence is
unchanged. Normalization requires that after half a single iteration the same points
on the surface of the relevant unit spheres are attained, no matter the multiple.
The message is that what matters for convergence are the distributions induced on
the surfaces of spheres after each half iteration, and not the otherwise common
heaviness of the tails of the probability distributions of individual entries.
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