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HIGH-DIMENSIONAL ADDITIVE MODELING

BY LUKAS MEIER, SARA VAN DE GEER AND PETER BÜHLMANN

ETH Zürich

We propose a new sparsity-smoothness penalty for high-dimensional
generalized additive models. The combination of sparsity and smoothness
is crucial for mathematical theory as well as performance for finite-sample
data. We present a computationally efficient algorithm, with provable numer-
ical convergence properties, for optimizing the penalized likelihood. Further-
more, we provide oracle results which yield asymptotic optimality of our es-
timator for high dimensional but sparse additive models. Finally, an adaptive
version of our sparsity-smoothness penalized approach yields large additional
performance gains.

1. Introduction. Substantial progress has been achieved over the last years in
estimating high-dimensional linear or generalized linear models where the num-
ber of covariates p is much larger than sample size n. The theoretical properties
of penalization approaches like the lasso [28] are now well understood [3, 14, 23,
24, 33] and this knowledge has led to several extensions or alternative approaches
like adaptive lasso [34], relaxed lasso [22], sure independence screening [12] and
graphical model based methods [6]. Moreover, with the fast growing amount of
high-dimensional data in, for example, biology, imaging or astronomy, these meth-
ods have shown their success in a variety of practical problems. However, in many
situations, the conditional expectation of the response given the covariates may not
be linear. While the most important effects may still be detected by a linear model,
substantial improvements are sometimes possible by using a more flexible class of
models. Recently, some progress has been made regarding high-dimensional ad-
ditive model selection [7, 19, 26] and some theoretical results are available [26].
Other approaches are based on wavelets [27] or can adapt to the unknown smooth-
ness of the underlying functions [2].

In this paper, we consider the problem of estimating a high-dimensional gen-
eralized additive model where p � n. An approach for high-dimensional additive
modeling is described and analyzed in [26]. We use an approach which penalizes
both the sparsity and the roughness. This is particularly important if a large num-
ber of basis functions is used for modeling the additive components. This is similar
to [26] where the smoothness and the sparsity is controlled in the backfitting step.
In addition, our computational algorithm, which builds upon the idea of a group
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lasso problem, has rigorous convergence properties and thus, it is provably correct
for finding the optimum of a penalized likelihood function. Moreover, we provide
oracle results which establish asymptotic optimality of the procedure.

2. Penalized maximum likelihood for additive models. We consider high-
dimensional additive regression models with a continuous response Y ∈ R

n and p

covariates x(1), . . . , x(p) ∈ R
n connected through the model

Yi = c +
p∑

j=1

fj

(
x

(j)
i

) + εi, i = 1, . . . , n,

where c is the intercept term, εi are i.i.d. random variables with mean zero and
fj : R → R are smooth univariate functions. For identification purposes, we as-
sume that all fj are centered, that is,

n∑
i=1

fj

(
x

(j)
i

) = 0

for j = 1, . . . , p. We consider the case of fixed design, that is, we treat the predic-
tors x(1), . . . , x(p) as nonrandom.

With some slight abuse of notation we also denote by fj the n-dimensional vec-

tor (fj (x
(j)
1 ), . . . , fj (x

(j)
n ))T . For a vector f ∈ R

n, we define ‖f ‖2
n = 1

n

∑n
i=1 f 2

i .

2.1. The sparsity-smoothness penalty. In order to construct an estimator
which encourages sparsity at the function level, penalizing the norms ‖fj‖n would
be a suitable approach. Some theory for the case where a truncated orthogonal ba-
sis with O(n1/5) basis functions for each component fj is used has been developed
in [26].

If we use a large number of basis functions, which is necessary to be able to
capture some functions at high complexity, the resulting estimator will produce
function estimates which are too wiggly if the underlying true functions are very
smooth. Hence, we need some additional control or restrictions of the smoothness
of the estimated functions. In order to get sparse and sufficiently smooth function
estimates, we propose the sparsity-smoothness penalty

J (fj ) = λ1

√
‖fj‖2

n + λ2I 2(fj ),

where

I 2(fj ) =
∫

(f ′′
j (x))2 dx

measures the smoothness of fj . The two tuning parameters λ1, λ2 ≥ 0 control the
amount of penalization.
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Our estimator is given by the following penalized least squares problem:

f̂1, . . . , f̂p = arg min
f1,...,fp∈F

∥∥∥∥∥Y −
p∑

j=1

fj

∥∥∥∥∥
2

n

+
p∑

j=1

J (fj ),(1)

where F is a suitable class of functions and Y = (Y1, . . . , Yn)
T is the vector of

responses. We assume the same level of regularity for each function fj . If Y is
centered, we can omit an unpenalized intercept term and the nature of the objec-
tive function in (1) automatically forces the function estimates f̂1, . . . , f̂p to be
centered.

PROPOSITION 1. Let a, b ∈ R such that a < mini,j {x(j)
i } and b >

maxi,j {x(j)
i }. Let F be the space of functions that are twice continuously dif-

ferentiable on [a, b] and assume that there exist minimizers f̂j ∈ F of (1). Then

the f̂j ’s are natural cubic splines with knots at x
(j)
i , i = 1, . . . , n.

A proof is given in Appendix A. Hence, we can restrict ourselves to the finite-
dimensional space of natural cubic splines instead of considering the infinite-
dimensional space of twice continuously differentiable functions.

In the following subsection, we illustrate the existence and the computation of
the estimator.

2.2. Computational algorithm. For each function fj , we use a cubic B-spline
parameterization with a reasonable amount of knots or basis functions. A typical
choice would be to use K − 4 � √

n interior knots that are placed at the empirical
quantiles of x(j). Hence, we parameterize

fj (x) =
K∑

k=1

βj,kbj,k(x),

where bj,k : R → R are the B-spline basis functions and βj = (βj,1, . . . , βj,K)T ∈
R

K is the parameter vector corresponding to fj . Based on the basis functions,
we can construct an n × pK design matrix B = [B1|B2| · · · |Bp], where Bj is the
n × K design matrix of the B-spline basis of the j th predictor, that is, Bj,il =
bj,l(x

(j)
i ).

For twice continuously differentiable functions, the optimization problem (1)
can now be reformulated as

β̂ = arg min
β=(β1,...,βp)

‖Y − Bβ‖2
n + λ1

p∑
j=1

√
1

n
βT

j BT
j Bjβj + λ2β

T
j �jβj ,(2)
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where the K × K matrix �j contains the inner products of the second derivatives
of the B-spline basis functions, that is,

�j,kl =
∫

b′′
j,k(x)b′′

j,l(x) dx

for k, l ∈ {1, . . . ,K}.
Hence, (2) can be rewritten as a general group lasso problem [32]

β̂ = arg min
β=(β1,...,βp)

‖Y − Bβ‖2
n + λ1

p∑
j=1

√
βT

j Mjβj ,(3)

where Mj = 1
n
BT

j Bj + λ2�j . By decomposing (e.g., using the Cholesky decom-

position) Mj = RT
j Rj for some quadratic K × K matrix Rj and by defining

β̃j = Rjβj , B̃j = BjR
−1
j , (3) reduces to

ˆ̃
β = arg min

β̃=(β̃1,...,β̃p)

‖Y − B̃β̃‖2
n + λ1

p∑
j=1

‖β̃j‖,(4)

where ‖β̃j‖ = √
K‖β̃j‖K is the Euclidean norm in R

K . This is an ordinary group
lasso problem for any fixed λ2, and hence the existence of a solution is guaran-
teed. For λ1 large enough, some of the coefficient groups βj ∈ R

K will be es-
timated to be exactly zero. Hence, the corresponding function estimate will be

zero. Moreover, there exists a value λ1,max < ∞ such that ˆ̃
β1 = · · · = ˆ̃

βp = 0 for
λ1 ≥ λ1,max. This is especially useful to construct a grid of λ1 candidate values for
cross-validation (usually on the log-scale).

Regarding the uniqueness of the identified components, we have equivalent re-
sults as for the lasso. Define S(β̃; B̃) = ‖Y − B̃β̃‖2

n. Similar to [25], we have the
following proposition.

PROPOSITION 2. If pK ≤ n, and if B̃ has full rank, a unique solution of
(4) exists. If pK > n, there exists a convex set of solutions of (4). Moreover, if

‖∇β̃j
S(

ˆ̃
β; B̃)‖ < λ1, then ˆ̃

βj = 0 and all other solutions ˆ̃
βother satisfy ˆ̃

βother,j = 0.

A proof can be found in Appendix A.
By rewriting the original problem (1) in the form of (4), we can make use of

already existing algorithms [16, 21, 32] to compute the estimator. Coordinate-wise
approaches as in [21, 32] are efficient and have rigorous convergence properties.
Thus, we are able to compute the estimator exactly, even if p is very large.

An example of estimated functions, from simulated data according to Example 1
in Section 3, is shown in Figure 1. For illustrational purposes, we have also plotted
the estimator which involves no smoothness penalty (λ2 = 0). The latter clearly
shows that for this example, the function estimates are “too wiggly” compared to
the true functions. As we will also see later, the smoothness penalty plays a key
role for the theory.
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FIG. 1. True functions fj (solid) and estimated functions f̂j (dashed) for the first 6 components
of a simulation run of Example 1 in Section 3. Small vertical bars indicate original data and grey
vertical lines knot positions. The dotted lines are the function estimates when no smoothness penalty
is used, that is, when setting λ2 = 0.

REMARK 1. Alternative possibilities of our penalty would be to use either
(i) J (fj ) = λ1‖fj‖n + λ2I (fj ) or (ii) J (fj ) = λ1‖fj‖n + λ2I

2(fj ). Both ap-
proaches lead to a sparse estimator. While proposal (i) also enjoys nice theoretical
properties (see also Section 5.2), it is computationally more demanding, because
it leads to a second order cone programming problem. Proposal (ii) basically leads
again to a group lasso problem, but appears to have theoretical drawbacks, that is,
the term λ2I

2(fj ) is really needed within the square root.

2.3. Oracle results. We present now an oracle inequality for the penalized
estimator. The proofs can be found in Appendix A.

For the theoretical analysis, we introduce an additional penalty parameter λ3 ≥
0 for technical reasons. We consider, here, a penalty of the form

J (fj ) = λ1

√
‖fj‖2

n + λ2I 2(fj ) + λ3I
2(fj ).

This penalty involves three smoothing parameters λ1, λ2 and λ3. One may reduce
this to a single smoothing parameter by choosing

λ2 = λ3 = λ2
1,

(see Theorem 1 below). In the simulations however, the choice λ3 = 0 turned out
to provide slightly better results than the choice λ2 = λ3. With λ3 = 0, the theory
goes through provided the smoothness I (f̂j ) remains bounded in an appropriate
sense.
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We let f 0 denote the “true” regression function (which is not necessarily addi-
tive), that is, we suppose the regression model

Yi = f 0(xi) + εi,

where xi = (x
(1)
i , . . . , x

(p)
i )T for i = 1, . . . , n, and where ε1, . . . , εn are indepen-

dent random errors with E[εi] = 0. Let f ∗ be a (sparse) additive approximation of
f 0 of the form

f ∗(xi) = c∗ +
p∑

j=1

f ∗
j

(
x

(j)
i

)
,

where we take c∗ = E[Ȳ ], Ȳ = ∑n
i=1 Yi/n. The result of this subsection (Theo-

rem 1) holds for any such f ∗ satisfying the compatibility condition below. Thus,
one may invoke the optimal additive predictor among such f ∗, which we will call
the “oracle.” For an additive function f , the squared distance ‖f − f 0‖2

n can be
decomposed into

‖f − f 0‖2
n = ‖f − f 0

add‖2
n + ‖f 0

add − f 0‖2
n,

where f 0
add is the projection of f 0 on the space of additive functions. Thus, when

f 0 is itself not additive, the oracle can be seen as the best sparse approximation of
the projection f 0

add of f 0.
The active set is defined as

A∗ = {j :‖f ∗
j ‖n �= 0}.(5)

We define, for j = 1, . . . , p,

τ 2
n (fj ) = ‖fj‖2

n + λ2−γ I 2(fj ).

Moreover, we let 0 < η < 1 be some fixed value. The constant 4/(1−η) appearing
below in the compatibility condition is stated in this form to facilitate reference,
later in the proof of Theorem 1.

We will use a compatibility condition, in the spirit of the incoherence conditions
used for proving oracle inequalities for the standard lasso (see, e.g., [3, 8–10, 30]).
To avoid digressions, we will not attempt to formulate the most general condition.
A discussion can be found in Section 5.1.

COMPATIBILITY CONDITION. For some constants 0 < η < 1 and 0 < φn,∗ ≤
1, and for all {fj }pj=1 satisfying

p∑
j=1

τn(fj ) ≤ 4

1 − η

∑
j∈A∗

τn(fj ),

the following inequality is met:

∑
j∈A∗

‖fj‖2
n ≤

(∥∥∥∥∥
p∑

j=1

fj

∥∥∥∥∥
2

n

+ λ2−γ
∑

j∈A∗
I 2(fj )

)/
φ2

n,∗.



HIGH-DIMENSIONAL ADDITIVE MODELING 3785

For practical applications, the compatibility condition cannot be checked be-
cause the set A∗ is unknown.

Consider the general case where I is some semi-norm, for example, as in Sec-
tion 2.1. For mathematical convenience, we write

fj = gj + hj(6)

with gj and hj centered and orthogonal functions, that is,

n∑
i=1

gj,i =
n∑

i=1

hj,i = 0

and
n∑

i=1

gj,ihj,i = 0,

such that I (hj ) = 0 and I (gj ) = I (fj ). The functions hj are assumed to lie in a
d-dimensional space. The entropy of ({gj : I (gj ) = 1},‖ · ‖n) is denoted by Hj(·);
see, for example, [29]. We assume that for all j ,

Hj(δ) ≤ Aδ−2(1−α), δ > 0,(7)

where 0 < α < 1 and A > 0 are constants. When I 2(fj ) = ∫
(f ′′

j (x))2 dx, the func-
tions hj are the linear part of fj , that is, d = 1. Moreover, one then has α = 3/4
(see, e.g., [29], Lemma 3.9).

Finally, we assume sub-Gaussian tails for the errors: for some constants L

and M ,

max
i

E[exp(ε2
i /L)] ≤ M.(8)

The next lemma presents the behavior of the empirical process. We use the
notation (ε, f )n = 1

n

∑n
i=1 εif (xi) for the inner product. Define

S = S1 ∩ S2 ∩ S3,(9)

where

S1 =
{

max
j

sup
gj

(
2|(ε, gj )n|

‖gj‖α
nI 1−α(gj )

)
≤ ξn

}
,

S2 =
{

max
j

sup
hj

(
2|(ε, hj )n|

‖hj‖n

)
≤ ξn

}

and

S3 = {ε̄ ≤ ξn}, ε̄ = 1

n

n∑
i=1

εi.

For an appropriate choice of ξn, the set S has large probability.
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LEMMA 1. Assume (7) and (8). There exist constants c and C depending only
on d , α, A, L and M , such that for

ξn ≥ C

√
logp

n
,

one has

P(S) ≥ 1 − c exp[−nξ2
n/c2].

For α ∈ (0,1), we define its “conjugate” γ = 2(1 − α)/(2 − α). Recall that
when I 2(fj ) = ∫

(f ′′
j (x))2 dx, one has α = 3/4, and hence γ = 2/5.

We are now ready to state the oracle result for f̂ = ĉ + ∑p
j=1 f̂j as defined

in (1), with ĉ = Ȳ .

THEOREM 1. Suppose the compatibility condition is met. Take for j = 1,

. . . , p,

J (fj ) = λ1

√
‖fj‖2

n + λ2I 2(fj ) + λ3I
2(fj )

with λ1 = λ(2−γ )/2 and λ2 = λ3 = λ2
1, and with ξn

√
2/η ≤ λ ≤ 1. Then on the set

S given in (9), it holds that

‖f̂ − f 0
add‖2

n + 2(1 − η)λ(2−γ )/2
p∑

j=1

τn(f̂j − f ∗
j ) + λ2−γ

p∑
j=1

I 2(f̂j )

≤ 3‖f ∗ − f 0
add‖2

n + 3λ2−γ
∑

j∈A∗

[
I 2(f ∗

j ) + 8

φ2
n,∗

]
+ 2ξ2

n .

The result of Theorem 1 does not depend on the number of knots (basis func-
tions) which are used to build the functions f̂j , as long as f̂j and f̂ ∗

j use the same
basis functions.

We would like to point out that the theory of Theorem 1 goes through with only
two tuning parameters λ1 and λ2, but with the additional restriction that I (f̂j ) is
appropriately bounded.

We also remark that we did not attempt to optimize the constants given in The-
orem 1, but rather looked for a simple explicit bound.

REMARK 2. Assume that φn,∗ is bounded away from zero. For example,
this holds with large probability for a realization of a design with independent
components (see Section 5.1). In view of Lemma 1, one may take (under the
conditions of this lemma) the smoothing parameter λ of order

√
logp/n. For

I 2(fj ) = ∫
(f ′′

j (x))2 dx, γ = 2/5 and this gives λ2−γ of order (logp/n)4/5, which
is up to the log-term the usual rate for estimating a twice differentiable function.
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If the oracle f ∗ has bounded smoothness I (f ∗
j ) for all j , Theorem 1 yields the

convergence rate pact(logp/n)4/5, with pact = |A∗| being the number of active
variables the oracle needs. This is again up to the log-term, the same rate one
would obtain if it was known beforehand which of the p functions are relevant.
For general φn,∗, we have the convergence rate pactφ

−2
n,∗(logp/n)4/5.

Furthermore, the result implies that with large probability, the estimator selects
a sup-set of the active functions, provided that the latter have enough signal (such
kind of variable screening results have been established for the lasso in linear and
generalized linear models [24, 30]). More precisely, we have the following corol-
lary.

COROLLARY 1. Let A0 = {j :‖f 0
add,j‖n �= 0} be the active set of f 0

add. Assume
the compatibility condition holds for A0, with constant φn,0. Suppose also that for
j ∈ A0, the smoothness is bounded, say I (f 0

add,j ) ≤ 1. Choosing f ∗ = f 0
add in

Theorem 1, tells us that on S,

p∑
j=1

‖f̂j − f 0
add,j‖n ≤ Cλ(2−γ )/2|A0|/φ2

n,0 + 2ξ2
n

for some constant C. Hence, if

‖f 0
add,j‖n > Cλ(2−γ )/2|A0|/φ2

n,0 + 2ξ2
n , j ∈ A0,

we have (on S), that the estimated active set {j :‖f̂j‖n �= 0} contains A0.

2.4. Comparison with related results. After an earlier version of this paper,
similar results have been published in [17]. Here, we point out some differences
and similarities between our work and [17].

In [17], the framework of reproducing kernel hilbert spaces (RKHS) is con-
sidered, as for example, used in COSSO [19], while we use penalties based on
smoothness seminorms. Hence, the two frameworks are rather different, at least
from a mathematical point of view. The results in [17] are valid for a large class of
loss functions, although we would like to point out that the quadratic loss as studied
here is not covered in [17] since they assume that the loss function is appropriately
bounded.

The oracle result and the conditions in [17] are similar to our Theorem 1. Re-
garding the convergence rate (see Remark 2), the rates obtained in [17] are similar
in spirit to ours. In [17], the rate is slower than ours if the “smoothness” β is equal
to 2. Moreover, “smoothness” in [17] is very much intertwined with the unknown
distribution of the covariables, whereas in our work “smoothness” is defined, for
example, in terms of Sobolev-norms.
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Compared to the work in [17], and, for example, COSSO [19], we gain flexibil-
ity through the introduction of the additional penalty parameter λ2 for (separately)
controlling the smoothness. In addition, we present an algorithm in Section 2.2
which is efficient with mathematically established convergence results.

3. Numerical examples.

3.1. Simulations. In this section, we investigate the empirical properties of the
proposed estimator. We compare our approach with the boosting approach of [7],
where smoothing splines with low degrees of freedom are used as base learners;
see also [5]. For p = 1, boosting with splines is known to be able to adapt to
the smoothness of the underlying true function [7]. Generally, boosting is a very
powerful machine learning method and a wide variety of software implementations
are available, for example, the R add-on package mboost.

We use a training set of n samples to train the different methods. An indepen-
dent validation set of size �n/2� is used to select the prediction optimal tuning
parameters λ1 and λ2. We use grids (on the log-scale) for both λ1 and λ2, where
the grid for λ1 is of size 100 and the grid for λ2 is typically of about size 15.
For boosting, the number of boosting iterations is used as tuning parameter. The
shrinkage factor ν and the degrees of freedom df of the boosting procedure are
set to their default values ν = 0.1 and df = 4; see also [5].

By SNR, we denote the signal-to-noise ratio, which is defined as

SNR = Var(f (X))

Var(ε)
,

where f = f 0 : Rp → R is the true underlying function.
A total of 100 simulation runs are used for each of the following settings.

3.1.1. Models. We use the following simulation models.

EXAMPLE 1 (n = 150, p = 200, pact = 4, SNR ≈ 15). This example is similar
to Example 1 in [26] and [15]. The model is

Yi = f1
(
x

(1)
i

) + f2
(
x

(2)
i

) + f3
(
x

(3)
i

) + f4
(
x

(4)
i

) + εi, εi i.i.d. N(0,1),

with

f1(x) = − sin(2x), f2(x) = x2
2 − 25/12, f3(x) = x,

f4(x) = e−x − 2/5 · sinh(5/2).

The covariates are simulated from independent Uniform(−2.5,2.5) distributions.
The true and the estimated functions of a simulation run are illustrated in Figure 1.
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EXAMPLE 2 (n = 100, p = 1000, pact = 4, SNR ≈ 6.7). As above but high
dimensional and correlated. The covariates are simulated according to a multivari-
ate normal distribution with covariance matrix �ij = 0.5|i−j |; i, j = 1, . . . , p.

EXAMPLE 3 [n = 100, p = 80, pact = 4, SNR ≈ 9 (t = 0), ≈ 7.9 (t = 1)].
This is similar to Example 1 in [19] but with more predictors. The model is

Yi = 5f1
(
x

(1)
i

) + 3f2
(
x

(2)
i

) + 4f3
(
x

(3)
i

) + 6f4
(
x

(4)
i

) + εi, εi i.i.d. N(0,1.74),

with

f1(x) = x, f2(x) = (2x − 1)2, f3(x) = sin(2πx)

2 − sin(2πx)

and

f4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx)

+ 0.4 cos3(2πx) + 0.5 sin3(2πx).

The covariates x = (x(1), . . . , x(p))T are simulated according to

x(j) = W(j) + tU

1 + t
, j = 1, . . . , p,

where W(1), . . . ,W(p) and U are i.i.d. Uniform(0,1). For t = 0 this is the indepen-
dent uniform case. The case t = 1 results in a design with correlation 0.5 between
all covariates.

The true functions and the first 6 estimated functions of a simulation run with
t = 0 are illustrated in Figure 2.

Moreover, we also consider a “high-frequency” situation where we use f3(8x)

and f4(4x) instead of f3(x) and f4(x). The corresponding signal-to-noise ratios
for these models are SNR ≈ 9 for t = 0 and SNR ≈ 8.1 for t = 1.

EXAMPLE 4 [n = 100, p = 60, pact = 12, SNR ≈ 9 (t = 0), ≈ 11.25 (t = 1)].
This is similar to Example 2 in [19] but with fewer observations. We use the same
functions as in Example 3. The model is

Yi = f1
(
x

(1)
i

) + f2
(
x

(2)
i

) + f3
(
x

(3)
i

) + f4
(
x

(4)
i

)
+ 1.5f1

(
x

(5)
i

) + 1.5f2
(
x

(6)
i

) + 1.5f3
(
x

(7)
i

) + 1.5f4
(
x

(8)
i

)
+ 2f1

(
x

(9)
i

) + 2f2
(
x

(10)
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with εi i.i.d. N(0,0.5184). The covariates are simulated as in Example 3.
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FIG. 2. True functions fj (solid) and estimated functions f̂j (dashed) for the first 6 components of
a simulation run of Example 3 (t = 0). Small vertical bars indicate original data and grey vertical
lines knot positions. The dotted lines are the function estimates when no smoothness penalty is used,
that is, when setting λ2 = 0.

3.1.2. Performance measures. In order to compare the prediction perfor-
mances, we use the mean squared prediction error

PE = EX

[(
f̂ (X) − f (X)

)2]
as performance measure. The above expectation is approximated by a sample of
10,000 points from the distribution of X. In each simulation run, we compute the
ratio of the prediction performance of the two methods. Finally, we take the mean
of the ratios over all simulation runs.

For variable selection properties, we use the number of true positives (TP) and
false positives (FP) at each simulation run. We report the average number over all
runs to compare the different methods.

3.1.3. Results. The results are summarized in Tables 1 and 2. The sparsity-
smoothness penalty approach (SSP) has smaller prediction error than boosting,
especially for the “high-frequency” situations. Because the weak learners of the
boosting method only use 4 degrees of freedom, boosting tends to neglect or un-
derestimate those components with higher oscillation. This can also be observed
with respect to the number of true positives. By relaxing the smoothness penalty
(i.e., choosing λ2 small or setting λ2 = 0), SSP is able to handle the high-frequency
situations, at the cost of too wiggly function estimates for the remaining compo-
nents. Using a different amount of regularization for sparsity and smoothness, SSP
can work with a large amount of basis functions in order to be flexible enough to
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TABLE 1
Results of the different simulation models. Reported is
the mean of the ratio of the prediction error of the two
methods. SSP: sparsity-smoothness penalty approach,

boost: boosting with smoothing splines. Standard
deviations are given in parentheses

Model PESSP/PEboost

Example 1 0.93 (0.13)
Example 2 0.96 (0.10)
Example 3 (t = 0) 0.81 (0.13)
Example 3 (t = 1) 0.90 (0.19)
Example 3 “high-freq” (t = 0) 0.65 (0.11)
Example 3 “high-freq” (t = 1) 0.57 (0.10)
Example 4 (t = 0) 0.89 (0.10)
Example 4 (t = 1) 0.88 (0.13)

capture sophisticated functional relationships and, on the other side, to produce
smooth estimates if the underlying functions are smooth.

With the exception of the high-frequency examples, the number of true positives
(TP) is very similar for both methods. There is no clear trend with respect to the
number of false positives (FP).

3.2. Real data. In this section, we would like to compare the different estima-
tors on real data sets.

3.2.1. Tecator. The meatspec data set contains data from the Tecator In-
fratec Food and Feed Analyzer. It is, for example, available in the R add-on pack-
age faraway and on StatLib. The p = 100 predictors are channel spectrum mea-

TABLE 2
Average values of the number of true (TP) and false (FP) positives. Standard deviations

are given in parentheses

Model TPSSP FPSSP TPboost FPboost

Example 1 4.00 (0.00) 24.30 (14.11) 4.00 (0.00) 22.18 (12.75)
Example 2 3.47 (0.61) 34.37 (17.38) 3.60 (0.64) 28.76 (20.15)
Example 3 (t = 0) 4.00 (0.00) 20.20 (9.30) 4.00 (0.00) 21.61 (10.90)
Example 3 (t = 1) 3.93 (0.29) 19.28 (9.61) 3.92 (0.27) 18.65 (8.35)
Example 3 “high-freq” (t = 0) 2.80 (0.78) 12.26 (7.61) 2.16 (0.94) 9.23 (9.74)
Example 3 “high-freq” (t = 1) 2.46 (0.85) 11.17 (8.50) 1.59 (1.27) 13.24 (13.89)
Example 4 (t = 0) 11.69 (0.56) 21.23 (6.85) 11.68 (0.57) 25.91 (9.43)
Example 4 (t = 1) 10.64 (1.15) 19.78 (7.51) 10.67 (1.25) 23.76 (9.89)
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surements, and are therefore highly correlated. A total of n = 215 observations are
available.

The data is split into a training set of size 100 and a validation set of size 50.
The remaining data are used as test set. On the training dataset, the first 30 prin-
cipal components are calculated, scaled to unit variance and used as covariates in
additive modeling. Moreover, the validation and test data sets are transformed to
correspond to the principal components of the training data set. We fit an additive
model to predict the logarithm of the fat content. This is repeated 50 times. For
each split into training and test data, we compute the ratio of the prediction errors
from the SSP and boosting method on the test data, as in Section 3.1.2. The mean
of the ratio over the 50 splits is 0.86, the corresponding standard deviation is 0.46.
This indicates superiority of our sparsity-smoothness penalty approach.

3.2.2. Motif regression. In motif regression problems [11], the aim is to pre-
dict gene expression levels or binding intensities based on information on the DNA
sequence. For our specific dataset, from the Ricci lab at ETH Zurich, we have
binding intensities Yi of a certain transcription factor (TF) at 287 regions on the
DNA. Moreover, for each region i, motif scores x

(1)
i , . . . , x

(p)
i , p = 196 are avail-

able. A motif is a candidate for the binding site of the TF on the DNA, typically
a 5–15bp long DNA sequence. The score x

(j)
i measures how well the j th motif is

represented in the ith region. The candidate list of motifs and their corresponding
scores were created with a variant of the MDScan algorithm [20]. The main goal
here is to find the relevant covariates.

We used 5 fold cross-validation to determine the prediction optimal tuning para-
meters, yielding 28 active functions. To assess the stability of the estimated model,
we performed a nonparametric bootstrap analysis. At each of the 100 bootstrap
samples, we fit the model with the fixed optimal tuning parameters from above.
The two functions which appear most often in the bootstrapped model estimates
are depicted in Figure 3. While the left-hand side plot shows an approximate lin-
ear relationship, the effect of the other motif seems to diminish for larger values.
Indeed, Motif.P1.6.26 is the true (known) binding site. A follow-up experi-
ment showed that the TF does not directly bind to Motif.P1.6.23. Hence, this
motif is a candidate for a binding site of a co-factor (another TF) and needs further
experimental validation.

4. Extensions.

4.1. Generalized additive models. Conceptually, we can also apply the spar-
sity-smoothness penalty from Section 2 to generalized linear models (GLM) by
replacing the residual sum of squares ‖Y −∑p

j=1 fj‖2
n by the corresponding nega-

tive log-likelihood function. We illustrate the method for logistic regression where
Y ∈ {0,1}. The negative log-likelihood as a function of the linear predictor η and
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FIG. 3. Estimated functions f̂j of the two most stable motifs. Small vertical bar indicate original
data.

the response vector Y is

�(η,Y ) = −1

n

n∑
i=1

[Yiηi − log{1 + exp(ηi)}],

where ηi = c + ∑p
j=1 fj (x

(j)
i ). The estimator is defined as

ĉ, f̂1, . . . , f̂p = arg min
c∈R,f1,...,fp∈F

�

(
c +

p∑
j=1

fj ,Y

)
+

p∑
j=1

J (fj ).(10)

This has a similar form as (1) with the exception that we have to explicitly include
a (nonpenalized) intercept term c. Using the same arguments as in Section 2, leads
to the fact that for twice continuously differentiable functions, the solution can be
represented as a natural cubic spline and that (10) leads again to a group lasso
problem. This can, for example, be minimized with the algorithm of [21]. We
illustrate the performance of the estimator in a small simulation study.

4.1.1. Small simulation study. Denote by f : R
p → R the true function of

Example 2 in Section 3. We simulate the the linear predictor η as

η(X) = 1.5 · (
2 + f (X)

)
,

where X ∈ R
p has the same distribution as in Example 2. The binary response

Y is then generated according to a Bernoulli distribution with probability 1/(1 +
exp(−η(X)), which results in a Bayes risk of approximately 0.17. The sample
size n is set to 100. The results for various model sizes p are reported in Tables 3
and 4. The performance of the two methods is quite similar. SSP has a slightly
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TABLE 3
Results of different model sizes p. Reported is the mean
of the ratio of the prediction error of the two methods.

SSP: sparsity-smoothness penalty approach, boost:
boosting with smoothing splines. Standard deviations

are given in parentheses

p PESSP/PEboost

250 0.93 (0.06)
500 0.96 (0.07)

1000 0.98 (0.05)

lower prediction error. Regarding model selection properties, SSP has fewer false
positives at the cost of slightly fewer true positives.

4.2. Adaptivity. Similar to the adaptive lasso [34], we can also use different
penalties for the different components, that is, use a penalty of the form

J (fj ) = λ1

√
w1,j‖fj‖2

n + λ2w2,j I 2(fj ),

where the weights w1,j and w2,j are ideally chosen in a data-adaptive way. If an
initial estimator f̂j,init is available, a choice would be to use

w1,j = 1

‖f̂j,init‖γ
n

, w2,j = 1

I (f̂j,init)γ

for some γ > 0. The estimator can then be computed similarly as described in Sec-
tion 2.2. This allows for different degrees of smoothness for different components.

We have applied the adaptive estimator to the simulation models of Section 3. In
each simulation run, we use weights (with γ = 1) based on the ordinary sparsity-
smoothness estimator. For comparison, we compute the ratio of the prediction error
of the adaptive and the ordinary sparsity-smoothness estimator at each simulation
run. The results are summarized in Table 5. Both the prediction error and the num-
ber of false positives can be decreased by a good margin in all examples. The
number of true positives gets slightly decreased in some examples.

TABLE 4
Average values of the number of true (TP) and false (FP) positives. Standard deviations

are given in parentheses

p TPSSP FPSSP TPboost FPboost

250 2.94 (0.71) 22.81 (10.56) 3.09 (0.78) 29.67 (14.91)
500 2.56 (0.82) 24.92 (12.47) 2.80 (0.82) 31.41 (17.28)

1000 2.36 (0.84) 26.45 (14.88) 2.61 (0.71) 33.69 (19.54)
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TABLE 5
Results of the different simulation models. Reported is the mean of the ratio of the prediction error
of the two methods and the average values of the number of true (TP) and false (FP) positives. SSP;
adapt: adaptive sparsity-smoothness penalty approach, SSP: ordinary sparsity-smoothness penalty

approach. Standard deviations are given in parentheses

Model PESSP;adapt/PESSP TP FP

Example 1 0.47 (0.13) 4.00 (0.00) 4.09 (4.63)
Example 2 0.63 (0.17) 3.31 (0.71) 6.12 (5.14)
Example 3 (t = 0) 0.53 (0.14) 4.00 (0.00) 4.64 (4.52)
Example 3 (t = 1) 0.63 (0.22) 3.81 (0.46) 5.04 (4.82)
Example 3 “high-freq” (t = 0) 0.87 (0.09) 2.28 (0.78) 2.98 (2.76)
Example 3 “high-freq” (t = 1) 0.91 (0.10) 1.69 (0.73) 2.59 (3.30)
Example 4 (t = 0) 0.77 (0.11) 11.21 (0.84) 8.18 (5.04)
Example 4 (t = 1) 0.88 (0.12) 9.73 (1.29) 7.93 (5.35)

5. Mathematical theory.

5.1. On the compatibility condition. We show in this subsection that the com-
patibility condition holds under reasonable conditions when

I (fj ) =
√∫ 1

0

∣∣f (s)(x)
∣∣2 dx

is the Sobolev norm (f (s)
j being the sth derivative of fj ), and when in addition,

the Xi = (X
(1)
i , . . . ,X

(p)
i ) are i.i.d. copies of a p-dimensional random variable

X ∈ [0,1]p with distribution Q. Then, the compatibility condition may be re-
placed by a theoretical variant, where the norm ‖ · ‖n is replaced by the theoretical
L2(Q)-norm ‖ · ‖. The theoretical compatibility condition (given below) is not
about n-dimensional vectors, but about functions. In that sense, the sample size n

plays a less prominent role. For example, the theoretical compatibility condition is
satisfied when the components X(1), . . . ,X(p) are independent.

The main assumption to make the replacement by a theoretical version possible,
is the requirement that

λ1−γ |A∗|
[with γ = 2/(2s + 1)] is small in an appropriate sense [see (11)]. This is compa-
rable to the condition λ|A∗| being small, for the ordinary lasso (see, e.g., [9]). In
fact, our approach for the transition from fixed to random design may also shed
new light on the same transition for the lasso.

Let X = (X(1), . . . ,X(p) ∈ [0,1]p have distribution Q, and let X1, . . . ,Xn be
i.i.d. copies of X. The marginal distribution of X(j) is denoted by Qj . We write

‖f ‖2 =
∫

f 2 dQ
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and for a function fj depending only on the j th variable X(j),

‖fj‖2 =
∫

f 2
j dQj .

In this subsection, we assume all fj ’s are centered:∫
fj dQj = 0, j = 1, . . . , p.

Recall the notation

τ 2
n (fj ) = ‖fj‖2

n + λ2−γ I 2(fj ).

We now also define the theoretical counterparts

τ 2(fj ) = ‖fj‖2 + λ2−γ I 2(fj )

and write

τtot(f ) = τin(f ) + τout(f ),

τin(f ) = ∑
j∈A∗

τ(fj ), τout(f ) = ∑
j /∈A∗

τ(fj ).

One now may actually redress the proofs for the oracle inequality directly, in
order to handle random design. This will generally lead to better constants as the
approach that we now take, which is showing that the conditions for fixed design
hold with large probability. The advantage of this detour is however that we do not
have to repeat the main body of the proof.

The theoretical compatibility condition is of the same form as the empirical one,
but with different constants.

THEORETICAL COMPATIBILITY CONDITION. For a constant 0 < η < 1 and
0 < φ∗ ≤ 1, and for all f satisfying

τtot(f ) ≤ cητin(f ),

where

cη = 4(1 + η)

(1 − η)2 ,

we have ∑
j∈A∗

‖fj‖2 ≤
(
‖f ‖2 + λ2−γ

∑
j∈A∗

I 2(fj )

)/
φ2∗.

Note that the theoretical compatibility condition trivially holds when the com-
ponents of X are independent. However, independence is not a necessary condi-
tion: much broader schemes are allowed.
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Let C0 be a constant and

S4 =
{

sup
f

|‖f ‖2
n − ‖f ‖2|

τ 2
tot(f )

≤ C0λ
1−γ

}
.

In Appendix B, we show that for an appropriate value of λ, S4 has large proba-
bility, for a constant C0 depending only on s, and on an assumed lower bound for
the marginal densities of the X(j). In fact, it turns out that one can take λ of order√

logp/n under weak conditions, assuming I (·) is the Sobolev norm.

THEOREM 2. Assume

2C0c
2
η|A∗|λ1−γ

φ2∗
≤ 1.(11)

Then on S4, the theoretical compatibility condition implies the empirical one as
given in Section 2.3, with constant

1

φ2
n,∗

=
(
(1 + η)(1 + φ2∗) + 2(1 + η)

φ2∗
+ η

)
.

As previously mentioned, condition (11) implies that the number of active com-
ponents cannot grow too fast in order for |A∗|λ1−γ being small.

We now have a quick closer look at the theoretical compatibility condition. The
following two conditions are sufficient and might yield some more insight.

WELL-CONDITIONED ACTIVE SET CONDITION. We say that the active set
A∗ is well conditioned if for some constant 0 < ψ∗ ≤ 1, and for all {fj }j∈A∗ ,

∑
j∈A∗

‖fj‖2 ≤
∥∥∥∥ ∑
j∈A∗

fj

∥∥∥∥
2/

ψ2∗ .

The inner product in L2(Q) between functions f and f̃ is denoted by (f, f̃ ).
No perfect canonical dependence in our setup amounts to the following condition.

NO PERFECT CANONICAL DEPENDENCE CONDITION. We say that the active
and nonactive variables have no perfect canonical dependence, if for a constant
0 ≤ ρ∗ < 1, and all {fj }pj=1, we have for fin = ∑

j∈A∗ fj and fout = ∑
j /∈A∗ fj ,

that

|(fin, fout)|
‖fin‖‖fout‖ ≤ ρ∗.

The next lemma makes the link between the theoretical compatibility condition
and the above two conditions.
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LEMMA 2. Let f = fin + fout satisfy

|(fin, fout)|
‖fin‖‖fout‖ ≤ ρ∗ < 1.

Then

‖fin‖2 ≤ ‖f ‖2/(1 − ρ2∗).

PROOF. Clearly,

‖fin‖2 ≤ ‖f ‖2 + 2|(fin, fout)| − ‖fout‖2.

Hence,

‖fin‖2 ≤ ‖f ‖2 + 2ρ∗‖fin‖‖fout‖ − ‖fout‖2 ≤ ‖f ‖2 + ρ2∗‖fin‖2. �

COROLLARY 2. A well-conditioned active set in combination with no perfect
canonical dependence implies the theoretical compatibility condition with φ2∗ =
ψ2∗ (1 − ρ2∗).

REMARK 3. Canonical dependence is about the dependence structure of vari-
ables. To compare, let Xin and Xout be two random variables, with joint density q ,
and with marginal densities qin and qout. Define for real-valued measurable func-
tions fin and fout, of Xin and Xout, respectively, the squared norms ‖fin‖2 =∫

f 2
inqin, and ‖fout‖2 = ∫

f 2
outqout, and the inner product (fin, fout) = ∫

finfoutq .
Assume the functions are centered:

∫
finqin = ∫

foutqout = 0. Suppose that for
some constant ρ∗, ∫

q2

qinqout
≤ 1 + ρ2∗ .

Then one can easily verify that |(fin, fout)| ≤ ρ∗‖fin‖‖fout‖. In other words, the
no perfect canonical dependence condition is in this context the assumption that
the density and the product density are, in χ2-sense, not too far off.

5.2. On the choice of the penalty. In this paper, we have chosen the penalty in
such a way that it leads to good theoretical behavior (namely the oracle inequality
of Theorem 1), as well as to computationally fast, and in fact already existing,
algorithms. The penalty can be improved theoretically, at the cost of computational
efficiency and simplicity.

Indeed, a main ingredient from the theoretical point of view is that the random-
ness of the problem (the behavior of the empirical process) should be taken care
of. Let us recall Lemma 1 which says that the set S has large probability, and on S
all functions gj satisfy

(ε, gj )n ≤ ξn‖gj‖α
nI 1−α(gj ).
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Our penalty was based on the inequality (which holds for any a and b positive)

aαb1−α ≤
√

a2 + b2.

More generally, it holds for any q ≥ 1 that

aαb1−α ≤ (aq + bq)1/q .

In particular, the choice q = 1 would be a natural one, and would lead to an oracle
inequality involving I (f ∗

j ) instead of the square I 2(f ∗
j ) on the right-hand side in

Theorem 1. The penalty λ(2−γ )/2 ∑p
j=1 ‖fj‖n + λ2−γ ∑p

j=1 I (fj ), corresponding
to q = 1, still involves convex optimization but which is much more involved and
hence less efficient to be solved; see also Remark 1 in Section 2.2.

One may also use the inequality

aαb1−α ≤ a2 + bγ .

This leads to a “theoretically ideal” penalty of the from λ2−γ ∑p
j=1 I γ (fj ) +

λ
∑p

j=1 ‖hj‖n, where hj is from (6). It allows to adapt to small values of I (f ∗
j ).

But clearly, as this penalty is nonconvex, it may be computationally cumbersome.
On the other hand, iterative approximations might prove to work well.

6. Conclusions. We present an estimator and algorithm for fitting sparse,
high-dimensional generalized additive models. The estimator is based on a pe-
nalized likelihood. The penalty is new, as it allows for different regularization of
the sparsity and the smoothness of the additive functions. It is exactly this combi-
nation which allows to derive oracle results for high-dimensional additive models.
We also argue empirically that the inclusion of a smoothness-part into the penalty
function yields much better results than having the sparsity-term only. Further-
more, we show that the optimization of the penalized likelihood can be written as
a group lasso problem and hence, efficient coordinate-wise algorithms can be used
which have provable numerical convergence properties.

We illustrate some empirical results for simulated and real data. Our new ap-
proach with the sparsity and smoothness penalty is never worse and sometimes
substantially better than L2-boosting for generalized additive model fitting [5, 7].
Furthermore, with an adaptive sparsity-smoothness penalty method, large addi-
tional performance gains are achieved. With the real data about motif regression
for finding DNA-sequence motifs, one among two selected “stable” variables is
known to be true, that is, it corresponds to a known binding site of a transcription
factor.

APPENDIX A: PROOFS

PROOF OF PROPOSITION 1. Because of the additive structure of f and the
penalty, it suffices to analyze each component fj , j = 1, . . . , p independently. Let
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f̂1, . . . , f̂p be a solution of (1) and assume that some or all f̂j are not natural cubic

splines with knots at x
(j)
i , i = 1, . . . , n. By Theorem 2.2 in [13], we can construct

natural cubic splines ĝj with knots at x
(j)
i , i = 1, . . . , n such that

ĝj

(
x

(j)
i

) = f̂j

(
x

(j)
i

)
for i = 1, . . . , n and j = 1, . . . , p. Hence,

∥∥∥∥∥Y −
p∑

j=1

ĝj

∥∥∥∥∥
2

n

=
∥∥∥∥∥Y −

p∑
j=1

f̂j

∥∥∥∥∥
2

n

and

‖ĝj‖2
n = ‖f̂j‖2

n.

But by Theorem 2.3, in [13], I 2(ĝj ) ≤ I 2(f̂j ). Therefore, the value in the objective
function (1) can be decreased. Hence, the minimizer of (1) must lie in the space of
natural cubic splines. �

PROOF OF PROPOSITION 2. The first part follows because of the strict con-
vexity of the objective function. Consider now the case pK > n. The (necessary

and sufficient) conditions for ˆ̃
β to be a solution of the group lasso problem (4)

are [32]

‖∇β̃j
S(

ˆ̃
β; B̃)‖ = λ1 for ˆ̃

βj �= 0,

‖∇β̃j
S(

ˆ̃
β; B̃)‖ ≤ λ1 for ˆ̃

βj = 0.

Assume that there exist two solutions ˆ̃
β(1) and ˆ̃

β(2) such that, for a component j ,

we have ˆ̃
β

(1)
j = 0 with ‖∇β̃j

S(
ˆ̃
β(1); B̃)‖ < λ1, but ˆ̃

β
(2)
j �= 0. Because the set of all

solutions is convex,

ˆ̃
βρ = (1 − ρ)

ˆ̃
β(1) + ρ

ˆ̃
β(2)

is also a minimizer for all ρ ∈ [0,1]. By assumption ˆ̃
βρ,j �= 0, and hence

‖∇β̃j
S(

ˆ̃
βρ; B̃)‖ = λ1 for all ρ ∈ (0,1). Hence, it holds for g(ρ) = ‖∇β̃j

S(
ˆ̃
βρ; B̃)‖

that g(0) < λ1 and g(ρ) = λ1 for all ρ ∈ (0,1). But this is a contradiction to
the fact that g(·) is continuous. Hence, a nonactive (i.e., zero) component j with

‖∇β̃j
S(

ˆ̃
β; B̃)‖ < λ1 cannot be active (i.e., nonzero) in any other solution. �
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Proof of Lemma 1. The result easily follows from Lemma 8.4 in [29], which
we cite here for completeness.

LEMMA 3. Let G be a collection of functions g : {x1, . . . , xn} → R, endowed
with a metric induced by the norm ‖g‖n = ( 1

n

∑n
i=1 g2(xi))

1/2. Let H(·) be the
entropy of G. Suppose that

H(δ) ≤ Aδ−2(1−α) ∀δ > 0.

Furthermore, let ε1, . . . , εn be independent centered random variables, satisfying

max
i

E[exp(ε2
i /L)] ≤ M.

Then for a constant c0 depending on α, A, L and M , we have for all T ≥ c0,

P

(
sup
g∈G

|2(ε, g)n|
‖g‖α

n

>
T√
n

)
≤ c0 exp

(
−T 2

c2
0

)
.

PROOF OF LEMMA 1. It is clear that {gj/I (gj )} = {gj : I (gj ) = 1}. Hence,
by rewriting and then using Lemma 3,

sup
gj

|2(ε, gj )n|
‖gj‖α

nI 1−α(gj )
= sup

gj

|2(ε, gj/I (gj ))n|
‖gj/I (gj )‖α

n

≤ T√
n

with probability at least 1 − c0 exp(−T 2/c2
0). Thus, for C2

0 ≥ 2c2
0 sufficiently large

P

(
max

j
sup
gj

|2(ε, gj )n|
‖gj‖α

nI 1−α(gj )
> C0

√
logp

n

)

≤ pc0 exp
(
−C2

0 logp

c2
0

)
≤ c0 exp

(
−C2

0 logp

2c2
0

)
.

In the same spirit, for some constant c1 depending on L and M , it holds for all
T ≥ c1, with probability at least 1 − c1 exp(−T 2d/c2

1),

sup
hj

|2(ε, hj )n|
‖hj‖n

≤ T

√
d

n
,

where d is the dimension occurring in (6). This result is rather standard but also
follows from the more general Corollary 8.3 in [29]. It yields that for C2

1 ≥ 2c2
1,

depending on d , L and M ,

max
j

sup
hj

|2(ε, hj )n|
‖hj‖n

≤ C1

√
logp

n

with probability at least 1 − c1 exp(−C2
1 logp/(2c2

1)).
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Finally, it is obvious that for all C2 and a constant c2 depending on L and M ,

P

(
ε̄ > C2

√
logp

n

)
≤ 2 exp(−C2

2 logp/c2
2).

Choosing c2 ≥ 2, the result now follows by taking C = max{C0,C1,C2} and c =
c0 + c1 + c2. �

Proof of Theorem 1. We begin with three technical lemmas.
Recall that (for j = 1, . . . , p)

τ 2
n (fj ) = ‖fj‖2

n + λ2−γ I 2(fj ).

LEMMA 4. For λ ≥ √
2ξn/η, we have on S1 ∩ S2,

max
j

sup
fj

2|(ε, fj )|
λ(2−γ )/2τn(fj )

≤ η.

PROOF. Note first that with λ ≥ √
2ξn/η,

ξn‖gj − g∗
j ‖α

nI 1−α(gj − g∗
j ) + ξn‖hj − h∗

j‖n

≤ ηλ√
2
‖gj − g∗

j ‖α
nI 1−α(gj − g∗

j ) + ηλ√
2
‖hj − h∗

j‖n

≤ η
λ(2−γ )/2

√
2

√
λ2−γ I 2(gj − g∗

j ) + ‖gj − g∗
j ‖2

n + η
λ√
2
‖hj − h∗

j‖n

≤ η
λ(2−γ )/2

√
2

√
λ2−γ I 2(gj − g∗

j ) + ‖gj − g∗
j ‖2

n + η
λ(2−γ )/2

√
2

‖hj − h∗
j‖n,

since λ ≤ 1.
We have √

λ2−γ I 2(gj − g∗
j ) + ‖gj − g∗

j ‖2
n + ‖hj − h∗

j‖n

≤
√

2{λ2−γ I 2(gj − g∗
j ) + ‖gj − g∗

j ‖2
n + ‖hj − h∗

j‖2
n}

= √
2
√

λ2−γ I 2(gj − g∗
j ) + ‖fj − f ∗

j ‖2
n,

where we used the orthogonality of gj − g∗
j and hj − h∗

j . The result now follows
from the equality I (gj − g∗

j ) = I (fj − f ∗
j ). �

It holds that ĉ = Ȳ (= ∑n
i=1 Yi/n) and c∗ = E[Ȳ ]. Thus, on S, |ĉ − c∗| ≤ ξn.

Moreover,

‖f̂ − f 0
add‖2

n = |ĉ − c∗|2 + ‖(f̂ − ĉ) − (f 0
add − c∗)‖2

n.

To simplify the exposition (i.e., avoiding a change of notation), we may therefore
assume ĉ = c∗ and add a ξ2

n to the final result.
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LEMMA 5. We have on S,

‖f̂ − f 0
add‖2

n + (1 − η)λ(2−γ )/2
p∑

j=1

τn(f̂j − f ∗
j ) + λ2−γ

p∑
j=1

I 2(f̂j )

≤ 2λ(2−γ )/2
∑

j∈A∗
τn(f̂j − f ∗

j ) + λ2−γ
∑

j∈A∗
I 2(f ∗

j ) + ‖f ∗ − f 0
add‖2

n + ξ2
n .

PROOF. Because f̂ minimizes the penalized loss, we have

1

n

n∑
i=1

(
Yi − f̂ (xi)

)2 +
p∑

j=1

J (f̂j ) ≤ 1

n

n∑
i=1

(
Yi − f ∗(xi)

)2 +
p∑

j=1

J (f ∗
j ).

This can be rewritten as

‖f̂ − f 0
add‖2

n +
p∑

j=1

J (f̂j ) ≤ 2(ε, f̂ − f ∗)n +
p∑

j=1

J (f ∗) + ‖f ∗ − f 0
add‖2

n.

Thus, on S, by Lemma 4

‖f̂ − f 0
add‖2

n +
p∑

j=1

J (f̂j ) ≤ ηλ(2−γ )/2
p∑

j=1

τn(f̂j − f ∗
j ) +

p∑
j=1

J (f ∗
j )

+ ‖f ∗ − f 0
add‖2

n

or

‖f̂ − f 0
add‖2

n + ∑
j /∈A∗

λ(2−γ )/2τn(f̂j ) + λ2−γ
p∑

j=1

I 2(f̂j )

≤ ηλ(2−γ )/2
p∑

j=1

τn(f̂j − f ∗
j ) + λ(2−γ )/2

∑
j∈A∗

(
τn(f

∗
j ) − τn(f̂j )

)

+ λ2−γ
∑

j∈A∗
I 2(f ∗

j ) + ‖f ∗ − f 0
add‖2

n

≤ (1 + η)λ(2−γ )/2
∑

j∈A∗
τn(f̂j − f ∗

j ) + ηλ(2−γ )/2
∑

j /∈A∗
τn(f̂j − f ∗

j )

+ λ2−γ
∑

j∈A∗
I 2(f ∗

j ) + ‖f ∗ − f 0
add‖2

n.

In other words,

‖f̂ − f 0
add‖2

n + (1 − η)λ(2−γ )/2
∑

j /∈A∗
τn(f̂j ) + λ2−γ

p∑
j=1

I 2(f̂j )

≤ (1 + η)λ(2−γ )/2
∑

j∈A∗
τn(f̂j − f ∗

j ) + λ2−γ
∑

j∈A∗
I 2(f ∗

j ) + ‖f ∗ − f 0
add‖2

n,
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so that

‖f̂ − f 0
add‖2

n + (1 − η)

p∑
j=1

λ(2−γ )/2τn(f̂j − f ∗
j ) + λ2−γ

p∑
j=1

I 2(f̂j )

≤ 2λ(2−γ )/2
∑

j∈A∗
τn(f̂j − f ∗

j ) + λ2−γ
∑

j∈A∗
I 2(f ∗

j ) + ‖f ∗ − f 0
add‖2

n. �

COROLLARY 3. On S, either

‖f̂ − f ∗‖2
n + (1 − η)λ(2−γ )/2

p∑
j=1

τn(f̂j − f ∗
j ) + λ2−γ

p∑
j=1

I 2(f̂j )

(12)
≤ 4λ(2−γ )/2

∑
j∈A∗

τn(f̂j − f ∗
j )

or

‖f̂ − f ∗‖2
n + (1 − η)λ(2−γ )/2

p∑
j=1

τn(f̂j − f ∗
j ) + λ2−γ

p∑
j=1

I 2(f̂j )

(13)
≤ 2λ2−γ

∑
j∈A∗

I 2(f ∗
j ) + 2‖f ∗ − f 0

add‖2
n + 2ξ2

n .

Observe that if (13) holds, we have nothing further to prove, as this is already
an oracle inequality. So we only have to work with (12). It implies that

p∑
j=1

τn(f̂j − f ∗
j ) ≤ 4

1 − η

∑
j∈A∗

τn(f̂j − f ∗
j ),(14)

in other words, we may apply the compatibility condition to f̂ − f ∗.

LEMMA 6. Suppose the compatibility condition holds. Then (14) implies

4λ(2−γ )/2
∑

j∈A∗
τn(f̂j − f ∗

j ) ≤ 24
λ2−γ |A∗|

φ2
n,∗

+ λ2−γ
∑

j∈A∗

(
I 2(f̂j ) + I 2(f ∗

j )
)

+ ‖f̂ − f 0
add‖2

n + ‖f ∗ − f 0
add‖2

n

(under the simplifying assumption ĉ = c∗ = 0).

PROOF. We have

4λ(2−γ )/2
∑

j∈A∗
τn(f̂j − f ∗

j )

≤ 4λ(2−γ )/2√|A∗|
√ ∑

j∈A∗
‖f̂j − f ∗

j ‖2
n + λ2−γ

∑
j∈A∗

I 2(f̂j − f ∗
j ).
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The compatibility condition now gives

4λ(2−γ )/2
∑

j∈A∗
τn(f̂j − f ∗

j )

≤ 4λ(2−γ )/2√|A∗|
φn,∗

√√√√√
∥∥∥∥∥

p∑
j=1

(f̂j − f ∗
j )

∥∥∥∥∥
2

n

+ 2λ2−γ
∑

j∈A∗
I 2(f̂j − f ∗

j ).

With the simplifying assumption ĉ = c∗ = 0, we may use the shorthand notation
f̂ = ∑

j f̂j and f ∗ = ∑
j f ∗

j . Next, we apply the triangle inequality:

√
‖f̂ − f ∗‖2

n + 2λ2−γ
∑

j∈A∗
I 2(f̂j − f ∗

j )

≤ ‖f̂ − f 0
add‖n + ‖f ∗ − f 0

add‖n

+
√

2λ2−γ
∑

j∈A∗
I 2(f̂j ) +

√
2λ2−γ

∑
j∈A∗

I 2(f ∗
j ).

We now use

4λ(2−γ )/2√|A∗|
φn,∗

‖f̂ − f 0
add‖n ≤ 4λ2−γ |A∗|

φ2
n,∗

+ ‖f̂ − f 0
add‖2

n

and similarly with f̂ replaced by f ∗. In the same spirit

4λ(2−γ )/2√|A∗|
φn,∗

√
2λ2−γ

∑
j∈A∗

I 2(f̂j )

≤ 8λ2−γ |A∗|
φ2

n,∗
+ λ2−γ

∑
j∈A∗

I 2(f̂j )

and similarly with f̂ replaced by f ∗. �

PROOF OF THEOREM 1. By Lemma 5, we have on S,

‖f̂ − f 0
add‖2

n + (1 − η)λ(2−γ )/2
p∑

j=1

τn(f̂j − f ∗
j ) + λ2−γ

p∑
j=1

I 2(f̂j )

≤ 2λ(2−γ )/2
∑

j∈A∗
τn(f̂j − f ∗

j ) + λ2−γ
∑

j∈A∗
I 2(f ∗

j )

+ ‖f ∗ − f 0
add‖2

n + ξ2
n .
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In view of Corollary 3, we can assume without loss of generality that (12) holds.
Lemma 6 tells us now that

‖f̂ − f 0
add‖2

n + (1 − η)λ(2−γ )/2
p∑

j=1

τn(f̂j − f ∗
j ) + λ2−γ

p∑
j=1

I 2(f̂j )

≤ 12
λ2−γ |A∗|

φ2
n,∗

+ 1

2
λ2−γ

∑
j∈A∗

I 2(f̂j ) + 1

2
‖f̂ − f 0

add‖2
n + 3

2
‖f ∗ − f 0

add‖2
n

+ 3

2
λ2−γ

∑
j∈A∗

I 2(f ∗
j ) + ξ2

n .

This can be rewritten as

‖f̂ − f 0
add‖2

n + 2(1 − η)λ(2−γ )/2
p∑

j=1

τn(f̂j − f ∗
j ) + λ2−γ

p∑
j=1

I 2(f̂j )

≤ 24
λ2−γ |A∗|

φ2
n,∗

+ 3‖f ∗ − f 0
add‖2

n + 3λ2−γ
∑

j∈A∗
I 2(f ∗

j ) + 2ξ2
n .

�

A.1. Proof of Theorem 2. We first show that the ‖ · ‖-norm and the ‖ · ‖n-
norm are in some sense compatible, and then prove the same for the norms τ

and τn.

LEMMA 7. Suppose the theoretical compatibility condition holds, and that

2C0c
2
η|A∗|λ1−γ

φ2∗
≤ 1.

Then on S4, for all f satisfying

τtot(f ) ≤ cητin(f ),

we have

‖f ‖2 ≤ 2‖f ‖2
n + (1 + φ2∗)

∑
j∈A∗

λ2−γ I 2(fj ).

PROOF.

‖f ‖2 ≤ ‖f ‖2
n + C0λ

1−γ τ 2
tot(f )

≤ ‖f ‖2
n + C0c

2
ηλ

1−γ τ 2
in(f )

≤ ‖f ‖2
n + C0c

2
ηλ

1−γ |A∗|
∑

j∈A∗

(‖fj‖2 + λ2−γ I 2(fj )
)
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≤ ‖f ‖2
n + φ2∗

2

∑
j∈A∗

(‖fj‖2 + λ2−γ I 2(fj )
)

≤ ‖f ‖2
n + 1

2
‖f ‖2 + 1 + φ2∗

2

∑
j∈A∗

λ2−γ I 2(fj ).
�

LEMMA 8. On the set S4, and for λ1−γ C0 < 1, it holds that

(1 − λ1−γ C0)τ (fj ) ≤ τn(fj ) ≤ (1 + λ1−γ C0)τ (fj )

for all j .

PROOF.

|τn(fj ) − τ(fj )| ≤ |‖fj‖2
n − ‖fj‖2|
τ(fj )

≤ λ1−γ C0τ
2(fj )

τ (fj )
. �

We use the short-hand notation

τ̂in(f ) = ∑
j∈A∗

τn(fj ), τ̂out(f ) = ∑
j /∈A∗

τn(fj )

and

τ̂tot(f ) = τ̂in(f ) + τ̂out(f ).

PROOF OF THEOREM 2. If

τ̂tot(f ) ≤ 4

1 − η
τ̂in(f ),

then by Lemma 8, on S4,

τtot(f ) ≤ 4(1 + η)

(1 − η)2 τin(f ).

Moreover, on S4, for all j

‖fj‖2
n ≤ ‖fj‖2 + ητ 2(fj ).

Hence, ∑
j∈A∗

‖fj‖2
n ≤ ∑

j∈A∗
‖fj‖2 + ητ 2

in(f )

= (1 + η)
∑

j∈A∗
‖fj‖2 + ηλ2−γ

∑
j∈A∗

I 2(fj ).
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Applying the theoretical compatibility condition, we arrive at

∑
j∈A∗

‖fj‖2
n ≤ (1 + η)

φ2∗

(
‖f ‖2 + λ2−γ

∑
j∈A∗

I 2(fj )

)
+ ηλ2−γ

∑
j∈A∗

I 2(fj )

= (1 + η)

φ2∗
‖f ‖2 +

(
(1 + η)

φ2∗
+ η

)
λ2−γ

∑
j∈A∗

I 2(fj ).

Next, apply Lemma 7 to obtain

∑
j∈A∗

‖fj‖2
n ≤ 2(1 + η)

φ2∗
‖f ‖2

n

+
(
(1 + η)(1 + φ2∗) + (1 + η)

φ2∗
+ η

)
λ2−γ

∑
j∈A∗

I 2(fj )

≤
(
(1 + η)(1 + φ2∗) + 2(1 + η)

φ2∗
+ η

)

×
(
‖f ‖2

n + λ2−γ
∑

j∈A∗
I 2(fj )

)
.

�

APPENDIX B: THE SET S4

In this subsection, we show that the set S4 has large probability, under reason-
able conditions (mainly Condition D below). We assume again throughout that the
functions fj are centered with respect to the theoretical measure Q. (Our estimator
of course uses the empirical centering. It is not difficult to see that this difference
can be taken care of by adding a term of order 1/

√
n in the oracle result.)

Let μ be Lebesgue measure on [0,1], and let for fj : [0,1] → R,

I 2(fj ) =
∫ ∣∣f (s)

j

∣∣2 dμ = ∥∥f (s)
j

∥∥2
μ,

where ‖ ·‖μ denotes the L2(μ)-norm. Moreover, write Fj = {fj : I (fj ) < ∞}. We
let

α = 1 − 1

2s

and

γ = 2(1 − α)

2 − α

as before.
We will use symmetrization arguments, and therefore introduce a Rademacher

sequence {σi}, independent of {Xi}.
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The argumentation we shall employ can be summarized as follows. By a con-
traction argument, we make the transition from the f 2’s to the f ’s. This step needs
boundedness of weighted f ’s, because the function x �→ x2 is only Lipschitz on a
bounded interval. The fact that we use the Sobolev norm as measure of complexity
makes this work. The contraction inequality is in terms of the expectation of the
weighted empirical process. We use a concentration inequality to get a hold on the
probabilities.

The original f ’s are handled by looking at the maximum over j of the weighted
empirical process indexed by Fj . This is done by first bounding the expectation,
then applying a concentration inequality to get exponentially small probabilities.
This allows us to get similar probability inequalities uniformly in j ∈ {1, . . . , p},
inserting a logp-term. We then rephrase the probabilities back to expectations,
now uniformly in j .

To establish a bound for the expectation of the weighted empirical process in-
dexed by Fj with j fixed, we first prove a conditional bound involving the em-
pirical norm, then a contraction inequality to reduce the problem of this empirical
norm, involving the f 2

j ’s, to the problem involving the original fj ’s. We then un-
ravel the knot.

We now will present this program, but in reverse order.

B.1. Weighted empirical process for fixed j . We fix an arbitrary j ∈
{1, . . . , p}, and consider the weighted empirical process

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2τ(fj )
.

Our aim is to prove Corollary 5.
The following lemma is well known in the approximation literature. We refer to

[29] and the references therein. For a class of functions G, we denote the entropy
of G endowed with the metric induced by the sup-norm, by H∞(·,G).

LEMMA 9. For some constant As , we have

H∞
(
δ, {I (fj ) ≤ 1, |fj |∞ ≤ 1}) ≤ A2

s

α2 δ−2(1−α), δ > 0.

Let for all R > 0,

Fj (R) = {I (fj ) ≤ 1, |fj |∞ ≤ 1,‖fj‖ ≤ R}.
The next theorem is along the lines of, for example, [31], Corollary 2.2.5. It ap-

plies the entropy bound of Lemma 9. We have put in a rough but explicit constant.
We write EX for the conditional expectation given X = (X1, . . . ,Xn).



3810 L. MEIER, S. VAN DE GEER AND P. BÜHLMANN

THEOREM 3. We have

EX

[
sup

fj∈Fj (R)

∣∣∣∣∣1

n

n∑
i=1

σifj

(
X

(j)
i

)∣∣∣∣∣
]

≤ 16As√
n

R̂α
n ,

where

R̂n = sup
fj∈Fj (R)

‖fj‖n.

To turn the bound of Theorem 3 into a bound for the unconditional expectation,
we need to handle the random R̂n. For this purpose, we reuse Theorem 3 itself.

THEOREM 4. We have

E[R̂α
n ] ≤

√√√√(2R2)α +
(

28 As√
n

)2α(2−γ )/2

.

PROOF. By symmetrization and the contraction inequality of [18],

E

[
sup

fj∈Fj (R)

∣∣‖fj‖2
n − ‖fj‖2∣∣] ≤ 8E

[
sup

fj∈Fj (R)

∣∣∣∣∣1

n

n∑
i=1

σifj

(
X

(j)
i

)∣∣∣∣∣
]

≤ 27 As√
n

E[R̂α
n ],

where we used Theorem 3. It also follows that

E[R̂2
n] − R2 ≤ 27 As√

n
E[R̂α

n ].
Since by Jensen’s inequality

E[R̂2
n] = E[(R̂α

n )2/α] ≥ (E[R̂α
n ])2/α,

we may conclude that

(E[R̂α
n ])2/α ≤ R2 + 27 As√

n
E[R̂α

n ].
Now, for any positive a and b,

ab ≤ a2/(2−α) + b2/α,

hence, also

ab ≤ 2α/(2−α)a2/(2−α) + 1
2b2/α.

Apply this with

a = 27 As√
n
, b = E[R̂α

n ],
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to find

(E[R̂α
n ])2/α ≤ R2 + 2α/(2−α)

(
27 As√

n

)2/(2−α)

+ 1

2
(E[R̂α

n ])2/α.

It follows that

(E[R̂α
n ])2/α ≤ 2R2 +

(
28 As√

n

)2/(2−α)

and hence

E[R̂α
n ] ≤

√√√√2αR2α +
(

28 As√
n

)2α/(2−α)

=
√√√√(2R2)α +

(
28 As√

n

)2α(2−γ )/2

.
�

COROLLARY 4. We have

E

[
sup

fj∈Fj (R)

∣∣∣∣∣1

n

n∑
i=1

σifj

(
X

(j)
i

)∣∣∣∣∣
]

≤ 24As√
n

√√√√(2R2)α +
(

28 As√
n

)2α(2−γ )/2

≤ Ãs√
n

√√√√R2α +
(

Ãs√
n

)(2−γ )

for some constant Ãs depending only on α = α(s) and As .

The peeling device is inserted to establish a bound for the weighted empirical
process.

LEMMA 10. Define

δn = (
Ãs/

√
n
)
.

Then for λ ≥ δn,

E

[
sup

I (fj )≤1,|fj |∞≤1

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2
√

‖fj‖2 + λ2−γ

]
≤ Cs

δn

λ
,

where

Cs = 2
(

1 + α−α/(1−α)

1 − α

)
.
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PROOF. Set z = α−1/(1−α). Then

E

[
sup

I (fj )≤1,|fj |∞≤1

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2
√

‖fj‖2 + λ2−γ

]

≤ E

[
sup

fj∈Fj (λ(2−γ )/2)

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ2−γ

]

+
∞∑

j=1

E

[
sup

fj∈Fj (zj λ(2−γ )/2)

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ2−γ zj−1

]

≤ 2δnλ
1−γ

λ2−γ
+

∞∑
j=1

2δnλ
1−γ zjα

λ2−γ zj−1 ≤ 2 +
∞∑

j=1

δ2
nz

jα + δ2
n

δ2
nz

j−1

≤
(

2 + 2z

∞∑
j=1

z−j (1−α)

)
δn

λ
=

(
2 + 2

α−α/(1−α)

1 − α

)
δn

λ
.

�

We now show how to get rid of the restriction |fj |∞ ≤ 1 in Lemma 10.

LEMMA 11. Define

δn = Ãs/
√

n.

Then for δn ≤ λ ≤ 1,

E

[
sup

I (fj )≤1

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2
√

‖fj‖2 + λ2−γ

]
≤ C̃s

δn

λ
,

where

Cs = √
s − 1 + Cs.

PROOF. We can write fj = gj +hj , where hj is a polynomial of degree s − 1
and |gj |∞ ≤ I (gj ) = I (fj ). We take gj and hj are orthogonal:∫

gjhj dQj = 0.

Then

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2
√

‖fj‖2 + λ2−γ
≤ |1/n

∑n
i=1 σigj (X

(j)
i )|

λ(2−γ )/2
√

‖gj‖2 + λ2−γ
+ |1/n

∑n
i=1 σihj (X

(j)
i )|

λ(2−γ )/2‖hj‖ .

We moreover can write

hj =
s−1∑
k=1

θkpk(·),
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where the {pk} are orthogonal polynomials, and have norm ‖pk‖ = 1. Hence, using
that

∑s−1
k=1 θ2

k = ‖hj‖2,

|1/n
∑n

i=1 σihj (X
(j)
i )|

‖hj‖ ≤
√√√√√s−1∑

k=1

(
1

n

∣∣∣∣∣
n∑

i=1

σipk

(
X

(j)
i

)∣∣∣∣∣
)2

.

This gives

E

[
sup
hj

|1/n
∑n

i=1 σihj (X
(j)
i )|

λ(2−γ )/2‖hj‖
]

≤
√

s − 1

λ(2−γ )/2
√

n
≤ √

s − 1
δn

λ
,

since √
nδn = Ãs ≥ 1. �

Using the renormalization

fj �→ fj/I (fj )

we arrive at the required result:

COROLLARY 5. We have

E

[
sup
fj

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2
√

‖fj‖2 + λ2−γ I 2(fj )

]
≤ C̃s

δn

λ
.

B.2. From expectation to probability and back. Let G be some class of
functions on X, ζ1, . . . , ζn be independent random variables with values in X, and

Z = sup
g∈G

∣∣∣∣∣1

n

n∑
i=1

(
g(ζi) − E[g(ζi)])

∣∣∣∣∣.
Concentration inequalities are exponential probability inequalities for the

amount of concentration of Z around its mean. We present here a very tight con-
centration inequality, which was established by [4].

THEOREM 5 (Bousquet’s concentration theorem [4]). Suppose

1

n

n∑
i=1

E
[(

g(ζi) − E[g(ζi)])2] ≤ R2 ∀g ∈ G,

and moreover, for some positive constant K ,

|g(ζi) − E[g(ζi)]| ≤ K ∀g ∈ G.

We have for all t > 0,

P

(
Z ≥ E[Z] + tK

3n
+

√
2t (R2 + 2KE[Z])

n

)
≤ exp(−t).
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COROLLARY 6. Under the conditions of Theorem 5,

P

(
Z ≥ 4E[Z] + 2tK

3n
+ R

√
2t

n

)
≤ exp(−t).(15)

Converse, given an exponential probability inequality, one can of course prove
an inequality for the expectation.

LEMMA 12. Let Z ≥ 0 be a random variable, satisfying for some constants
C1, L and M ,

P

(
Z ≥ C1 + Lt

n
+ M

√
2t

n

)
≤ exp(−t) ∀t > 0.

Then

E[Z] ≤ C1 + L

n
+ M

√
π

2n
.

PROOF.

E[Z] =
∫ ∞

0
P(Z ≥ a)da ≤ C1 +

∫ ∞
0

P(Z > C1 + a)da.

Now, use the change of variables

a = Lt

n
+ M

√
2t

n
.

Then

da =
(

L

n
+ M√

2nt

)
dt.

So

E[Z] ≤ C1 + L

n

∫ ∞
0

e−t dt + M√
2n

∫ ∞
0

e−t /
√

t dt

= C1 + L

n
+ M

√
π

2n
. �

LEMMA 13. Let, for j = 1, . . . , p, Gj be a class of functions and let

Zj = sup
gj∈Gj

∣∣∣∣∣1

n

n∑
i=1

σigj (Xi)

∣∣∣∣∣.
Suppose that for all j and all gj ∈ Gj ,

‖gj‖ ≤ R, |gj |∞ ≤ K.
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Then

E

[
max

1≤j≤p
Zj

]
≤ 4 max

1≤j≤p
E[Zj ] + 2K(1 + logp)

3n
+ R

√
4(1 + logp)

n
.

PROOF. Let

Ej = E[Zj ].
Then by the corollary of Bousquet’s inequality, we have

P

(
Zj ≥ 4Ej + 2Kt

3n
+ R

√
2t

n

)
≤ exp(−t) ∀t > 0.

Replacing t by t + logp, one finds that

P

(
max

j
Zj ≥ 4 max

j
Ej + 2Kt

3n
+ 4K logp

3n
+ R

√
2t

n
+ R

√
2 logp

n

)

≤ p exp[−(t + logp)] = exp(−t).

Apply Lemma 12, with the bound π/4 ≤ 1, and with

C1 = 4 max
j

Ej + 2K logp

3n
+ R

√
2 logp

n
,

L = 2K

3
, M = R. �

B.3. The supremum norm. The following lemma can be found in [29]. It is
a corollary of the interpolation inequality of [1].

LEMMA 14. There exists a constant cs such that for all fj with I (fj ) ≤ 1,
one has

|fj |∞ ≤ cs‖fj‖α
μ.

CONDITION D. For all j , dQj/dμ = qj exists and

qj ≥ η2
0 > 0.

COROLLARY 7. Assume Condition D. Then for all j and all fj with I (fj ) ≤
1, we have

|fj |∞ ≤ cs,q‖fj‖α,

where cs,q = cs/η0. This implies that for all j and fj ,

|fj |∞ ≤ cs,q‖fj‖αI 1−α(fj ).
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B.4. Expectation uniformly over j ∈ {1, . . . ,p}.
LEMMA 15. Assume Condition D and that λ ≥ √

4(1 + logp)/n, and δn ≤
λ ≤ 1. We have

E

[
max

j
sup
fj

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2τ(fj )

]

≤ 4C̃s

δn

λ
+ cs,qλ + λγ/2.

PROOF. By Corollary 5, we have for each j

E

[
sup
fj

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2τ(fj )

]
≤ C̃s

δn

λ
.

Moreover, in view of Corollary 7,

|fj |∞
λ(2−γ )/2τ(fj )

≤ cs,q

λ
.

We also have
‖fj‖

λ(2−γ )/2τ(fj )
≤ 1

λ(2−γ )/2 .

Now, apply Lemma 13 with

K = cs,q

λ
, R = 1

λ(2−γ )/2 ,

to find

E

[
max

j
sup
fj

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2τ(fj )

]

≤ 4C̃s

δn

λ
+ 2cs,q(1 + logp)

3nλ
+ 1

λ(2−γ )/2

√
4(1 + logp)

n
. �

B.5. Expectation of the weighted empirical process, indexed by the additive
f ’s.

LEMMA 16. Assume Condition D and that λ ≥ √
4(1 + logp)/n, and δn ≤

λ ≤ 1. Then

E

[
sup
f

|1/n
∑n

i=1 σif (Xi)|
λ(2−γ )/2τtot(f )

]

≤ 4C̃s

δn

λ
+ cs,qλ + λγ/2.



HIGH-DIMENSIONAL ADDITIVE MODELING 3817

PROOF. It holds that∣∣∣∣∣1

n

n∑
i=1

σif (Xi)

∣∣∣∣∣ ≤
p∑

j=1

∣∣∣∣∣1

n

n∑
i=1

σifj

(
X

(j)
i

)∣∣∣∣∣.
Hence,

E

[
sup
f

|1/n
∑n

i=1 σif (Xi)|
λ(2−γ )/2τtot(f )

]

≤ E

[
sup

f =∑
fj

p∑
j=1

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2τtot(f )

]

= E

[
sup

f =∑
fj

1

τtot(f )

p∑
j=1

|1/n
∑n

i=1 σifj (X
(j)
i )|

λ(2−γ )/2τ(fj )
τ (fj )

]

≤ E

[
sup

f =∑
fj

1

τtot(f )
max

j
sup
f̃j

|1/n
∑n

i=1 σif̃j (X
(j)
i )|

λ(2−γ )/2τ(f̃j )

p∑
j=1

τ(fj )

]

= E

[
max

j
sup
f̃j

|1/n
∑n

i=1 σif̃j (X
(j)
i )|

λ(2−γ )/2τ(f̃j )

]

≤ C̃s

δn

λ
+ cs,qλ + λγ/2. �

B.6. Expectation of the weighted empirical process, indexed by the additive
f 2’s.

LEMMA 17. Under Condition D,

E

[
sup
f

|‖f ‖2
n − ‖f ‖2|

τ 2
tot(f )

]
≤ 8cs,qλ

−γ /2
E

[
sup
f

|1/n
∑n

i=1 σif (Xi)|
τtot(f )

]
.

PROOF. By a symmetrization argument (see, e.g., [31]),

E

[
sup
f

|‖f ‖2
n − ‖f ‖2|

τ 2
tot(f )

]
≤ 2E

[
sup
f

|1/n
∑n

i=1 σif
2(Xi)|

τ 2
tot(f )

]
.

Because for all j ,

‖fj‖αI 1−α(fj ) ≤ λ−γ /2τ(fj ),

we know from Corollary 7 that

|fj |∞ ≤ cs,qλ
−γ /2τ(fj ).
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Hence,

|f |∞ =
∣∣∣∣∣

p∑
j=1

fj

∣∣∣∣∣∞ ≤
p∑

j=1

|fj |∞ ≤ cs,qλ
−γ /2

p∑
j=1

τ(fj )

= cs,qλ
−γ /2τ(f ).

Let K = cs,qλ
−γ /2. Now, the function x �→ x2 is Lipschitz on [−K,K], with

Lipschitz constant 2K . Therefore, by the contraction inequality of Ledoux and
Talagrand [18], we have

E

[
sup
f

|1/n
∑n

i=1 σif
2(Xi)|

τ 2
tot(f )

]
≤ 4KE

[
sup
f

|1/n
∑n

i=1 σif (Xi)|
τtot(f )

]
. �

COROLLARY 8. Using Lemma 16, we find under Condition D, and for δn ≤
λ ≤ 1, λ ≥ √

4(1 + logp)/n,

E

[
sup
f

|‖f ‖2
n − ‖f ‖2|

τ 2
tot(f )

]
≤ 8cs,qλ

1−γ

(
C̃s

δn

λ
+ cs,qλ + λγ/2

)
.

B.7. Probability inequality for the weighted empirical process, indexed by
the additive f 2’s. We are now finally in the position to show that S4 has large
probability.

THEOREM 6. Let

Z = sup
f

|‖f ‖2
n − ‖f ‖2|
τ 2(f )

.

Assume Condition D, and δn ≤ λ ≤ 1, λ ≥ √
4(1 + logp)/n. Then

P

(
Z ≥ cs,qλ

1−γ

(
27C̃s

δn

λ
+ 32λ + 32λγ/2 + √

2t

)
+ 4c2

s,qλ
2(1−γ )t

3

)

≤ exp(−nλ2−γ t).

PROOF. We have

|f 2|∞
τ 2(f )

≤ c2
s,qλ

−γ

and

‖f 2‖
τ 2(f )

≤ cs,qλ
−γ /2 ‖f ‖

τ(f )
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and

‖f ‖ ≤
p∑

j=1

‖fj‖ ≤ τ(f ).

So we can apply the corollary of Bousquet’s inequality with

K = c2
s,qλ

−γ

and

R = cs,qλ
−γ /2.

We get that for all t > 0

P

(
Z ≥ 4E[Z] + 4c2

s,q t

3nλγ
+ cs,q

√
2t

nλ−γ

)
≤ exp(−t).

Use the change of variable t �→ nλ2−γ t , to reformulate this as: for all t > 0

P

(
Z ≥ 4E[Z] + 4c2

s,qλ
2(1−γ )t

3
+ cs,qλ

1−γ
√

2t

)
≤ exp(−nλ2−γ t).

Now, insert

E[Z] ≤ 8cs,qλ
1−γ

(
4C̃s

δn

λ
+ cs,qλ + λγ/2

)
. �

REMARK 4. Recall that δn = Ãs/
√

n. Thus, taking 1 ≥ λ ≥ Ãs/
√

n and λ ≥√
4(1 + logp)/n, we see that for some constant Cs,q depending only on s and the

lower bound for the marginal densities {qj }, and for

C0 = Cs,q

(
1 + √

2t + λ1−γ t
)
,

we have

P(S4) ≥ 1 − exp(−nλ2−γ t).
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