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RANDOM WALKS ON DISCRETE CYLINDERS WITH LARGE
BASES AND RANDOM INTERLACEMENTS

BY DAVID WINDISCH1

The Weizmann Institute of Science

Following the recent work of Sznitman [Probab. Theory Related Fields
145 (2009) 143–174], we investigate the microscopic picture induced by a
random walk trajectory on a cylinder of the form GN × Z, where GN is a
large finite connected weighted graph, and relate it to the model of random
interlacements on infinite transient weighted graphs. Under suitable assump-
tions, the set of points not visited by the random walk until a time of order
|GN |2 in a neighborhood of a point with Z-component of order |GN | con-
verges in distribution to the law of the vacant set of a random interlacement
on a certain limit model describing the structure of the graph in the neighbor-
hood of the point. The level of the random interlacement depends on the local
time of a Brownian motion. The result also describes the limit behavior of the
joint distribution of the local pictures in the neighborhood of several distant
points with possibly different limit models. As examples of GN , we treat the
d-dimensional box of side length N , the Sierpinski graph of depth N and the
d-ary tree of depth N , where d ≥ 2.

1. Introduction. In recent works, Sznitman introduces the model of random
interlacements on Zd+1, d ≥ 2 (cf. [14, 16]), and in [17] explores its relation with
the microscopic structure left by simple random walk on an infinite discrete cylin-
der (Z/NZ)d × Z by times of order N2d . The present work extends this relation
to random walk on GN × Z running for a time of order |GN |2, where the bases
GN are given by finite weighted graphs satisfying suitable assumptions, as pro-
posed by Sznitman in [17]. The limit models that appear in this relation are ran-
dom interlacements on transient weighted graphs describing the structure of GN

in a microscopic neighborhood. Random interlacements on such graphs have been
constructed in [19]. Among the examples of GN to which our result applies are
boxes of side-length N , discrete Sierpinski graphs of depth N and d-ary trees of
depth N .

We proceed with a more precise description of the setup. A weighted graph
(G, E ,w·,·) consists of a countable set G of vertices, a set E of unordered pairs
of distinct vertices, called edges, and a weight w·,·, which is a symmetric func-
tion associating to every ordered pair (y, y′) of vertices a nonnegative number
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wy,y′ = wy′,y, nonzero if and only if {y, y′} ∈ E . Whenever {y, y′} ∈ E , the ver-
tices y and y′ are called neighbors. A path of length n in G is a sequence of
vertices (y0, . . . , yn) such that yi−1 and yi are neighbors for 1 ≤ i ≤ n. The dis-
tance d(y, y′) between vertices y and y′ is defined as the length of the shortest path
starting at y and ending at y′ and B(y, r) denotes the closed ball centered at y of
radius r ≥ 0. We generally omit E and w·,· from the notation and simply refer to
G as a weighted graph. A standing assumption is that G is connected. The random
walk on G is defined as the irreducible reversible Markov chain on G with transi-
tion probabilities pG (y, y′) = wy,y′/wy for y and y′ in G , where wy =∑y′∈G wy,y′ .
Then wyp

G (y, y′) = wy′pG (y′, y), so a reversible measure for the random walk is
given by w(A) =∑y∈A wy for A ⊆ G . A bijection φ between subsets B and B∗
of weighted graphs G and G∗ is called an isomorphism between B and B∗ if φ

preserves the weights, that is, if wφ(y),φ(y′) = wy,y′ for all y, y′ ∈ B.
This setup allows the definition of a random walk (Xn)n≥0 on the discrete cylin-

der

GN × Z,(1.1)

where GN , N ≥ 1, is a sequence of finite connected weighted graphs with weights
(wy,y′)y,y′∈GN

and GN × Z is equipped with the weights

wx,x′ = wy,y′1{z=z′} + 1
21{y=y′,|z−z′|=1}(1.2)

for x = (y, z), x′ = (y′, z′) in GN × Z.

We will mainly consider situations where all edges of the graphs have equal
weight 1/2. The random walk X starts from x ∈ GN ×Z or from the uniform distri-
bution on GN ×{0} under suitable probabilities Px and P defined in (2.3) and (2.4)
below. We consider M ≥ 1 and sequences of points xm,N = (ym,N , zm,N),
1 ≤ m ≤ M , in GN ×Z with mutual distance tending to infinity. We assume that the
neighborhoods around any vertex ym,N look like balls in a fixed infinite graph Gm,
in the sense that

we choose an rN → ∞, such that there are isomorphisms φm,N

from B(ym,N, rN) to B(om, rN) ⊂ Gm with φm,N(ym,N) = om

for all N .
(1.3)

The points not visited by the random walk in the neighborhood of xm,N until time
t ≥ 0 induce a random configuration of points in the limit model Gm × Z, called
the vacant configuration in the neighborhood of xm,N , which is defined as the
{0,1}Gm×Z-valued random variable

ω
m,N
t (x) =

{
1{Xn �= �−1

m,N(x), for 0 ≤ n ≤ t}, if x ∈ B(om, rN) × Z,
0, otherwise, for t ≥ 0,

(1.4)

where the isomorphism �m,N is defined by �m,N(y, z) = (φm,N(y), z− zm,N) for
(y, z) in B(ym,N, rN) × Z.
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Random interlacements on Gm × Z enter the asymptotic behavior of the distri-
bution of the local pictures ωm,N . For the construction of random interlacements
on transient weighted graphs, we refer to [19]. For our purpose, it suffices to know
that for a weighted graph Gm × Z with weights defined such that the random walk
on it is transient, the law Q

Gm×Z
u on {0,1}Gm×Z of the indicator function of the

vacant set of the random interlacement at level u ≥ 0 on Gm × Z is characterized
by, cf. equation (1.1) of [19],

QGm×Z
u [ω(x) = 1, for all x ∈ V] = exp{−u capm(V)}

(1.5)
for all finite subsets V of Gm × Z,

where ω(x), x ∈ Gm × Z, are the canonical coordinates on {0,1}Gm×Z, and
capm(V) the capacity of V as defined in (2.7) below.

The main result of the present work requires the assumptions (A1)–(A10) on
the graph GN , which we discuss below. In order to state the result, we have yet to
introduce the local time of the Z-projection πZ(X) of X, defined as

Lz
n =

n−1∑
l=0

1{πZ(Xl)=z} for z ∈ Z, n ≥ 1,(1.6)

as well as the canonical Wiener measure W and a jointly continuous version
L(v, t), v ∈ R, t ≥ 0, of the local time of the canonical Brownian motion. The main
result asserts that under suitable hypotheses the joint distribution of the vacant con-
figurations in the neighborhoods of x1,N , . . . , xM,N and the scaled local times of
the Z-projections of these points at a time of order |GN |2 converges as N tends
to infinity to the joint distribution of the vacant sets of random interlacements on
Gm ×Z and local times of a Brownian motion. The levels of the random interlace-
ments depend on the local times, and conditionally on the local times, the random
interlacements are independent. Here, is the precise statement.

THEOREM 1.1. Assume (A1)–(A10) [see below (2.9)], as well as

w(GN)

|GN |
N→∞−→ β for some β > 0,(1.7)

and for all 1 ≤ m ≤ M ,

zm,N

|GN |
N→∞−→ vm for some vm ∈ R,

which is in fact assumption (A4), see below. Then the graphs Gm ×Z are transient
and as N tends to infinity, the

∏M
m=1{0,1}Gm × RM+ -valued random variables

(
ω

1,N

α|GN |2, . . . ,ω
M,N

α|GN |2,
L

z1,N

α|GN |2
|GN | , . . . ,

L
zM,N

α|GN |2
|GN |

)
, α > 0,N ≥ 1,
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defined by (1.4) and (1.6), with rN and φm,N chosen in (5.1) and (5.2), converge
in joint distribution under P to the law of the random vector (ω1, . . . ,ωM,U1,

. . . ,UM) with the following distribution: the variables (Um)Mm=1 are distributed
as ((1 + β)L(vm,α/(1 + β)))Mm=1 under W , and conditionally on (Um)Mm=1, the

variables (ωm)Mm=1 have joint distribution
∏

1≤m≤M Q
Gm×Z
Um/(1+β).

REMARK 1.2. Sznitman proves a result analogous to Theorem 1.1 in [17],
Theorem 0.1, for GN given by (Z/NZ)d and Gm = Zd for 1 ≤ m ≤ M . This result
is covered by Theorem 1.1 by choosing, for any y and y′ in (Z/NZ)d , wy,y′ = 1/2
if y and y′ are at Euclidean distance 1 and wy,y′ = 0, otherwise. Then the random
walk X on (Z/NZ)d × Z with weights as in (1.2) is precisely the simple random
walk considered in [17]. We then have β = d in (1.7) and recover the result of [17],
noting that the factor 1/(1 + d) appearing in the law of the vacant set cancels with
the factor wx = d + 1 in our definition of the capacity [cf. (2.7)], different from
the one used in [17] (cf. (1.7) in [17]).

We now make some comments on the proof of Theorem 1.1. In order to extract
the relevant information from the behavior of the Z-component of the random
walk, we follow the strategy in [17] and use a suitable version of the partially in-
homogeneous grids on Z introduced there. Results from [17] show that the total
time elapsed and the scaled local time of a simple random walk on Z can be ap-
proximated by the random walk restricted to certain stopping times related to these
grids. The difficulty that arises in the application of these results in our setup is that
unlike in [17], the Z-projection of our random walk X is not a Markov process. In-
deed, the Z-projection is delayed at each step for an amount of time that depends on
the current position of the GN -component. In order to overcome this difficulty, we
decouple the Z-component of the random walk from the GN -component by intro-
ducing a continuous-time process X = (Y,Z), such that the GN - and Z-components
Y and Z are independent and such that the discrete skeleton of X is the random walk
X on GN ×Z. It is not trivial to regain information about the random walk X after
having switched to continuous time, because the waiting times of the process X
depend on the steps of the discrete skeleton X and are in particular not i.i.d. We
therefore prove in Theorem 5.1 the continuous-time version of Theorem 1.1 first,
essentially by using an abstraction of the arguments in [17] and making frequent
use of the independence of the GN - and Z-components of X, and defer the task of
transferring the result to discrete time to later.

Let us make a few more comments on the partially inhomogeneous grids just
mentioned. Every point of these grids is a center of two concentric intervals I ⊂ Ĩ

with diameters of order dN and hN � dN , where hN is also the order of the
mesh size of the grids throughout Z. The definition of the grids ensures that all
points zm,N are covered by the smaller intervals, hence the partial inhomogene-
ity. We then consider the successive returns to the intervals I and departures from
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Ĩ of the discrete skeleton Z of Z. According to a result from [17] (see Proposi-
tion 3.3 below) and Lemma 3.4, these excursions contain all the relevant infor-
mation needed to approximate the total time elapsed and to relate the scaled local
time L

zm,N

α|GN |2/|GN | of Z [see (2.6)] to the number of returns of Z to the box con-
taining zm,N . For these estimates to apply, the mesh size hN of the grids has to be
smaller than the square root of the total number of steps of the walk, that is, less
than |GN |. At the same time, we shall need hN to be larger than the square root
of the relaxation time λ−1

N of GN , so that the GN -component Y approaches its sta-
tionary, that is, uniform, distribution between different excursions. This motivates
the condition (A2), see below (2.9), on the spectral gap λN of GN .

Once the partially inhomogeneous grids are introduced, the law QGm×Z· of the
vacant set appears as follows: For concentric intervals I ⊂ Ĩ , z ∈ ∂(I c) and z′ ∈ ∂Ĩ ,
we define the probability Pz,z′ as the law of the finite-time random walk trajectory
started at a uniformly distributed point in GN ×{z} and conditioned to exit GN × Ĩ

through GN × {z′} at its final step. We have mentioned that the distribution of the
GN -component of X approaches the uniform distribution between different ex-
cursions from GN × I to (GN × Ĩ )c. It follows that the law of these successive
excursions of X under P , conditioned on the points z and z′ of entrance and de-
parture of the Z-component, can be approximated by a product of the laws Pz,z′ .
This is shown in Lemma 4.3. A crucial element in the proof of the continuous-time
Theorem 5.1 is the investigation of the Pz,z′-probability that a set V in the neigh-
borhood of a point xm,N in GN × I is not left vacant by one excursion. We find
that up to a factor tending to 1 as N tends to infinity, this probability is equal to
capm(�m,N(V ))hN/|GN |. With the relation between the number of such excur-
sions taking place up to time α|GN |2 and the scaled local time L

zm,N

α|GN |2/|GN | from

Proposition 3.3 and Lemma 3.4, the law QGm×Z· , see (1.5), appears as the limiting
distribution of the vacant configuration in the neighborhood of xm,N .

Let us describe the derivation of the asymptotic behavior of the Pz,z′-probability
just mentioned in a little more detail. As in [17], a key step in the proof is to show
that the probability that the random walk escapes from a vertex in a set V ⊂ GN ×I

in the vicinity of xm,N to the complement of GN × Ĩ before hitting the set V con-
verges to the corresponding escape probability to infinity for the set �m,N(V ) in
the limit model Gm ×Z. This is where the required capacity appears. The assump-
tion (A5) that (potentially small) neighborhoods B(ym,N, rN) of the points ym,N

are isomorphic to neighborhoods in Gm is necessary but not sufficient for this
purpose. We still need to ensure that the probability that the random walk returns
from the boundary of B(xm,N, rN) to the vicinity of xm,N before exiting GN × Ĩ

decays. This is the reason why we assume the existence of larger neighborhoods
Cm,N containing B(ym,N, rN) in (A6). These neighborhoods Cm,N are assumed
to be either identical or disjoint for points with similarly-behaved Z-components
in (A8). Crucially, we assume in (A7) that the sets Cm,N are themselves isomor-
phic to neighborhoods in infinite graphs Ĝm that are sufficiently close to being
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transient, as is formalized by (A9). We additionally assume in (A10) that X started
from any point in the boundary of Cm,N × Z typically does not reach the vicin-
ity of xm,N until time λ−1

N |GN |ε , that is, until well after the relaxation time of Y .
These assumptions ensure that the random walk, when started from the boundary
of B(xm,N, rN), is unlikely to return to a point close to xm,N before exiting GN × Ĩ .
For this last argument, we need the mesh size hN of the grids to be smaller than
(λ−1

N |GN |ε)1/2, so that hN can be only slightly larger than the λ
−1/2
N required for

the homogenization of the GN -component.
In order to deduce Theorem 1.1 from the continuous-time result, we need an

estimate on the long term-behavior of the process of jump times of X and a com-
parison of the local time of X and the local time of the discrete skeleton X. This
requires a kind of ergodic theorem, with the feature that both time and the process
itself depend on N . To show the required estimates, we use estimates on the co-
variance between sufficiently distant increments of the jump process that follow
from bounds on the spectral gap of GN . With the assumption (1.7), we find that
the total number of jumps made by X up to a time of order |GN |2 is essentially
proportional to the limit of the average weight (1 + β) per vertex in GN × Z; see
Lemma 6.4. In this context, the hypothesis (A1) of uniform boundedness of the
vertex-weights of GN plays an important role for stochastic domination of jump
processes by homogeneous Poisson processes.

The article is organized as follows. In Section 2, we introduce notation and
state the hypotheses (A1)–(A10) for Theorem 1.1. In Section 3, we introduce the
partially inhomogeneous grids with the relevant results described above. Section 4
shows that the dependence between the GN -components of different excursions
related to these grids is negligible. With these ingredients at hand, we can prove
the continuous-time version of Theorem 1.1 in Section 5. The crucial estimates
on the jump process needed to transfer the result to discrete time are derived in
Section 6. With the help of these estimates, we finally deduce Theorem 1.1 in
Section 7. Section 8 is devoted to applications of Theorem 1.1 to three concrete
examples of GN .

Throughout this article, c and c′ denote positive constants changing from place
to place. Numbered constants c0, c1, . . . are fixed and refer to their first appearance
in the text. Dependence of constants on parameters appears in the notation.

2. Notation and hypotheses. The purpose of this section is to introduce some
useful notation and state the hypotheses (A1)–(A10) made in Theorem 1.1.

Given any sequence aN of real numbers, o(aN) denotes a sequence bN with the
property bN/aN → 0 as N → ∞. The notation a ∧ b and a ∨ b is used to denote
the respective minimum and maximum of the numbers a and b. For any set A, we
denote by |A| the number of its elements. For a set B of vertices in a graph G , we
denote by ∂B the boundary of B, defined as the set of vertices in the complement
of B with at least one neighbor in B and define the closure of B as B̄ = B ∪ ∂B.
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We now construct the relevant probabilities for our study. For any weighted
graph G , the path space P(G) is defined as the set of right-continuous functions
from [0,∞) to G with infinitely many discontinuities and finitely many discontinu-
ities on compact intervals, endowed with the canonical σ -algebra generated by the
coordinate projections. We let (Yt )t≥0 stand for the canonical coordinate process
on P(G). We consider the probability measures P G

y on P(G) such that Y is distrib-
uted as a continuous-time Markov chain on G starting from y ∈ G with transition
rates given by the weights wy,y′ . Then the discrete skeleton (Yn)n≥0, defined by
Yn = YσY

n
, with (σY

n )n≥0 the successive times of discontinuity of Y (where σY
0 = 0),

is a random walk on G starting from y with transition probabilities pG (y, y′) =
wy,y′/wy. The discrete- and continuous-time transition probabilities for general
times n and t are denoted by pG

n (y, y′) = P G
y [Yn = y′] and qG

t (y, y′) = P G
y [Yt = y′].

The jump process (ηY
t )t≥0 of Y is denoted by ηY

t = sup{n ≥ 0 :σY
n ≤ t}, so that

Yt = YηY
t
, t ≥ 0.

Next, we adapt the notation of the last paragraph to the graphs we consider. Let
G be any of the graphs Z = {z, z′, . . .} with weight 1/2 attached to any edge, GN =
{y, y′, . . .}, Gm = {y,y′, . . .} or Ĝm = {y,y′, . . .}, where GN are the finite bases
of the cylinder in (1.1), and for 1 ≤ m ≤ M , Gm are the infinite graphs in (1.3)
and Ĝm are infinite connected weighted graphs. Unlike Gm, the graphs Ĝm do not
feature in the statement of Theorem 1.1. They do, however, play a crucial role in
its proof. Indeed, we will assume that neighborhoods of the points ym,N that are, in
general, much larger than B(ym,N, rN) are isomorphic to subsets of Ĝm. For some
examples, such as the Euclidean box treated in Section 8, this assumption requires
that Ĝm be different from Gm. Assumptions on Ĝm will then allow us to control
certain escape probabilities from the boundary of B(xm,N , rN) to the complement
of GN × Ĩ , for an interval Ĩ containing zm,N . See also assumptions (A6)–(A10)
and Remark 2.1 below for more on the graphs Ĝm.

Under the product measures P G
y ×P Z

z on P(G)× P(Z), we consider the process
X = (Y,Z) on G × Z. The crucial observation is that X has the same distribution as
the random walk in continuous time on G × Z attached to the weights

w(y,z),(y′,z′) = wy,y′1{z=z′} + 1
21{y=y′,|z−z′|=1},(2.1)

for any pair of vertices {(y, z), (y′, z′)} in G × Z. We define the discrete skeleton
(Xn)n≥0 of X by Xn = XσX

n
, with (σX

n )n≥0 the times of discontinuity of X (where

σX
0 = 0) and similarly Zn = ZσZ

n
for the times (σ Z

n )n≥0 of discontinuity of Z. We
will often rely on the fact that

X is distributed as the random walk on G × Z with weights as in (2.1).(2.2)

The jump process of X is defined as ηX
t = sup{n ≥ 0 :σX

n ≤ t}. We write

Px = P GN
y × P Z

z , Pm
x = P Gm

y × P Z
z and P̂m

x = P Ĝm
y × P Z

z ,(2.3)
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for vertices x = (y, z) in GN × Z and x = (y, z) in Gm × Z or Ĝm × Z. Two
measures on GN are of particular interest: the reversible probability πGN

(y) =
wy/w(GN) for pGN (·, ·) and the uniform measure μ(y) = 1/|GN |, y ∈ GN ,

which is reversible for the continuous-time transition probabilities q
GN
t (·, ·), t ≥ 0.

We define

P GN = ∑
y∈GN

μ(y)P GN
y , Pz = ∑

y∈GN

μ(y)P(y,z) and

(2.4)
P = ∑

y∈GN

μ(y)P(y,0).

On any path space P(G), the canonical shift operators are denoted by (θt )t≥0.
The shift operators for the discrete-time process X are denoted by θX

n = θσX
n

, n ≥ 0.
For the process X, the entrance, exit and hitting times of a set A are defined as

HA = inf{n ≥ 0 :Xn ∈ A}, TA = inf{n ≥ 0 :Xn /∈ A} and
(2.5)

H̃A = inf{n ≥ 1 :Xn ∈ A}.
In the case A = {x}, we simply write Hx and H̃x . We also use the same notation
for the corresponding times of the processes Y and Z. The analogous times for the
continuous-time processes X, Y and Z are denoted HA and TA. Recall the definition
of the local time of the Z-projection of the random walk on G × Z from (1.6).
The local times of Z and its discrete skeleton Z are defined as

Lz
t =
∫ t

0
1{Zs=z} ds and L̂z

n =
n−1∑
l=0

1{Zl=z}.(2.6)

Note that L̂z
n should not be confused with the local time Lz

n of the Z-projection
of X, defined in (1.6). The capacity of a finite subset V of Gm × Z is defined as

capm(V) = ∑
x∈V

Pm
x [H̃V = ∞]wx.(2.7)

For an arbitrary real-valued function f on GN , the Dirichlet form DN(f,f ) is
given by

DN(f,f ) = 1

2

∑
y,y′∈GN

(
f (y) − f (y′)

)2 wy,y′

|GN | ,(2.8)

and related to the spectral gap λN of the continuous-time random walk Y on GN

via

λN = min
{DN(f,f )

varμ(f )
: f is not constant

}
where

(2.9)
varμ(f ) = μ

((
f − μ(f )

)2)
.
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The inverse λ−1
N of the spectral gap is known as the relaxation time of the

continuous-time random walk, due to the estimate (4.1).
We now come to the specification of the hypotheses for Theorem 1.1. Recall

that (GN)N≥1 is a sequence of finite connected weighted graphs. We consider
M ≥ 1, sequences xm,N = (ym,N , zm,N), 1 ≤ m ≤ M , in GN ×Z and an 0 < ε < 1
such that the assumptions (A1)–(A10) below hold. The first assumption is that the
weights attached to vertices of GN are uniformly bounded from above and below,
that is,

there are constants 0 < c0 ≤ c1 such that c0 ≤ wy ≤ c1, for all y ∈ GN.(A1)

A frequently used consequence of this assumption is that the jump process of Y
under P G can be bounded from above and from below by a Poisson process of
constant parameter, see Lemma 2.4 below. Moreover, by taking a function f van-
ishing everywhere except at a single vertex in (2.9), (A1) implies that λN ≤ c. If in
addition also the edge-weights wy,y′ of GN are uniformly elliptic, it follows from
Cheeger’s inequality (see [12], Lemma 3.3.7, page 383) that the relaxation time
λ−1

N is bounded from above by c|GN |2. We assume a little bit more, namely that
for ε as above,

λ−1
N ≤ |GN |2−ε,(A2)

which in particular rules out nearly one-dimensional graphs GN . We further as-
sume that the mutual distances between different sequences xm,N diverge,

lim
N

min
1≤m<m′≤M

d(xm,N , xm′,N ) = ∞,(A3)

and that in scale |GN |, the Z-components of the sequences zm,N converge:

lim
N

zm,N

|GN | = vm ∈ R for 1 ≤ m ≤ M.(A4)

The key assumption is the existence of balls of diverging size centered at the points
ym,N that are isomorphic to balls with fixed centers om in the infinite graphs Gm:

For some rN → ∞, there are isomorphisms φm,N from B(ym,N, rN)
(A5)

to B(om, rN) ⊂ Gm, such that φm,N(ym,N) = om for all N,m.

In the proof of Theorem 1.1, we want to show the decay of the probability that the
random walk X under P returns to the close vicinity of the center xm,N from the
boundary of each of the balls B(xm,N, rN) ⊂ GN × Z before exiting a large box.
With this aim in mind, we make the remaining assumptions. For any m, N , we
assume that there exists an associated subset Cm,N of GN such that

B(ym,N, rN) ⊆ Cm,N,(A6)
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and C̄m,N are isomorphic to a subset of the auxiliary limit model Ĝm, that is,

there is an isomorphism ψm,N from C̄m,N with a set C̄m ⊂ Ĝm,

such that ψm,N(∂Cm,N) = ∂Cm,N ,
(A7)

where the last condition is to ensure that the distributional identity (2.13) below
holds. Note that we are allowing the infinite graphs Ĝm to be different from Gm.
For an explanation, we refer to Remark 2.1 below (see also Remark 8.4). We fur-
ther assume that the sets Cm,N as m varies are essentially either disjoint or equal
(unless the corresponding Z-components zm,N are far apart), that is,

whenever vm = vm′, then for all N either Cm,N = Cm′,N
or Cm,N ∩ Cm′,N = ∅.

(A8)

Concerning the limit model Ĝm, we require that the measure of a constant-size

ball centered at ôm,N
(def.)= ψm,N(ym,N) under the law Yn ◦ P Ĝm· decays faster than

n−1/2−ε ,

lim
n→∞n1/2+ε sup

y0∈Ĝm

sup
y∈B(ôm,N ,ρ0),N≥1

pĜm
n (y0,y) = 0 for any ρ0 > 0.(A9)

This assumption is only used to prove Lemma 2.3 below. Let us mention that (A9)
typically holds whenever the on-diagonal transition densities decay at the same
rate, see Remark 2.2 below. Finally, we assume that the random walk on GN × Z,
started at the interior boundary of Cm,N × Z, is unlikely to reach the vicinity of
xm,N until well after the relaxation time of Y :

lim
N

sup
y0∈∂(Cc

m),z0∈Z

P(y0,z0)

[
H

(φ−1
m,N (y),zm,N+z)

< λ−1
N |GN |ε]= 0,(A10)

for any (y, z) ∈ Gm × Z [note that φ−1
m,N(y) is well-defined for large N by (A5)].

REMARK 2.1. The infinite graphs Ĝm in (A7) can be different from the graphs
Gm describing the neighborhoods of the points ym,N . The reason is that for (A10)
to hold, the sets Cm,N will generally have to be of much larger diameter than their
subsets B(ym, rN). Hence, C̄m is not necessarily isomorphic to a subset of the same
infinite graph as B(ym, rN). This situation occurs, for example, if GN is given by
a Euclidean box, see Remark 8.4.

REMARK 2.2. Typically, the weights attached to the vertices of Ĝm are uni-
formly bounded from above and from below, as are the weights in GN [see (A1)].
In this case, assumption (A9) holds in particular whenever one has the on-diagonal
decay

lim
n

n1/2+ε sup
y∈Ĝm

pĜm
n (y,y) → 0,

see [20], Lemma 8.8, pages 108 and 109.
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From now on, we often drop the N from the notation in GN , Cm,N , xm,N ,
φm,N and ψm,N . We extend the isomorphisms φm and ψm in (A5) and (A7) to
isomorphisms �m and �

z0
m defined on B(ym, rN) × Z and on C̄m × Z by

�m : (y, z) �→ (
φm(y), z − zm

)
and(2.10)

�z0
m : (y, z) �→ (

ψm(y), z − z0
)

for z0 ∈ Z.(2.11)

A crucial consequence of (A5) and (A7) is that for rN ≥ 1,(
Xt : 0 ≤ t ≤ TB(ym,rN−1)×Z

)
under Px has the same distribution as

(2.12) (
�−1

m (Xt ) : 0 ≤ t ≤ TB(om,rN−1)×Z

)
under Pm

�m(x), and

(Xt : 0 ≤ t ≤ TCm×Z) under Px has the same distribution as
(2.13) (

(�
z0
m )−1(Xt ) : 0 ≤ t ≤ TCm×Z

)
under P̂m

�
z0
m (x)

.

The assumption (A9) only enters the proof of the following lemma showing the
decay of the probability that the random walk on the cylinders Gm × Z or Ĝm × Z

returns from distance ρ to a constant-size neighborhood of (om,0) or (ψm(ym),0)

as ρ tends to infinity. Note that this in particular implies that these cylinders are
transient and the random interlacements appearing in Theorem 1.1 make sense.

LEMMA 2.3 (1 ≤ m ≤ M). Assuming (A1)–(A10), for any ρ0 > 0,

lim
ρ→∞ sup

d(x,(ôm,0))≤ρ0
d(x0,x)≥ρ

P̂m
x0

[Hx < ∞] = 0 and

(2.14)
lim

ρ→∞ sup
d(x,(om,0))≤ρ0

d(x0,x)≥ρ

Pm
x0

[Hx < ∞] = 0.

The proof of Lemma 2.3 requires the following two lemmas of frequent use.

LEMMA 2.4. Let G be a weighted graph such that 0 < infy wy ≤ supy wy < ∞.

Under P G
y , en = (σY

n − σY
n−1)wYn−1, n ≥ 1, is a sequence of

i.i.d. exp(1) random variables, independent of Y , and
(2.15)

η
infy wy
t ≤ ηY

t ≤ η
supy wy

t for t ≥ 0,(2.16)

where ην
t = sup{n ≥ 0 : e1 + · · · + en ≤ νt}, t ≥ 0, with (en)n≥1 as defined above,

is a Poisson process with rate ν ≥ 0.

PROOF. The assertion (2.15) follows from a standard construction of the
continuous-time Markov chain Y, see for example [10], pages 88, 89. For (2.16),
note that for any k ≥ 0,

wYk

supy wy
≤ 1 ≤ wYk

infy wy
,(2.17)
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hence, for t ≥ 0,

ηY
t = sup

{
n ≥ 0 :

n∑
k=1

(σY
k − σY

k−1) ≤ t

}

(2.17)≤ sup

{
n ≥ 0 :

n∑
k=1

(σY
k − σY

k−1)
wYk−1

supy wy
≤ t

}
= η

supy wy

t ,

as well as

ηY
t

(2.17)≥ sup

{
n ≥ 0 :

n∑
k=1

(σY
k − σY

k−1)
wYk−1

infy wy
≤ t

}
= η

infy wy
t .

�

LEMMA 2.5.

P Z
z

[
z′ ∈ Z[s,t]

]≤ c
1 + t − s√

s
for 0 < s ≤ t < ∞, z, z′ ∈ Z.(2.18)

PROOF. By the strong Markov property applied at time s + Hz′ ◦ θs ,

EZ
z

[∫ t+1

s
1{Zr=z′} dr

]
≥ EZ

z

[
s + Hz′ ◦ θs ≤ t,

∫ t+1

s+Hz′ ◦θs

1{Zr=z′} dr

]

≥ P Z
z [Hz′ ◦ θs ≤ t − s]EZ

z′
[∫ 1

0
1{Zr=z′} dr

]
(2.19)

≥ P Z
z

[
z′ ∈ Z[s,t]

]
EZ

z′ [σ Z
1 ∧ 1] ≥ cP Z

z

[
z′ ∈ Z[s,t]

]
.

It follows from the local central limit theorem, see [9], (1.10), page 14, (or from a
general upper bound on heat kernels of random walks, see Corollary 14.6 in [21])
that

P Z
z [Zn = z′] ≤ c/

√
n for all z and z′ in Z and n ≥ 1.(2.20)

Using an exponential bound on the probability that a Poisson variable of intensity
2t is not in the interval [t,4t], it readily follows that P Z

z [Zt = z′] ≤ c/
√

t for all
t > 0, hence,

EZ
z

[∫ t+1

s
1{Zr=z′} dr

]
≤ c

∫ t+1

s

1√
r

dr ≤ c
1 + t − s√

s
.

With (2.19), this implies (2.18). �

PROOF OF LEMMA 2.3. Denote by G either one of the graphs Ĝm or Gm and
by P the corresponding probabilities P̂m and Pm. Assume for the moment that for
all n ≥ c(ε, ρ0),

sup
y0∈G

sup
y∈B(o,ρ0)

pG
n (y0,y) ≤ c(ρ0)n

−1/2−ε,(2.21)
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where o denotes the corresponding vertex ôm,N or om. For any points x = (y, z)

in B((o,0), ρ0) and x0 = (y0, z0) in G × Z such that d(x0,x) ≥ ρ, we have

Px0[Hx < ∞] ≤
∞∑

n=[ρ]
P(y0,z0)

[
Yn = y, z ∈ Z[σY

n ,σY
n+1]
]
.(2.22)

By independence of (Y, σY) and Z, the probability in this sum can be rewritten as

EG
y0

[
Yn = y,P Z

z0

[
z ∈ Z[s,t]

]∣∣
s=σY

n ,t=σY
n+1

]
,

which by the estimate (2.18) and the strong Markov property at time σY
n is smaller

than

cEG
y0

[
Yn = y,

1 + σ1 ◦ θσY
n√

σY
n

]
(A1)≤ cEG

y0

[
Yn = y,

1√
σY

n

]
.

By (2.15) and (A1), the sum in (2.22) can be bounded by

c

∞∑
n=[ρ]

pG
n (y0,y)E

[
1√

e1 + · · · + en

]
≤ c

∞∑
n=[ρ]

pG
n (y0,y)

1√
n
,(2.23)

where we have used that E[1/(e1 +· · ·+en)] = 1/(n−1) for n ≥ 2 [note that e1 +
· · · + en is �(n,1)-distributed], together with Jensen’s inequality. By the bound
assumed in (2.21), this implies with (2.22) that

sup
d(x,(o,0))≤ρ0

d(x0,x)≥ρ

Px0[Hx < ∞] ≤ c(ρ0)

∞∑
n=[ρ]

n−1−ε.

Since the right-hand side tends to 0 as ρ tends to infinity, this proves both claims
in (2.14), provided (2.21) holds for Ĝm and Gm in place of G. In fact, (2.21)
does hold for G = Ĝm by assumption (A9), and also holds for G = Gm by the
following argument: Consider any y0 ∈ Gm, y ∈ B(om,ρ0) and n ≥ 0. Choose N

sufficiently large such that rN − d(y0, om) > n and both y0 and y are contained
in B(om, rN) [cf. (A5)]. Using the isomorphism ψ̂ = ψm ◦ φ−1

m from B(om, rN) to
B(ôm, rN) ⊂ Ĝm, we deduce that

pGm
n (y0,y) = P Gm

y0

[
Yn = y, TB(om,rN−1) ≥ rN − d(y0, om)

]
= P

Ĝm

ψ̂(y0)

[
Yn = ψ̂(y), TB(ôm,rN−1) ≥ rN − d(y0, om)

]
(2.24)

≤ pĜm
n (ψ̂(y0), ψ̂(y)) ≤ c(ρ0)n

−1/2−ε,

using assumption (A9) in the last step. This concludes the proof of Lem-
ma 2.3. �
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3. Auxiliary results on excursions and local times. In this section, we re-
produce a suitable version of the partially inhomogeneous grids on Z introduced
in Section 2 of [17]. These grids allow to relate excursions of the walk Z asso-
ciated to the grid points to the total time elapsed and to the local time L̂ of Z.
This is essentially the content of Proposition 3.3 below, quoted from [17]. We then
complement this result with an estimate relating the local time L̂ of Z to the local
time L of the continuous-time process Z in Lemma 3.4.

For integers 1 ≤ dN ≤ hN and points z∗
l,N , 1 ≤ l ≤ M , in Z (to be specified

below), we define the intervals

Il = [z∗
l − dN, z∗

l + dN ] ⊆ Ĩl = (z∗
l − hN, z∗

l + hN),(3.1)

dropping the N from z∗
l,N for ease of notation. The collections of these intervals

are denoted by

I = {Il,1 ≤ l ≤ M} and Ĩ = {Ĩl ,1 ≤ l ≤ M}.(3.2)

The anisotropic grid GN ⊂ Z, is defined as in [17], (2.4):

GN = G∗
N ∪ G 0 where G∗

N = {z∗
l ,1 ≤ l ≤ M} and

(3.3)
G 0

N = {z ∈ 2hNZ : |z − z∗
l | ≥ 2hN, for 1 ≤ l ≤ M}.

It remains to choose dN , hN and z∗
l . In [17], no upper bound other than o(|GN |)

is needed on the distance between neighboring grid points, but we want an upper
bound not much larger than λ

−1/2
N . A consequence of this requirement is that unlike

in [17], we may attach several points z∗
l to the same limit vm in (A4). We satisfy

this requirement by a judicious choice such that

λ
−1/2
N |GN |ε/8 ≤ dN, dN = o(hN),hN ≤ λ

−1/2
N |GN |ε/4,(3.4)

min
1≤l<l′≤M

|z∗
l − z∗

l′ | ≥ 100hN and(3.5)

{z1, . . . , zM} ⊆
M⋃
l=1

[
z∗
l − [dN/2], z∗

l + [dN/2]]
(3.6)

for all N ≥ c(ε,M).

PROPOSITION 3.1. Points z∗
1, . . . , z

∗
M in Z and sequences dN , hN in N satis-

fying (3.4)–(3.6) exist.

The proof of Proposition 3.1 is a consequence of the following simple lemma,
asserting that for prescribed numbers a ≥ 1 and b ≥ 2 any M points in a metric
space can be covered by balls of radius between a and b2Ma, such that the balls
with radius multiplied by b are disjoint and no more than M balls are required.
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LEMMA 3.2. Let X be a metric space and x1, . . . , xM , M ≥ 1, points in X .
Consider real numbers a ≥ 1 and b ≥ 2. Then for some M∗ ≤ M and a ≤ p ≤
b2Ma, there are points {x∗

1 , . . . , x∗
M∗} in X such that⋃

1≤i≤M∗
B(x∗

i , p) ⊇ {x1, . . . , xM} and the balls (B(x∗
i , bp))

M∗
i=1 are disjoint,

where B(x, r) denotes the closed ball of radius r ≥ 0 centered at x ∈ X .

PROOF OF PROPOSITION 3.1. Lemma 3.2, applied with X = Z and the
points z1, . . . , zM with a = [λ−1/2

N |G|ε/8] and b = [(|G|ε/8)1/(2M+1)], yields
points z∗

1, . . . , z
∗
M∗ in Z and a p between a and b2Ma such that (3.4)–(3.6) hold

for dN = [2p], hN = [bp/100] and M∗ in place of M . The additional points
z∗
M∗+1, . . . , z

∗
M can be chosen arbitrarily subject only to (3.5). �

PROOF OF LEMMA 3.2. For m ≥ 0, set

km = min

{
k ≥ 0 : for some x′

1, . . . , x
′
k in X ,

k⋃
i=1

B(x′
i , b

2ma) ⊇ {x1, . . . , xM}
}
,

and denote points for which the minimum is attained by xm
1 , . . . , xm

km
. The first

observation on km is that clearly 1 ≤ km ≤ M . The second observation is that

either the balls B(xm
i , b2m+1a), 1 ≤ i ≤ km, are disjoint, or

km+1 < km, for m ≥ 0.

Indeed, assume that x̄ ∈ B(xm
i , b2m+1a) ∩ B(xm

j , b2m+1a) for 1 ≤ i < j ≤ km.

Then since b ≥ 2, the km − 1 balls of radius b2(m+1)a centered at ({xm
1 , . . . , xm

km
} ∪

{x̄})\ {xm
i , xm

j } still cover {x1, . . . , xM}. Thanks to these two observations, we may
define

m∗ = min{m ≥ 0 : the balls B(xm
i , b2m+1a),1 ≤ i ≤ km are disjoint} ≤ M,

and set M∗ = km∗ , x∗
i = x

m∗
i for 1 ≤ i ≤ M∗ and p = b2m∗a. �

The grids GN we consider from now on are specified by (3.1)–(3.6). In order to
define the associated excursions, we define the sets C and O , whose components
are intervals of radius dN and hN , centered at the points in the grid GN , that is,

C = GN + [−dN, dN ] ⊂ O = GN + (−hN,hN).(3.7)

The times Rn and Dn of return to C and departure from O of the process Z are
defined as

R1 = HC,D1 = TO ◦ θR1 + R1, and for n ≥ 1,
(3.8)

Rn+1 = R1 ◦ θDn + Dn, Dn+1 = D1 ◦ θDn + Dn,
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so that 0 ≤ R1 < D1 < · · · < Rn < Dn, P Z
z -a.s. For later use, we denote for any

α > 0,

tN = EZ
0
[
T(−hN+dN ,hN−dN )

]+ EZ
dN

[
T(−hN,hN)

]
(3.9)

= (hN − dN)2 + h2
N − d2

N,

σN = [α|G|2/tN ], k∗(N) = σN − [σ 3/4
N ],

(3.10)
k∗(N) = σN + [σ 3/4

N ],
where we will often drop the N from now on. We come to the crucial result on
these returns and departures from [17], relating the times Dk to the total time
elapsed (3.11) and to the local time L̂ of Z [(3.12)–(3.14)].

PROPOSITION 3.3. Assuming (A2),

lim
N

P Z
0 [Dk∗ ≤ α|GN |2 ≤ Dk∗] = 1.(3.11)

lim
N

sup
z∈C

EZ
0
[(∣∣L̂z

[α|GN |2] − L̂z
Dk∗
∣∣/|GN |)∧ 1

]= 0.(3.12)

sup
N

max
I∈I

hN

|GN |E
Z
0

[ ∑
1≤k≤k∗

1{ZRk
∈I }
]

< ∞.(3.13)

lim
N

max
I∈I

sup
z∈I

EZ
0

[∣∣∣∣L̂z
Dk∗ − hN

∑
1≤k≤k∗

1{ZRk
∈I }
∣∣∣∣
]/

|GN | = 0.(3.14)

PROOF. The above statement is proved by Sznitman in [17]. Indeed, in [17],
the author considers three sequences of nonnegative integers (aN)N≥1, (hN)N≥1,
(dN)N≥1, such that

lim
N

aN = lim
N

hN = ∞ and
(3.15)

dN = o(hN), hN = o(aN)
(
cf. (2.1) in [17]

)
,

as well as sequences z∗
l,N of points in Z satisfying (3.5) (cf. (2.2) in [17]). The grids

GN are then defined as in (3.3) (cf. (2.4) in [17]) and the corresponding sets C

and O as in (3.7) (cf. (2.5) in [17]). For any γ ∈ (0,1], z ∈ Z, Sznitman in [17] then
introduces the canonical law Q

γ
z on ZN of the random walk on Z which jumps to

one of its two neighbors with probability γ /2 and stays at its present location with
probability 1 − γ . The times (Rn)n≥1 and (Dn)n≥0 of return to C and departure
from O are introduced in (2.9) of [17], exactly as in (3.8) above. The sequences
tN , σN , k∗(N), k∗(N) are defined in (2.10)–(2.12) of [17] as in (3.9) and (3.10)
above, with |GN | replaced by aN and EZ· replaced by the Q

γ· -expectation E
γ· .

Under these conditions, the statements (3.11)–(3.14) are proved in [17], Propo-
sition 2.1, with |GN | replaced by aN and P Z

0 and EZ
0 replaced by P

γ
0 and E

γ
0 .
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All we have to do to deduce the above statements is to choose γ = 1 and
aN = |GN | in Proposition 2.1 of [17], noting that (3.15) is then satisfied, by (3.4)
and (A2). �

We now relate the local time of Z to the local time of the continuous-time
process Z.

LEMMA 3.4.

sup
z∈Z

EZ
0

[
L̂z

[α|GN |2]
]≤ c(α)|GN | for α > 0.(3.16)

lim
N

sup
z∈Z

EZ
0

[(∣∣Lz

α|GN |2 − L̂z

[α|GN |2]
∣∣/|GN |)∧ 1

]= 0.(3.17)

PROOF. For (3.16), apply the bound P0[Zn = z] ≤ c/
√

n (cf. (2.20)), see
(2.34) in [17].

We write T = α|G|2. By the strong Markov property applied at time σ Z[T ] ∧ T ,

EZ
0
[∣∣Lz

σZ[T ]
− Lz

T

∣∣]= EZ
0

[∫ σZ[T ]∨T

σZ[T ]∧T
1{Zs=z} ds

]

≤ sup
z0∈Z

EZ
z0

[∫ |σZ[T ]−T |
0

1{Zs=z} ds

]
(3.18)

≤
∫ T 2/3

0
sup
z0∈Z

P Z
z0

[Zs = z]ds + EZ
0
[(

σ Z[T ] − T
)2]

/T 2/3,

using the Chebyshev inequality in the last step. By the bound (2.18) on P Z
z0

[Zs = z]
and a bound of cT on the variance of the �([T ],1)-distributed variable σ Z[T ], the
right-hand side of (3.18) is bounded by cT 1/3. Hence, the expectation in (3.17) is
bounded by

c(α)|G|−1/3 + EZ
0
[(∣∣Lz

σZ[T ]
− L̂z

[T ]
∣∣/|G|)∧ 1

]
.(3.19)

The strategy is to now split up the last expectation into expectations on the events

A1 = {δ|G| ≤ L̂z
[T ] ≤ θ |G|}, A2 = {L̂z

[T ] < δ|G|},
A3 = {L̂z

[T ] > θ |G|}, 0 < δ < θ.

In this way, one obtains the following bound on (3.19):

c(α)|G|−1/3 + EZ
0

[
A1,

(∣∣∣∣∣
[T ]−1∑
n=0

(σ Z
n+1 − σ Z

n − 1)1{Zn=z}
∣∣∣∣∣
/

|G|
)

∧ 1

]

(3.20)
+ 2δ + P Z

0 [A3],
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where we have used the fact that (σ Z
n+1 − σ Z

n )n≥0 are i.i.d. exp(1) variables inde-
pendent of Z to bound the expectation on A2 by 2δ. By Chebyshev’s inequality
and (3.16),

P Z
0 [A3] ≤ EZ

0
[
L̂z

[α|G|2]
]
/(θ |G|) ≤ c(α)/θ.

In order to bound the expectation in (3.20), we apply Fubini’s theorem to obtain

EZ
0

[
A1,

(∣∣∣∣∣
[T ]−1∑
n=0

(σ Z
n+1 − σ Z

n − 1)1{Zn=z}
∣∣∣∣∣
/

|G|
)

∧ 1

]
≤ EZ

0

[
A1, f

(
L̂z

[T ]
) L̂z

[T ]
|G|

]
,

where for any l ≥ 1, f (l) = EZ
0

[(∣∣∣∣∣
l−1∑
n=0

(σ Z
n+1 − σ Z

n − 1)

∣∣∣∣∣
/

l

)
∧ (|G|/l)

]
.

Collecting the above estimates and using the definition of A1, we have found the
following bound on the expectation in (3.17) for any z ∈ Z:

c(α)|G|−1/3 + θ sup
l≥δ|G|

f (l) + 2δ + c(α)

θ
.

Note that this expression does not depend on z, so it remains unchanged after
taking the supremum over all z ∈ Z. Since moreover supl≥δ|G| f (l) tends to 0 as
|G| tends to infinity by the law of large numbers and dominated convergence, this
shows that the left-hand side of (3.17) (with lim replaced by lim sup) is bounded
from above by 2δ + c(α)/θ . The result follows by letting δ tend to 0 and θ to
infinity. �

Consider now the times Rn and Dn, defined as the continuous-time analogs of
the times Rn and Dn in (3.8):

Rn = σ Z
Rn

and Dn = σ Z
Dn

for n ≥ 1,

so that the times Rn and Dn coincide with the successive times of return to C and
departure from O for the process Z. We record the following observation.

LEMMA 3.5. For any sequence aN ≥ 0 diverging to infinity,

lim
N

sup
z∈Z

EZ
z [|DaN

/DaN
− 1| ∧ 1] = 0.(3.21)

PROOF. We define the function g : N → R by g(n) =∑n
i=1(σ

Z
i − σ Z

i−1)/n,
so that DaN

/DaN
= g(DaN

). By independence of the two sequences (σ Z
n )n≥1 and

(Dn)n≥1, Fubini’s theorem yields

sup
z∈Z

EZ
z [|DaN

/DaN
− 1| ∧ 1] = sup

z∈Z

EZ
z

[
EZ

0 [|g(n) − 1| ∧ 1]∣∣n=DaN

]
,(3.22)

where we have used that the distribution of (σ Z
n )n≥1 is the same under all measures

P Z
z , z ∈ Z. Fix any ε > 0. By the law of large numbers, the EZ

0 -expectation in
(3.22) is less than ε for all n ≥ c(ε). Hence, for any N such that c(ε) ≤ aN , we
have c(ε) ≤ aN ≤ DaN

and the expression in (3.22) is less than ε. �
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4. Excursions are almost independent. The purpose of this section is to de-
rive an estimate on the continuous-time excursions (X[Rk,Dk])1≤k≤k∗ between C

and the complement of O . The main result is Lemma 4.3, showing that these ex-
cursions can essentially be replaced by independent excursions after conditioning
on the Z-projections of the successive return and departure points. The reason is
that the GN -component of X has enough time to mix and become close to uni-
formly distributed between every departure and subsequent return, thanks to the
choice of hN in the definition of the grids GN , see (3.4). The following estimate is
the crucial ingredient.

PROPOSITION 4.1.

sup
y,y′∈GN

∣∣∣∣qGN
t (y, y′) − 1

|GN |
∣∣∣∣≤ e−λN t for t ≥ 0.(4.1)

PROOF. If wy = 1 for all y ∈ G, then the statement is immediate from [12],
Corollary 2.1.5, page 328. As we now show, the argument given in [12] extends to
the present context. For any |G| × |G| matrix A and real-valued function f on G,
we define the function Af by

Af (y) = ∑
y′∈G

Ay,y′f (y′).

We define the matrices K and W by Ky,y′ = pG(y, y′) and Wy,y′ = wyδy=y′ , for y,
y′ ∈ G. Then we claim that for any real-valued function f on G,

Ey[f (Yt )] = Htf (y) where Ht = e−tW(I−K), t ≥ 0.(4.2)

In words, this claim asserts that the infinitesimal generator matrix Q of the Markov
chain (Yt )t≥0 is given by Q = −W(I − K), an elementary fact that is proved
in [10], Theorem 2.8.2, page 94. Recall the definition of the Dirichlet form D
from (2.8). Let us also define the inner product of real-valued functions f and g

on G by

〈f,g〉 = ∑
y∈G

f (y)g(y)|G|−1.

Then elementary computations show that

d

dt
μ((Htf )2) = −2〈W(I − K)Htf,Htf 〉 = −2D(Htf,Htf ).

This equation implies that the function u, defined by u(t) = varμ(Htf ), t ≥ 0,
satisfies

u′(t) = −2D
(
Ht

(
f − μ(f )

)
,Ht

(
f − μ(f )

)) (2.9)≤ −2λNu(t), t ≥ 0,
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hence by integration of of u′/u,

varμ(Htf ) = u(t) ≤ e−2λN tu(0) = e−2λN t varμ(f ).(4.3)

Using symmetry of qG
t (·, ·), (4.2) and the Cauchy–Schwarz inequality for the first

estimate, we obtain for any t ≥ 0 and y, y′ ∈ G,∣∣|G|qG
t (y, y′) − 1

∣∣ =
∣∣∣∣ ∑
y′′∈G

(|G|qG
t/2(y, y′′) − 1

)(|G|qG
t/2(y

′′, y′) − 1
) 1

|G|
∣∣∣∣

≤ varμ(Ht/2|G|δy(·))1/2 varμ(Ht/2|G|δy′(·))1/2

(4.3)≤ e−λN t varμ(|G|δy(·))1/2 varμ(|G|δy′(·))1/2

= e−λN t (|G| − 1).

Dividing both sides by |G|, we obtain (4.1). �

Next, we show that the time between any departure and successive return indeed
is typically much longer than the relaxation time λ−1

N of Y.

LEMMA 4.2.

lim sup
N

|GN |−ε/16 log sup
k≥2

P Z
0 [Rk − Dk−1 ≤ λ−1

N |GN |ε] < 0.(4.4)

PROOF. By (3.4), we may assume that N is large enough so that dN < hN/2.
We put

γ = 2λ−1
N |GN |ε/8,

so that γ diverges as N tends to infinity [see below (A1)], and define the stopping
times (Un)n≥1 as the times of successive displacements of Z at distance [√γ ], that
is,

U1 = inf
{
t ≥ 0 : |Zt − Z0| ≥ [√γ

]}
and for n ≥ 2,

Un = U1 ◦ θUn−1 + Un−1.

To get from a point in Oc to C, Z has to travel a distance of at least hN/2 ≥
[hN/(2

√
γ )][√γ ]. As a consequence, Rk − Dk−1 ≥ U[hN/(2

√
γ )] ◦ θDk−1 and it fol-

lows from the strong Markov property applied at time Dk−1, then inductively at
the times U[hN/(2

√
γ )]−1, . . . ,U1 that

P Z
0 [Rk − Dk−1 ≤ γ ] ≤ eEZ

0
[
exp
{−U[hN/(2

√
γ )]/γ

}]
(4.5)

≤ e(EZ
0 [exp{−U1/γ }])[hN/(2

√
γ )].

Since U1 = T(−[√γ ],[√γ ]) = σ Z
T(−[√γ ],[√γ ]) , we find with independence of (σ Z

n )n≥0

and T(−[√γ ],[√γ ]),

EZ
0 [exp{−U1/γ }] = EZ

0
[
(1 − 1/γ )

T(−[√γ ],[√γ ])],
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by computing the moment generating function of the �(n,1)-distributed vari-
able σ Z

n . By the invariance principle, the last expectation is bounded from above by
1 − c for some constant c > 0. Inserting this bound into (4.5) and using the bound
hN ≥ c

√
γ |GN |ε/16 from (3.4), we find (4.4). �

We finally come to the announced result, which is similar to Proposition 3.3
in [17]. We introduce, for G any one of the graphs GN , Z or GN × Z, the
spaces P(G)f of right-continuous functions from [0,∞) to G with finitely many
discontinuities, endowed with the canonical σ -algebras generated by the finite-
dimensional projections. The measurable functions (·)s1

s0 from P(G) to P(G)f are
defined for 0 ≤ s0 < s1 by

((w)s1
s0

)t = w(s0+t)∧s1, t ≥ 0.(4.6)

Given z ∈ C and z′ with Pz[ZD1 = z′] > 0, for Pz defined in (2.4) (in other words
z′ ∈ ∂Ĩ if ∂Ĩ is the connected component of O containing z), we set

Pz,z′ = Pz[·|ZD1 = z′].(4.7)

LEMMA 4.3. For any measurable functions fk : P(GN)f × P(Z)f → [0,1],
1 ≤ k ≤ k∗,

lim
N

∣∣∣∣E
[ ∏

1≤k≤k∗
fk((X)

Dk
Rk

)

]
− EZ

0

[ ∏
1≤k≤k∗

EZRk
,ZDk

[fk((X)
D1
0 )]
]∣∣∣∣= 0.(4.8)

PROOF. Consider first arbitrary measurable functions gk : P(G)f → [0,1],
1 ≤ k ≤ k∗, real numbers 0 ≤ s1 < s′

1 < · · · < sk∗ < s′
k∗ < ∞ and set

Hk = gk((Y)
s′
k

sk ).

With the simple Markov property applied at time sk∗ , then at time sk∗−1, one ob-
tains

EG

[ ∏
1≤k≤k∗

Hk

]
= EG

[( ∏
1≤k≤k∗−1

Hk

)
EG

Ysk∗
[gk∗((Y)

s′
k∗−sk∗

0 )]
]

= EG

[( ∏
1≤k≤k∗−1

Hk

)∑
y∈G

qG
sk∗−s′

k∗−1
(Ysk∗−1, y)

]

× EG
y [gk∗((Y)

s′
k∗−sk∗

0 )].
With the estimate (4.1) on the difference between the transition probability of Y
inside the expectation and the uniform distribution and the fact that gk ∈ [0,1], it
follows that ∣∣∣∣EG

[ ∏
1≤k≤k∗

Hk

]
− EG

[ ∏
1≤k≤k∗−1

Hk

]
EG[gk∗((Y)

s′
k∗−sk∗

0 )]
∣∣∣∣

≤ c|G| exp{−(sk∗ − s′
k∗−1)λN }.
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By induction, we infer that∣∣∣∣EG

[ ∏
1≤k≤k∗

gk((Y)
s′
k

sk )

]
− ∏

1≤k≤k∗
EG[gk((Y)

s′
k−sk

0 )]
∣∣∣∣

(4.9)
≤ c|G| ∑

2≤k≤k∗
e−(sk−s′

k−1)λN .

Let us now consider the first expectation in (4.8). By Fubini’s theorem, we find
that

E

[ ∏
1≤k≤k∗

fk((X)
Dk
Rk

)

]
= EZ

0

[
EG

[ ∏
1≤k≤k∗

fk((Y)
s′
k

sk , (z̄)
s′
k

sk )

]∣∣∣∣
(z̄)

s′
k

sk
=(Z)

Dk
Rk

]
.

Observe that (4.9) applies to the EG-expectation with gk(·) = fk(·, (z̄)s
′
k

sk ), and
yields ∣∣∣∣E

[ ∏
1≤k≤k∗

fk((X)
Dk
Rk

)

]
− EZ

0

[ ∏
1≤k≤k∗

EG[fk((Y)
s′
k−sk

0 , (Z)
Dk
Rk

)
]]∣∣∣∣

(4.10)
≤ c|G| ∑

2≤k≤k∗
EZ

0
[
e−(Rk−Dk−1)λN

]
.

Note that for large N , the last term can be bounded with the estimate (4.4) on
Rk − Dk−1: ∑

2≤k≤k∗
EZ

0
[
e−(Rk−Dk−1)λN

] ≤ ck∗ exp{−c′|G|cε}
(4.11)

(3.10)≤ c(α)|G|c exp{−c′|G|cε}.
It thus only remains to show that the second expectation on the left-hand side of
(4.10) is equal to the second expectation in (4.8). Note that for any measurable
functions hk : P(Z)f → [0,1], 1 ≤ k ≤ k∗ and points z1, . . . , zk∗ , z′

1, . . . , z
′
k∗ in Z

such that P Z
zk

[ZD1 = z′
k] > 0 for 1 ≤ k ≤ k∗, one has by two successive inductive

applications of the strong Markov property at the times Rk∗,Dk∗−1,Rk∗−1, . . . ,D1,
with the convention Pz′

0
= P ,

EZ
0

[ ⋂
1≤k≤k∗

{ZRk
= zk,ZDk

= z′
k},

∏
1≤k≤k∗

hk((Z)
Dk
Rk

)

]

= ∏
1≤k≤k∗

(
P Z

z′
k−1

[ZR1 = zk]Ezk,z
′
k
[hk((Z)

D1
0 )]P Z

zk
[ZD1 = z′

k]
)

= P Z
0

[ ⋂
1≤k≤k∗

{ZRk
= zk,ZDk

= z′
k}
] ∏

1≤k≤k∗
Ezk,z

′
k
[hk((Z)

D1
0 )].
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Summing this last equation over all zk , z′
k as above, one obtains

EZ
0

[ ∏
1≤k≤k∗

hk((Z)
Dk
Rk

)

]
= EZ

0

[ ∏
1≤k≤k∗

EZRk
,ZDk

[hk((Z)
D1
0 )]
]
.

Applying this equation with

hk((Z)
Dk
Rk

) = EG[fk((Y)
s′
k−sk

0 , (z̄)
s′
k

sk )]|(z̄)s′·s· =(Z)
Dk
Rk

,

substituting the result into (4.10) and remembering (4.11), we have shown (4.8).
�

5. Proof of the result in continuous time. The purpose of this section is to
prove in Theorem 5.1 the continuous-time version of Theorem 1.1. Let us ex-
plain the role of the crucial estimates appearing in Lemmas 5.2 and 5.3. Under
the assumptions (A1)–(A10), these lemmas exhibit the asymptotic behavior of
the Pz,z′-probability [see (4.7)] that an excursion of the path X visits vertices in
the neighborhoods of the sites xm contained in a box GN × I . It is in particular
shown that the probability that a set Vm in the neighborhood of xm is visited equals
capm(�m(Vm))hN/|GN |, up to a multiplicative factor tending to 1 as N tends to
infinity. This estimate is similar to a more precise result proved by Sznitman for
GN = (Z/NZ)d in Lemma 1.1 of [18], where an identity is obtained for the same
probability, if the distribution of the starting point of the excursion is the uniform
distribution on the boundary of GN × Ĩ (rather than the uniform distribution on
GN × {z}).

According to the characterization (1.5), these crucial estimates show that the
law of the vertices in the neighborhood of xm not visited by such an excursion is
comparable to Q

Gm×Z
hN/|GN |. In Lemma 4.3 of the previous section, we have seen that

different excursions of the form (X)
Dk
Rk

, conditioned on the entrance and departure
points of the Z-projection, are close to independent for large N . According to the
observation outlined in the last paragraph, the level of the random interlacement
appearing in the neighborhood of xm at time α|GN |2 is hence approximately equal
to hN/|GN | times the number of excursions to the interval I performed until time
α|GN |2. As we have seen in Proposition 3.3 and Lemma 3.4, this quantity is close
to the local time L̂

zm

α|GN |2/|GN | for large N . An invariance principle for local times
due to Révész [11] [with assumption (A4)] serves to identify the limit of this quan-
tity, hence the level of the random interlacement appearing in the large N limit, as
L(vm,α). This strategy will yield the following result.

THEOREM 5.1. Assume that (A1)–(A10) are satisfied. Then the graphs Gm ×
Z are transient and as N tends to infinity, the

∏M
m=1{0,1}Gm ×RM+ -valued random

variables (
ω

1,N

ηX
α|GN |2

, . . . ,ω
M,N

ηX
α|GN |2

,
Lz1
α|GN |2
|GN | , . . . ,

LzM

α|GN |2
|GN |

)
, α > 0,
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defined by (1.4), (2.6), with rN and φm,N chosen in (5.1) and (5.2), converge in joint
distribution under P to the law of the random vector (ω1, . . . ,ωM,U1, . . . ,Um)

with the following distribution: (Um)Mm=1 is distributed as (L(vm,α))Mm=1 under W ,
and conditionally on (Um)Mm=1, the random variables (ωm)Mm=1 have joint distrib-

ution
∏

1≤m≤M Q
Gm×Z
Um

.

PROOF. The transience of the graphs Gm ×Z is an immediate consequence of
Lemma 2.3. To define the local pictures in (1.4), we choose the rN in (1.3) as

rN =
(

min
1≤m<m′≤M

d(xm,N , xm′,N ) ∧ rN ∧ dN

)
/3, cf. (A3), (A5), (3.4)(5.1)

and φm,N as the restriction of the isomorphism in (A5) to B(ym,N, rN).(5.2)

Then the local pictures in (1.4) are defined. We set

Bm,N = B(xm,N, rN − 1) and Bm,N = �m,N(Bm,N) for rN ≥ 1.(5.3)

From now on, we drop N from the notation in φm,N , Bm,N and Bm,N for simplicity.
Our present task is to show that for arbitrarily chosen finite subsets Vm of Gm ×Z,

AN(α|GN |2, α|GN |2) → A(α) for any θm ∈ R+, 1 ≤ m ≤ M ,(5.4)

where for times s, s ′ ≥ 0 and Vm = �−1
m Vm [well-defined for large N , see (2.10)],

AN(s, s′) = E

[ ∏
1≤m≤M

1{HVm>s} exp
{
− θm

|GN |L
zm

s′

}]
and(5.5)

A(α) = EW

[
exp
{
− ∑

1≤m≤M

L(vm,α)
(
capm(Vm) + θm

)}]
.(5.6)

Theorem 5.1 then follows, as a result of the equivalence of weak convergence
and convergence of Laplace transforms (see for example [3], pages 189–191), the
compactness of the set of probabilities on

∏
m{0,1}Gm×Z, and the fact that the

canonical product σ -algebra on
∏

m{0,1}Gm×Z is generated by the π -system of
events

⋂M
m=1{ω(x) = 1, for all x ∈ Vm}, with Vm varying over finite subsets of

Gm × Z.
We first introduce some additional notation and state some inclusions we shall

use. For any interval I ∈ I [cf. (3.2)], we denote by JI the set of indices m such
that zm ∈ I :

JI =
{ {1 ≤ m ≤ M : zm,N ∈ I } if I ∩ {z1,N , . . . zM,N } �= ∅,

∅ otherwise.
(5.7)

Note that the set JI depends on N . Indeed, so does the labelling of the intervals Il

in I . It follows from the definition of rN that

the balls (B̄m)1≤m≤M are disjoint, cf. (5.3).(5.8)
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Since the sets Vm are finite, we can choose a parameter κ > 0 such that Vm ⊂
B((om,0), κ) for all m and N . Since rN tends to infinity with N , there is an N0 ∈ N

such that for all N ≥ N0, we have rN ≥ 1 as well as for all I ∈ I and m ∈ JI ,

Vm ⊂ B((om,0), κ) ⊂ Bm ⊂ B(om, rN − 1) × Z

↓ �−1
m ↓ �−1

m ↓ �−1
m

Vm ⊂ B(xm, κ) ⊂ Bm

(5.1)⊂ B(ym, rN − 1) × I
(A6)⊆ Cm × I.

(5.9)

Since dN = o(|GN |) [cf. (3.4), (A2)], any two sequences zm that are contained in
the same interval I ∈ I infinitely often, when divided by |GN |, must converge to
the same number vm, cf. (A4). By A8, we can hence increase N0 if necessary, such
that for all N ≥ N0,

for m and m′ in JI , either Cm = Cm′ or Cm ∩ Cm′ = ∅.(5.10)

We use VI,m to denote the union of all sets Vm′ included in Cm × I and VI for the
union of all Vm included in GN × I , that is,

VI,m = ⋃
m′∈JI :Cm′=Cm

Vm′ ⊂ Cm × I and VI = ⋃
m∈JI

Vm

(5.9)⊂ GN × I,(5.11)

with the convention that the union of no sets is the empty set.
The proof of (5.4) uses three additional Lemmas that we now state. The first two

lemmas show that the probability that the continuous-time random walk X started
from the boundary of GN ×I hits a point in the set VI ⊂ GN ×I [cf. (5.11)] before
exiting G × Ĩ behaves like hN/|GN | times the sum of the capacities of those sets
Vm whose preimages under �m are subsets of GN × I .

LEMMA 5.2. Under (A1)–(A10), for N ≥ N0 [cf. (5.9), (5.10)], any I ∈ I ,
I ⊂ Ĩ ∈ Ĩ , z1 ∈ ∂(I c) and z2 ∈ ∂Ĩ ,

1 − c
dN

hN

≤ Pz1,z2[HVI
< T

B̃
]
(

hN

|GN | cap
B̃
(VI )

)−1

≤ 1 + c
dN

hN

,(5.12)

where B̃ = GN × Ĩ and cap
B̃
(VI ) =∑x∈VI

Px[TB̃
< H̃VI

]wx.

LEMMA 5.3. With the assumptions and notation of Lemma 5.2,

lim
N

max
I∈I

∣∣∣∣ cap
B̃
(VI ) − ∑

m∈JI

capm(Vm)

∣∣∣∣= 0.(5.13)

The next lemma allows to disregard the the effect of the random walk trajectory
until time D1, cf. (5.15), as well as the difference between Dk∗ and Dk∗ , cf. (5.16).
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LEMMA 5.4. Assuming (A1),

lim
N

sup
z∈Z,x∈GN×Z

Pz[Hx ≤ Dk∗−k∗] = 0.(5.14)

lim
N

sup
z∈Z

Pz[H⋃I VI
≤ D1] = 0.(5.15)

lim
N

E

[∣∣∣∣ ∏
1≤m≤M

1{HVm>Dk∗ } − ∏
1≤m≤M

1{HVm>Dk∗ }
∣∣∣∣
]

= 0.(5.16)

Before we prove Lemmas 5.2–5.4, we show that they allow us to deduce The-
orem 5.1. Throughout the proof, we set T = α|GN |2 and say that two sequences
of real numbers are limit equivalent if their difference tends to 0 as N tends to
infinity. We first claim that in order to show (5.4), it is sufficient to prove that

A′
N = AN(Dk∗, T ) → A(α) for α > 0.(5.17)

Indeed, by (5.16), the statement (5.17) implies that also

lim
N

AN(Dk∗, T ) = A(α) for α > 0.(5.18)

Now recall that Dk∗ ≤ T ≤ Dk∗ with probability tending to 1 by (3.11). Together
with (3.21), it follows that

lim
N

P Z
0 [(1 − δ)Dk∗ ≤ T ≤ (1 + δ)Dk∗] = 1 for any δ > 0.

Monotonicity in both arguments of AN(·, ·), (5.17) and (5.18) hence yield

lim sup
N

AN

(
T/(1 − δ), T /(1 − δ)

)≤ lim sup
N

AN(Dk∗, T ) = A(α) and

lim inf
N

AN

(
T/(1 + δ), T /(1 + δ)

)≥ lim inf
N

AN(Dk∗, T ) = A(α)

for 0 < δ < 1.

Replacing α by α(1 − δ) and α(1 + δ), respectively, we deduce that

A
(
α(1 + δ)

)≤ lim inf
N

AN(T ,T ) ≤ lim sup
N

AN(T ,T ) ≤ A
(
α(1 − δ)

)
,

for α > 0 and 0 < δ < 1, from which (5.4) follows by letting δ tend to 0 and using
the continuity of A(·). Hence, it suffices to show (5.17). By (3.17), A′

N is limit
equivalent to

E

[
1∩m{HVm>Dk∗ } exp

{
− ∑

1≤m≤M

θm

|GN | L̂
zm[T ]

}]
,(5.19)

which by (5.15) remains limit equivalent if the event
⋂

m{HVm > Dk∗} is replaced
by

A = {for all 2 ≤ k ≤ k∗, whenever ZRk
∈ I for some I ∈ I,X[Rk,Dk] ∩ VI = ∅

}
,

cf. (3.2).
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Making use of (3.12) and (3.14) (together with ZRk
= ZRk

) we find that A′
N is limit

equivalent to

E

[
1A exp

{
− ∑

1≤l≤M

hN(
∑

m∈JIl
θm)

|GN |
∑

1≤k≤k∗
1{ZRk

∈Il}
}]

, cf. (5.7).(5.20)

Since hN = o(|GN |) [cf. (3.4), (A2)], this expectation remains limit equivalent if
we drop the k = 1 term in the second sum. In other words, the expression in (5.20)
is limit equivalent to [recall the notation from (4.6)]

E

[
k∗∏

k=2

f ((X)
Dk
Rk

)

]
, with f : P(GN)f × P(Z)f → [0,1] defined by

f (w) = ∏
1≤l≤M

(
1 − 1{w0∈GN×Il}1{w[0,∞)∩VIl

�=∅}
)

× exp
{
−

hN(
∑

m∈JIl
θm)

|GN | 1{w0∈GN×Il}
}
.

By Lemma 4.3 with f1 = 1, fk = f for 2 ≤ k ≤ k∗, A′
N is hence limit equivalent

to

EZ
0

[ ∏
2≤k≤k∗

EZRk
,ZDk

[f ((X)
D1
0 )]
]
.

The above expression equals

EZ
0

[ ∏
2≤k≤k∗
1≤l≤M

(
1 − 1{ZRk

∈Il}gl(ZRk
,ZDk

)
)

exp
{
−

hN(
∑

m∈JIl
θm)

|GN | 1{ZRk
∈Il}
}]

,(5.21)

where gl(z, z
′) = Pz,z′

[
X[0,D1] ∩ VIl

�= ∅
]
.

From (5.12), we know that

1 − c
dN

hN

≤ gl(ZRk
,ZDk

)

(
hN

|GN | cap
G×Ĩl

(VI )

)−1

≤ 1 + c
dN

hN

.(5.22)

With the inequality 0 ≤ e−u − 1 + u ≤ u2 for u ≥ 0, one obtains that∣∣∣∣ ∏
2≤k≤k∗
1≤l≤M

(
1 − 1{ZRk

∈Il}g
)− ∏

2≤k≤k∗
1≤l≤M

exp
{−1{ZRk

∈Il}g
}∣∣∣∣≤ ∑

2≤k≤k∗
1≤l≤M

1{ZRk
∈Il}g2,

where we have witten g in place of gl(ZRk
,ZDk

). The expectation of the right-
hand side in the last estimate tends to 0 as N tends to infinity, thanks to
(5.22) and (3.13). The expression in (5.21) thus remains limit equivalent to A′

N

if we replace 1 − 1{ZRk
∈Il}gl(ZRk

,ZDk
) by exp

{−1{ZRk
∈Il}gl(ZRk

,ZDk
)
}
. Using
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again (3.13), together with (5.13) and (5.22), we may then replace gl(ZRk
,ZDk

) by
hN|GN |
∑

m∈JIl
capm(Vm). We deduce that the following expression is limit equiva-

lent to A′
N :

EZ
0

[
exp
{
− ∑

1≤k≤k∗
1≤l≤M

∑
m∈JIl

hN

|GN |1{ZRk
∈Il}
(
capm(Vm) + θm

)}]
.

By (3.14) and (3.12), this expression is also limit equivalent to

EZ
0

[
exp
{
− ∑

1≤m≤M

1

|GN | L̂
zm[T ]
(
capm(Vm) + θm

)}]
.(5.23)

With Proposition 1 in [11], one can construct a coupling of the simple random
walk Z on Z with a Brownian motion on R such that for any ρ > 0,

n−1/4−ρ sup
z∈Z

∣∣L̂z
n − L(z,n)

∣∣ n→∞−→ 0, a.s.,

where L(·, ·) is a jointly continuous version of the local time of the canonical
Brownian motion. It follows that (5.23), hence A′

N is limit equivalent to

EW

[
exp
{
− ∑

1≤m≤M

1

|GN |L(zm, [α|GN |2])(capm(Vm) + θm

)}]
.(5.24)

By Brownian scaling, L(zm, [α|G|2])/|G| has the same distribution as

L(zm/|G|, [α|G|2]/|G|2).
Hence, the expression in (5.24) converges to A(α) in (5.6) by continuity of L and
convergence of zm/|G| to vm, see (A4). We have thus shown that A′

N → A(α) and
by (5.17) completed the proof of Theorem 5.1. �

We still have to prove Lemmas 5.2–5.4. To this end, we first show that the
random walk X started at ∂Cm × I typically escapes from GN × Ĩ before reaching
a point in the vicinity of xm. Here, the upper bound on hN in (3.4) plays a crucial
role.

LEMMA 5.5. Assuming (A1)–(A10), for any fixed vertex x= (y, z) ∈ Gm×Z,
intervals I ∈ I , I ⊂ Ĩ ∈ Ĩ [cf. (3.2)] and zm ∈ I ,

lim
N

sup
y0∈∂(Cc

m),z0∈Z

P(y0,z0)

[
H

�−1
m (x)

< T
GN×Ĩ

]= 0.(5.25)

[Note that �−1
m (x) is well-defined for large N by (A5).]
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PROOF. Consider any x0 = (y0, z0) with y0 ∈ ∂(Cc
m) and z0 ∈ Z. In order to

bound the expectation of T
G×Ĩ

, recall that T
Ĩ

denotes the exit time of the interval Ĩ

by the discrete-time process Z, so that T
G×Ĩ

can be expressed as T
Ĩ

plus the num-
ber of jumps Y makes until T

Ĩ
. Since Y and Z, hence ηY and σZ· , are independent

under Px0 , this implies with Fubini’s theorem and stochastic domination of ηY by
the Poisson process ηc1 [cf. (2.16)] that

Ex0[TG×Ĩ
] = EZ

z0

[
T

Ĩ
+ EG

y0
[ηY

σZ
T
Ĩ

]]≤ EZ
z0

[T
Ĩ
] + c1E

Z
z0

[σ Z
T

Ĩ
]

= (1 + c1)E
Z
z0

[T
Ĩ
] ≤ ch2

N,

using a standard estimate on one-dimensional simple random walk in the last step.
Hence, by the Chebyshev inequality and the bound (3.4) on hN ,

Px0[TG×Ĩ
≥ λ−1

N |G|ε] ≤ Ex0[TG×Ĩ
]λN |G|−ε ≤ ch2

NλN |G|−ε ≤ c|G|−ε/2.

The claim (5.25) thus follows from (A10). �

PROOF OF LEMMA 5.2. With z1, z2 as in the statement, we have by the strong
Markov property applied at the hitting time of VI ⊂ G × I (cf. (5.9)),

Pz1,z2[HVI
< T

B̃
] = Pz1[HVI

< T
B̃
,ZT

B̃
= z2]/P Z

z1
[ZT

Ĩ
= z2]

= Ez1

[
HVI

< T
B̃
, P Z

ZHVI

[ZT
Ĩ
= z2]]/P Z

z1
[ZT

Ĩ
= z2].

From (3.4) and the definition of the intervals I ⊂ Ĩ , it follows that

sup
z∈I

|P Z
z [ZT

Ĩ
= z2] − 1/2| ≤ cdN/hN,

hence from the previous equality that

(1 − cdN/hN)Pz1[HVI
< T

B̃
] ≤ Pz1,z2[HVI

< T
B̃
]

(5.26)
≤ Pz1[HVI

< T
B̃
](1 + cdN/hN).

Note that {HVI
< T

B̃
} = {HVI

< T
B̃
}, Pz1 -a.s. Summing over all possible locations

and times of the last visit of X to the set VI , one thus finds

Pz1[HVI
< T

B̃
] = ∑

x∈VI

∞∑
n=1

Pz1[{Xn = x,n < T
B̃
} ∩ (θX

n )−1{H̃x > T
B̃
}].

After an application of the simple Markov property to the probability on the right-
hand side, this last expression becomes

∑
x∈VI

Ez1

[ T
B̃∑

n=1

1{Xn=x}
]
Px[H̃x > T

B̃
]

= ∑
x=(y,z)∈VI

wxEz1

[∫ ∞
0

1{Yt=y}1{Zt=z,t<T
Ĩ
} dt

]
Px[H̃x > T

B̃
],
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because the expected duration of each visit to x by X is 1/wx . Exploiting indepen-
dence of Y and (Z,T

Ĩ
) and the fact that Yt is distributed according to the uniform

distribution on G under Pz1 , one deduces that

Pz1[HVI
< T

B̃
] = ∑

x=(y,z)∈VI

wx

|G|E
Z
z1

[∫ ∞
0

1{Zt=z,t<T
Ĩ
} dt

]
Px[H̃x > T

B̃
].(5.27)

Since the expected duration of each visit of Z to any point is equal to 1, we also
have

EZ
z1

[∫ ∞
0

1{Zt=z,t<T
Ĩ
} dt

]
= EZ

z1

[ T
Ĩ∑

n=0

1{Zn=z}
]

(5.28)
= P Z

z1
[Hz < T

Ĩ
]/P Z

z [H̃z > T
Ĩ
],

where we have applied the strong Markov property at Hz and computed the ex-
pectation of the geometrically distributed random variable with success parameter
P Z

z [H̃z > T
Ĩ
] in the last step. Standard arguments on one-dimensional simple ran-

dom walk (see for example [5], Section 3.1, (1.7), page 179) show with (3.4) that
the right-hand side of (5.28) is bounded from below by hN(1 − cdN/hN) and
from above by hN(1 + cdN/hN). Substituting what we have found into (5.27) and
remembering (5.26), we have proved (5.12). �

PROOF OF LEMMA 5.3. In order to prove (5.13), it suffices to show that

lim
N

max
m∈JI ,x∈Vm

∣∣P
�−1

m (x)
[T

B̃
< H̃VI

] − Pm
x [H̃Vm

= ∞]∣∣= 0.(5.29)

Indeed, since the sets Vm are disjoint by (5.8) and (5.9), assertion (5.29) implies
that

max
I∈I

∣∣∣∣ cap
B̃
(VI ) − ∑

m∈JI

capm(Vm)

∣∣∣∣
= max

I∈I

∣∣∣∣ ∑
m∈JI

∑
x∈Vm

(
P

�−1
m (x)

[T
B̃

< H̃VI
] − Pm

x [H̃Vm
= ∞])wx

∣∣∣∣−→ 0

as N → ∞.

The statement (5.29) follows from the two claims

lim
N

max
m∈JI ,x∈Vm

∣∣P
�−1

m (x)
[T

B̃
< H̃VI

] − P
�−1

m (x)
[TBm < H̃Vm]∣∣= 0 and(5.30)

lim
N

max
m∈JI ,x∈Vm

∣∣Pm
x [H̃Vm

= ∞] − P
�−1

m (x)
[TBm < H̃Vm]∣∣= 0.(5.31)

We first prove (5.30). It follows from the inclusions (5.9) that P
�−1

m (x)
-a.s.,

T
B̃

= TBm + T
Cm×Ĩ

◦ θX
TBm

+ T
B̃

◦ θX
T

Cm×Ĩ
◦ θX

TBm
.
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Since the sets Bm are disjoint [cf. (5.8)], the strong Markov property applied at the
exit times of Bm and Cm × Ĩ shows that for x = �−1

m (x) ∈ Vm,

Px[TB̃
< H̃VI

]
= Ex

[
TBm < H̃Vm,EXTBm

[
T

Cm×Ĩ
< HVI,m

,PXT
Cm×Ĩ

[T
B̃

< HVI
]]]

(5.32)
≥ Px[TBm < H̃Vm] inf

x0∈∂Bm

Px0[TCm×Ĩ
< HVI,m

]
× inf

x0∈∂(Cm×Ĩ )

Px0[TB̃
< HVI

].

We now show that a1 and a2 tend to 1 as N tends to infinity, where we have set

a1 = inf
x0∈∂Bm

Px0[TCm×Ĩ
< HVI,m

],
(5.33)

a2 = inf
x0∈∂(Cm×Ĩ )

Px0[TB̃
< HVI

].

Concerning a1, note first that

a1 ≥ 1 − M max
m′:Cm′=Cm

sup
x0∈∂Bm

Px0[HVm′ < T
Cm′×Ĩ

].(5.34)

With the strong Markov property applied at the entrance time of B̄m′ , recall that
B̄m is either identical to or disjoint from B̄m by (5.8), we can replace ∂Bm by
∂Bm′ on the right-hand side of (5.34). With this remark and the application of the
isomorphism �

zm′
m′ , one finds with (2.13) and ôm = ψm(ym) that

sup
x0∈∂Bm

Px0[HVm′ < T
Cm′×Ĩ

] ≤ sup
x0∈∂B((ôm′ ,0),rN−1)

P̂m′
x0

[
H

�
z
m′

m′ (Vm′ ) < T
�

z
m′

m′ (Cm′×Ĩ )

]

≤ sup
x0∈∂B((ôm′ ,0),rN−1)

P̂m′
x0

[
H

�
z
m′

m′ (Vm′ ) < ∞].
From �

zm
m (Vm) ⊂ �

zm
m (B(xm, κ)) = B((ôm,0), κ), see (5.9), and the left-hand es-

timate in (2.14), we see that the right-hand side tends to 0, and hence a1 tends
to 1 as N tends to infinity. We now show that a2 tends to 1 as well. The infimum
defining a2 can only be attained for points x0 = (y0, z0) with y0 ∈ ∂Cm (if z0 ∈ ∂Ĩ ,
the probability is equal to 1). Hence, we see that

a2 ≥ 1 − |VI | max
m′∈JI

max
x′∈Vm′

sup
y0∈∂Cm,z0∈Ĩ

P(y0,z0)

[
H

�−1
m′ (x′) < T

B̃

]
.(5.35)

By applying the strong Markov property at the entrance time of the set Cm′ × Ĩ

[which is either identical to or disjoint from Cm × Ĩ by (5.10)], it follows that the
supremum on the right-hand side of (5.35) is bounded from above by

sup
y0∈∂(Cc

m′ ),z0∈Ĩ

P(y0,z0)

[
H

�−1
m′ (x′) < T

B̃

]
,
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which tends to 0 by the estimate (5.25) of Lemma 5.5. Thus, both a1 and a2 in
(5.33) tend to 1 as N tends to infinity. With (5.32) and the Px-a.s. inclusion {T

B̃
<

H̃VI
} ⊆ {TBm < H̃Vm}, we have shown the announced claim (5.30).

To show (5.31), we apply the strong Markov property at the exit time of Bm and
obtain for any x ∈ Vm ⊂ Bm,

Pm
x [H̃Vm

= ∞] = Em
x

[
TBm

< H̃Vm
,Pm

XTBm

[HVm
= ∞]].

The right-hand side can be bounded from above by

Pm
x [TBm

< H̃Vm
] = P

�−1
m (x)

[TBm < H̃Vm], cf. (2.12),

and using Vm ⊂ B((om,0), κ) [cf. (5.9)] from below by

P
�−1

m (x)
[TBm < H̃Vm]

(
1 − |Vm| sup

x0∈∂Bm

sup
x′∈B((om,0),κ)

Pm
x0

[Hx′ < ∞]
)
.

The right-hand estimate in (2.14) shows that this last supremum tends to 0, hence
(5.31). This completes the proof of Lemma 5.3. �

PROOF OF LEMMA 5.4. Following the argument of Lemma 4.1 in [17], we
begin with the proof of (5.14). To this end, it suffices to show that for

γ = tNσ
3/4
N , cf. (3.9), (3.10),(5.36)

and some constant c2 > 0,

sup
z∈Z

P Z
z [Dk∗−k∗ > c2γ ] N→∞−→ 0 and(5.37)

sup
z∈Z,x∈G×Z

Pz[Hx ≤ c2γ ] N→∞−→ 0.(5.38)

Observe first that by the definition of the grid in (3.3), the random variables TO

and R1 are both bounded from above by an exit-time T[z−chN ,z+chN ], P Z
z -a.s. With

EZ
z [T[z−chN ,z+chN ]] ≤ ch2

N ≤ ctN , it follows from Khaśminskii’s Lemma (see [15],
Lemma 1.1, page 292, and also [8]) that for some constant c3 > 0,

sup
z∈Z

EZ
z [exp{c3(TO ∨ R1)/tN }] ≤ 2.(5.39)

With the exponential Chebyshev inequality and the strong Markov property ap-
plied at the times Rk∗−k∗,Dk∗−k∗−1, . . . ,D1,R1, one deduces that

sup
z∈Z

P Z
z [Dk∗−k∗ > cγ ]

≤ exp{−cc3σ
3/4
N } sup

z∈Z

EZ
z [exp{c3Dk∗−k∗/tN }]

≤ exp{−cc3σ
3/4
N }
(
sup
z∈Z

EZ
z [exp{c3(TO ∨ R1)/tN }]

)2(k∗−k∗)

(5.39)≤ exp{−cc3σ
3/4
N + 2(log 2)2[σ 3/4

N ]}.
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Hence, the claim (5.37) with D replaced by D follows for a suitably chosen con-
stant c. The claim with D for a slightly larger constant c2 is then a simple conse-
quence of Lemma 3.5, applied with aN = k∗ − k∗.

To prove (5.38), note that the expected amount of time spent by the random
walk X at a site x during the time interval [Hx,Hx + 1] is bounded from below by
(1 ∧ σ X

1 ) ◦ θHx . Hence, for z ∈ Z and x = (y′, z′) ∈ G × Z, the Markov property at
time Hx yields

Ez

[∫ c2γ+1

0
1{Xt=x} dt

]
≥ Pz[Hx ≤ c2γ ] inf

x′∈G×Z
Ex′ [1 ∧ σX

1 ] (A1)≥ cPz[Hx ≤ c2γ ].

Using the fact that Yt is distributed according to the uniform distribution on G un-
der Pz, and the bound (2.18) on the heat kernel of Z, the left-hand side is bounded
by

c

|G|
∫ c2γ+1

0
P Z

z [Zt = z′]dt ≤ c

√
γ

|G| .

We have therefore found that

sup
z∈Z,x∈E

Pz[Hx ≤ c2γ ] ≤ c
√

γ |G|−1 (5.36)≤ c
√

tNσ 3/8|G|−1

(3.10),(3.9)≤ c(α)(hN/|G|)1/4

and by (3.4) and (A2), we know that hN/|G| is bounded by |G|−ε/4. This com-
pletes the proof of (5.38), and hence (5.14).

Note that (5.15) is a direct consequence of (5.14), since the probability in (5.15)
is smaller than (

∑
m |Vm|) supz∈Z,x∈E Pz[Hx ≤ D1].

Finally, the expectation in (5.16) is smaller than

P [θ−1
Dk∗ {H∪I VI

≤ Dk∗−k∗}] = E
[
PZDk∗ [H∪I VI

≤ Dk∗−k∗]
]
,

and hence (5.16) follows from (5.15). �

6. Estimates on the jump process. In this section, we provide estimates on
the jump process ηX = ηY + ηZ of X that will be of use in the reduction of Theo-
rem 1.1 to the continuous-time result Theorem 5.1 in the next section. There, the
number [α|G|2] of steps of X will be replaced by a random number ηX

α′|G|2 of

jumps and this will make the local time Lz(ηX
α|G|2) appear. We hence prove results

on the large N behavior of ηX
α|G|2 (Lemma 6.4) and Lz(ηX

α|G|2) (Lemma 6.5), for

α > 0. Of course, there is no difficulty in analyzing the Poisson process ηZ of con-
stant parameter 1. The crux of the matter is the N -dependent and inhomogeneous
component ηY. Let us start by investigating the expectation of ηY

t .
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LEMMA 6.1.

sup
y∈G

EG
y [ηY

t ] ≤ max
y∈G

wyt, and(6.1)

EG[ηY
t ] = tw(G)/|G| for t ≥ 0 and all N.(6.2)

PROOF. Under P G
y , y ∈ G, the process

Mt = ηt −
∫ t

0
w(Ys) ds, t ≥ 0,(6.3)

is a martingale, see Chou and Meyer [6], Proposition 3. A proof of a slightly more
general fact is also given by Darling and Norris [4], Theorem 8.4. In order to
prove (6.1), we take the EG

y -expectation in (6.3). If we take the EG-expectation
in (6.3) and use that EG[w(Ys)] = EG[w(Y0)] = w(G)/|G| by stationarity, we
find (6.2). �

We next bound the covariance and variance of increments of ηY. Let us denote
the compensated increments of ηY as

IY
s,t = ηY

t − ηY
s − (t − s)w(G)/|G| for 0 ≤ s ≤ t.(6.4)

LEMMA 6.2. Assuming (A1), one has for 0 ≤ s ≤ t ≤ s ′ ≤ t ′,

| covP G(IY
s,t , I

Y
s′,t ′)| ≤ c2

1(t − s)(t ′ − s′)|G| exp{−(s′ − t)λN },(6.5)

varP G(IY
s,t ) ≤ c1(t − s) + c2

1(t − s)2.(6.6)

PROOF. In Lemma 6.1, we have proved that EG[Ir,r ′ ] = 0 for 0 ≤ r ≤ r ′, so
that by the Markov property applied at time s′, the left-hand side of (6.5) can be
expressed as

|EG[Is,t Is′,t ′ ]| =
∣∣EG[Is,t (E

G
Ys′ [I0,t ′−s′ ] − EG[I0,t ′−s′ ])]∣∣.

With an application of the Markov property at time t , this last expression becomes∣∣∣∣ ∑
y∈G

EG[Is,t

(
qG
s′−t (Yt , y) − |G|−1)]EG

y [I0,t ′−s′ ]
∣∣∣∣

≤ ∑
y∈G

EG[|Is,t |
∣∣qG

s′−t (Yt , y) − |G|−1∣∣]|EG
y [I0,t ′−s′ ]|.

The claim (6.5) thus follows by applying the estimate (4.1) inside the expectation,
then (6.1) and w(G)/|G| ≤ c1 in order to bound the remaining terms.
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To show (6.6), we apply the Markov property at time s and domination of ηY
t−s

by a Poisson random variable of parameter c1(t − s) [cf. (2.16)]:

varP G(IY
s,t ) ≤ EG[(ηY

t − ηY
s )2] = EG[(ηY

t−s)
2] ≤ c1(t − s) + c2

1(t − s)2. �

In the next lemma, we transfer some of the previous estimates to the process ηY
σZ·

.

LEMMA 6.3. Assuming (A1),

E[ηY
σZ

1
] = w(G)/|G|.(6.7)

sup
x∈G×Z

Ex[ηY
σZ

1
] ≤ c1.(6.8)

sup
x∈G×Z

Ex[(ηY
σZ

1
)2] ≤ c1 + 2c2

1.(6.9)

PROOF. All three claims are shown by using independence of ηY and σ Z and
applying Fubini’s theorem. To show (6.7), note that

E[ηY
σZ

1
] = E[EG[ηY

t ]|t=σZ
1
] (6.2)= E[σ Z

1 ]w(G)/|G| = w(G)/|G|.

The statements (6.8) and (6.9) are shown similarly, using additionally stochastic
domination of ηY

t by a Poisson random variable of parameter c1t [cf. (2.16)]. �

We now come to the two main results of this section. As announced, we now
analyze the asymptotic behavior of ηX

α|G|2 , where the whole difficulty comes from

the component ηY
α|G|2 . The method we use is to split the time interval [0, α|G|2]

into [|G|ε/2] increments of length longer than λ−1
N . This is possible by (A2) and

ensures that the bound from (6.5) on the covariance between different increments
of ηY becomes useful for nonadjacent increments. The following lemma follows
from the second moment Chebyshev inequality and the covariance bound applied
to pairs of nonadjacent increments.

LEMMA 6.4. Assuming (A1) and (1.7),

lim
N

E
[∣∣ηX

α|G|2/(α|G|2) − (1 + β)
∣∣∧ 1

]= 0 for α > 0.(6.10)

PROOF. The law of large numbers implies that ηZ
α|G|2/(α|G|2) converges to 1,

P Z
0 -a.s. (see, for example [5], Chapter 1, Theorem 7.3). Moreover, limN w(G)/
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|G| = β by (1.7). Since ηX = ηY + ηZ, it hence suffices to show that

lim
N

EG[(∣∣ηY
α|G|2/(α|G|2) − w(G)/|G|∣∣)∧ 1

]= 0.(6.11)

To this end, put a = [|G|ε/2], τ = α|G|2/a, and write

ηY
α|G|2 − α|G|2(w(G)/|G|) = ∑

1≤n≤a,
n even

IY
(n−1)τ,nτ + ∑

1≤n≤a,

n odd

IY
(n−1)τ,nτ

(6.12)
(def.)= �1 + �2,

for IY as in (6.4). Fix any δ > 0 and � ∈ {�1,�2}. By Chebyshev’s inequality,

P G[|�| ≥ δα|G|2]
≤ 1

δ2α2|G|4 EG[�2](6.13)

= 1

δ2α2|G|4
(∑

i

EG[(IY
(i−1)τ,iτ

)2]+∑
i �=j

EG[IY
(i−1)τ,iτ I

Y
(j−1)τ,jτ

])
,

where the two sums are over unordered indices i and j in {1, . . . , a} that are
either all even or all odd, depending on whether � is equal to �1 or to �2.
The right-hand side of (6.13) can now be bounded with the help of the es-
timates on the increments of ηY in Lemma 6.2. Indeed, with (6.6), the first
sum is bounded by caτ 2 ≤ c(α)|G|4−ε/2. For the second sum, we observe that
|i − j | ≥ 2 for all indices i and j , apply (6.5) and (A2) and bound the sum with
(|G|τ)c exp{−c(α)τλN } ≤ |G|c exp{−c(α)|G|ε/2}. Hence, we find that

P G[|�| ≥ δα|G|2] ≤ c(α, δ)
(|G|−ε/2 + |G|c exp{−c(α)|G|ε/2})→ 0

as N → ∞,

from which we deduce with (6.12) that for our arbitrarily chosen δ > 0,

P G[∣∣ηY
α|G|2/(α|G|2) − w/|G|∣∣≥ 2δ

]
≤ P G[|�1| ≥ δα|G|2] + P G[|�2| ≥ δα|G|2] → 0,

as N tends to infinity, showing (6.11). This completes the proof of Lem-
ma 6.4. �

In the final lemma of this section, we apply a similar analysis to the local time
of the process πZ(X) evaluated at time ηX

α|G|2 . The proof is similar to the preced-

ing argument, although the appearance of ηY evaluated at the random times σ Z
n

complicates matters. We recall the notation L and L̂ for the local times of πZ(X)

and Z from (1.6) and (2.6).
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LEMMA 6.5. Assuming (A1), (A2) and (1.7),

lim
N

sup
z∈Z

E
[(∣∣Lz

ηX
α|G|2

− (1 + β)L̂z

ηZ
α|G|2

∣∣/|G|)∧ 1
]= 0 for α > 0.(6.14)

PROOF. Set T = α|G|2. By independence of ηZ and Z, we have

E[L̂ηZ
T
] = E

[∑
n≥0

1{n<ηZ
T }P

Z
0 [Zn = z]

]
(2.20)≤ cE

[√
ηZ

T

] (Jensen)≤ c(α)|G|.

From this estimate and the assumption w(G)/|G| → β made in (1.7), it follows
that it suffices to prove (6.14) with w(G)/|G| in place of β . It follows from the
definition of Lz in (1.6) that

ηZ
T −1∑
n=0

1{Zn=z}(1 + ηY
σZ

n+1
− ηY

σZ
n
) ≤ Lz

ηX
T

≤
ηZ
T∑

n=0

1{Zn=z}(1 + ηY
σZ

n+1
− ηY

σZ
n
),

hence

sup
z∈Z

E

[∣∣∣∣∣Lz

ηX
T

−
ηZ
T −1∑
n=0

1{Zn=z}(1 + ηY
σZ

n+1
− ηY

σZ
n
)

∣∣∣∣∣
]

≤ 1 + E
[
ηY

σZ
ηZ
T

+1

− ηY
σZ

ηZ
T

]
.(6.15)

By independence of ηY and (σ Z, ηZ) and the simple Markov property (under P G)
applied at time σ Z

ηZ
T

, the expectation on the right-hand side is with (6.1) bounded

by cE[σ Z
ηZ
T +1

− σ Z
ηZ
T

]. This last expectation is equal to the sum of two independent

exp(1)-distributed random variables, so it follows that the right-hand side of (6.15)
is bounded by a constant. By these observations, the proof will be complete once
we show that

lim
N

sup
z∈Z

E

[(∣∣∣∣∣
ηZ
T −1∑
n=0

1{Zn=z}Sn

∣∣∣∣∣
/

|G|
)

∧ 1

]
= 0,

(6.16)
where Sn = ηY

σZ
n+1

− ηY
σZ

n
− w(G)/|G| for n ≥ 0.

To this end, we will prove that

lim
N

sup
z∈Z

E

[(∣∣∣∣∣
ηZ
T −1∑
n=0

1{Zn=z}Sn −
[T ]∑
n=0

1{Zn=z}Sn

∣∣∣∣∣
/

|G|
)

∧ 1

]
= 0, and(6.17)

lim
N

sup
z∈Z

E

[∣∣∣∣∣
[T ]∑
n=0

1{Zn=z}Sn

∣∣∣∣∣
/

|G|
]

= 0.(6.18)

In order to show (6.17), we note that by the Chebyshev inequality,

P [|ηZ
T − T | ≥ T 3/4] ≤ cT −3/2E[(ηZ

T − T )2] = T −1/2.(6.19)
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The expectation in (6.17), taken on the complement of the event {|ηZ
T −T | ≥ T 3/4},

is bounded by

1

|G|
∑

T −cT 3/4≤n≤T +cT 3/4

E
[
1{Zn=z}|Sn|].(6.20)

Using independence of Z and ηY
σZ·

and the heat-kernel bound (2.20), we find that

the last expectation is bounded by cE[|Sn|]/√n, which by the strong Markov
property applied at time σ Z

n , (6.7) and (A1) is bounded by c/
√

n. The expression
in (6.20) is thus bounded by cT 3/8/|G| = cα|G|−1/4 and with (6.19), we have
proved (6.17).

We now come to (6.18). By the Cauchy–Schwarz inequality, we have for all
z ∈ Z,

E

[∣∣∣∣∣
[T ]∑
n=0

1{Zn=z}Sn

∣∣∣∣∣
/

|G|
]2

≤ 1

|G|2 E

[∣∣∣∣∣
[T ]∑
n=0

1{Zn=z}Sn

∣∣∣∣∣
2]

.(6.21)

We will now expand the square and respectively sum over identical indices, in-
dices of distance at most [|G|2−ε/2], indices of distance greater than [|G|2−ε/2].
Proceeding in this fashion, the right-hand side of (6.21) equals

1

|G|2
( ∑

0≤n≤T

E[Zn = z, S2
n]

+ 2
∑

0≤n<n′≤(n+b)∧[T ]
E[Zn = Zn′ = z, SnSn′ ]

(6.22)

+ 2
∑

0≤n,n+b<n′≤[T ]
E[Zn = Zn′ = z, SnSn′ ]

)
,

where b = [|G|2−ε/2].
We now treat each of these three sums separately, starting with the first one. By
the strong Markov property, (6.9) and (A1),∑

0≤n≤[T ]
E[Zn = z, S2

n] = ∑
0≤n≤[T ]

E
[
Zn = z,EX

σZ
n
[S2

0 ]]
(6.23)

≤ c
∑

0≤n≤[T ]
P [Zn = z].

By the heat-kernel bound (2.20), this last sum is bounded by
∑

n c/
√

n ≤ c
√

T .
We have thus found that ∑

0≤n≤[T ]
E[Zn = z, S2

n] ≤ c(α)|G|.(6.24)
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For the second sum in (6.22), we proceed in a similar fashion. The strong Markov
property applied at time σ Z

n′ ≥ σ Z
n+1 and the estimate (6.8) together yield∑

0≤n<n′≤(n+b)∧[T ]
E[Zn = Zn′ = z, SnSn′ ]

=∑
n,n′

E
[
Zn = Zn′ = z, SnEX

σZ
n′

[S0]]

≤ c
∑

0≤n≤[T ]
E

[
Zn = z, |Sn|

n+b∑
n′=n+1

1{Zn′=z}
]
.

Applying the strong Markov property at time σ Z
n+1, we bound the right-hand side

by

c
∑

0≤n≤[T ]

(
E[Zn = z, |Sn|]

b−1∑
n′=0

sup
z′∈Z

P Z
z′ [Zn′ = z]

)

(2.20)≤ c
√

b
∑

0≤n≤[T ]
E[Zn = z, |Sn|].

The sum on the right-hand side can be bounded by c(α)|G| with the same argu-
ments as in (6.23) and (6.24), the only difference being the use of the estimate
(6.8) rather than (6.9). Inserting the definition of b from (6.22), we then obtain∑

0≤n<n′≤n+b

E[Zn = Zn′ = z, SnSn′ ] ≤ c(α)|G|2−ε/4.(6.25)

For the expectation in the third sum in (6.22),we first use independence of Z and S·,
then (6.7) and the fact that the process σ Z has i.i.d. exp(1)-distributed increments
for the second line and thus obtain

|E[Zn = Zn′ = z, SnSn′ ]|
= P [Zn = Zn′ = z]|E[SnSn′ ]| ≤ |E[SnSn′ ]|

=
∣∣∣∣E[(ηY

σZ
n+1

− ηY
σZ

n
)(ηY

σZ
n′+1

− ηY
σZ

n′
)] − w(G)2

|G|2 E[(σ Z
n+1 − σ Z

n )(σ Z
n′+1 − σ Z

n′)]
∣∣∣∣.

Independence of ηY and σ Z and an application of Fubini’s theorem then allows to
bound the the third sum in (6.22) by∑

0≤n,n+b<n′≤[T ]
|EZ

0 [h(σ Z
n , σ Z

n+1, σ
Z
n′, σ Z

n′+1)]|,

where h(s, t, s ′, t ′) = covP G(ηY
t − ηY

s , ηY
t ′ − ηY

s′).

Via the estimate (6.5) on the covariance, this expression is bounded by

c|G| ∑
0≤n,n+b<n′≤[T ]

EZ
0 [(σ Z

n+1 − σ Z
n )(σ Z

n′+1 − σ Z
n′) exp{−(σ Z

n′ − σ Z
n+1)λN }].
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Since the process σ Z has i.i.d. exp(1)-distributed increments, this sum can be sim-
plified to ∑

0≤n,n+b<n′≤[T ]
E[exp{−σ Z

1 λN }]n′−n−1

≤ ∑
0≤n≤[T ]

∑
n′>n+b

(
1

1 + λN

)n′−n−1

= [T ]1 + λN

λN

(
1

1 + λN

)b

≤ c(α)|G|ce−cbλN

≤ c(α)|G|c exp{−c|G|ε/2}, by (A2).

Combining this bound on the third sum in (6.22) with the bounds (6.24) and (6.25)
on the first and second sums, we have shown (6.18), hence (6.16). This completes
the proof of Lemma 6.5. �

7. Proof of the result in discrete time. In this section, we prove Theorem 1.1.
We assume that (A1)–(A10) and (1.7) hold. The proof uses the estimates of the
previous section to deduce Theorem 1.1 from the continuous-time version stated
in Theorem 5.1.

PROOF OF THEOREM 1.1. The transience of the graphs Gm ×Z follows from
Theorem 5.1. Consider again finite subsets Vm of Gm × Z, 1 ≤ m ≤ M and set
Vm = �−1

m (Vm). We show that for θm ∈ R+, α > 0,

lim
N

E

[ ∏
1≤m≤M

1{HVm>T } exp
{
− θm

|G|L
zm

T

}]
= B(α), where

T = α|G|2 and(7.1)

B(α) = EW

[
exp
{
− ∑

1≤m≤M

L
(
vm,α/(1 + β)

)(
capm(Vm) + (1 + β)θm

)}]
.

This implies Theorem 1.1, by the standard arguments described below (5.6). Recall
that two sequences are said to be limit equivalent if their difference tends to 0 as N

tends to infinity. If we apply Theorem 5.1 with α/(1 + β) in place of α, we obtain

lim
N

E

[ ∏
1≤m≤M

1{HVm>ηX
T/(1+β)} exp

{
−θm(1 + β)

|G| Lzm

T/(1+β)

}]
= B(α).

By (3.17), the expression on the left-hand side is limit equivalent to the same ex-
pression with L replaced by L̂. Hence, we have

lim
N

E

[ ∏
1≤m≤M

1{HVm>ηX
T/(1+β)} exp

{
−θm(1 + β)

|G| L̂
zm

T/(1+β)

}]
= B(α).
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By the law of large numbers, limN ηZ
T/(1+β)(T /(1 +β))−1 = 1,P -a.s. Making use

of the monotonicity of the left-hand side in the local time and continuity of B(·),
we deduce that

lim
N

E

[ ∏
1≤m≤M

1{HVm>ηX
T/(1+β)} exp

{
−θm(1 + β)

|G| L̂
zm

ηZ
T/(1+β)

}]
= B(α).

The estimate (6.14) then shows that the expression on the left-hand side is limit
equivalent to the same expression with (1 + β)L̂

zm

ηZ
T/(1+β)

replaced by L
zm

ηX
T/(1+β)

, that

is,

lim
N

E

[ ∏
1≤m≤M

1{HVm>ηX
T/(1+β)} exp

{
− θm

|G|L
zm

ηX
T/(1+β)

}]
= B(α).

Applying the estimate (6.10), with the same monotonicity and continuity argu-
ments as in the beginning of the proof, we can replace ηX

T/(1+β) by T , hence infer
that (7.1) holds. �

8. Examples. In this section, we apply Theorem 1.1 to three examples of
graphs G: The d-dimensional box of side-length N , the Sierpinski graph of
depth N , and the d-ary tree of depth N (d ≥ 2). In each case, we check assump-
tions (A1)–(A10), stated after (2.9). In all examples it is implicitly understood that
all edges of the graphs have weight 1/2. We begin with a lemma from [12] assert-
ing that the continuous-time spectral gap has the same order of magnitude as its
discrete-time analog λd

N . This result will be useful for checking (A2).

LEMMA 8.1. Assume (A1) and let λd
N bet the smallest nonzero eigenvalue

of the matrix I − P(G), where P(G) = (pG(y, y′)) is the transition matrix of Y

under P G. Then there are constants c(c0, c1), c′(c0, c1) > 0 [cf. (A1)], such that
for all N ,

c(c0, c1)λ
d
N ≤ λN ≤ c′(c0, c1)λ

d
N .(8.1)

PROOF. We follow arguments contained in [12]. With the Dirichlet form
Dπ(·, ·) defined as Dπ(f,f ) = DN(f,f )

|G|
w(G)

, for f :G → R [cf. (2.8)], one has
(cf. [12], Definition 2.1.3, page 327)

λd
N = min

{Dπ(f,f )

varπ(f )
:f is not constant

}
.(8.2)

From (A1), it follows that

c−1
1 DN(f,f ) ≤ Dπ(f,f ) ≤ c−1

0 DN(f,f ) for any f :G → R and
(8.3)

c0c
−1
1 μ(y) ≤ π(y) ≤ c1c

−1
0 μ(y) for any y ∈ G.
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Using varπ(f ) = infθ∈R

∑
y∈G(f (y) − θ)2π(y) and the analogous statement for

varμ, the estimate in the second line implies that

c0c
−1
1 varμ(f ) ≤ varπ(f ) ≤ c1c

−1
0 varμ(f ) for any f :G → R.(8.4)

Lemma 8.1 then follows by using (8.3) and (8.4) to compare the definition (2.9) of
λN with the characterization (8.2) of λd

N . �

The following lemma provides a sufficient criterion for assumption (A10).

LEMMA 8.2. Assuming (A1)–(A9) and that

lim
N

[λ−1
N |G|ε]∑
n=1

sup
y0∈∂(Cc

m)

y∈B(ym,ρ0)

pG
n (y0, y)

1√
n

= 0 for any ρ0 > 0,(8.5)

(A10) holds as well.

PROOF. For x= (y, z), the probability in (A10) is bounded from above by

[λ−1
N |G|ε]∑
n=1

P(y0,z0)

[
Yn = φ−1

m (y), zm + z ∈ Z[σY
n ,σY

n+1]
]
,(8.6)

using that y0 �= φ−1
m (y) for large N [cf. (A6)] in order to drop the term n = 0.

With the same estimates as in the proof of Lemma 2.3, see (2.22)–(2.23), the ex-
pression in (8.6) can be bounded by a constant times the sum on the left-hand side
of (8.5). �

8.1. The d-dimensional box. The d-dimensional box is defined as the graph
with vertices

GN = Zd ∩ [0,N − 1]d for d ≥ 2,

and edges between any two vertices at Euclidean distance 1. In contrast to the
similar integer torus considered in [17], the box admits different limit models for
the local pictures, depending on how many coordinates yi

m of the points ym are
near the boundary.

THEOREM 8.3. Consider xm,N , 1 ≤ m ≤ M , in GN × Z satisfying (A3)
and (A4), and assume that for any 1 ≤ m ≤ M , there is a number 0 ≤ d(m) ≤ d ,
such that

yi
m,N ∧ (N − yi

m,N) is constant for 1 ≤ i ≤ d(m) and all large N,(8.7)

limN yi
m,N ∧ (N − yi

m,N) = ∞ for d(m) < i ≤ d.(8.8)

Then the conclusion of Theorem 1.1 holds with Gm = Z
d(m)
+ ×Zd−d(m) and β = d .
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PROOF. We check that assumptions (A1)–(A10) and (1.7) are satisfied and ap-
ply Theorem 1.1. Assumption (A1) is checked immediately. With Lemma 8.1 and
standard estimates on λd

N for simple random walk on [0,N − 1]d (cf. [12], Ex-
ample 2.1.1. on page 329 and Lemma 2.2.11, page 338), we see that cN−2 ≤ λN ,
and (A2) follows. We have assumed (A3) and (A4) in the statement. For (A5), we
define the sequence rN , the vertices om ∈ Gm and the isomorphisms φm by

rN = 1

4M10

(
min
m�=m′ |xm − xm′ |∞ ∧ min

m
min

d(m)<i≤d

(
yi
m ∧ (N − yi

m)
)∧ N

)
,

om = (y1
m ∧ (N − y1

m), . . . , yd(m)
m ∧ (N − yd(m)

m

)
,0, . . . ,0

)
,

φm(y) = (y1 ∧ (N − y1), . . . , yd(m) ∧ (N − yd(m)),
yd(m)+1 − yd(m)+1

m , . . . , yd − yd
m

)
.

Then rN → ∞ by (A3) and (8.8), om remains fixed by (8.7), φm is an isomor-
phism from B(ym, rN) to B(om, rN) for large N , and (A5) follows. Recall that
a crucial step in the proof of Theorem 1.1 was to prove that the random walk,
when started at the boundary of one of the balls Bm, does not return to the close
vicinity of the point xm before exiting G × [−hN,hN ], see Lemma 5.3, (5.33)
and below. In the present context, hN is roughly of order N , see (3.4). However,
the radius rN of the ball Bm can be required to be much smaller if the distances
between different points diverge only slowly, cf. (5.1). We therefore needed to
assume that larger neighborhoods Cm × Z of the points xm are sufficiently tran-
sient by requiring that the sets C̄m are isomorphic to subsets of suitable infinite
graphs Ĝm. In the present context, we choose Ĝm = Zd+ for all m, see Remark 8.4
below on why a choice different from Gm is required. We choose the sets Cm with
the help of Lemma 3.2. Applied to the points y1, . . . , ym, with a = 1

4M10
N and

b = 2, Lemma 3.2 yields points y∗
1 , . . . , y∗

M (some of them may be identical) and
a p between 1

4M10
N and 1

10N , such that

either Cm = Cm′ or Cm ∩ Cm′ = ∅
(8.9)

for Cm = B(y∗
m,2p),1 ≤ m ≤ M,

and such that the balls with the same centers and radius p still cover {y1, . . . , yM}.
Since rN ≤ p, we can associate to any m one of the sets Cm such that (A6) is
satisfied. The diameter of C̄m is at most 2N/5 + 3, so each of the one-dimensional
projections πk(C̄m), 1 ≤ k ≤ d , of C̄m on the d different axes contains at most
one of the two integers 0 and N − 1 for large N . Hence, there is an isomorphism
ψm from C̄m into Zd+ such that (A7) is satisfied. Assumption (A8) directly follows
from from (8.9). We now turn to (A9). By embedding Zd+ into Zd , one has for any
y and y′ in Zd+,

p
Zd+
n (y,y′) ≤ 2d sup

y,y′∈Zd

pZd

n (y,y′) ≤ c(d)n−d/2,
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using the standard heat kernel estimate for simple random walk on Zd see for
example [9], page 14, (1.10). Since d ≥ 2, this is more than enough for (A9). In
order to check (A10), it is sufficient to prove the hypothesis (8.5) of Lemma 8.2.
To this end, we compare the probability P G

y0
with P Zd

y0
under which the canonical

process (Yn)n≥0 is a simple random walk on Zd . We define the map π : Zd → GN

by π((yi)1≤i≤d) = (mink∈Z |yi − 2kN |)1≤i≤d , that is, in each coordinate, π is a
sawtooth map. Then (Yn)n≥0 under P G

y0
has the same distribution as (π(Yn))n≥0

under P Zd

y0
. It follows that for y0 ∈ ∂(Cc

m), y ∈ B(ym,ρ0),

pG
n (y0, y) = ∑

y′∈Sy

pZd

n (y0, y
′),

(8.10)

where Sy = 2NZd +
{ ∑

1≤i≤d

lieiy
i : l ∈ {−1,1}d

}
.

The probability in this sum is bounded by

c

nd/2 exp
{
c′|y0 − y′|2

n

}
,

as follows, for example, from Telcs [20], Theorem 8.2 on page 99, combined
with the on-diagonal estimate from the local central limit theorem (cf. [9],
page 14, (1.10)). If we insert this bound into (8.10) and split the sum into all possi-
ble distances between y0 and y′ [necessarily this distance is at least p − ρ0 ≥ cN ,
cf. (8.9)], we obtain

pG
n (y0, y) ≤∑

k≥1

c

nd/2 exp
{
−c′k2N2

n

}
kd−1

≤ c

nd/2

∫ ∞
0

xd−1 exp
{
−c′x2N2

n

}
dx ≤ c

Nd
.

By cN−2 ≤ λN , checked under (A2) above, this is more than enough to im-
ply (8.5), hence (A10). Finally, one immediately checks that (1.7) holds with
β = d . Hence, Theorem 1.1 applies and yields the result. �

REMARK 8.4. In the last proof, we have used the possibility of choosing the
auxiliary graphs Ĝm in assumption (A7) different from the graphs Gm in (A5). This
is necessary for the following reason: To check assumption (A10), we need the di-
ameter of each set C̄m to be of order N in the above argument. Hence, the set C̄m

can look quite different from the ball B(ym, rN). Indeed, C̄m may touch the bound-
ary of the box G in more dimensions than its much smaller subset B(ym, rN). As
a result, C̄m may not to be isomorphic to a neighborhood in the same graph Gm

as B(ym, rN). However, our chosen C̄m is always isomorphic to a neighborhood in
Zd+ for all m.
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8.2. The Sierpinski graph. For y ∈ R2 and θ ∈ [0,2π), we denote by ρy,θ the
anticlockwise rotation around y by the angle θ . The vertex-set of the Sierpinski
graph GN of depth N is defined by the following increasing sequence (see also the
top of Figure 1):

G0 = {s0 = (0,0), s1 = (1,0), s2 = ρ(0,0),π/3(s1)} ⊂ R2,

GN+1 = GN ∪ (ρ2Ns1,4π/3GN) ∪ (ρ2Ns2,2π/3GN) for N ≥ 0.

The edge-set of GN contains an edge between every pair of vertices in GN at
Euclidean distance 1. Note that the vertices in 2NG0 ⊂ GN have degree 2 and all
other vertices of GN have degree 4.

Denoting the reflection around the y-axis by σ , that is, σ((y1, y2)) = (−y1, y2)

for (y1, y2) ∈ R2, the two-sided infinite Sierpinski graph has vertices

G∞ = G+∞ ∪ σG+∞ where G+∞ = ⋃
N≥0

GN,

and an edge between any pair of vertices in G+∞ or in σG+∞ at Euclidean distance 1.
We refer to the bottom of Figure 1 for illustrations. For N ≥ 0, we define the

FIG. 1. An illustration of G3 (top) and the infinite limit models G+∞ (bottom left) and G∞ (bottom
right).
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surjection sN :GN+1 → GN by

sN(y) =
⎧⎪⎨
⎪⎩

y, for y ∈ GN ,
ρ2Ns1,2π/3(y), for y ∈ ρ2Ns1,4π/3(GN) \ GN ,
ρ2Ns2,4π/3(y), for y ∈ ρ2Ns2,2π/3(GN) \ GN .

We then define the mapping πN from G+∞ onto GN by

πN(y) = sN ◦ sN+1 ◦ · · · ◦ sm−1(y) for y ∈ Gm with m > N.

Note that πN is well-defined: Indeed, the vertex-sets GN are increasing in N and
if y ∈ Gm1 ⊂ Gm2 for N < m1 < m2, then sk(y) = y for k ≥ m1, so that sN ◦ · · · ◦
sm2−1(y) = sN ◦ · · · ◦ sm1−1(y). We will use the following lemma.

LEMMA 8.5. For any y ∈ G+∞, the distribution of the random walk (Yn)n≥0

under P
GN

πN(y) is equal to the distribution of the random walk (πN(Yn))n≥0 un-

der P
G+∞
y .

PROOF. The result follows from the Markov property once we check that for
any y, y′ ∈ GN , y ∈ G+∞ with y = πN(y),

pGN (y, y′) = ∑
y′

1∈πN
−1(y′)

pG+∞(y, y′
1).(8.11)

We choose m ≥ N such that y ∈ Gm. Then the right-hand side equals
∑

y′
1∈πN

−1(y′)
p

Gm+1
(y, y′

1) = ∑
y′

1∈s−1
N (y′)

∑
y′

2∈s−1
N+1(y

′
1)

· · · ∑
y′
m∈s−1

m (y′
m−N)

p
Gm+1

(y, y′
m).

By induction on m, it hence suffices to show that for y, y′ ∈ Gm and ŷ ∈ s−1
m (y),

pGm(y, y′) = ∑
y′

1∈s−1
m (y′)∩B(ŷ,1)⊂Gm+1

p
Gm+1

(ŷ, y′
1).(8.12)

If ŷ ∈ Gm+1 \ {2ms1,2ms2,2m(s1 + s2)}, then (8.12) follows from the observation
that sm maps the distinct neighbors of ŷ in Gm+1 to the distinct neighbors of y in
Gm. If ŷ ∈ {2ms1,2ms2,2m(s1 + s2)}, then ŷ has four neighbors in Gm+1, two of
which are mapped to each of the two neighbors of y ∈ {2ms1,2ms2, (0,0)} in Gm

and this implies again (8.12). �

In the following theorem, we consider points ym that are either the corner (0,0)

or the vertex (2N−1,0) and obtain the two different limit models G+∞ × Z and
G∞ × Z for the corresponding local pictures.
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THEOREM 8.6. Consider 0 ≤ M ′ ≤ M and vertices xm,N , 1 ≤ m ≤ M , in
GN × Z satisfying (A3) and (A4) and assume that

ym,N = (0,0) for 1 ≤ m ≤ M ′ and
(8.13)

ym,N = (2N−1,0) for M ′ < m ≤ M .

Then the conclusion of Theorem 1.1 holds with Gm = G+∞ for 1 ≤ m ≤ M ′,
Gm = G∞ for M ′ < m ≤ M and β = 2.

PROOF. Let us again check that the hypotheses (A1)–(A10) and (1.7) are sat-
isfied. One easily checks that (A1) holds with c0 = 1 and c1 = 2. Using Lemma 8.1
and the explicit calculation of λd

N by Shima [13], we find that c5−N ≤ λN ≤ c′5−N.

Indeed, in the notation of [13], Proposition 3.3 in [13] shows that λd
N is given by

φ
(N)
− (3) for the function φ− defined above Remark 2.16, using our N in place of

m and setting the N of [13] equal to 3. Then λd
N = φ

(N)
− (3) is decreasing in N

and converges to the fixed point 0 of φ−. With Taylor’s theorem, it then follows
that λd

N5N converges to 1. Since |GN | = 3+∑N
n=1 3n ≤ c3N , (A2) holds. We have

assumed (A3) and (A4) in the statement. For (A5), we define the radius

rN = 1

4

(
2N−1 ∧ min

1≤m<m′≤M
d(xm,xm′)

)
and set

om = (0,0) for all m.

The balls B(ym, rN) ⊂ GN intersect 2NG0 only at the points ym, because the dis-
tance between different points of 2NG0 equals 2N . We can therefore define the iso-
morphisms φm from B(ym, rN) to B((0,0), rN) ⊂ Gm as the identity for m ≤ M ′
and as the translation by (−2N−1,0) for m > M ′ and (A5) follows. As in the previ-
ous example, the radius rN defined in (5.1) can be small compared with the square
root of the relaxation time, so it is essential for the proof that larger neighborhoods
Cm × Z of the points xm are sufficiently transient. In the present case, we de-
fine the auxiliary graphs as Ĝm = Gm and Cm = B(ym,2N−1/3) for 1 ≤ m ≤ M .
Then (A6) holds, because rN < 2N−1/3 for large N and the isomorphisms ψm re-
quired for (A7) can be defined in a similar fashion as the isomorphisms φm above.
Assumption (A8) is immediate. We now check (A9). It is known from [2] (see
also [7]) that for any y and y′ in G∞,

pG∞
n (y,y′) ≤ cn−ds/2 exp

{
−c′
(

d(y,y′)dw

n

)1/(dw−1)}
,(8.14)

for ds = 2 log 3/ log 5, dw = log 5/ log 2 and n ≥ 1. Since

p
G+∞
n (y0,y) = pG∞

n (y0,y) + pG∞
n (y0, σy)(8.15)

and log 3/ log 5 > 1/2, this is enough for (A9). To prove (A10), we use Lemma 8.2
and only check (8.5). To this end, note that B(ym,ρ0) ⊆ K ⊆ GN , for K =
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⋃
y′∈2N−1G1

B(y′, ρ0) and that the preimage of the vertices in 2N−kGk ⊂ GN un-
der πN is 2N−kG+∞ for 0 ≤ k ≤ N . It follows from Lemma 8.5 that for y0 ∈ ∂(Cc

m),
y ∈ B(ym,ρ0) ⊆ K and N ≥ c(ρ0),

pGN
n (y0, y) ≤ ∑

y′∈K

pGN
n (y0, y

′) = ∑
y′∈K

p
G+∞
n (y0,y

′)

(8.16)
for K = ⋃

y∈2N−1G+∞

B(y, ρ0).

Observe now that for any given vertex y′ in G∞, the number of vertices in
B(y′,2k) ∩ K is less than c(ρ0)|B(y′,2k) ∩ 2N−1G+∞| ≤ c(ρ0)3k−N . Also, it fol-
lows from the choice of Cm that d(y0,2N−1G+∞) ≥ c2N , so the distance between
y0 and any point in K is at least c(ρ0)2N . Summing over all possible distances
in (8.16), we deduce with the help of (8.14) and (8.15) that

pGN
n (y0, y) ≤ c(ρ0)

∞∑
l=1

3ln−ds/2 exp
{
−c′(ρ0)

(
2(N+l)dw

n

)1/(dw−1)}

≤ c(ρ0)n
−ds/2

∫ ∞
0

3x exp
{
−c′(ρ0)

(
5N+x

n

)1/(dw−1)}
dx.

After substituting x = y − N + logn/ log 5, this expression is seen to be bounded
by

c(ρ0)3
−N
∫ ∞
−∞

3y exp
{−c′(ρ0)5

y/(dw−1)}dy ≤ c(ρ0)3
−N.

By
√

5 < 3 and c5−N ≤ λN , as we have seen under (A2), this is more than enough
for (8.2), hence (A10). Finally, it is straightforward to check that (1.7) holds with
β = 2. Hence, Theorem 1.1 applies and yields the result. �

8.3. The d-ary tree. For a fixed integer d ≥ 2, we let Go be the infinite d + 1-
regular graph without cycles, called the infinite d-ary tree. We fix an arbitrary
vertex o ∈ Go and call it the root of the tree. See Figure 2 (left) for a schematic
illustration in the case d = 2.

We choose GN as the ball of radius N centered at o ∈ Go. For any vertex y

in GN , we refer to the number |y| = N − d(y, o) as the height of y. Vertices in
GN of depth N (or height 0) are called leaves. The boundary-tree G♦ contains the
vertices

G♦ = {(k; s) :k ≥ 0, s ∈ Sd},
where Sd is the set of infinite sequences s = (s1, s2, . . .) in {1, . . . , d}[1,∞) with
at most finitely many terms different from 1. The graph G♦ has edges {(k; s),
(k + 1; s′)} for vertices (k; s) and (k + 1; s ′) whenever sn+1 = s′

n for all n ≥ 1. In
this case, we refer to the number k = |(k; s)| as the height of the vertex (k; s) and



RANDOM WALKS ON DISCRETE CYLINDERS 889

FIG. 2. A schematic illustration of Go (left) and G♦ (right) for d = 2.

to all vertices at height 0 as leaves. See Figure 2 (right) for an illustration of G♦.
The following rough heat-kernel estimates will suffice for our purposes.

LEMMA 8.7.

pGo
n (y0,y) ≤ e−c(d)n,(8.17)

p
G♦
n (y0,y) ≤ n−3/5 + c(d, |y|) exp

{−c′(d, |y|)nc(d)} and(8.18)

pGN
n (y0, y) ≤ ce−c(d)d(y0,y)1n≤N3 + c(d)(d−N + n−3/5)1n>N3 .(8.19)

(We refer to the end of the introduction for our convention on constants.)

PROOF. The estimate (8.17) can be shown by an elementary estimate on the
biased random walk (d(Yn,y))n≥0 on N. More generally, (8.17) is a consequence
of the nonamenability of Go; see [21], Corollary 12.5, page 125.

We now prove (8.18). Under P
G♦
y0 , the height |Y | of Y is distributed as a random

walk on N starting from |y0| with transition probabilities wk,k+1 = 1
d+1 , wk,k−1 =

d
d+1 for k ≥ 1 and reflecting barrier at 0. We set for n ≥ 1,

L =
[

3

5 logd
logn

]
+ 1,(8.20)

and define the stopping time S as the first time when Y reaches the level |y| + L:

S = inf{n ≥ 0 : |Yn| ≥ |y| + L}.
Then we have

p
G♦
n (y0,y) ≤ P

G♦
y0 [S ≤ n,Yn = y] + P

G♦
|y0|[S > n] for n ≥ 0.

Observe that the second probability on the right-hand side can only increase if
we replace |y0| by 0. We now apply the simple Markov property and this last
observation at integer multiples of the time |y| + L to the second probability and
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the strong Markov property at time S to the first probability on the right-hand side
and obtain

p
G♦
n (y0,y) ≤ E

G♦
y0

[
S ≤ n,P

G♦
YS

[Ym = y]|m=n−S

]
(8.21)

+ P
G♦
0 [S > |y| + L][n/(|y|+L)].

The second probability on the right-hand side is equal to 1 − (d + 1)−(|y|+L). In
order to bound the expectation, note that by definition of S, there are dL descen-

dants y′ of YS at the same height as y, and the P
G♦
YS

-probability that Ym equals y′
is the same for all such y′. Hence, the expectation on the right-hand side of (8.21)
is bounded by d−L. We have hence shown that

p
G♦
n (y0,y) ≤

(
1

d

)L

+
(

1 −
(

1

d + 1

)|y|+L)[n/(|y|+L)]
.

Substituting the definition of L from (8.20) and using that log(d+1)
logd

≤ log 3
log 2 < 5

3 for
the second term, one finds (8.18).

We now come to (8.19) and first treat the case n ≤ N3. By uniform boundedness
and reversibility of the measure y �→ wy , we have p

GN
n (y0, y) ≤ cp

GN
n (y, y0), so

we can freely exchange y0 and y in our estimates. In particular, we can assume
that d(y0, o) ≤ d(y, o). Now we denote by y1 the first vertex at which the shortest
path from y0 to o meets the shortest path from y to o. Then any path from y0 to
y must pass through y1. From the strong Markov property applied at time Hy1 , it
follows that

pGN
n (y0, y) = EGN

y0

[{Hy1 ≤ n},P GN

Hy1
[Yk = y]|k=n−Hy1

]
.(8.22)

The P
GN

Hy1
-probability on the right-hand side remains unchanged if y is replaced

by any of the dd(y1,y) descendants y′ of y1 at the same height as y. More-
over, the assumption d(y0, o) ≤ d(y, o) implies that d(y1, y) ≥ d(y1, y0), hence
2d(y1, y) ≥ d(y0, y). In particular, there are at least dd(y0,y)/2 different vertices
y′ for which P

GN

Hy1
[Yk = y] = P

GN

Hy1
[Yk = y′]. By (8.22), this proves the estimate

(8.19) for n ≤ N3. We now treat the case n > N3. The argument used to prove
(8.18) with (|y| + L) ∧ N playing the role of |y| + L yields

pGN
n (y0, y) ≤ c(d, |y|)(d−N ∨ n−3/5 + e−c(d,|y|)nc(d))

.(8.23)

The assumption n > N3 will now allow us to remove the dependence on |y| of
the right-hand side. By applying the strong Markov property at the entrance time
H∂B(o,N−1) of the random walk into the set ∂B(o,N − 1) of leaves of GN , we
have

pGN
n (y0, y) ≤ P GN

y0

[
H∂B(o,N−1) > N3/2

]+ sup
y′:|y′|=0

sup
n−N3/2≤k≤n

p
GN

k (y′, y)

for n > N3.



RANDOM WALKS ON DISCRETE CYLINDERS 891

Applying reversibility to exchange y′ and y, then (8.23) to the second term, we
infer that

pGN
n (y0, y) ≤ P GN

y0

[
H∂B(o,N−1) > N3/2

]+ c(d)(d−N + n−3/5)
(8.24)

for n > N3,

where we have used that e−c(d)nc(d) ≤ c(d)n−2/3. In order to bound the first term
on the right-hand side, we apply the Markov property at integer multiples of 10N

and obtain

P GN
y0

[
H∂B(o,N−1) > N3/2

]≤ sup
y∈GN

P GN
y

[
H∂B(o,N−1) > 10N

]cN2
.(8.25)

Note that the random walk on Go ⊃ GN , started at any vertex y in GN = B(o,N),
must hit ∂B(o,N − 1) before exiting B(y,2N). Applying this observation to the
probability on the right-hand side of (8.25), we deduce with (8.24) that

pGN
n (y0, y) ≤ P Go

o

[
TB(o,2N) > 10N

]cN2 + c(d)(d−N + n−3/5) for n > N3.

The probability on the right-hand side is bounded by the probability that a ran-
dom walk on Z with transition probabilities pz,z+1 = d/(d + 1) and pz,z−1 =
1/(d + 1) starting at 0 is at a site in (−∞,2N ] after 10N steps. From the
law of large numbers applied to the i.i.d. increments with expectation (d − 1)/

(d + 1) ≥ 1/3 of such a random walk, it follows that this probability is bounded
from above by 1 − c < 1 for N ≥ c′, hence bounded by 1 − c′′ < 1 for all N (by
taking 1 − c′′ = (1 − c) ∨ max{P Go

o [TB(o,2N) > 10N ] :N < c′}). It follows that

pGN
n (y0, y) ≤ e−c(d)N2 + c(d)(d−N + n−3/5) ≤ c(d)(d−N + n−3/5)

for n > N3.

This completes the proof of (8.19) and of Lemma 8.7. �

We now consider vertices ym in GN that remain at a height that is either of
order N or constant. This gives rise to the two different transient limit models
Go × Z and G♦ × Z.

THEOREM 8.8 (d ≥ 2). Consider vertices xm,N , 1 ≤ m ≤ M , in GN × Z sat-
isfying (A3) and (A4) and assume that for some number 0 ≤ M ′ ≤ M and some
δ ∈ (0,1),

lim inf
N

|ym,N |/N > δ for 1 ≤ m ≤ M ′, and(8.26)

|ym,N | is constant for M ′ < m ≤ M and large N .(8.27)

Then the conclusion of Theorem 1.1 holds with Gm = Go for 1 ≤ m ≤ M ′,
Gm = G♦ for M ′ < m ≤ M and β = 1.
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PROOF. Once more, we check (A1)–(A10) and (1.7) and apply Theorem 1.1.
It is immediate to check (A1). For the estimate (A2), the degree of the root of the
tree does not play a role, as can readily be seen from the definition (2.9) of λN . We
can hence change the degree of the root from d + 1 to d and apply the estimate
from Aldous and Fill in [1], Chapter 5, page 26, equation (59). Combined with
Lemma 8.1 relating the discrete- and continuous time spectral gaps, this shows
that c(d)|GN |−1 ≤ λN . In particular, (A2) holds. We are assuming (A3) and (A4)
in the statement. For (A5), we define

rN = 1

4M10

(
min

1≤m<m′≤M
d(xm,xm′) ∧ δN

)
as well as

om = o for 1 ≤ m ≤ M ′ and om = (|ym|;1) for M ′ < m ≤ M ,

where 1 denotes the infinite sequence of ones. Then for 1 ≤ m ≤ M ′, the ball
B(ym, rN) does not contain any leaves of GN for large N , so there is an iso-
morphism φm mapping B(ym, rN) to B(o, rN) ⊂ Go. For M ′ < m ≤ M , note that
assumption (8.27) and the choice of rN imply that for large N , all vertices in the
ball B(ym, rN) have a common ancestor y∗ ∈ GN \ (B(ym, rN) ∪ {o}) (we can de-
fine y∗ as the first vertex not belonging to B(ym, rN) on the shortest path from ym

to o). We now associate a label l(y) in {1, . . . , d} to all descendants y of y∗ in the
following manner: We label the d children of y∗ by 1, . . . , d such that the vertex
belonging to the shortest path from y∗ to ym is labeled 1. We then do the follow-
ing for any descendant y of y∗: If one of the children of y belongs to the shortest
path from y∗ to ym, we associate the label 1 to this child and associate the la-
bels 2, . . . , d to the remaining d − 1 children in an arbitrary fashion. If none of
the children of y belong to the shortest path from y∗ to ym, we label the d chil-
dren of y by 1, . . . , d in an arbitrary fashion. Having labeled all descendants of
y in this way, we define for any descendant y of y∗ the finite sequence s(y) by
l(y), l(y1), . . . , l(yd(y,y∗)−1), where (y, y1, . . . , yd(y,y∗)−1, y∗) is the shortest path
from y to y∗. Then the function φm from B(ym, rN) to G♦, defined by

φm(y) = (|y|; s(y),1,1, . . .),(8.28)

is an isomorphism from B(ym, rN) into G♦ mapping ym to (|ym|;1), as required.
Hence, (A5) holds. As in the previous examples, we now choose the sets Cm en-
suring that the probability of escaping to the complement of a large box from the
boundaries of Bm [cf. (5.3)] is large. We define the auxiliary graphs as Ĝm = Gm.
As in the example of the box, we then apply Lemma 3.2 to find the required sets
Cm. Applied to the points y1, . . . , ym, with a = δ

4M10
N and b = 2, Lemma 3.2

yields points y∗
1 , . . . , y∗

M , some of which may be identical, and a p between δ
4M10

N

and δ
10N such that

either Cm = Cm′ or Cm ∩ Cm′ = ∅
(8.29)

for Cm = B(y∗
m,2p),1 ≤ m ≤ M,
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and such that the balls with the same centers and radius p still cover {y1, . . . , yM}.
Since rN ≤ p, we can associate a set Cm to any B(ym, rN) such that (A6) holds.
Concerning (A7), note that the definition of rN immediately implies that C̄m con-
tains leaves of GN if and only if m > M ′ and in this case all vertices in C̄m have a
common ancestor in GN \ (C̄m ∪ {o}) (one can take the first vertex not belonging
to C̄m on the shortest path from ym to o). We can hence define the isomorphisms
ψm from C̄m into Ĝm in the same way as we defined the isomorphisms φm above,
so (A7) holds. Assumption A8 directly follows from (8.29). We now turn to (A9).
For 1 ≤ m ≤ M ′, this assumption is immediate from (8.17). For M ′ < m ≤ M , note
that the isomorphism ψm, defined in the same way as φm in (8.28), preserves the
height of any vertex. In particular, |ψm(ym)| remains constant for large N by (8.27)
and the estimate required for (A9) follows from (8.18). In order to check (A10),
we again use Lemma 8.2 and only verify (8.5). Note that for any 1 ≤ m ≤ M , the
distance between vertices y0 ∈ ∂(Cc

m) and y ∈ B(ym,ρ0) is at least c(δ,M,ρ0)N .
With the estimate (8.19) and the bound on λ−1

N shown under (A2), we find that the
sum in (8.5) is bounded by

N3cd−c(δ,M,ρ0)N + c(d)

(
|GN |−(1−ε)/2 +

∞∑
n=N3

n−3/5−1/2

)
,

which tends to 0 as N tends to infinity for 0 < ε < 1. We have thus shown
that (A10) holds. Finally, we check (1.7). To this end, note first that all vertices
in GN−1 ⊂ GN have degree d + 1 in GN , and the remaining vertices of GN

(the leaves) have degree 1. Hence,

w(GN)

|GN | = |GN−1|
|GN |

d + 1

2
+
(

1 − |GN−1|
|GN |

)
1

2
.(8.30)

Now GN contains one vertex of depth 0 (the root) and (d + 1)dk−1 vertices of
depth k for k = 1, . . . ,N . It follows that |GN | = 1+ (d +1)(1+d +· · ·+dN−1) =
1 + d+1

d−1(dN − 1) and that limN |GN−1|/|GN | = 1/d . With (8.30), this yields

lim
N

w(GN)

|GN | = d + 1

2d
+ d − 1

2d
= 1.

Therefore, (1.7) holds with β = 1. The result follows by application of Theo-
rem 1.1. �

REMARK 8.9. The last theorem shows in particular that the parameters of
the Brownian local times and hence the parameters of the random interlacements
appearing in the large N limit do not depend on the degree d +1 of the tree. Indeed,
we have β = 1 for any d ≥ 1. The above calculation shows that this is an effect of
the large number of leaves of GN . This behavior is in contrast to the example of
the Euclidean box treated in Theorem 8.3, where the effect of the boundary on the
levels of the appearing random interlacements is negligible.



894 D. WINDISCH

Acknowledgments. The author is grateful to Alain-Sol Sznitman for propos-
ing the problem and for helpful advice.

REFERENCES

[1] ALDOUS, D. J. and FILL, J. (2002). Reversible Markov chains and random walks on graphs.
Available at http://www.stat.Berkeley.EDU/users/aldous/book.html.

[2] BARLOW, M. T., COULHON, T. and KUMAGAI, T. (2005). Characterization of sub-Gaussian
heat kernel estimates on strongly recurrent graphs. Comm. Pure Appl. Math. 58 1642–
1677. MR2177164

[3] CHUNG, K. L. (1974). A Course in Probability Theory, 2nd ed. Academic Press, New York.
MR0346858

[4] DARLING, R. W. R. and NORRIS, J. R. (2008). Differential equation approximations for
Markov chains. Probab. Surv. 5 37–79. MR2395153

[5] DURRETT, R. (2005). Probability: Theory and Examples, 3rd ed. Brooks/Cole, Belmont.
MR1068527

[6] CHOU, C. S. and MEYER, P. A. (1975). Sur la représentation des martingales comme
intégrales stochastiques dans les processus ponctuels. In Séminaire de Probabilités,
IX (Seconde Partie, Univ. Strasbourg, Strasbourg, Années Universitaires 1973/1974 et
1974/1975). Lecture Notes in Math. 465 226–236. Springer, Berlin. MR0436310

[7] JONES, O. D. (1996). Transition probabilities for the simple random walk on the Sierpiński
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