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VOLUME GROWTH AND ESCAPE RATE OF BROWNIAN MOTION
ON A COMPLETE RIEMANNIAN MANIFOLD

BY ELTON P. HSU AND GUANGNAN QIN

Northwestern University and Chinese Academy of Sciences

We give an effective upper escape rate function for Brownian motion on
a complete Riemannian manifold in terms of the volume growth of the man-
ifold. An important step in the work is estimating the small tail probability
of the crossing time between two concentric geodesic spheres by reflecting
Brownian motions on the larger geodesic ball.

1. Introduction. Let M be a Riemannian manifold and pM(t, x, y) the (min-
imal) heat kernel on M . By definition, the latter is the fundamental solution of the
heat operator

LM = ∂

∂t
− 1

2
�M,

where �M is the Laplace–Beltrami operator on M . A Riemannian manifold is
stochastically complete if ∫

M
pM(t, x, y) dy = 1

for some, hence all, (x, t) ∈ M × (0,∞). In other words, M is stochastically com-
plete if the heat kernel is conserved. Let Px be the law of Brownian motion on
M starting from x and let e be the lifetime (or explosion time) of the Brownian
motion. We then have

Px{e > t} =
∫
M

p(t, x, y) dy.

Therefore, M is stochastically complete if and only if

Px{e = ∞} = 1,(1.1)

that is, Brownian motion on M does not explode. Finding geometric conditions for
stochastic completeness is an old geometric problem. The problem has been at-
tacked using both analytic and probabilistic methods. Early works on this problem
(Karp and Li [9], Yau [16], Hsu [6] and Varopoulos [15]) impose lower bounds on
the Ricci curvature. In particular, in the last two works, it was shown that if there is
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a strictly positive function κ(r) such that the Ricci curvature of M on the geodesic
ball B(r) is bounded from below by −κ(r) and∫ ∞

0

dr√
κ(r)

= ∞,

then M is stochastically complete. In 1986, Grigor’yan [1] found the following suf-
ficient condition for stochastic completeness solely in terms of the volume growth
function of the manifold: ∫ ∞

1

r dr

ln|B(r)| = ∞.(1.2)

According to (1.1), a Riemannian manifold M is stochastically complete if
Brownian motion does not escape to infinity (in the one-point compactification)
in finite time. Traditionally in probability theory (see, e.g., Itô and McKean [8]
and Shiga and Watanabe [12]), one often looks for upper functions for the es-
cape rate of a diffusion process. The classical Khinchin law of iterated logarithm
for one-dimensional standard Brownian motion is the most celebrated case. More
generally, let rt = d(Xt , x) be the radial process of Brownian motion X on M . An
increasing function ψ(t) is called an upper rate function if

Px{rt ≤ ψ(t) for all sufficiently large t} = 1.

Finding an upper rate function is a more refined problem than proving stochastic
completeness since the existence of an upper rate function implies stochastic com-
pleteness. Various explicit upper rate function for Brownian motion on a complete
Riemannian manifold have been obtained under concrete volume growth assump-
tions (see Grigor’yan [2], Grigor’yan and Kelbert [4] and Takeda [13, 14]). More
recently, Grigor’yan and Hsu [3] showed that the inverse function of the increasing
function

φ1(R) =
∫ R

1

r dr

ln|B(r)|
related to the integral test (1.2) for stochastic completeness is essentially an up-
per rate function for Brownian motion on M . While this result gives an upper
rate function of a very general form, it was proven under the additional geometric
assumption that M is a Cartan–Hadamard manifold, that is, a simply connected,
geodesically complete Riemannian manifold with nonpositive sectional curvature.

The main purpose of the present work is to obtain an escape rate function based
solely on the volume growth of the underlying manifold. We introduce the follow-
ing increasing function:

φ(R) =
∫ R

6

r dr

ln|B(r)| + ln ln r
.

We will show in Theorem 4.1 that under the sole assumption that M is a com-
plete Riemannian manifold, the inverse function of φ is essentially an upper rate
function for Brownian motion on M .
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REMARK 1.1. The difference between the functions φ1(r) and φ(r) is that we
have introduced an extra term ln ln r in the latter function. This addition, resulting
from an attempt to remove the extraneous geometric condition, is fully justified
on several grounds. First, the integral test (1.2) for stochastic completeness, which
can be written as φ1(∞) = ∞, is equivalent to the condition φ(∞) = ∞. Second,
our new upper rate function implies all explicit upper rate functions existent in the
literature to date (see Corollaries 4.2 and 4.3). Third, in general, the radial process
of a Brownian motion on M has the form

rt = βt + 1

2

∫ t

0
�Mr(Xt) dt − Lt,

where β is a standard one-dimensional Brownian motion and L is a local time on
the cut locus C(x) of the point x (see Hsu [7] and Kendall [10]). In the absence
of any further geometric assumptions, we do not expect to obtain an upper rate
function (up to a multiplicative constant) for the process rt better than the upper
rate function of a standard Brownian motion ψ(t) = C

√
t ln ln t . This rate func-

tion cannot be achieved without the presence of the additional term ln ln r in the
function φ.

Our method has two key steps. In the first, we follow Hsu [6] and Grigor’yan
and Hsu [3] and, by using the Borel–Cantelli lemma, reduce the problem of seek-
ing an upper rate function to the problem of estimating the small tail probability
of the crossing time between two concentric geodesic spheres (Lemma 2.1). In
the second key step, instead of estimating the small tail probability by using an
analytic approach, as in Grigor’yan and Hsu [3], under the assumption that the
manifold in question is Cartan–Hadamard, we modify the way the Lyons–Zheng
decomposition for reflecting Brownian motion is used in Takeda [13, 14]. The vol-
ume |B(r)| of the geodesic ball B(r) appears naturally in this step because the
uniform distribution on the ball with respect to the Riemannian volume measure is
the invariant measure of reflecting Brownian motion on B(r). The additional term
mentioned above, ln ln r , is a consequence of dealing with the Brownian motion
adapted to the time-reversed filtration in the Lyons–Zheng decomposition.

2. Basic estimates on crossing times. Let M be a geodesically complete
Riemannian manifold and P(M) the path space over M . Let X be the canoni-
cal coordinate process on the path space P(M) over M , that is, Xt(ω) = ωt for
ω ∈ P(M). If x ∈ M , then we use Px to denote the law of Brownian motion on
M starting from x. The radial process is rt = d(Xt , x), that is, the Riemannian
distance from x to Xt , the position of Brownian motion at time t . A nonnegative
increasing function R : R+ → R+ is called an upper rate function for Brownian
motion on M if

Px{rt ≤ R(t) for all sufficiently large t} = 1.
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Let {Rn} be a strictly increasing sequence of positive numbers, to be chosen
later, and define a sequence of stopping times as follows:

τn = inf{t : rt = Rn}.
(We adopt the convention that inf ∅ = ∞.) Each of these is the first time the
Brownian motion X reaches the corresponding geodesic sphere,

S(Rn) = {x ∈ M :d(x, o) = Rn}.
The difference τn − τn−1, if well defined, is the amount of time Brownian motion
takes to cross from S(Rn−1) to S(Rn). The basic idea of Grigor’yan and Hsu [3]
(see also Hsu [6]) for controlling the rate of escape of Brownian motion is to give
a good upper bound for the small tail probability Px{τn − τn−1 ≤ tn} for a suitably
chosen sequence {tn} of time steps. If the sum of these probabilities converges, then
the Borel–Cantelli lemma shows that for sufficiently large n, Brownian motion X

has to wait roughly until at least

Tn =
n∑

k=1

tk

to reach the sphere S(Rn) or, equivalently, rt ≤ Rn for all t ≤ Tn. This, after some
technical manipulations (see Section 4), will give an upper escape rate function.

We now use the idea of Takeda [13, 14] to estimate the small tail probability
Px{τn − τn−1 ≤ tn} by using the Lyons–Zheng decomposition [11] of reflecting
Brownian motion starting from the uniform distribution on a geodesic ball. For an
open set B ⊂ M , we denote by PB the law of Brownian motion starting from the
uniform distribution on B , that is,

PB = 1

|B|
∫
B

Px dx.

Likewise, we use QB to denote the law of reflecting Brownian motion on B starting
from the same uniform distribution. Let Bn = B(Rn) be the geodesic ball of radius
Rn centered at x. In order to take advantage of the volume growth condition, we
consider the probability PB1{τn − τn−1 ≤ tn} instead of Px{τn − τn−1 ≤ tn}. Recall
that τn is the first time the process X reaches the boundary S(Rn) of the geo-
desic ball B(Rn). Before reaching the boundary, Brownian motion and reflecting
Brownian motion have the same law. Therefore, if C ∈ Bτn is an event which is
measurable up to time τn, then PBn(C) = QBn(C). From

PB1(C) = 1

|B1|
∫
B1

Px(C)dx ≤ 1

|B1|
∫
Bn

Px(C)dx = |Bn|
|B1|PBn(C),

we have

PB1(C) ≤ |Bn|
|B1|QBn(C), C ∈ Bτn.(2.1)
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We apply this inequality to the event

C = {τn − τn−1 ≤ tn}.(2.2)

Now, according to the Lyons–Zheng decomposition [11], on a fixed time hori-
zon [0, Tn], the radial process can be decomposed as the difference

rt − r0 = Bt

2
− B̃Tn − B̃t

2
,(2.3)

where B is a standard Brownian motion adapted to the natural filtration msb∗ =
B(P(M))∗ of the path space P(M) and B̃ is also a standard Brownian motion,
but adapted to the reversed filtration B̃∗ defined by

B̃t = σ {XTn−s : 0 ≤ s ≤ t}, 0 ≤ t ≤ Tn.

The advantage of such a decomposition is obvious, for we have eliminated from
consideration the bounded variation component of the radial process, which can
be rather complicated. The price is that we have to deal with a Brownian motion
not adapted to the original filtration. Another complication is that the decompo-
sition cannot be applied directly to the event (2.2) because it may go beyond the
fixed time horizon [0, Tn]. In order to remedy this situation, we will use a slightly
modified event

Cn = {τn − τn−1 ≤ tn, τn ≤ Tn}
in the inequality (2.1). Fortunately, this additional restriction {τn ≤ Tn} will not be
an obstacle for us, as shown by the following simple observation.

LEMMA 2.1. Let Cn be defined as above. Suppose that
∑∞

n=1 P(Cn) < ∞.
Then, with probability 1, there exists T−1 such that τn ≥ Tn − T−1 for all n.

PROOF. By the Borel–Cantelli lemma, the probability that the events {Cn}
happen infinitely often is 0. Therefore, with probability 1, there exists n0 such
that for all n ≥ n0, either τn − τn−1 ≥ tn or τn ≥ Tn. We show, by induction, that
τn ≥ Tn − Tn0 holds for all n. If 1 ≤ n ≤ n0, then τn ≥ 0 ≥ Tn − Tn0 . Suppose that
τn ≥ Tn − T0 for an n ≥ n0. If τn+1 ≥ Tn+1, then, trivially, τn+1 ≥ Tn+1 − Tn0 .
Otherwise, τn+1 − τn ≥ tn+1 and

τn+1 = τn+1 − τn + τn ≥ tn+1 + Tn − Tn0 = Tn+1 − Tn0 .

This completes the proof. �

We now prove the main estimate for the crossing time τn − τn−1.

PROPOSITION 2.2. Let τn be the first hitting time of the sphere S(Rn) and
rn = Rn − Rn−1. There then exists a constant C such that

PB1{τn − τn−1 ≤ tn, τn ≤ Tn} ≤ |Bn|
|B1|

C√
πtn

Tn

rn
e−r2

n/8tn .
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PROOF. The event {τn − τn−1 ≤ tn} implies the event{
sup

0≤s≤tn

(rτn−1+s − rτn−1) ≥ rn

}
.(2.4)

Now, from the decomposition (2.3), we have

2(rτn−1+s − rτn−1) = Bτn−1+s − Bτn−1 + B̃τn−1+s − B̃τn−1 .

Since τn−1 is a stopping time with respect to the natural filtration B∗, the first
term on the right-hand side is a Brownian motion in time s starting from 0. This is
not so for the second term because τn−1 is not a stopping time with respect to the
filtration B̃∗ of the reversed process. However, for any s ≤ tn such that τn−1 ≤ Tn,
taking k such that (k − 1)tn ≤ τn−1 ≤ ktn, we see that both τn−1 and τn−1 + s lie
in the interval [(k − 1)tn, (k + 1)tn]. From

rτn−1+s − rτn−1 = rτn−1+s − rktn + rktn − rτn−1,

the event (2.4) is contained in the union of the [Tn/tn] + 1 events{
sup

|s|≤tn

|rktn+s − rktn | ≥
rn

2

}
, 1 ≤ k ≤

[
Tn

tn

]
+ 1.

Using

rktn+s − rktn = Bktn+s − Bktn

2
+ B̃ktn+s − B̃ktn

2
,

we see that the event {τn − τn−1 ≤ tn, τn ≤ Tn} is also contained in the union of the
following 2[Tn/tn] + 2 events:{

sup
|s|≤tn

|Bktn+s − Bktn | ≥
rn

2

}

and {
sup

|s|≤tn

|B̃ktn+s − B̃ktn | ≥
rn

2

}

for 1 ≤ k ≤ [Tn/tn] + 1. Under the probability QBn , these events have the same
probability,

P

{
sup

|s|≤tn

|Btn+s − Btn | ≥
rn

2

}
≤ 2P

{
sup

0≤s≤tn

|Bs | ≥ rn

2

}
≤ C

√
tn

rn
e−r2

n/8tn .

The probability QBn{τn−τn−1 ≤ tn, τn ≤ Tn} is bounded from above by 2[Tn/tn]+
2 ≤ 4Tn/tn times the above probability. The desired inequality now follows imme-
diately from this and the inequality [see (2.1)]

PB1{τn − τn−1 ≤ tn, τn ≤ Tn} ≤ |Bn|
|B1|QBn{τn − τn−1 ≤ tn, τn ≤ Tn}. �
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3. Total crossing time. In the preceding section, we have found an upper
bound for the probability PB1{τn − τn−1 ≤ tn, τn ≤ Tn}. We are still free to choose
the upper bounds tn of the crossing times τn − τn−1 and the radii Rn of the expand-
ing geodesic balls B(Rn). We need to choose them so that the series

∞∑
n=1

PB1{τn − τn−1 ≤ tn, τn ≤ Tn}

≤ C

|B1|
∞∑

n=1

Tn√
tnrn

exp
[
ln|B(Rn)| − r2

n

8tn

]

≤ C1

|B1|
∞∑

n=1

Tn

r2
n

exp
[
ln|B(Rn)| − r2

n

16tn

]

converges and the Borel–Cantelli lemma can be applied. The obvious choice is
for tn equal to a small multiple of r2

n/ln|B(Rn)|, as was adopted in Grigor’yan
and Hsu [3]. However, this choice will not enable us to eliminate the extra factor
Tn/r2

n , whose presence can be traced back to the Brownian motion B̃ adapted to
the reverse filtration B̃∗ in the Lyons–Zheng decomposition (2.3). We diminish
the obvious choice by letting

tn = 1

32

r2
n

ln|B(Rn)| + h(Rn)
(3.1)

with a strictly increasing function h to be determined. If we assume, without loss
of generality, that B(R1) ≥ 1 and h(R1) ≥ 1, then tn ≤ r2

n/32. If we further assume
that the sequence {rn} is increasing, then there is an obvious bound

32Tn ≤
n∑

k=1

r2
k ≤

n∑
k=1

rkrn = Rnrn.

It follows that

PB1{τn − τn−1 ≤ tn, τn ≤ Tn} ≤ C2

|B1|2
Rn

rn
e−2h(Rn).

It remains to choose the radii Rn and the function h such that
∞∑

n=1

tn = ∞ and
∞∑

n=1

Rn

rn
e−2h(Rn) < ∞(3.2)

under the integral condition ∫ ∞
1

r dr

ln|B(r)| = ∞.(3.3)

The divergence of the above integral is to be linked to the divergence of the total
crossing time in (3.2). This leads to the natural requirement that

r2
n ≥ CRn(Rn+1 − Rn).
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This requirement can be fulfilled by setting Rn = 2n with C = 1/4. From (3.1), we
have

Tn =
n∑

k=1

tk = 1

128

n∑
k=1

Rk(Rk+1 − Rk)

ln|B(Rk)| + h(Rk)
≥ 1

256

∫ Rn+1

R1

r dr

ln|B(r)| + h(r)
,(3.4)

which seems to fall slightly short of the condition (3.3). The apparently disadvan-
tageous situation can be salvaged by first looking at a typical candidate for the
function h. From our choice of Rn = 2n, we have Rn/rn = 2 and the convergence
of the total probability in (3.2) becomes

∞∑
n=1

e−2h(2n) < ∞.

This leads to the choice h(R) = ln lnR. We have the following simple observation.

LEMMA 3.1. Let f be a positive, nondecreasing and continuous function on
[0,+∞) such that ∫ ∞

3

r dr

f (r)
= ∞.(3.5)

Then ∫ ∞
3

r dr

f (r) + ln ln r
= ∞.

PROOF. Divide the integral into the sum of the integrals over the intervals
[n − 1, n] for n ≥ 4. Since f is increasing, we have

∫ ∞
3

r dr

f (r) + ln ln r
≥

∞∑
n=4

n − 1

f (n) + ln lnn

≥ 1

2

∑
f (n)≥ln lnn

n − 1

f (n)
+ 1

2

∑
f (n)<ln lnn

n − 1

ln lnn
.

Since (n−1)/ ln lnn ≥ 1 for all sufficiently large n, if the second sum has infinitely
many terms, then it is clearly diverges; otherwise, f (n) ≥ ln lnn for all sufficiently
large n and we have, for some n0,

∫ ∞
3

r dr

f (r) + ln ln r
≥ 1

2

∞∑
n=n0

n − 1

f (n)

≥ 1

2

∞∑
n=n0

n − 1

n + 1

∫ n+1

n

r dr

f (r)

≥ 1

2

n0 − 1

n0 + 1

∫ ∞
n0

r dr

f (r)
.
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This completes the proof. �

We are now in a position to bound the range of Brownian motion on a finite
time interval.

PROPOSITION 3.2. Let Rn = 2n and

Tn = 1

128

n∑
k=1

Rk(Rk+1 − Rk)

ln|B(Rk)| + h(Rk)
.

Then, with probability 1, there exists T−1 such that sup0≤t≤Tn−T−1
rt ≤ 2n for all n.

PROOF. By our choice of Rn,
∞∑

n=1

PB1{τn − τn−1 ≤ tn, τn ≤ Tn} < ∞.

By the Borel–Cantelli lemma and Lemma 2.1, with probability 1, there exists T−1
such that τn ≥ Tn −T−1. However, τn is the hitting time of the sphere S(2n), hence
sup0≤t≤Tn−T−1

rt ≤ 2n for sufficiently large n. �

An easy consequence of the above result is a probabilistic proof of Grigor’yan’s
criterion for stochastic completeness.

COROLLARY 3.3 (Grigor’yan [1]). Suppose that M is a complete Riemannian
manifold and B(R) its geodesic ball of radius R centered at a fixed point. If∫ ∞

1

r dr

ln|B(r)| = ∞,

then M is stochastically complete.

PROOF. By Lemma 3.1, under the assumption, we have

Tn ≥ 1

256

∫ Rn+1

R1

r dr

ln|B(r)| + h(r)
→ ∞

as n → ∞. By the above proposition, supt≤T rt < ∞ for all finite T . Hence,
Brownian motion does not explode and M is stochastic complete. �

4. Upper rate function. Proposition 3.2 allows us to obtain an upper rate
function in terms of the volume growth function |B(r)|, as was similarly done in
Grigor’yan and Hsu [3].

Let

φ(R) =
∫ R

6

r dr

ln|B(r)| + ln ln r
.
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From (3.4), we have (1/256)φ(2n+1) ≤ Tn. Proposition 3.2 then gives

sup
t≤(1/256)φ(2n+1)−T−1

rt ≤ 2n

for all n ≥ 1. This implies that

sup
t≤(1/256)φ(R)−T−1

rt ≤ 2R

for all R ≥ 0. Denote by ψ the unique inverse function of φ. Letting R =
ψ(256(T + T−1)) in the above inequality, we have

sup
t≤T

rt ≤ 2ψ
(
256(T + T−1)

) ≤ 512ψ(512T )

for all sufficiently large T . This shows that 512ψ(512t) is an upper rate function of
Brownian motion on M under the probability PB1 . The technical point of passing
from the average probability PB1 to the pointwise probability Px is taken care of
in the proof of the our main theorem below.

THEOREM 4.1. Let M be a complete Riemannian manifold and let x ∈ M .
Let B(R) be the geodesic ball on M of radius R and centered at z. Define

φ(R) =
∫ R

6

r dr

ln|B(r)| + ln ln r

and let ψ be the inverse function of φ. There then exists a constant C such that
Cψ(Ct) is an upper rate function of Brownian motion X on M , that is,

Px{d(Xt , x) ≤ Cψ(Ct) for all sufficiently large t} = 1.

PROOF. Let

H = {d(Xt ,X0) ≤ Cψ(Ct) for all sufficiently large t}.
We have shown that PB1(H) = 1. This shows that Cψ(Ct) is an upper rate func-
tion for Brownian motion on M starting from the uniform distribution on the geo-
desic ball B1. Passing to a single starting point is easy. Let

h(z) = Pz(H).

Let θt :P(M) → P(M) be the shift operator defined by

(θtω)(s) = ω(s + t).

By the definition of the event H , it is clear that for any stopping time τ , we have
ω ∈ H if and only if θτω ∈ H ; in other words, IH ◦ θτ = IH . It follows that h(z) =
Pz(H) = EzIH is a harmonic function on M . On the other hand, we have 0 ≤ h ≤ 1
and

1

|B1|
∫
B1

h(z) dz = 1.
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By the maximum principle for harmonic functions, we see that h must be identi-
cally equal to 1. �

The following special cases have all appeared in the literature (see the references
cited in Section 1). They now follow from our main Theorem 4.1 and all are now
valid without any geometric restrictions.

COROLLARY 4.2. Let M be a complete Riemannian manifold. Under the fol-
lowing volume growth conditions, ψ is an upper rate function for Brownian motion
on M :

(1) |B(r)| ≤ CrD and ψ(t) = C1
√

t ln t ;
(2) |B(r)| ≤ eCrα

(0 < α < 2) and ψ(t) = C1t
1/(2−α);

(3) |B(r)| ≤ eCr2
and ψ(t) = C1 exp(C1t

2 ln t);
(4) |B(r)| ≤ eCr2 ln r and ψ(t) = exp(exp(C1t)).

PROOF. These upper rate functions follow directly from the main theorem.
Since the volume grows faster than the additional term ln ln r in the function φ,
these rate functions are the same as if the additional term were not there. �

Riemannian manifolds with slow volume growth are interesting test cases for
our main result Theorem 4.1. Although, in general, slow volume growth corre-
sponds to slow upper rate functions, our result will not yield upper rate functions
better than

√
t ln ln t once |B(r)| ≤ (ln r)γ or some γ > 0 (see Remark 1.1). It also

explains the condition v(r) ≥ (ln r)γ in the following result, due to Grigor’yan [2].

COROLLARY 4.3. Let M be a complete manifold such that |B(r)| ≤ v(r) for
an increasing function v(r) ≥ (ln r)γ with some γ > 0. Define R(t) by

R(t)2

lnv(R(t))
= t.

Then CR(Ct) is an upper rate function for Brownian motion on M . In particular,
if M has finite volume, then C

√
t ln ln t is an upper rate function.

PROOF. With the lower bound for v(r), we have

φ(R) =
∫ R

6

r dr

ln|B(r)| + ln ln r
≥ C1

∫ R

6

r dr

lnv(r)
≥ C2R

2

lnv(R)
.

Therefore, the inverse function ψ(t) ≤ C3R(C3t). By Theorem 4.1, CR(Ct) is an
upper rate function for some C. �

REMARK 4.4. In all of the concrete cases we have mentioned thus far, upper
rate functions are determined up to multiplicative constants. The question naturally
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arises as to whether we could have been more careful in our computations so as to
recover the best constants in some cases, for instance, ψ(t) = √

(2 + ε)t ln ln t for
the standard one-dimensional Brownian motion. Such a precise upper rate function
is impossible without further geometric assumptions other than the volume growth.
This can be explained by means of manifolds with power volume growth |B(r)| ≤
CrD . According to Corollary 4.2(1), the corresponding rate function is ψ(t) =
C1

√
t ln t . By comparison with a Euclidean Brownian motion, we would expect

a double logarithm instead of a single one. However, there are known examples
showing that the above rate function with a single logarithm is indeed sharp up to a
multiplicative constant (see Grigor’yan and Kelbert [5]). This is the reason why we
have been somewhat cavalier about multiplicative constants in our proofs. It should
be pointed out that these constants, denoted by C with or without subscripts, are
universal; they do not depend on the manifold M (not even on its dimension).
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