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IMPLICATIONS OF MULTIVARIATE DIFFUSIONS1

BY XIAOHONG CHEN2, LARS PETER HANSEN3 AND JOSÉ SCHEINKMAN4

Yale University, University of Chicago and Princeton University

We investigate a method for extracting nonlinear principal components
(NPCs). These NPCs maximize variation subject to smoothness and orthog-
onality constraints; but we allow for a general class of constraints and multi-
variate probability densities, including densities without compact support and
even densities with algebraic tails. We provide primitive sufficient conditions
for the existence of these NPCs. By exploiting the theory of continuous-time,
reversible Markov diffusion processes, we give a different interpretation of
these NPCs and the smoothness constraints. When the diffusion matrix is
used to enforce smoothness, the NPCs maximize long-run variation relative
to the overall variation subject to orthogonality constraints. Moreover, the
NPCs behave as scalar autoregressions with heteroskedastic innovations; this
supports semiparametric identification and estimation of a multivariate re-
versible diffusion process and tests of the overidentifying restrictions implied
by such a process from low-frequency data. We also explore implications for
stationary, possibly nonreversible diffusion processes. Finally, we suggest a
sieve method to estimate the NPCs from discretely-sampled data.

1. Introduction. Principal components are functions of the data that capture
maximal variation in some sense. Often they are restricted to be linear functions of
the underlying data as in original analyses of Pearson [27] and Hotelling [23]. In
this paper we study the extraction of nonlinear principal components (NPCs) us-
ing information encoded in the probability density of the data. Formally, the NPCs
maximize variation subject to orthogonality and smoothness constraints where
smoothness constraints are enforced by a quadratic form f expressed in terms
of the gradients of functions. Specifically, the quadratic form is

f (φ,ψ) = 1

2

∫
x∈�

∇φ(x)′�(x)∇ψ(x)q(x) dx,
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where ∇ denotes the (weak) gradient operator, � is the state space, � is a state-
dependent positive-definite matrix and q is the invariant density of a strictly sta-
tionary ergodic data, {xi}Ti=1.

Alternatively, NPCs are solutions to approximation problems. Suppose we wish
to form the best finite-dimensional least squares approximation to an infinite-
dimensional space of smooth functions where we use the form f to limit the class
of functions to be approximated. In a sense that we make formal, a finite number
of NPCs solves this problem. More stringent smoothness restrictions enforced by
penalization limit the family of functions to be approximated while improving the
overall quality of approximation. Thus our analysis of NPCs is in part an investi-
gation of this approximation.

Previously Box and Tiao [7] proposed a canonical analysis of multivariate linear
time series. This analysis produces linear principal components of the multivari-
ate process that can be ordered from least to most predictable. Much later, in a
seemingly unrelated paper, Salinelli [31] defined NPCs for multivariate absolutely
continuous random variables and characterized these NPCs as eigenfunctions of
a self-adjoint, differential operator. As we will show, these two methods are re-
lated. We share Salinelli [31] interest in NPCs, but our departure from his work is
substantial. For Salinelli, the matrix � is the identity matrix, the state space � is
compact, and the density q is bounded above and below for the bulk of his analysis.
Our interest in probability densities q that do not have compact support, including
densities with algebraic tails, leads us naturally to consider a more general class of
smoothness penalties. By allowing for a more flexible specification for � and q ,
we entertain a larger class of smoothness constraints vis a vis Salinelli [31] with
explicit links to the data generation. Establishing the existence of NPCs in our
setup is no longer routine.

Salinelli [31] assumed that the data generation process is independent and iden-
tically distributed (i.i.d.). While our analysis is applicable to such an environment,
we also explore the case in which data, {xi}Ti=1, is sampled in low frequency from
a stationary Markov diffusion process. By considering such processes, we make a
specific choice of the matrix � used to enforce smoothness. It is the local covari-
ance or diffusion matrix. With this choice, the NPCs extracted with smoothness
penalties are ordered by the ratio of their long-run variation to the overall vari-
ation as in Box and Tiao [7]. NPCs that capture variation subject to smoothness
constraints also display low-frequency variation due to their high persistence. In
effect, we provide an extension of the method of Box and Tiao [7] to nonlinear,
multivariate Markov diffusions, and establish an explicit link to the method of
Salinelli [31].

In this paper we do the following:

1. Formulate the NPCs extraction to include state dependence in the smoothness
constraint and state spaces that have infinite Lebesgue measure.

2. Give sufficient conditions for the existence of these NPCs.
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3. Provide a reversible Markov diffusion process for the data generation that sup-
ports the NPCs extraction method and generates testable implications.

4. Explore implications for a more general class of Markov diffusion processes.

The rest of the paper is organized as follows. In Section 2, we first define
NPCs as functions that maximize variation subject to orthogonality conditions and
smoothness bounds given by the quadratic form f . Section 3 presents existence re-
sults. In Section 4, we suppose the data are sampled from a multivariate nonlinear
diffusion and establish the connection between our NPCs and the canonical analy-
sis of Box and Tiao [7]. The results in Section 5 relate the NPCs to eigenfunctions
of conditional expectations operators associated with a stationary Markov process
{xt } defined using the diffusion matrix � and the stationary density q . Given an
eigenfunction ψ , the process {ψ(xt )} behaves as a scalar autoregression. Thus the
eigenfunctions we obtain satisfy testable implications when the data is generated
by a Markov process. The Markov process constructed in Section 5 is time re-
versible. In Section 6, we characterize other Markov processes associated with the
same q and �. Section 7 provides a sieve method to estimate these NPCs using
discrete-time low-frequency observations {xi}Ti=1. Section 8 gives some conclud-
ing remarks and discusses applications of our results. The Appendix contain com-
putations associated with an example and some proofs that are not stated in the
main text.

2. Nonlinear principal components. To define a functional notion of princi-
pal components we require two quadratic forms. We start with an open connected
� ⊆ R

n. Let q be a probability density on � with respect to Lebesgue measure.
The implied probability distribution Q is the population counterpart to the empir-
ical distribution of the data. The data could be i.i.d. as in Salinelli [31], but we
are primarily interested in the case in which the data, {xi}Ti=1, are sampled in low
frequency from a continuous-time, stationary Markov diffusion, {xt : t ≥ 0}. In this
case q is the stationary density of xt .

Let L2 denote the space of Borel measurable square integrable functions with
respect to the population probability distribution Q. The L2 inner product (denoted
〈·, ·〉) is one of the two forms of interest. We use the corresponding norm to define
an approximation criterion.

The second form is used to measure smoothness. Consider a (quadratic) form
fo defined on C2

K , the space of twice continuously differentiable functions with
compact support in �, that can be parameterized in terms of the density q and a
positive definite matrix � that can depend on the state:

fo(φ,ψ) = 1

2

∫
�

∑
i,j

σij

∂φ

∂yj

∂ψ

∂yi

q,(2.1)

where

� = [σij ].
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ASSUMPTION 2.1. q is a positive, continuously differentiable probability
density on �.

ASSUMPTION 2.2. � is a continuously differentiable, positive definite matrix
function on �.

Assumptions 2.1 and 2.2 restrict the density q and the matrix � to be con-
tinuously differentiable. These assumptions are made for convenience. As argued
by Davies [14] (see Theorem 1.2.5) these restrictions can be replaced by a less
stringent requirement that entries of the matrix q� are locally [in L2(Lebesgue)],
weakly differentiable.

While the fo is constructed in terms of the product q�, the density q will play
a distinct role when we consider extending the domain of the form to a larger set
of functions.

To study the case in which � is not compact, we will consider a particular closed
extension of the form fo. We extend the form fo to a larger domain H̄ ⊂ L2 using
the notion of a weak derivative.

H̄
.=

{
φ ∈ L2: there exists g measurable, with

∫
g′�gq < ∞,

and
∫

φ∇ψ = −
∫

gψ, for all ψ ∈ C1
K

}
.

The random vector g is unique (for each φ) and is referred to as the weak derivative
of φ. From now on, for each φ in H̄ we write ∇φ = g.

Notice that H̄ is constructed exactly as a weighted Sobolev space except that
instead of requiring that g ∈ L2, we require that �g ∈ L2 where � is the square
root of �. Also we use C1

K test functions. One can show, using mollifiers, that
allowing for this larger set of test functions is equivalent to using the more usual
set of test functions, C∞

K (see Brezis [8], Remark 1, page 150). For any pair of
functions ψ and φ in H̄ , we define,

f (φ,ψ) = 1

2

∫
�
(∇φ)′�(∇ψ)q,

which is an extension of fo. In H̄ we use the inner product 〈φ,ψ〉f̄ = 〈φ,ψ〉 +
f (φ,ψ). With this inner product, H̄ is complete and hence a Hilbert space (see
Proposition A.1 in the Appendix). Thus H̄ is taken to be the domain D(f ) of the
form f . Notice, in particular, that the unit function is in D(f ) = H̄ .

2.1. Initial construction. NPCs maximize variation subject to smoothness
constraints. In our generalization these NPCs are defined as follows.
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DEFINITION 2.1. The function ψj is the j th nonlinear principal component
(NPC) for j ≥ 1 if ψj solves,

max
φ∈H̄

〈φ,φ〉,

subject to

f (φ,φ) = 1,

〈ψs,φ〉 = 0, s = 0, . . . , j − 1,

where ψ0 is initialized to be the constant function one.

There are two differences between our proposed extraction and that of Salinelli
[31]. First, Salinelli [31] assumes that � is the identity matrix. To accommodate a
richer class of densities, we allow � to be state dependent. Second, Salinelli [31]
assumes that the data density q has finite Lebesgue measure and is bounded away
from zero. We allow the Lebesgue measure of the state space to be infinite, and,
accordingly, our density q is no longer assumed to be bounded from below.

NPCs are eigenfunctions of the quadratic forms f .

DEFINITION 2.2. An eigenfunction ψ of the quadratic form f satisfies,

f (φ,ψ) = δ〈φ,ψ〉(2.2)

for all φ ∈ D(f ). The scalar δ is the corresponding eigenvalue.

Since f is positive semidefinite, δ must be nonnegative. The NPCs extracted in
the manner given in (2.1) have eigenvalues δj that increase with j . If we renormal-
ize the eigenfunctions to have a unit second moment, the NPCs will be ordered by
their smoothness as measured by δj = f (ψj ,ψj ). Moreover, f (ψj ,ψk) = 0 for
j �= k.

Suppose that the NPCs {ψj : j = 0,1, . . .} exist with corresponding eigenvalues
{δj : j = 0,1, . . .}. Consider any φ in L2. Then

φ =
∞∑

j=0

〈ψj ,φ〉
〈ψj ,ψj 〉ψj ,

〈φ,φ〉 =
∞∑

j=0

〈ψj ,φ〉2

〈ψj ,ψj 〉 ,

and for any φ,ψ ∈ D(f ),

f (φ,ψ) =
∞∑

j=0

δj

〈φ,ψj 〉〈ψ,ψj 〉
〈ψj ,ψj 〉 .(2.3)
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2.2. Benchmark optimization problem. Let H be a closed linear subspace
of L2, and consider the optimization problem.

PROBLEM 2.1.

max
φ∈H

〈φ,φ〉,
subject to

θ〈φ,φ〉 + f (φ,φ) ≤ 1

for some θ > 0.

A necessary condition for ψ to be a NPC is that it satisfies an eigenvalue prob-
lem:

CLAIM 2.1. A solution ψ to Problem 2.1 will also solve the eigenvalue prob-
lem,

〈φ,ψ〉 = λ[θ〈φ,ψ〉 + f (φ,ψ)]
for some positive λ and all φ ∈ H .

To establish the existence of a solution to Problem 2.1, it suffices to suppose the
following:

CONDITION 2.1 (Existence). {φ ∈ D(f ) :f (φ,φ) + θ〈φ,φ〉 ≤ 1} is precom-
pact (has compact closure) in L2.

The precompactness restriction guarantees that we may extract an L2 conver-
gent sequence in the constraint set, with objectives that approximate the supre-
mum. The limit point of convergent sequence used to approximate the supremum,
however, will necessarily be in the constraint set because the constraint set is con-
vex and the form is closed.

2.3. Approximation. Why do we care about NPCs? One way to address this is
to explore the construction of the best, finite dimensional, least squares approxi-
mations. Specifically, suppose we wish to construct the best finite-dimensional set
of approximating functions for the space of functions that are square integrable
with respect to a probability measure Q with density q . We now motivate NPCs
as the recursive solution to such a problem. The N -dimensional problem is solved
by solving N one-dimensional problems using a sequence of H ’s that remove one
dimension in each step. The outcome at each step is a NPC used as an additional
approximating function.

Initially solve Problem 2.1 for H = L2, select a solution ψ0 and denote the
maximized objective as λ0. Inductively, given ψ0,ψ1, . . . ,ψj−1, form Hj−1 as
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the j -dimensional space generated by these j solutions constructed recursively.
Let H⊥

j−1 denote the space of all elements of L2 that are orthogonal to these j

solutions and hence orthogonal to Hj−1. Solve Problem 2.1 for H = H⊥
j−1, select a

solution ψj , and form λj as the maximized value. The sequence {λj : j = 0,1, . . .}
is decreasing because we are omitting components of the constraint set for the
maximization problem as j increases.

In what sense is such a recursive procedure optimal? In answering this question,
let Proj(φ|Ĥ ) denote the least squares projection of φ onto the closed (in L2) linear
space Ĥ . The second moment of the approximation error is,

〈φ − Proj(φ|Ĥ ), φ − Proj(φ|Ĥ )〉 = 〈φ,φ〉 − [Proj(φ|Ĥ )]2.

CLAIM 2.2. Let Ĥ denote any N -dimensional subspace of L2. Then

max{φ : θ〈φ,φ〉+f (φ,φ)≤1}{〈φ,φ〉 − [Proj(φ|Ĥ )]2} ≥ λN.

Our next result shows that the bound deduced in Claim 2.2 is attained by HN−1.

CLAIM 2.3.

max{φ : θ〈φ,φ〉+f (φ,φ)≤1}{〈φ,φ〉 − [Proj(φ|HN−1)]2} = λN.

Taken together, these two claims justify HN−1 as a good N -dimensional space
of approximating functions.

REMARK 2.1. There exist N -dimensional spaces other than HN−1 that attain
the bound given in Claim 2.2. One reason is that there may be multiple solutions
to Problem 2.1. Even when the solution to Problem 2.1 is unique, at each stage of
the construction, ψN−1 may be replaced by the sum of ψN−1 plus some ψ’s that
is orthogonal to all of the solutions to Problem 2.1 with H = H⊥

N−1. Such a choice
cannot necessarily be used in a recursive construction of optimal approximating
spaces with dimension greater than N .

2.4. Nonlinear principal components revisited. In Problem 2.1, the constraint
set gets larger as θ declines to zero. Reducing the smoothness penalty with a
smaller θ enlarges the collection of functions that satisfy the constraint. Thus the
maximized objective increases as θ is reduced. While this is true, it turns out the
maximizing choice of φ does not depend on θ up to scale. This follows because
the ranking over φ’s implied by the ratio,

〈φ,φ〉
θ〈φ,φ〉 + f (φ,φ)

,
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does not depend on the value of θ . The same ranking is also implied by the ratio,

〈φ,φ〉
f (φ,φ)

,

provided that H is orthogonal to all constant functions. Thus a scaled solution ψ

to Problem 2.1 also solves.

PROBLEM 2.2.

max
φ∈H

〈φ,φ〉,
subject to

f (φ,φ) = 1.

Restricting H to be orthogonal to constant functions is equivalent to limiting
attention to functions φ that have mean zero under the population data distribu-
tion Q. Recall that our construction of NPCs is based on the recursive application
of this problem.

From Claim 2.1 we know that ψ satisfies

〈φ,ψ〉 = λ[θ〈φ,ψ〉 + f (φ,ψ)]
for all φ ∈ H . Rearranging terms,

f (φ,ψ) = δ〈φ,ψ〉,
where

δ = 1 − θλ

λ
.

This is the eigenvalue associated with the NPC extraction. Solving for λ,

λ = 1

θ + δ
.

Since eigenvalues δ of the form increase without bound, the corresponding se-
quence of λ’s converge to zero guaranteeing that approximation becomes arbitrar-
ily accurate as the number of NPCs increases.

3. Existence. In this section, we consider more primitive sufficient conditions
that imply Condition 2.1, which as we noted in Section 2, guarantees the existence
of NPCs. We allow for noncompact state spaces and provide alternative restrictions
on the tail behavior of the the density q and the penalization matrix � that guaran-
tee that the compactness criterion (Condition 2.1) is satisfied. Roughly speaking,
when the tails of the density q are exponentially thin, the compactness criterion
can be established without requiring that the matrix � becomes large (in the sense
of positive definite matrices) in the tails. On the other hand, when the tails of q are
algebraic and hence thicker, divergence of � in the tails can play an important role
in establishing Condition 2.1.
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We start by reviewing some known existence conditions, which we extend us-
ing two devices. First, we transform the function space and hence the (quadratic)
form so that distribution induced by q is replaced by the Lebesgue measure. This
transformation allows us to apply known results for forms built using the Lebesgue
measure. Second, we study forms that are simpler but dominated by f . When the
dominated forms satisfy Condition 2.1, the same can be said of f .

3.1. Compact domain. Salinelli [31] established the existence of eigenfunc-
tions by applying Rellich’s compact embedding theorem when the domain �

is compact with a continuous boundary. This approach requires a density q that
is bounded and bounded away from zero and a derivative penalty matrix � that is
uniformly nonsingular.

3.2. Real line. Perhaps surprisingly, the NPC extraction is nontrivial even for
densities on the real line. This is because our NPCs can be nonlinear functions of
the underlying Markov state. We initially consider the case in which the state space
is the real line.

PROPOSITION 3.1. Suppose � = ς2, and∫ ∞
0

1

ς2(x)q(x)
= +∞,

(3.1) ∫ ∞
0

1

ς2(−x)q(−x)
= +∞,

lim|x|→∞− x

|x|
[
ς(x)

q ′(x)

q(x)
+ ς ′(x)

]
= +∞.(3.2)

Then Condition 2.1 is satisfied.

When ς is constant, the compactness condition (3.2) reduces to

lim|x|→∞− x

|x|
[
q ′(x)

q(x)

]
= +∞,

which rules out densities with algebraic tails (tails that decay slower than |x| raised
to a negative power). By allowing for ς to increase, we can accommodate densities
with algebraic tails. We now extend this analysis to higher dimensions.

3.3. R
n. In the subsections that follow, we will provide multivariate exten-

sions for both sources of compactness: growth in the logarithmic derivative of the
density q and growth in the derivative penalty �. For simplicity, we will concen-
trate in the case where the state space is all of R

n.
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3.3.1. Cores. The compactness Condition 2.1 involves the domain of the form
f which is often rather complicated to describe. For this reason, we will focus
on cases where this domain can be well approximated by smooth functions. The
adequate notion of approximation is that of a core:

DEFINITION 3.1. A family of functions Co ⊂ D(f ) is a core of f if for any
φ0 in the domain D(f ), there exists a sequence {φj } in Co such that

lim
j→∞〈φj − φ0, φj − φ0〉 + f (φj − φ0, φj − φ0) = 0.

CONDITION 3.1. C2
K is a core of f .

Let f̂ denote the minimal extension, the smallest closed extension of the form
fo defined in (2.1). Condition 3.1 is equivalent to f = f̂ .

Although their purpose was different, Fukushima, Oshima and Takeda [18] pro-
vide a convenient sufficient condition that implies Condition 3.1 in environments
that interest us. Define

κ(r) =
∫
|x|=1

x′�(rx)xq(rx)dS(x),

where dS is the measure (surface element) used for integration on the sphere
|x| = 1. For functions ψ and φ in C2

K that are radially symmetric, that is, φ(x) =
ξ(|x|) and ψ(x) = ζ(|x|), we may depict the form fo as an integral over radii,

fo(ψ,φ) =
∫ ∞

0

dξ(r)

dr

dζ(r)

dr
κ(r)rn−1 dr.

PROPOSITION 3.2. Condition 3.1 is implied by∫ ∞
1

κ(r)−1r1−n dr = ∞.(3.3)

Restriction (3.3) implies the scalar restriction (3.1) of Proposition 3.1. This fol-
lows since for any nonnegative reals r1 and r2,

min
{

1

r1
,

1

r2

}
≥ 1

r1 + r2
.

Notice that (3.3) is a joint restriction on � and q . We may relate this condition
to the moments of q and the growth of � using the inequality,

∞ =
(∫ ∞

1

1

r
dr

)2

≤
∫ ∞

1
κ(r)−1r1−n dr

∫ ∞
1

κ(r)rn−3 dr.

Thus a sufficient condition for (3.3) is that∫ ∞
1

κ(r)

r2
rn−1 dr < ∞.(3.4)
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This latter inequality displays a tradeoff between growth in the penalization
matrix and moments of the distribution. Define

ς2(r) = sup
|x|=1

x′�(rx)x

and

�(r) =
∫
|x|=1

q(rx)dS(x).

Notice that

κ(r) ≤ ς2(r)�(r).

Suppose, for instance, ς2(r) is dominated by a quadratic function (in r). Then (3.4)
and hence (3.3) are satisfied because the density q is integrable,∫ ∞

0
�(r)rn−1 dr = 1.

We may extend the previous argument by supposing instead that

ς2(r) ≤ c|r|2+2δ

for some positive δ. Then

κ(r)

r2
≤ cr2δ

∫
|x|=1

q(rx)dS(x).

Thus (3.4) is satisfied, provided that∫
|x|2δq(x) dx < ∞.

Hence we can allow for faster growth in ς2 if q has high enough moments.
So far we have produced a sufficient condition for approximation using func-

tions in C2
K (Condition 3.1). We provide sufficient conditions for the original com-

pactness condition (Condition 2.1) by transforming the probability measure.

3.3.2. Transforming the measure. In this subsection, we map the original
probability space L2 into a Lebesgue counterpart L2(leb). The transformation is
standard (see Davies [14]), but it is often applied in the reverse direction. By us-
ing this transformation we may appeal to some existing mathematical results on
compactness to establish Criterion 2.1,

Uθ = {φ ∈ D(f ) :f (φ,φ) + θ〈φ,φ〉 ≤ 1}
is precompact in L2 for some θ > 0.

Given q , write

q1/2 = exp(−h).
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ASSUMPTION 3.1. The function h is twice continuously differentiable.

This assumption imposes some extra smoothness on the density that was not
required in our previous analysis.

Map the space L2 into L2(leb) by the (invertible) unitary transformation,

ψ = Uφ ≡ exp(−h)φ.

Since U is unitary, it suffices to show that U(Uθ ) is pre-compact. We will actually
construct a set that contains U(Uθ ) and is pre-compact in L2(leb).

First, notice that U and U−1 leave C2
K invariant, and for any ψ ∈ C2

K , the cor-
responding φ = U−1ψ satisfies

∇φ = exp(h)(ψ∇h + ∇ψ).

Thus

f (U−1ψ,U−1ψ∗) = 1

2

∫
(∇ψ)′�(∇ψ∗) + 1

2

∫
(∇h)′�[∇(ψψ∗)]

+ 1

2

∫
(∇h)′�(∇h)ψψ∗.

Applying integration-by-parts to ψ ∈ C2
K , it follows that∫

(∇h)′�[∇(ψψ∗)] = −
∫ ∑

i,j

σi,j

∂2h

∂yi ∂yj

ψψ∗ −
∫ ∑

i,j

∂σi,j

∂yi

∂h

∂yj

ψψ∗.

Therefore,

f (U−1ψ,U−1ψ∗) = 1

2

∫
(∇ψ)′�(∇ψ∗) + 1

2

∫
V ψψ∗,(3.5)

where the potential function V is given by

V = −∑
i,j

σi,j

∂2h

∂yi ∂yj

− ∑
i,j

∂σi,j

∂yi

∂h

∂yj

+ (∇h)′�(∇h).(3.6)

PROPOSITION 3.3. Suppose that C2
K is a core for f , ψ = Uφ for some φ ∈ H̄

and V is bounded from below. Then ψ is weakly differentiable,

∇ψ = exp(−h)(−φ∇h + ∇φ)

and

1

2

∫
(∇φ)′�∇φq = 1

2

∫
(∇ψ)′�(∇ψ) + 1

2

∫
V ψ2.(3.7)



NONLINEAR PRINCIPAL COMPONENTS AND THE LONG RUN 4291

A consequence of this proposition is that

Vθ =
{
ψ ∈ L2(leb) :

∫ (
θ + 1

2
V

)
ψ2 + 1

2

∫
(∇ψ)′�(∇ψ) ≤ 1

}
⊃ U(Uθ )

and it thus suffices to show that Vθ is precompact in L2(leb) for some θ > 0.
We consider two methods for establishing that this last property is satisfied. We

first focus on the behavior of the potential V used in the quadratic form,
∫
(θ +

1
2V )ψ2, and then we study extensions that exploit growth in the derivative penalty
matrix � used in the quadratic form,

∫
(∇ψ)′�(∇ψ).

3.3.3. Divergent potential. In this section, we use the tail behavior of the po-
tential V . To simplify the treatment of the term

∫
(∇ψ)′�(∇ψ) in the definition

of Vθ , we impose:

ASSUMPTION 3.2. The derivative penalty matrix � ≥ cI for some c > 0.

This assumption rules out cases in which the derivative penalty matrix dimin-
ishes to zero for arbitrarily large states.

We also suppose that the potential function diverges at the boundary,

CRITERION 3.1. lim|x|→∞ V (x) = +∞.

PROPOSITION 3.4. Under Assumptions 3.1 and 3.2, if Criterion 3.1 is satis-
fied, then Condition 2.1 is satisfied.

Direct verification of Criterion 3.1 may be difficult because formula (3.6) is a bit
complicated. However, we may replace the � by a lower bound. Given Assump-
tion 3.2, we can always construct a twice continuously differentiable function ς(x)

with

�(x) ≥ ς(x)2I ≥ cI for some c > 0.(3.8)

We now show how growth conditions on ς(x) can help in delivering compactness.
Let

Lf̌o(φ,φ∗) = 1

2

∫
∇φ(x) · ∇φ∗(x)ς(x)2q(x)

on the space C2
K . Then

f̌o(φ,φ) ≤ fo(φ,φ).

Let f̌ be the minimal extension of f̌o. If f is the minimal extension of fo, when
(3.8) holds, the domain of f̌ contains the domain of f . Applying Proposition 3.3
to f̌ , it suffices to use

V̌ (x) = ς(x)2
(
− trace

[
∂2h(x)

∂xi ∂xj

]
− 2∇ς(x) · ∇h(x)

ς(x)
+ |∇h(x)|2

)
in place of V in demonstrating compactness.
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CRITERION 3.2. Equation (3.8) is satisfied, and

lim|x|→∞ V̌ (x) = +∞.

To derive some sufficient conditions for this criterion, we parameterize ς as

ς(x) = exp[v(x)].
Then an alternative formula for V̌ is

V̌ (x) = −ς(x)2 trace
[

∂2h(x)

∂xi ∂xj

]
+ ς(x)2|∇h(x) − ∇v(x)|2

− ς(x)2∇v(x) · ∇v(x).

An alternative to Criterion 3.2 is:

CRITERION 3.3. Equation (3.8) is satisfied with ς(x) = exp[v(x)] and:

(a) lim|x|→∞
|∇v(x)|
|∇h(x)| = 0;

(b) lim|x|→∞ς(x)2
(
− trace

[
∂2h(x)

∂xi ∂xj

]
+ ∇h(x) · ∇h(x)

)
= +∞.

PROPOSITION 3.5. Suppose Assumption 3.1 is satisfied. Then Criterion 3.3
implies Condition 2.1.

Restriction (b) of Criterion 3.3 limits the second derivative contribution from
offsetting that of the squared gradient of h. This criterion is convenient to check
when h displays polynomial growth, or equivalently when q has exponentially
thin tails. Even if |∇h| becomes arbitrarily small for large |x|, the compactness
criterion can still be satisfied by having the penalization ς increase to more than
offset this decline.

Next we consider a way to exploit further growth in ∇ς . This approach
gives us a way to enhance the potential function, and may be used when
lim inf|x|→∞ |∇v(x)|

|∇h(x)| > 0. Write∫
ς2∇φ · ∇φ = c

∫
∇φ · ∇φ +

∫
(ς2 − c)∇φ · ∇φ.

We now deduce a convenient lower bound on∫
(ς2 − c)∇φ · ∇φ,

following an approach of Davies [14] (see Theorem 1.5.12). Construct an addi-
tional potential function,

W̌ (x) = (ς2 + c)(∇v · ∇v) + (ς2 − c) trace
(

∂2v

∂xi ∂xj

)
.
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LEMMA 3.1. If (3.8) holds, then∫
W̌φ2 ≤

∫
(ς2 − c)∇φ · ∇φ for all φ ∈ C2

K.

Note that

V̌ (x) + W̌ (x) = ς(x)2 trace
[

∂2v(x)

∂xi ∂xj

− ∂2h(x)

∂xi ∂xj

]
+ ς(x)2|∇h(x) − ∇v(x)|2

+ c
[
∇v(x) · ∇v(x) − trace

(
∂2v(x)

∂xi ∂xj

)]
.

CRITERION 3.4. Equation (3.8) is satisfied for ς(x) = exp[v(x)], and:

(a) lim|x|→∞

[
∇v(x) · ∇v(x) − trace

(
∂2v(x)

∂xi ∂xj

)]
= 0;

(b) lim|x|→∞ς(x)2 trace
[

∂2v(x)

∂xi ∂xj

− ∂2h(x)

∂xi ∂xj

]
+ ς(x)2|∇h(x) − ∇v(x)|2 = +∞.

PROPOSITION 3.6. Suppose Assumption 3.1 and Condition 3.1 are satisfied.
Then Criterion 3.4 implies Condition 2.1.

Restriction (a) of Criterion 3.4 limits the tail growth of the penalization. There
are two reasons that such growth should be limited. The fast growth in � limits
the functions that we hope to approximate using NPCs. Also, for C2

K to be a core
for the form f , we require limits on growth in � (see Section 3.3.1).

Our use of W̌ in addition to V̌ , in effect, replaces −ς2|∇v|2 with a second
derivative term,

ς(x)2 trace
[

∂2v(x)

∂xi ∂xj

]
.

The following example illustrates the advantage of this replacement.

EXAMPLE 3.1. Let

v(x) = β

2
log(1 + |x|2) + c̃

2
,

where c̃ = log c. Thus ς grows like |x|β in the tails. Simple calculations result in

−∇v(x) · ∇v(x) = −β2 |x|2
(1 + |x|2)2

and

trace
[

∂2v(x)

∂xi ∂xj

]
= β

[
n + (n − 2)|x|2

(1 + |x|2)2

]
.
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Notice that both terms converge to zero as |x| gets large, but that the squared
gradient scaled by ς2 becomes arbitrarily large when β > 1. The first term is al-
ways negative, but the second one is nonnegative, provided that n ≥ 2. Even when
n = 1, the second term is larger than the first, provided that β > 1.1 This example
illustrates when Criterion 3.4 is preferred to Criterion 3.3. The distinction can be
important when densities have algebraic tails.

This section contains our main existence results which we now summarize. We
provided two criteria for constructing penalization functions that support the exis-
tence of countable many NPCs. The first one, Criterion 3.3, gives the most flexibil-
ity in terms of the penalization matrix �; but it is applicable for densities that have
relatively thin tails. Densities with algebraic tails are precluded. The second one,
Criterion 3.4, allows for densities with algebraic tails but requires that the penaliza-
tion be more severe in the extremes to compensate for the tail thickness. Making
the penalization more potent limits the class of functions that are approximated.
Moreover, when the penalization is too extreme, we encounter an additional ap-
proximation problem: the family of functions C2

K ceases to be a core for the form
used in the NPCs extraction.

4. Forms and Markov processes. So far, we considered the role of the pe-
nalization matrix � in the construction and approximation properties of NPCs.
We now use stationary Markov diffusions to give an explicit interpretation of this
penalization matrix.

We proceed as follows. Suppose the data, {xi}Ti=1, are generated by a Markov
diffusion by sampling, say, at integer points in time. Specifically, {xt : t ≥ 0} solves

dxt = μ(xt ) dt + �(xt ) dBt

for some n-dimensional vector function μ and some n by n matrix function � of
the Markov state with appropriate boundary restrictions where {Bt : t ≥ 0} is an
n-dimensional, standard Brownian motion. Suppose further that this process has q

as its stationary density and that � = ��′. We will have more to say in Section 6
about the restrictions on μ that are implicit in such a construction. Let φ be in C2

K .
Then it follows from Itô’s lemma that the local variance of the process {φ(xt )} is

(∇φ)′�(∇φ),

which is state dependent. Note that f (φ,φ) is the average of this local variance.
The local variance is the measure of magnitude of the instantaneous forecast error
in forecasting {φ(xt )} over the next instant given the current Markov state.

The NPC extraction given by Definition 2.1 can be performed equivalently as:

1We have previously established an alternative compactness criterion for n = 1 that does not in-
volve second derivatives that may be preferred to Criterion 3.4.
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DEFINITION 4.1. The function ψj is the j th nonlinear principal component
(NPC) for j ≥ 0 if ψj , solves

min
φ∈H̄

f (φ,φ),

subject to

〈φ,φ〉 = 1,

〈ψs,φ〉 = 0, s = 0, . . . , j − 1.

Thus the NPCs are extracted by making the local forecast error (appropriately
scaled) small for functions with unit second moments plus orthogonality. It is a
continuous-time counterpart to the (1 − R2) in a forecasting regression. Recall
that the NPCs satisfy 〈ψj ,ψk〉 = 0 and f (ψj ,ψk) = 0 for j �= k. These properties
are nonlinear counterparts to the canonical components in the extraction of Box
and Tiao [7]. Box and Tiao [7] show that their canonical analysis produces k com-
ponent series that: (i) are ordered from least predictable to most predictable; (ii)
are contemporaneously uncorrelated; and (iii) have contemporaneously uncorre-
lated forecast errors. In verifying our counterpart to the third property, notice that
in continuous time the unpredictable component is ∇ψj(xt )�(xt ) dBt , and thus
f (ψj ,ψk) is the (average) local covariance of ψj(xt ) and ψk(xt ).

For financial and economics applications it is important to allow for barriers
that are not attracting, and it is desirable to allow for a noncompact state space
of the Markov process. Thus imposing uniform bounds on both q and the matrix
� over compact state spaces is too restrictive. Our existence results in Section 3
avoid such restrictions.

Our construction of NPCs supports the estimation and testing of multivariate
Markov diffusion models. There are other functional principal components con-
structions. For instance, Dauxois and Nkiet [12] construct nonlinear principal com-
ponents for multivariate densities by choosing pairs of functions that maximize
cross correlations without penalizing derivatives. Zhou and He [34] propose L1-
norm constrained principal components for the purpose of dimension reduction
and variable filtering. Ramsay and Silverman [28] provide detailed discussions on
functional principal component analysis for i.i.d. realization of curves.

5. Reversible diffusions. We next consider how to use the form f to build a
Markov process. Specifically associated with the form f , there is a second-order
differential operator F that generates the semigroup of a Markov diffusion. The
diffusion process has � as its local covariance matrix and q as it stationary density.
The construction of F is unique provided that we restrict the process to be time
reversible.

5.1. A differential operator. There is a differential operator Fo that is associ-
ated with the form fo [given in (2.1)], which we construct using integration-by-
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parts. For any functions φ and ψ in C2
K ,

fo(φ,ψ) = 1

2

∫ ∑
i,j

σij

∂φ

∂yj

∂ψ

∂yi

q

(5.1)

= −1

2

∫ ∑
i,j

σij

∂2φ

∂yi ∂yj

ψq − 1

2

∫ ∑
i,j

∂(qσij )

∂yi

∂φ

∂yj

ψ,

where the second equality of (5.1) follows from the integration-by-parts formula,∫ ∑
i,j

∂(qσij )

∂yi

∂φ

∂yj

ψ = −
∫ ∑

i,j

σij

∂2φ

∂yi ∂yj

ψq −
∫ ∑

i,j

σij

∂φ

∂yj

∂ψ

∂yi

q.

We use (5.1) to motivate our interest in the differential operator Fo,

Foφ = −1

2

∑
i,j

σij

∂2φ

∂yi ∂yj

− 1

2q

∑
i,j

∂(qσij )

∂yi

∂φ

∂yj

.(5.2)

This operator is constructed so that the form fo can be represented as

fo(φ,ψ) = 〈Foφ,ψ〉 = 〈φ,Foψ〉,
where the second relation holds because we can interchange the role of φ and ψ

in (5.1). Notice from (5.2) that operator Fo has both a first derivative term and a
second derivative term. Symmetry (with respect to q) is built into the construction
of this operator because of its link to the symmetric form fo.

We are interested in the operator Fo because of its use in modeling Markov
diffusions. Suppose that {xt : t ≥ 0} solves the stochastic differential equation,

dxt = μ(xt ) dt + �(xt ) dBt

with appropriate boundary restrictions where {Bt : t ≥ 0} is an n-dimensional, stan-
dard Brownian motion, and

μj = 1

2q

n∑
i=1

∂(σij q)

∂yi

.

Set

� = ��′.
Then we may use Itô’s lemma to show that for each φ ∈ C2

K ,

−Foφ = lim
t↓0

E[φ(xt )|x0 = x] − φ(x)

t
,

where this limit is taken with respect to the L2. That is, −Fo coincides with the
infinitesimal generator of {xt } in C2

K . We use this link to the stochastic differential
equation to motivate our use of the matrix � for penalizing derivatives. This ma-
trix will also be the diffusion matrix for a continuous-time Markov process with
stationary density q .
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5.2. Generating reversible diffusions. Wong [33] constructed scalar diffusion
models with stationary densities in the Pearson class and produced a spectral or
eigenfunction decomposition of the associated one-parameter semigroup of con-
ditional expectation operators. Banon [3] and Cobb, Kopstein and Chen [10] ex-
tended this analysis, in part, by taking the diffusion coefficient as given and con-
structing the implied drift coefficient for the stochastic differential equation that
generates a prescribed stationary density. Banon [3] and Cobb, Kopstein and Chen
[10] did not analyze the implied spectral decomposition of the associated con-
ditional expectation operators. In all these analyses, the stationary density of the
diffusion process is taken as one of the starting points of a model builder. In this
section, we share Banon’s [3] aim for generality, but at the same time, we retain
Wong’s [33] interest in spectral decompositions.

As in Banon [3], Cobb, Kopstein and Chen [10], Wong [33], we parameterize
diffusion processes using the stationary density q and a (possibly state dependent)
diffusion coefficient � in contrast to the more typical approach of starting with a
drift and the diffusion coefficients. In contrast to Banon [3], Cobb, Kopstein and
Chen [10], Wong [33], we allow the diffusion process to be multivariate on a state
space �. For this to result in a unique diffusion, we require that the diffusion be
time reversible.

A stochastic process is time reversible if its forward and backward transition
probabilities are the same. Multivariate reversible diffusions can be parameterized
directly by the pair (q,�). Associated with the closed extension f is a family of
resolvent operators Gα indexed by a positive parameter α. We use the resolvent
operators to build a semigroup of conditional expectation operators for a Markov
process, and in particular, the generator of that semigroup.

For any α > 0, the resolvent operator Gα is constructed as follows. Given a
function φ ∈ L2, define Gαφ ∈ D(f ) to be the solution to

f (Gαφ,ψ) + α〈Gαφ,ψ〉 = 〈φ,ψ〉(5.3)

for all ψ ∈ D(f ). The Riesz representation theorem guarantees the existence of
the Gαφ. This family of resolvent operators is known to satisfy several convenient
restrictions (e.g., see Fukushima, Oshima and Takeda [18], pages 15 and 19). In
particular, Gα is a one-to-one mapping from L2 into Gα(L2).

We associate with the form f the self-adjoint, positive semidefinite operator,

Fφ = (Gα)−1φ − αφ,(5.4)

defined on the domain Gα(L2). It can be shown that F is independent of α. Since
the operator F is self-adjoint and positive semidefinite, we may define a unique
positive semidefinite square root

√
F . While F may only be defined on a re-

duced domain, the domain of its square root may be extended uniquely to the
entire space D(f ) and f (φ,ψ) = 〈√Fφ,

√
Fψ〉 (e.g., see Fukushima, Oshima

and Takeda [18], Theorem 1.3.1). Moreover, it is an extension of the operator Fo
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because f is an extension of fo (e.g., see Lemma 3.3.1 of Fukushima, Oshima and
Takeda [18]).

We also use the family of resolvent operators to build a semigroup of conditional
expectation operators. A natural candidate for this semigroup is {exp(−tF ) : t ≥
0}. Formally, the expression exp(−tF ) is not well defined as a series expansion.
However, for any α and any t , we may form the exponential,

exp(tα2Gα − αtI )

as a Neumann series expansion. Notice that (5.4) implies

tα2Gα − tαI = tα

[(
I + 1

α
F

)−1

− I

]
= −tF

(
I + 1

α
F

)−1

.

Instead of directly using a series expansion, we use the limit,

lim
α→∞ exp[(tα2Gα) − αtI ] = exp(−tF ),

often referred to as “Yosida approximation” to construct formally a strongly con-
tinuous semigroup of operators indexed by t ≥ 0.

We have just seen how to construct resolvent operators and the semigroup of
conditional expectation operators from the form. We may invert this latter relation
and obtain

Gαφ =
∫ ∞

0
exp(−αt) exp(−tF )φ dt,(5.5)

which is the usual formula for the resolvents of a semigroup of operators. The
operator −F is referred to as the generator of both the semigroup {exp(−tF ) : t ≥
0} and of the family of resolvent operators {Gα :α > 0}.

As we have just seen, associated with a closed form f , there is an operator F

and a (strongly continuous) semigroup {exp(−tF ) : t ≥ 0} on L2. To establish that
there is a Markov process associated with this semigroup, we need first to verify
that the semigroup satisfies two properties. First we require, for each t ≥ 0 and
each 0 ≤ φ ≤ 1 in L2, 0 ≤ exp(−tF )φ ≤ 1. A semigroup satisfying this prop-
erty is called sub-Markov in the language of Beurling and Deny [5]. Second we
require, for each t ≥ 0, exp(−tF )1 = 1. A semigroup satisfying this property is
said to conserve probabilities. We refer to a sub-Markov semigroup that conserves
probabilities as a Markov semigroup. Finally we must make sure that the Markov
semigroup is actually the family of conditional expectation operators of a Markov
process.

The following condition is sufficient for a closed form to generate a sub-Markov
semigroup (e.g., see Davies [14], Section 1.3).

CONDITION 5.1 (Beurling–Deny). For any φ ∈ D(f ), ψ given by the trun-
cation,

ψ = (0 ∨ φ) ∧ 1
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is in D(f ) and

f (ψ,ψ) ≤ f (φ,φ).

When this condition is satisfied, the semigroup exp(−tF ) is sub-Markov, and
for each t ≥ 0, exp(−tF ) is an L2 contraction (‖exp(−tF )φ‖2 ≤ ‖φ‖2). This con-
traction property is also satisfied for the Lp norm for 1 ≤ p ≤ ∞ (Davies [14],
Theorem 1.3.3). In particular, we may extend the semigroup from L2 to L1 while
preserving the contraction property.

PROPOSITION 5.1. There exists a self adjoint operator F associated with f ,
which is an extension of Fo and generates a semigroup {exp(−tF ) : t ≥ 0}. The
density q is the stationary density for this diffusion, the matrix � is the diffusion
matrix and exp(−tF ) is the conditional expectation operator over an interval of
time t .

5.3. Nonlinear principal components and eigenfunctions. Continuous time
Markov process models are typically specified in terms of their local dynamics.
Given the nonlinearity in the state variables, it is a nontrivial task to infer the
global dynamics, and, in particular, the long-run behavior from this local speci-
fication. Characterizing eigenfunctions of conditional expectation operators offer
a way of approximating intermediate and long-term dynamics in ways that are
typically disguised from the local dynamics in nonlinear settings.

Eigenfunctions of the closed form f will also be eigenfunctions of the resolvent
operators Gα and of the generator F . For convenience, we rewrite (5.3),

f (Gαφ,ψ) + α〈Gαφ,ψ〉 = 〈φ,ψ〉.
From this formula, we may verify that f and Gα must share eigenfunctions for
any α > 0. The eigenvalues are related via the formula,

λ = 1

δ + α
,

where λ is the eigenvalue of Gα and δ is the corresponding eigenvalue of f .
Given the relation between the generator F and the resolvent operator Gα ,

Fφ = (Gα)−1φ − αφ,

these two operators must share eigenfunctions. Moreover, eigenfunctions of the
operators F , Gα and the form f must belong to the domain of F or equivalently to
the image of Gα . This domain is contained in the domain of the form f . Similarly,
we may show that if φ is an eigenfunction of the form f with eigenvalue δ, then φ

is an eigenfunction of exp(−tF ) with eigenvalue exp(−tδ) for any positive t .
An eigenfunction ψ of the generator F satisfies

E[ψ(xt+s)|xt ] = exp(−δs)ψ(xt )(5.6)

for some positive number δ and each transition interval s. Thus the NPCs described
previously will also satisfy the testable conditional moment restrictions (5.6). The
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scalar process {ψ(xt )} should behave as a scalar autoregression with autoregres-
sive coefficient exp(−δs) for sample interval s. The forecast error: ψ(xt+s) −
exp(−δs)ψ(xt ) will typically be conditionally heteroskedastic (have conditional
variance that depends on the Markov state xt ).

Since the form f can be depicted using a principal component decomposition
as in (2.3), analogous decompositions are applicable to F and exp(−tF ),

Fφ = ∑
j

δj

〈φ,ψj 〉
〈ψj ,ψj 〉ψj ,

exp(−tF )φ = ∑
j

exp(−tδj )
〈φ,ψj 〉
〈ψj ,ψj 〉ψj ,

where the first expansion is only a valid L2 series when φ is in the domain of
the operator F . When the eigenvalues δj of the form increase rapidly (in j ), the
term exp(−tδj ) will decline to zero rapidly (in j ), more so when the time horizon t

becomes large. As a consequence, it becomes easier to approximate the conditional
expectation operator over a finite transition interval t with a smaller number of
NPCs. On the other hand, slow eigenvalue divergence of the form will make it
challenging to approximate the transition operators with a small number of NPCs.
Our results in Section 3 give primitive conditions based on the tail behaviors of
stationary density and diffusion matrix for the existence of the above eigenfunction
decompositions. In an earlier, longer version of our paper, we provided primitive
sufficient conditions for the speed of eigenvalue decays.

5.4. An alternative form. In this subsection we construct a second quadratic
form used to depict the long-run variance of a stochastic processes constructed
from the Markov process {xt }.

This quadratic form is defined to be the limit

g(φ,ψ) = 2 lim
α↓0

〈Gαφ,ψ〉

and is well defined on a subspace S(F ) of functions in L2 for which

lim
α↓0

〈Gαφ,φ〉 < ∞.

While the form f is used to define the operator F , the form g may be used to
define F−1 as is evident from formulas (5.3) or (5.4). The forms f and g share
eigenfunctions. The g eigenvalues are the reciprocals of the f eigenvalues.

In light of (5.5),

〈Gαφ,ψ〉 =
∫ ∞

0
exp(−αt)E[φ(xt )ψ(x0)]dt.(5.7)

Hence using (5.4), we obtain

g(φ,ψ) = lim
α↓0

2〈Gαφ,ψ〉 = lim
α↓0

2〈(αI + F)−1φ,ψ〉.
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Notice that this form is symmetric because the resolvent operator is self-adjoint
for any positive α. Using (5.7) we may write this form as

g(φ,ψ) =
∫ +∞
−∞

E[φ(xt )ψ(x0)]dt =
∫ +∞
−∞

E[ψ(xt )φ(x0)]dt.

PROPOSITION 5.2. The j th nonlinear principal component ψj for j ≥ 1
solves

max
φ∈S(F )

g(φ,φ),

subject to

〈φ,φ〉 = 1,

〈ψs,φ〉 = 0, s = 0, . . . , j − 1,

where ψ0 is initialized to be the constant function one.

Recall that the spectral density function at frequency θ for a stochastic process
{φ(xt )} is defined to be∫ +∞

−∞
exp(−iθ t)E[φ(xt )φ(x0)]dt,

whenever this integral is well defined. In particular g(φ,φ) is the spectral density
of the process {φ(xt )} at frequency zero, a well-known measure of the long-run
variance.

For an alternative but closely related defense of the term long-run variance,
suppose that φ = Fψ for some ψ in the domain of F . Then

MT = ψ(xT ) − ψ(x0) +
∫ T

0
φ(xs) ds

is a martingale adapted to the Markov filtration. Following Bhattacharya [6] and
Hansen and Scheinkman [21], we may use this martingale construction to justify

1√
T

∫ T

0
φ(xs) ds ⇒ Normal(0, g(φ,φ)).

Thus g(φ,φ) is the limiting variance for the process { 1√
T

∫ T
0 φ(xs) ds} as the sam-

ple length T goes to infinity.
This gives us an alternative interpretation of our NPCs. We may base the ex-

traction on maximizing g(φ,φ) subject to 〈φ,φ〉 = 1 and orthogonality constraint.
In words, we are maximizing long-run variation while constraining the overall
variation. Smooth functions of a Markov state are also highly persistent and as a
consequence maximize long-run variation.

6. Irreversible diffusions. The stationary Markov construction we used in
the previous section resulted in a generator that was self adjoint and hence a
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process that was time reversible. Even among the class of stationary Markov dif-
fusions, reversibility is special when the process has multiple dimensions. Given
a stationary density q and a diffusion matrix �, we have seen how to construct
a reversible diffusion, but typically there are other diffusions that share the same
density and diffusion matrix, but are not reversible. We now characterize the drifts
of such processes.

Instead of constructing a Markov process implied by a form, suppose we have
specified the process as a semigroup of conditional expectation operators indexed
by the transition interval. We suppose this process has stationary density q . Fol-
lowing Nelson [25] and Hansen and Scheinkman [21] we study the semigroup of
conditional expectation operators on the space L2. This semigroup has a genera-
tor A defined on a dense subspace of L2. Consistent with our construction of F ,
on the subspace of C2

K , we suppose that A can be represented as a second-order
differential operator,

Aφ = 1

2

∑
i,j

σij

∂2φ

∂yi ∂yj

+ ∑
j

μj

∂φ

∂yj

and that ∫
Aφq = 0.

It may be shown that

−
∫

ψ(Aφ)q = fo(φ,ψ) on C2
K.

This construction does not require that A = −F or that A be self-adjoint. How
can the adjoint be represented? The adjoint must satisfy

−
∫

φ(A∗ψ)q = fo(φ,ψ),

implying that the F constructed previously must satisfy F = −(A+A∗)/2. More-
over, since q is also the stationary density of the reverse time process,∫

A∗φq = 0.

It follows from Nelson [25] that the adjoint operator has the same diffusion
matrix, but a different drift vector. The drift for the adjoint operator A∗ is given by

μ∗ = −μ + 1

q

∑
i,j

∂(qσij )

∂yi

∂φ

∂yj

.

The adjoint operator generates the semigroup of expectation operators for the re-
verse time diffusion. From the formula for reverse time drift, μ∗, it follows that

μ + μ∗

2
= 1

2q

∑
i,j

∂(qσij )

∂yi

∂φ

∂yj

,
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which is the negative of the second term in representation (5.2) for Fo. Thus if the
generator A of the semigroup is not self adjoint, then the operator F implied by
the form is a second order differential operator built using a simple average of the
forward and reverse time drift coefficients, μ and μ∗, and the common diffusion
matrix, �.

REMARK 6.1. The density q and the diffusion matrix � do place other re-
strictions on the drift vector μ. Since q is the stationary density, μ and μ∗ must
also satisfy

∂(μq)

∂y
= ∂

∂y

∑
i,j

∂(qσij )

∂yi

∂φ

∂yj

,

∂(μ∗q)

∂y
= ∂

∂y

∑
i,j

∂(qσij )

∂yi

∂φ

∂yj

.

While there is typically one solution μ (or μ∗) to this equation for the scalar case,
multiple solutions will exist for the multivariate case. That is, unless reversibility
is imposed a priori, the drift cannot be identified from the density and diffusion
matrix; but the average of the forward and backward drift can be inferred.

REMARK 6.2. The NPCs existence results of Section 3 have an immediate
extension to the existence of eigenfunctions of the semigroup of conditional ex-
pectation operators when the Markov diffusion is not reversible. For a semigroup
with generator A, we may “invert” (5.4) to construct a family of resolvent opera-
tors,

Rαφ =
∫ ∞

0
exp(−αt) exp(At)φ dt = (αI − A)−1φ,

and a form f (φ,ψ) = 〈φ,Aψ〉, which is not necessarily symmetric. While the
generator is an unbounded operator on L2, the resolvent operators are bounded.
When the resolvents are compact operators, they have well defined eigenfunctions
and eigenvalues, but they may be complex valued (see Rudin [30], Theorem 4.25,
page 108).

Given α, the resolvent operator will be compact provided that the image of Rα

of the L2 unit ball has compact closure. Consider a function ϕ given by

ϕ = (αI − A)−1φ.

Then φ ∈ D(A) and

〈φ,φ〉 = α2〈ϕ,ϕ〉 − 2α〈ϕ,Aϕ〉 + 〈Aϕ,Aϕ〉 ≥ α2〈ϕ,ϕ〉 + 2αf (ϕ,ϕ).

Thus it suffices to show that

{ϕ ∈ D(A) :α2〈ϕ,ϕ〉 + 2αf (ϕ,ϕ) ≤ 1}
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has compact closure. This set will have compact closure, if, and only if, compact-
ness Condition 2.1 is satisfied for θ = α/2.

7. Extraction of NPCs from data. In this section, we suggest a sieve method
to estimate NPCs based on discretely-sampled data from a Markov process. Here
we only sketch the construction and leave the formal justification and detailed
analysis of rates of convergence for subsequent research.

Let {xi}Ti=1 be a discrete-time sample of the underlying continuous-time, er-
godic Markov diffusion {xt : t ≥ 0} on the state space � ⊆ R

n.2 Suppose that the
penalization matrix � is either known or could be consistently estimated. The in-
variant probability measure Q is unknown but is consistently estimated by the
empirical distribution of the data {xi}Ti=1.

Let {Hm :m = 1,2, . . .} be a sequence of increasing finite-dimensional linear
(sieve) spaces that approximate the Hilbert space H̄ (the domain of the form f ) as
m goes to infinity. For notational convenience, let m be the dimension of Hm, and
suppose that m goes to infinity slowly as the sample size T goes to infinity. One
strategy is to extract the finite sample approximations sequentially as in optimiza-
tion problem given in Definition 2.1. For a finite-dimensional sieve approximation,
it suffices to solve a generalized eigenvector problem.

Since the space Hm is finite dimensional,

Hm =
{
φ(x) =

m∑
k=1

bkBk(x)

}
,

where the basis functions {Bk(x) :k ≥ 1} are used to construct the sieve. For ex-
ample, {Bk(x) :k ≥ 1} could be one of the following: (i) thin-plate splines, radial-
basis wavelets or tensor-product wavelets if q has algebraic tails on its support
� = R

n; (ii) tensor-product Hermite polynomial basis or Gaussian radial basis if
q has exponential thin tails on its support � = R

n.
Form a vector �m of functions of x by stacking terms Bk(x), k = 1, . . . ,m, and

form two matrices:

VT = 1

2T

T∑
i=1

[∇�T (xi)]�(xt )[∇�T (xt )]∗,

WT = 1

T

T∑
i=1

�T (xi)�T (xi)
∗,

where ∗ denotes transpose. Both matrices are symmetric and positive semidefi-
nite by construction. The matrix WT is typically nonsingular while VT is singular

2If available a continuous-time record could be used, but statistical approximation remains an issue
because the length of the record is finite.
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when a constant function is in the sieve space Hm. Stack the coefficients on the
sieve basis into a vector aT . The sample counterpart to the NPC (or eigenfunction)
problem is the following generalized eigenvector problem:

VT âT = δ̂T WT âT ,(7.1)

where âT is a generalized eigenvector and δ̂T a generalized eigenvalue. Since WT

is positive definite, we may apply the Cholesky decomposition to transform this
generalized eigenvector problem into a standard eigenvector problem.

Associated with each eigenvector solution to (7.1), is an eigenfunction formed
by multiplying the coefficient entries of the eigenvector by the sieve basis func-
tions. We have constructed this sample problem so that one of the approximat-
ing eigenfunctions will be constant whenever there is a nonzero constant function
in Hm, and the associated eigenvalue is zero.3

8. Conclusions and related literature. We have studied NPCs from multi-
ple vantage points. We have explored their role in capturing variation subject to
smoothness constraints and their role in capturing long-run variation in time-series
modeling. We have also considered their use in approximation where the smooth-
ness constraints limit the family of functions to be approximated.

We also used multivariate Markov diffusions as data generating devices to in-
terpret our NPCs. These NPCs are eigenfunctions of conditional expectation oper-
ators when the Markov process is reversible and hence imply conditional moment
restrictions. Our analysis expands on the result of Hansen and Scheinkman [21]
that reversible diffusions can be identified nonparametrically from discrete-time,
low-frequency, stationary observations.

For more general diffusions, these NPCs are orthogonal and have orthogonal
innovations analogous to those from the canonical analysis of Box and Tiao [7]
for linear multiple time series models (see also Pan and Yao [26]). Thus our NPC
construction provides a convenient way to summarize implications of multivariate
nonlinear diffusion models. Given the nonlinearity in the state variables, it is a non-
trivial task to infer the global dynamics, and, in particular, the long-run behavior
from this local specification based on low-frequency data. Our characterization of
NPCs offers a way to characterize features of the implied time series that are typ-
ically disguised from the local dynamics. While we featured diffusion processes,
more general processes, including processes with jumps, can be accommodated by
expanding the types of forms that are considered.

The idea of using eigenfunctions of conditional expectation operators for esti-
mation and testing of Markov processes based on low-frequency data has been sug-
gested previously by Chen, Hansen and Scheinkman [9], Demoura [15], Florens,

3For reversible diffusions we could instead approximate the NPCs nonparametrically by maximiz-
ing autocorrelations. For scalar diffusion models, this method has been already considered in Chen,
Hansen and Scheinkman [9] and Gobet, Hoffmann and Reib [19]. Both papers used a wavelet sieve
as the approximating space.



4306 X. CHEN, L. P. HANSEN AND J. SCHEINKMAN

Renault and Touzi [17], Gobet, Hoffmann and Reib [19], Hansen and Scheinkman
[21], Hansen, Scheinkman and Touzi [22] and Kessler and Sorensen [24]. In par-
ticular, Kessler and Sorensen [24] use eigenfunctions to construct quasi-optimal
estimators of parametric scalar diffusion models of the drift and diffusion co-
efficients from discrete-time data in the special case in which the functional
forms of eigenfunctions are known a priori. Chen, Hansen and Scheinkman [9],
Darolles, Florens and Gourieroux [11], Gobet, Hoffmann and Reib [19], Hansen
and Scheinkman [21] and Hansen, Scheinkman and Touzi [22] study semipara-
metric and nonparametric identification and over-identification based on an eigen-
function extraction that is closely related to the one analyzed here (see Fan [16]
for a recent review). This previous literature focuses primarily on scalar diffusion
models, and, in some cases, on scalar diffusions on compact state spaces with
reflective boundaries. Our analysis of Markov diffusions extends to multivariate
settings applicable to processes without attracting barriers.

In this paper, we have characterized a particular type of functional principal
components motivated in part by long-run implications of multivariate Markov
diffusions. This is a natural first step. Inferential issues, while crucial, are beyond
the scope of this paper. Formalizing statistical comparisons of models and data
in a multivariate setting is an obvious next step, supported by either parametric,
semiparametric or nonparametric estimation. There are a number of recent sta-
tistical results on estimation and inference of functional principal components of
covariance operators associated with i.i.d. or longitudinal sample of curves (see,
e.g., Benko, Hardle and Kneip [4], Hall, Muller and Wang [20], Ramsay and Sil-
verman [28], Silverman [32] and Zhou, Huang and Carroll [35]). These existing
results can, in principle, be modified to establish asymptotic properties of our esti-
mated NPCs from discrete-time, low-frequency realizations of an underlying mul-
tivariate Markov diffusion model.

APPENDIX: PROOFS

PROOF OF CLAIM 2.2. In solving the maximization component of the prob-
lem, first limit the φ’s to be in HN but orthogonal to Ĥ . This can only reduce
maximized value. The space of such φ’s contains more than just the zero el-
ement because HN has N + 1 dimensions. Write φ as φ = ∑N

j=0 rjψj . Since
Proj(φ|Ĥ ) = 0, the objective can be expressed as

∑N
j=0(rj )

2λj . The constraint
set implies that

N∑
j=0

(rj )
2 ≤ 1,

because f (ψj ,ψ�) = 〈ψj ,ψ�〉 = 0 for j �= �. While the coefficients rj cannot be
freely chosen (φ must be orthogonal to Ĥ ), they can be scaled so that the constraint
is satisfied with equality. Since the sequence of λj ’s is decreasing, the maximized
objective must be no less than λN . �
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PROOF OF CLAIM 2.3. Write φ as: φ = Proj(φ|HN−1) + ϕ where ϕ is in
H⊥

N−1. Write

Proj(φ|HN−1) =
N−1∑
j=0

rjψj .

Using this decomposition, the objective can be written as 〈ϕ,ϕ〉, and the constraint
set can be written as

N−1∑
j=0

(rj )
2 + 〈ϕ,ϕ〉 + θf (ϕ,ϕ) ≤ 1,

because ψ1,ψ2, . . . ,ψN−1, ϕ are orthogonal, and f (ψj ,ϕ) = f (ψj ,ψ�) = 0 for
j = 0, . . . ,N − 1 and � = j + 1, j + 2, . . . ,N − 1. To maximize the objective,
the coefficients rj ’s are set to zero, and ϕ is chosen by solving Problem 2.1 for
H = H⊥

N−1. The conclusion follows. �

PROOF OF PROPOSITION 3.1. Hansen, Scheinkman and Touzi [22] consider
densities from stationary scalar diffusions, whose boundaries are not attracting.
This proposition gives an equivalent statement of their compactness condition,
written in terms of the stationary density. The scalar diffusion coefficient in their
analysis is ς2. �

To show that the form f is closed extension of fo, we verify that H̄ is a Hilbert
space.

PROPOSITION A.1. H̄ is a Hilbert space.

PROOF. Let � be the symmetric square root of the penalty matrix �. If {φj }
is a Cauchy sequence in H̄ , then {φj } and the entries of {�∇φj } form Cauchy
sequences in L2. Denote the limits in L2 as

φ = lim
j→∞φj ,

v = lim
j→∞�∇φj .

For each u ∈ C1
K we know that∫

φj

∂u

∂x
= −

∫
(∇φj )u,

where ∂u
∂x

is the partial derivative of u with respect to x. Since � is positive definite
and continuous on any compact subset of �, and u vanishes outside any such set,
it follows that ∫

φ
∂u

∂x
= −

∫
(�−1v)u.

Hence φ ∈ H̄ with ∇φ = �−1v. Moreover, φn → φ in H̄ . �
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We now present a criteria for Condition 3.1 to hold. This result is due, essen-
tially, to Azencott [2] and Davies [13].

PROPOSITION A.2. Consider a form fo that satisfies the Beurling–Deny Cri-
terion 5.1. Let f̂ denote the minimal extension of fo with domain D(f̂ ). Suppose
that 1 ∈ D(f̂ ) and f̂ (1, φ) = 0 for all φ ∈ D(f̂ ). Then f̂ = f .

PROOF. As explained in Section 5, associated with the forms f and f̂ , we
may construct operators F and F̂ and resolvents G and Ĝ. Integration by parts
can be used to show that the operators F and F̂ are extensions of the differential
operator

L̂φ = −1

q

∑
i,j

∂

∂x i

(
qσij

∂φ

∂xj

)
,

defined on C2
K . The form f̂ and hence the form f satisfies the Beurling–Deny

Criterion 5.1 (Davies [14], Theorem 1.3.5). Hence as stated in Davies [13], the
operators F and F̂ can be extended to subspaces of L1. Similarly, the resolvents
G and Ĝ can be extended to L1. We will denote the extended operators as F 1,
F̂ 1, G1 and Ĝ1. Since q is integrable, L2 convergence implies L1 convergence
and consequently F and F̂ are restrictions of F 1 and F̂ 1, respectively. The same
argument applies to the resolvent operators.

If f̂ (1, φ) = 0 for all φ ∈ D(f̂ ), then F̂1 = 0 and Ĝ1 = 1. Consequently,
G11 = 1. It follows from Theorem 2.2 in Davies [13] that C2

K is a core for F 1,
in the sense that F 1 is the closure in L1 of L̂.4 Hence C2

K is a core for F 2, and
thus a core for f , or, equivalently, f and f̂ coincide. �

PROOF OF PROPOSITION 3.2. Since f̂ is the minimal closed extension, it has
C2

K as its core. When this condition is met, a sequence of functions φj in C2
K

can be constructed that converge to 1 in L2, and f (φj ,φj ) converges to zero. See
Fukushima, Oshima and Takeda [18], Theorems 1.6.6 and 1.6.7. An approximating
sequence of functions with compact support is supplied by Fukushima, Oshima
and Takeda [18] in the proof of Theorem 1.6.7. This sequence can be smoothed
using a suitable regularization to produce a corresponding approximating sequence
in C2

K . Thus the unit function is in the domain of f̂ and f̂ (1, φ) = 0 for φ ∈ C2
K and

hence for φ ∈ D(f̂ ). As we established above, this is sufficient for Condition 3.1.
�

4Davies [13] assumes that the coefficients of L̂ are C∞. However, the proof holds for C2 coeffi-
cients since elliptic regularity holds even when the coefficients are only Lipschitz (see Theorem 6.3
of Agmon [1]).
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PROOF OF PROPOSITION 3.3. Since V is bounded from below, we may
choose a θ > 0 such that V + θ is nonnegative. Construct the space,

Ȟ
.=

{
ψ ∈ L2(leb) :

∫
(V + θ)(ψ)2 < ∞, there exists g measurable, with∫
g′�g < ∞, and

∫
ψ∇ϕ = −

∫
gϕ, for all ψ ∈ C1

K

}
.

As in the proof of Proposition A.1, it follows that Ȟ is a Hilbert space with inner
product, ∫

(V + θ + 1)ψψ̃ +
∫

(∇ψ)′�(∇ψ̃).

We show that UH̄ ⊂ Ȟ .
Since C2

K is a core for f , there exists a sequence {φj : j = 1,2, . . .} in C2
K that

converges to φ in the Hilbert space norm of H̄ . Hence this sequence is Cauchy in
that norm. Writing ψj = Uφj and applying (3.5) we obtain∫

(φj − φ�)
2(1 + θ)q +

∫
(∇φj − ∇φ�)

′�(∇φj − ∇φ�)q

=
∫

(V + θ + 1)(ψj − ψ�)
2 +

∫
(∇ψj − ∇ψ�)

′�(∇ψj − ∇ψ�).

Thus {ψj : j = 1,2, . . .} is Cauchy in the Hilbert space norm of Ȟ and the limit
point ψ must satisfy ψ = Uφ. Notice that

∫
V (ψ)2 + ∫

(∇ψ)′�(∇ψ) equals Ȟ

squared norm minus θ + 1 times the L2(Q) squared norm. Thus∫
V (ψ)2 +

∫
(∇ψ)′�(∇ψ) = lim

j→∞

∫
(∇ψj)

′�(∇ψj)q

= lim
j→∞(∇φj )

′�(∇φj )q

=
∫

(∇φ)′�(∇φ)q.

This proves (3.7).
For a given ψ = Uφ, our candidate for the weak derivative is

g
.= exp(−h)(−φ∇h + ∇φ).

To verify that g is indeed the weak derivative, we must show that for any ϕ ∈ C1
K ,∫

ψ∇ϕ = −
∫

gϕ(A.1)

and ∫
g′�g < ∞.(A.2)
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We check relation (A.1) by applying integration by parts,

−
∫

∇ψϕ = −
∫

[exp(−h)(−φ∇h + ∇φ)]ϕ

= −
∫

∇φ exp(−h)ϕ +
∫

exp(−h)ϕφ∇h

=
∫

φ[exp(−h)∇ϕ − ∇h exp(−h)ϕ] +
∫

exp(−h)ϕφ∇h =
∫

ψ∇ϕ.

Inequality (A.2) follows from (3.7). �

PROOF OF PROPOSITION 3.4. Since V is continuous and diverges at the
boundaries, it must be bounded from below. Also, it follows from Assumption 3.2
that

Vθ ⊂
{
ψ ∈ L2(leb) : ψ has a weak derivative and∫ (

θ + 1

2
V

)
(ψ)2 + c

2

∫
|∇ψ |2 ≤ 1

}
.

We may then apply the argument in the proof of Theorem XIII.67 of Reed and
Simon [29] to establish that Vθ is precompact in L2(leb). �

PROOF OF LEMMA 3.1. Consider a positive function

χ(x) = 1

ς

and note that

[ς(x)2 − c]∇χ(x) = −ς(x)∇v + c
∇v(x)

ς(x)
.

For φ in C2
K , we may apply integration by parts to show that∫

(ς2 − c)∇χ · ∇φ =
∫ [(

ς2 + c

ς

)
(∇v · ∇v) +

(
ς2 − c

ς

)
trace

(
∂2v

∂xi ∂xj

)]
φ

=
∫

W̌χφ.

The conclusion follows from Theorem 1.5.12 of Davies [14]. While Davies [14]
uses test functions φ in C∞

K , the same proof applies to C2
K test functions. �

PROOF OF PROPOSITION 5.1. The form f satisfies the Beurling–Deny crite-
ria (Davies [14], Theorem 1.3.5). Thus there exists a self-adjoint operator F which
is an extension of Fo and generates a sub-Markov semigroup exp(−tF ). Theo-
rem 7.2.1 of Fukushima, Oshima and Takeda [18] guarantees that there exists a
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Markov process {xt } that has exp(−tF ) as its semigroup of conditional expecta-
tions. The semigroup exp(−tF ) conserves probability because the unit function is
in the domain of the form f and f (1, φ) = 0 for any φ ∈ D(f ). As a consequence,
the unit function is also in the domain of the operator F , F1 = 0. �
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