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A CONNECTION BETWEEN THE GHIRLANDA–GUERRA
IDENTITIES AND ULTRAMETRICITY1

BY DMITRY PANCHENKO

Texas A&M University

We consider a symmetric positive definite weakly exchangeable infinite
random matrix and show that, under the technical condition that its elements
take a finite number of values, the Ghirlanda–Guerra identities imply ultra-
metricity.

1. Introduction and main result. Let us consider an infinite random ma-
trix R = (Rl,l′)l,l′≥1 which is symmetric, nonnegative definite [in the sense that
(Rl,l′)1≤l,l′≤n is nonnegative definite for any n ≥ 1] and weakly exchangeable,
which means that for any n ≥ 1 and any permutation ρ of {1, . . . , n}, the matrix
(Rρ(l),ρ(l′))1≤l,l′≤n has the same distribution as (Rl,l′)1≤l,l′≤n. Following [6], we
will call the matrix with such properties a Gram–de Finetti matrix. We assume that
diagonal elements Rl,l = 1 and nondiagonal elements take only a finite number of
values,

P(R1,2 = ql) = ml+1 − ml(1.1)

for 1 ≤ l ≤ k and for some −1 ≤ q1 < q2 < · · · < qk ≤ 1 and 0 = m1 < · · · <

mk < mk+1 = 1. We say that the matrix R satisfies the Ghirlanda–Guerra iden-
tities [7] if, for any n ≥ 2, any bounded measurable functions f : Rn(n−1)/2 → R

and ψ : R → R,

Efnψ(R1,n+1) = 1

n
EfnEψ(R1,2) + 1

n

n∑
l=2

Efnψ(R1,l),(1.2)

where fn = f ((Rl,l′)1≤l<l′≤n). In other words, conditionally on (Rl,l′)1≤l<l′≤n,
the law of R1,n+1 is given by the mixture n−1L(R1,2) + n−1 ∑n

l=2 δR1,l
. By the

positivity principle proven by Talagrand (Theorem 6.6.2 in [14], see also [9]), the
Ghirlanda–Guerra identities imply that R1,2 ≥ 0 with probability 1 and, therefore,
from now on, we can assume that q1 ≥ 0. However, this a priori assumption is not
necessary since it will also be clear from the proof that q1 must be nonnegative.
The main result of the paper is the following.
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THEOREM 1. Under assumptions (1.1) and (1.2), the matrix R is ultrametric,
that is,

P
(
R2,3 ≥ min(R1,2,R1,3)

) = 1.(1.3)

Another way to express the event in (1.3) is to say that

R1,2 ≥ ql,R1,3 ≥ ql �⇒ R2,3 ≥ ql for all 1 ≤ l ≤ k.(1.4)

This question of ultrametricity originates in the setting of the Sherrington–
Kirkpatrick model [13], where R corresponds to the matrix of the overlaps, or
scalar products, of i.i.d. replicas from a random Gibbs measure. The ultrametric-
ity property (1.3) was famously predicted by Parisi in [8] as a part of complete
description of the expected behavior of the model and it still remains an open
mathematical problem. On the other hand, the Ghirlanda–Guerra identities, which
are implicitly contained in the Parisi theory, were proven rigorously in [7] in some
approximate sense; namely, one can slightly perturb the parameters of the model
such that, on average over the perturbation (or for some specific choice of per-
turbed parameters, see [15]), the Ghirlanda–Guerra identities hold in the thermo-
dynamic limit. In this paper, we consider an asymptotic distribution of the over-
lap matrix for which the Ghirlanda–Guerra identities hold precisely, as in (1.2),
and show that they automatically imply ultrametricity, under a technical condi-
tion (1.1). In some sense, the main idea of the paper is nothing but a reversal of the
proof of the Ghirlanda–Guerra identities, which arise from the information pro-
vided by the “stochastic stability” of the system with regard to small perturbations
of the parameters. Our main technical contribution, the invariance principle of The-
orem 4, is a very specific form of the stochastic stability of the system implied by
the Ghirlanda–Guerra identities. The Parisi theory for the Sherrington–Kirkpatrick
model also predicts that the distribution of the overlap R1,2 has a nontrivial contin-
uous component, so the assumption (1.1) is rather restrictive. Nevertheless, Theo-
rem 1 provides some hope that the Ghirlanda–Guerra identities imply ultrametric-
ity in the general case as well.

This work was motivated by a paper of Arguin and Aizenman [3] and, in par-
ticular, by a beautiful application of the Dovbysh–Sudakov representation theo-
rem [6] for Gram–de Finetti matrices that will play the same crucial role here.
In [3], the authors prove ultrametricity in a slightly different setting as a conse-
quence of what they call the “robust quasi-stationarity property.” The main idea
in [3] utilizes the robust quasi-stationarity in order to prove “quasi-stationarity un-
der free evolution” at each step of the inductive argument, which, in turn, implies
weak exchangeability and, via the application of the Dovbysh–Sudakov represen-
tation, induces clustering of the type (1.4). Our proof is based on exactly the same
idea. The difference now is that quasi-stationarity under free evolution—the invari-
ance or stochastic stability property of Theorem 4 below—will be a consequence
of the Ghirlanda–Guerra identities and, of course, the induction in the proof of
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Theorem 1 will be different since it is also based on (1.2). In addition, we give a
new proof in Theorem 3 below that the invariance implies exchangeability, which
is based on the explicit control of the mixing induced by the random permutation
in the invariance principle.

Simultaneously with the present work, Talagrand developed a different ap-
proach to Theorem 1 in [15] based on the Ghirlanda–Guerra identities and a form
of invariance. Theorem 4 below shows that sufficient invariance is already con-
tained in the Ghirlanda–Guerra identities and one can now find a new more direct
proof of Theorem 4 in [15]. In addition, [15] clarifies the physicists’ idea of decom-
posing the system into pure states and explains how both the Ghirlanda–Guerra
identities and invariance arise in the Sherrington–Kirkpatrick model.

The rest of the paper is organized as follows. In the next section, we start with
the Dovbysh–Sudakov representation result which shows that any Gram–de Finetti
matrix R can be generated by i.i.d. replicas from some random Gibbs measure on
a separable Hilbert space, which is called the directing measure of R, in almost
exactly the same way as the overlap matrix is generated by the Gibbs measure
in the Sherrington–Kirkpatrick model. We first study some basic properties of the
directing measure which follow from the Ghirlanda–Guerra identities; namely, that
it always concentrates on a nonrandom sphere of the Hilbert space and is either
continuous or discrete with probability 1. In particular, it is discrete when (1.1)
holds. In Section 3, we formulate the invariance and exchangeability properties
of the configuration of the directing measure and use them to prove Theorem 1 by
induction on k. Finally, in Section 4, we show how the Ghirlanda–Guerra identities
imply the invariance of the directing measure and how the invariance implies weak
exchangeability.

2. Basic consequences of GGI and exchangeability. Since all of the proper-
ties of the matrix R = (Rl,l′)l,l′≥1 considered above—symmetry, positive definite-
ness, weak exchangeability, satisfying the Ghirlanda–Guerra identities (GGI)—
were expressed in terms of its finite-dimensional distributions, we can think of R

as a random element in the product space M = ∏
1≤l,l′ [−1,1] with the pointwise

convergence topology and the Borel σ -algebra M. Let P denote the set of all
probability measures on M. Suppose that P ∈ P is such that for all A ∈ M,

P(A) =
∫
�

Q(ω,A)d Pr(ω),(2.1)

where Q :� × M → [0,1] is a probability kernel from some probability space
(�, F ,Pr) to M such that: (a) Q(ω, ·) ∈ P for all ω ∈ �; (b) Q(·,A) is measurable
on F for all A ∈ M. In this case, we will say that P is a mixture of laws Q(ω, ·).
Under (2.1), we can write the expectation of any measurable P-integrable function
φ :M → R as

Eφ(R) =
∫
�

(∫
M

φ(R)Q(ω, dR)

)
d Pr(ω).(2.2)
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We will say that a law Q ∈ P of a Gram–de Finetti matrix is generated by an
i.i.d. sample if there exists a probability measure η on H × [0,∞), where H is
a separable Hilbert space, such that Q is the law of

(xl · xl′ + alδl,l′)l,l′≥1,(2.3)

where (xl, al) is an i.i.d. sequence from η and x ·y denotes the scalar product on H .
The analysis of the distribution of R will utilize the following representation result
for Gram–de Finetti matrices due to Dovbysh and Sudakov [6].

PROPOSITION 1. A law P ∈ P of any Gram–de Finetti matrix is a mix-
ture (2.1) of laws in P such that for all ω ∈ �, Q(ω, ·) is generated by an i.i.d. sam-
ple.

We will denote by ηω a probability measure on H × [0,∞) corresponding to
Q(ω, ·) and let μω be the marginal of ηω on H. Following the terminology of Al-
dous [2], we will call μω the directing measure of the matrix (Rl,l′). The main
result of this section shows that the Ghirlanda–Guerra identities imply the follow-
ing basic geometric properties of the directing measure.

THEOREM 2. Let R be a Gram–de Finetti matrix on M that satisfies the
Ghirlanda–Guerra identities (1.2) and let F be the law of R1,2. If q∗ is the largest
point of the support of F , then, for Pr-almost all ω: (a) μω(‖x‖2 = q∗) = 1;
(b) μω is continuous if F({q∗}) = 0; (c) μω is discrete if F({q∗}) > 0, in
which case the sequence of weights of μω has the Poisson–Dirichlet distribution
PD(1 − F({q∗})).

We recall that, given s ∈ (0,1), if (ul)l≥1 is the decreasing enumeration of
a Poisson point process on (0,∞) with intensity measure x−1−s dx and wl =
ul/

∑
j uj , then the distribution of the sequence (wl) is called the Poisson–

Dirichlet distribution PD(s). If s = 0, then we define PD(0) to be the trivial distri-
bution with w1 = 1. The proof will be based on the following consequence of the
Ghirlanda–Guerra identities.

LEMMA 1. Consider a measurable set A ⊂ [−1,1]. For Pr-almost all ω:

(a) if F(A) > 0, then for μω-almost all x1, μω(x2 :x1 · x2 ∈ A) > 0;
(b) if F(A) = 0, then for μω-almost all x1, μω(x2 :x1 · x2 ∈ A) = 0.

PROOF. (a) Let m = F(Ac) < 1. Then, by the Ghirlanda–Guerra identi-
ties (1.2),

P(∀2 ≤ l ≤ n + 1,R1,l ∈ Ac) = EI (∀2 ≤ l ≤ n,R1,l ∈ Ac)I (R1,n+1 ∈ Ac)

= n − 1 + m

n
P(∀2 ≤ l ≤ n,R1,l ∈ Ac)
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(by induction on n) = (n − 1 + m) · · · (1 + m)m

n!
= m(1 + m)

n

(
1 + m

2

)
· · ·

(
1 + m

n − 1

)

(using 1 + x ≤ ex) ≤ m(1 + m)

n
em logn = m(1 + m)

n1−m
.

Since m < 1, letting n → +∞ gives P(∀2 ≤ l,R1,l ∈ Ac) = 0. By Proposition 1,
P is a mixture (2.1) of measures generated by an i.i.d. sample from ηω and we can
write

P(∀2 ≤ l,R1,l ∈ Ac) =
∫
�

μ⊗(l≥1)
ω (∀2 ≤ l, x1 · xl ∈ Ac)d Pr(ω) = 0,

which implies that for Pr-almost all ω, by Fubini’s theorem,∫
μ⊗(l≥2)

ω

(
(xl)l≥2 :∀l ≥ 2, x1 · x2 ∈ Ac)dμω(x1) = 0.

This implies that for μω-almost all x1,

μ⊗(l≥2)
ω

(
(xl)l≥2 :∀l ≥ 2, x1 · x2 ∈ Ac) = μω(x2 :x1 · x2 ∈ Ac)∞ = 0,

which means that μω(x2 :x1 ·x2 ∈ Ac) < 1 and, therefore, μω(x2 :x1 ·x2 ∈ A) > 0.

To prove part (b), it is enough to express P(R1,2 ∈ A) = 0 using Proposition 1. �

PROOF OF THEOREM 2. (a) Since F([−1, q∗]) = 1 and F([q∗ − n−1, q∗]) > 0
for all n ≥ 1, Lemma 1 implies that for Pr-almost all ω, for μω-almost all x1,

μω(x2 :x1 · x2 ≤ q∗) = 1, μω(x2 :x1 · x2 ≥ q∗ − n−1) > 0
(2.4)

∀n ≥ 1.

Let us fix any such ω. First, the equality in (2.4) implies that μω(‖x‖2 ≤ q∗) = 1.

Otherwise, there exists h ∈ H with ‖h‖2 > q∗ such that μω(Bε(h)) > 0 for any
ε > 0, where Bε(h) is the ball of radius ε > 0 centered at h. Taking ε > 0 small
enough so that x1 · x2 > q∗ for all x1, x2 ∈ Bε(h) contradicts the first equality
in (2.4). Next, let us show that μω(‖x‖2 < q∗) = 0. Otherwise, there again ex-
ists an open ball Bε(h) ⊂ {x :‖x‖2 < q∗} such that μω(Bε(h)) > 0. For some
δ > 0, ‖x‖2 < q∗ − δ for all x ∈ Bε(h) and, therefore, for all x1 ∈ Bε(h) and
x2 ∈ {‖x‖2 ≤ q∗}, we have x1 · x2 <

√
q∗(q∗ − δ) ≤ q∗ − n−1 for large enough

n ≥ 1. Since we have already proven that μω(‖x‖2 ≤ q∗) = 1, this contradicts the
second inequality in (2.4). We have proven that μω(‖x‖2 = q∗) = 1.

(b) If F({q∗}) = 0, then, by Lemma 1 for Pr-almost all ω, for μω-almost all x1,
we have μω(x2 :x1 · x2 = q∗) = 0. Therefore, for Pr-almost all ω for which also
μω(‖x‖2 = q∗) = 1, μω must be continuous.
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(c) If F({q∗}) = 1, then, by Lemma 1 for Pr-almost all ω, for μω-almost all x1,
we have μω(x2 :x1 · x2 = q∗) = 1. By part (a), μω(‖x‖2 = q∗) = 1 and, there-
fore, μω must be concentrated on one point. If F({q∗}) ∈ (0,1), then for Pr-
almost all ω, for μω-almost all x1, we have μω(x2 :x1 · x2 = q∗) > 0 and since
μω(‖x‖2 = q∗) = 1, we get that for μω-almost all x1, μω({x1}) > 0. This proves
that μω is discrete. Let (wl) be the sequence of weights of μω arranged in decreas-
ing order [we keep the dependence of (wl) on ω implicit]. The fact that (wl) has
PD(1−F({q∗})) distribution will follow from the analog of the Ghirlanda–Guerra
identities for the Poisson–Dirichlet distribution proven by Talagrand in Chapter 1
of [14]. Let us explain how this result applies in our setting. Let us take any m ≥ 1
and n1, . . . , nm ≥ 1 and for n = n1 + · · · + nm, consider a function f on M which
is the indicator of the set

{Rl,l′ = q∗ :n1 + · · · + np + 1 ≤ l �= l′ ≤ n1 + · · · + np + np+1,0 ≤ p ≤ m − 1}.
Let us express the expectation Ef using (2.2) and write the inside integral in terms
of the weights (wl) of the directing measure μω. Since, by part (a), μω(‖x‖2 =
q∗) = 1 and Rl,l′ = xl · xl′ = q∗ only if x1 = x2 when ‖x1‖2 = ‖x2‖2 = q∗, by
Fubini’s theorem,∫

f (R)Q(ω, dR) = ∑
l≥1

w
n1
l

∑
l≥1

w
n2
l · · ·∑

l≥1

w
nm

l .(2.5)

Similarly, if we take ψ(x) = I (x = q∗), then∫
f ψ(R1,n+1)Q(ω, dR) = ∑

l≥1

w
n1+1
l

∑
l≥1

w
n2
l · · ·∑

l≥1

w
nm

l ,(2.6)

and we have f ψ(R1,j ) = f for 2 ≤ j ≤ n1 and∫
f ψ(R1,j )Q(ω, dR) = ∑

l≥1

w
n1+np

l · · ·∑
l≥1

w
np−1
l

∑
l≥1

w
np+1
l · · ·∑

l≥1

w
nm

l(2.7)

for n1 + 1 ≤ j ≤ n when n1 + · · · + np + 1 ≤ j ≤ n1 + · · · + np + np+1. If we let

S(n1, . . . , nm) = E
∑
l≥1

w
n1
l

∑
l≥1

w
n2
l · · ·∑

l≥1

w
nm

l

and s = 1 − F({q∗}), then plugging (2.5), (2.6) and (2.7) into (1.2) implies that

S(n1 + 1, n2, . . . , nm) = n1 − s

n
S(n1, . . . , nm)

+
m∑

p=2

np

n
S(n1 + np, . . . , np−1, np+1, . . . , nm).

This coincides with equation (1.52) in [14]. It is explained there that this equation
can be used recursively to compute S(n1, . . . , nm) in terms of s ∈ (0,1) only and
that the set of numbers S(n1, . . . , nm) uniquely determines the distribution of the
weights (wl)l≥1 as the Poisson–Dirichlet distribution PD(s). �



GHIRLANDA–GUERRA IDENTITIES AND ULTRAMETRICITY 333

3. Ultrametricity in the discrete case. In the case when (1.1) holds, Theo-
rem 2 implies that for Pr-almost all ω, the directing measure μω is discrete and
concentrated on the sphere of radius

√
qk , that is,

μω = ∑
l≥1

wlδξ(l)(3.1)

for some distinct sequence ξ(l) ∈ H with ‖ξ(l)‖2 = qk and w1 ≥ w2 ≥ · · · > 0. In
particular, by (2.3), this implies that a nondiagonal element Rl,l′ = xl · xl′ = qk if
and only if xl = xl′ which proves the ultrametricity at the last level k,

R1,2 ≥ qk, R1,3 ≥ qk �⇒ R2,3 ≥ qk.(3.2)

This is already a serious achievement, based, in addition to (1.1), only on the weak
exchangeability of the matrix R via the application of the Dovbysh–Sudakov rep-
resentation. Bringing this idea to light was one of the main contributions of [3].
The description of the directing measure μω provided by (3.1) corresponds to the
pure states picture in physics, where each point ξ(l) can be thought of as a “pure
state” of the asymptotic Gibbs measure. One of the crucial results in the alterna-
tive approach of Talagrand in [15] is a very general construction of pure states for
measures in Hilbert spaces which provides a way around the representation results
for exchangeable arrays that we are relying on here.

Since we will hereafter deal with the discrete directing measure (3.1), let us
introduce some notation that will be more convenient throughout the rest of the
paper. We will keep the dependence of the directing measure μω on ω implicit
and write E for the integration in ω. To describe an i.i.d. sample from measure μ

in (3.1), consider i.i.d. random variables

σ 1, σ 2, . . . ∈ N(3.3)

that take any value l ≥ 1 with probability wl , which is the weight corresponding to
the index l in the directing measure (3.1). Let us denote by 〈·〉 the expectation in
these random indices for a given measure μ, that is, for any n ≥ 1 and a function
h : Nn → R,

〈h〉 = 〈h(σ 1, . . . , σ n)〉 = ∑
l1,...,ln

h(l1, . . . , ln)wl1 · · ·wln.(3.4)

By the configuration of μ, we will understand the weights and configuration of its
atoms,

w = (wl)l≥1 and R = (
ξ(l) · ξ(l′)

)
l,l′≥1.(3.5)

Since ξ(σ l) are i.i.d. from distribution μ, Proposition 1 can be rephrased by saying
that the nondiagonal elements of the matrix R can be generated by first generating
a random measure μ [or its configuration (3.5)], then sampling indices (3.3) and
setting

Rl,l′ = ξ(σ l) · ξ(σ l′) = R
σ l,σ l′ .(3.6)
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The Ghirlanda–Guerra identities (1.2) can be rewritten as

E〈fnψ(R1,n+1)〉 = 1

n
E〈fn〉E〈ψ(R1,2)〉 + 1

n

n∑
l=2

E〈fnψ(R1,l)〉(3.7)

and (1.1) can be rewritten as

E〈I (R1,2 = ql)〉 = ml+1 − ml for 1 ≤ l ≤ k.(3.8)

The fact that in (3.1), all ‖ξ(l)‖2 = qk implies that in (2.3), all al = 1 − qk and,
therefore, we can safely omit the term alδl,l′ in (2.3) and redefine the matrix R by
Rl,l′ = ξ(σ l) · ξ(σ l′) for all l, l′ ≥ 1 so that, from now on, the diagonal elements
are equal to qk. As mentioned in the Introduction, as in [3], the crucial step which
will allow us to use the Dovbysh–Sudakov representation (2.3) in order to make
the induction step in the proof of Theorem 1 is the following.

THEOREM 3. The matrix R in (3.5) is weakly exchangeable conditionally on
w = (wl).

Of course, this means that R is also weakly exchangeable unconditionally,
which is how it will be used in the proof of Theorem 1, but the proof of the
stronger statement of conditional exchangeability is exactly the same. The proof of
Theorem 3 will be based on a certain invariance property of the joint distribution
of w and R—quasi-stationarity under free evolution in the terminology of [3]—
which, in our setting, will follow from the Ghirlanda–Guerra identities. Consider
i.i.d. Rademacher random variables (εl)l≥1 independent of the measure μ. Given
t ≥ 0, consider a new sequence of weights

wt
l = wle

tεl∑
p≥1 wpetεp

,(3.9)

defined by a random change of density proportional to etεl . Of course, these
weights are not necessarily decreasing anymore, so let us denote by (wπ

l ) the
weights (wt

l ) arranged in decreasing order and let π : N → N be the permutation
keeping track of where each index came from, wπ

l = wt
π(l). Let us define by

μπ = ∑
l≥1

wπ
l δξ(π(l)) and Rπ = (

ξ(π(l)) · ξ(π(l′))
)
l,l′≥1(3.10)

the probability measure μ after the change of density proportional to etεl and the
matrix R rearranged according to the reordering of weights. Analogously to (3.4),
let us denote by 〈hn〉π the average

〈h〉π = ∑
l1,...,ln

h(l1, . . . , ln)w
π
l1

· · ·wπ
ln

(3.11)

and let E now denote the expectation in the randomness of the measure μ and the
Rademacher sequence (εl). Theorem 3 is a consequence of the following invari-
ance principle.
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THEOREM 4. For t < 1/2, we have (wπ, Rπ)
D= (w, R).

This result can be expressed by saying that the directing measure μ is stochas-
tically stable under the change of density (3.9) and is a nontrivial consequence of
the Ghirlanda–Guerra identities; in fact, as mentioned in the Introduction, this is,
in some sense, a reversal of the usual derivation of the Ghirlanda–Guerra identities.
There is a very important technical reason why we use Rademacher instead of the
more obvious Gaussian change of density (as in [3]) that will become clear from
the proof. Of course, as will be shown in the proof of Theorem 3, Theorem 4 for
Rademacher change of density (3.9) implies the same result for Gaussian change
of density as well. Let us now show how Theorem 3 can be used to prove ultra-
metricity by induction on k.

PROOF OF THEOREM 1. Given a Gram–de Finetti matrix R, we consider the
configuration matrix R of its directing measure defined in (3.5), which is symmet-
ric and nonnegative definite. By (3.1), Rl,l = qk and by (1.1), with probability 1,
nondiagonal elements

Rl,l′ ∈ {q1, . . . , qk−1}.(3.12)

By Theorem 3, R is weakly exchangeable and, thus, is a Gram–de Finetti matrix.
Therefore, using Proposition 1, there exists a random probability measure η′ on
H × [0,∞) such that

(Rl,l′)
D= (yl · yl′ + blδl,l′),(3.13)

where (yl, bl) is an i.i.d. sequence from the distribution η′. Let us now show
that (3.12) implies that if μ′ is the marginal of η′ on H , then μ′ = ∑

l≥1 w′
lδξ ′(l)

for some distinct sequence ξ ′(l) ∈ H , w′
1 ≥ w′

2 ≥ · · · > 0, and, moreover,

ξ ′(l) · ξ ′(l′), ‖ξ ′(l)‖2 ∈ {q1, . . . , qk−1}.(3.14)

Indeed, if a point y belongs to the support of μ′, in the sense that μ′(Bε(y)) > 0
for all ε > 0, then in the i.i.d. sequence (yl) from this distribution, there will be
infinitely many elements from Bε(y). Since, by (3.12), the scalar product yl · yl′ of
these elements belongs to {q1, . . . , qk−1} with probability 1, letting ε → 0 proves
that ‖y‖2 ∈ {q1, . . . , qk−1}. If z is another point in the support of μ′ such that
z ∈ Bε(y), then ‖z‖2 ∈ {q1, . . . , qk−1} and, therefore, ‖z‖2 = ‖y‖2 if ε is small
enough. The same argument also proves that y · z ∈ {q1, . . . , qk−1}, which im-
plies that y = z if ε is small enough. This proves that the measure μ′ is discrete
and (3.14) holds. [Remark: Note that (3.14) guarantees that qk−1 ≥ 0 and by a
forthcoming induction, one can similarly conclude that all ql ≥ 0, which means
that we did not need to invoke Talagrand’s positivity principle and assume that
q1 ≥ 0.]
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Let us now explain the induction step. If r− = min(r, qk−1), then the truncated
matrix R− = (R−

l,l′) is symmetric, weakly exchangeable and, obviously, automati-
cally satisfies the Ghirlanda–Guerra identities (1.2). Also, since Rl,l′ = R

σ l,σ l′ and

R−
l,l′ = R−

σ l,σ l′ , R− is nonnegative definite whenever R− is, and the fact that R− is
nonnegative definite can be seen as follows. By (3.13), (3.14) and since Rl,l = qk

by (3.1), we get

(R−
l,l′)

D= (
yl · yl′ + (qk−1 − ‖yl‖2)δl,l′

)
.(3.15)

Since, by (3.14), ‖yl‖2 ≤ qk−1, the right-hand side is obviously nonnegative def-
inite. This implies that R− and, therefore, R− are nonnegative definite and we
have proven that the truncation R− is again a Gram–de Finetti matrix that satis-
fies the Ghirlanda–Guerra identities. Finally, the elements of R− take k − 1 values
{q1, . . . , qk−1},

P(R−
1,2 = qk−1) = P(R1,2 ≥ qk−1) = 1 − mk−1(3.16)

and, for l ≤ k − 2,

P(R−
1,2 = ql) = P(R1,2 = ql) = ml+1 − ml.(3.17)

By the induction assumption, the matrix R− is ultrametric and together with (3.2),
this completes the proof of Theorem 1. �

It is known [5] that an ultrametric matrix R that satisfies the Ghirlanda–Guerra
identities must be generated by the directing measure μ defined via the so called
Derrida–Ruelle probability cascades [4, 11].

4. Invariance and exchangeability. It remains to prove the main conse-
quences of the Ghirlanda–Guerra identities for the configuration of the directing
measure μ: a form of the stochastic stability of Theorem 4 and its application to
the exchangeability of Theorem 3. In the proof below, we will need a couple of
well-known properties of the Poisson–Dirichlet distribution PD(s) which we will
now recall.

By Theorem 2(c), the sequence (wl) in (3.1) has the Poisson–Dirichlet distri-
bution PD(s) with s = mk and it is defined by wl = ul/

∑
p≥1 up , where (ul)l≥1

is the decreasing enumeration of a Poisson point process on (0,∞) with inten-
sity measure x−1−s dx. Let us consider an i.i.d. sequence (Xl, Yl) on (0,∞) × R,
independent of (ul) and such that EX1 < ∞. Note that Xl and Yl need not be inde-
pendent and, for example, Xl can be a function of Yl. Let (Y ′

l ) be an i.i.d. sequence
independent of everything else such that for any measurable bounded function φ,

Eφ(Y ′
1) = EXs

1φ(Y1)

EXs
1

,(4.1)
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which means that the distribution of Y ′
1 is the distribution of Y1 under the change of

density Xs
1/EXs

1. Let θ be a random permutation of integers such that (uθ(l)Xθ(l))

is arranged in decreasing order. The first property that will be useful (see Proposi-
tion 2.3 in [11] or Proposition 6.5.15 in [14]) states that

(
uθ(l)Xθ(l)

) D= ((EXs
1)

1/sul)(4.2)

and, in particular, the sequence of weights w′
l = ulXl/

∑
p≥1 upXp , after rear-

ranging in decreasing order, (w′
θ(l)), again has the Poisson–Dirichlet distribution

PD(s). A more subtle result, Proposition A.2 in [4] (this result was rediscovered a
couple of times—see Proposition 3.1 in [12] or Lemma 1.1 in [10]) implies that

(
uθ(l)Xθ(l), Yθ(l)

) D= ((EXs
1)

1/sul, Y
′
l )(4.3)

and, in particular, (w′
θ(l), Yθ(l))

D= (wl, Y
′
l ). This property holds in more generality,

but the case of real-valued (Yl) will be sufficient for our purposes.

PROOF OF THEOREM 4. Given n ≥ 2, let us consider a function fn =
f ((Rl,l′)1≤l<l′≤n), where Rl,l′ = ξ(σ l) · ξ(σ l′), and suppose that ‖f ‖∞ ≤ 1. Con-
sider a function ϕ(t) = E〈fn〉π . The central idea of the proof is to show that

ϕ(t) = ϕ(0) for t <
1

2
,(4.4)

which means that a weakly exchangeable matrix (Rl,l′)l,l′≥1 has the same distribu-
tion under the directing measures μπ and μ. After we prove (4.4), we will explain
how this implies that the configurations of random measures μ and μπ have the
same distribution, which is precisely the statement of the theorem. If, for l ≥ 2, we
let

�l = ε(σ 1) + · · · + ε(σ l−1) − (l − 1)ε(σ l)(4.5)

[we will write ε(l) instead of εl], then it is easy to see that ϕ′(t) = E〈fn�n+1〉π
and, more generally,

ϕ(k)(t) = E〈fn�n+1 · · ·�n+k〉π .

Since |�l | ≤ 2l, we get |ϕ(k)(t)| ≤ 2k(n + k)!/n!. If we can show that ϕ(l)(0) = 0
for all l ≥ 1, then

|ϕ(t) − ϕ(0)| ≤ (n + k)!
k!n! 2ktk

and letting k → +∞ implies that ϕ(t) = ϕ(0) for t < 1/2. This is a good time
to mention why we used a Rademacher sequence in the change of density (3.9)
instead of the more obvious Gaussian. In the latter case, using Gaussian integra-
tion by parts, it is very easy to show that the Ghirlanda–Guerra identities imply
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ϕ(l)(0) = 0; moreover, the Aizenman–Contucci identities [1] suffice here. How-
ever, the problem of controlling the derivatives |ϕ(k)(t)| becomes extremely diffi-
cult. Using bounded Rademacher random variables in the change of density gives
us control of these derivatives for free, but it transfers the difficulty to showing that
ϕ(l)(0) = 0, which we now address. To complete the proof of (4.4), it remains to
show that for all k ≥ 1,

ϕ(k)(0) = E〈fn�n+1 · · ·�n+k〉 = 0.(4.6)

Since for t = 0, μπ = μ and, thus, 〈·〉 is independent of the Rademacher se-
quence (ε(l)),

ϕ(k)(0) = E〈fnEε�n+1 · · ·�n+k〉,
where Eε denotes the expectation in Rademacher random variables only. If k is
odd, then the derivative is zero by changing (εl) → (−εl). From now on, we
will assume that k is even. It is obvious that Eε�n+1 · · ·�n+k is the function of
(I (σ l = σ l′))l<l′ only and, by (3.1), σ l = σ l′ if and only if Rl,l′ = qk, which sug-
gests that the Ghirlanda–Guerra identities can be used in the computation of (4.6).
Let us start by expanding the product �n+1 · · ·�n+k. Each term in the expansion
corresponds to a collection I of n + k disjoint sets, I1, . . . , In+k , such that

{n + 1, . . . , n + k} = I1 ∪ · · · ∪ In+k

and such that I describes the fact that we select each ε(σ j ) for 1 ≤ j ≤ n + k

from factors �l with indices l ∈ Ij . We will call such a collection I a partition
of {n + 1, . . . , n + k}, even though some of the sets I1, . . . , In+k can be empty.
Therefore, we can write

�n+1 · · ·�n+k = ∑
I

cI ε(σ
1)|I1| · · · ε(σn+k)|In+k |(4.7)

for some constants cI that, of course, depend on the partitions I. Next, for any
partition P of {1, . . . , n + k}, let us write

l ∼P l′ ⇐⇒ l and l′ belong to the same element of P

and let us denote by IP = IP (σ 1, . . . , σ n+k) the indicator of the event

IP = I {σ l = σ l′ if and only if l ∼P l′,1 ≤ l, l′ ≤ n + k}.(4.8)

Using the fact that 1 = ∑
P IP , let us write, for any partition I in (4.7),

Eεε(σ
1)|I1| · · · ε(σn+k)|In+k | = ∑

P

IP Eεε(σ
1)|I1| · · · ε(σn+k)|In+k |.

Each term on the right-hand side is either IP when

ε(σ 1)|I1| · · · ε(σn+k)|In+k | ≡ 1,(4.9)
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that is, when, for each set of the partition P , the number of factors ε(σ j ) (with
their multiplicities) with indices j inside this set is even, or 0 otherwise, since, in
this case, at least one independent factor ε(σ j ) will remain and

Eεε(σ
1)|I1| · · · ε(σn+k)|In+k | = 0.

Therefore, if we denote by P(I ) the collection of partitions P of the first type for
which (4.9) holds, then

E〈fnEε�n+1 · · ·�n+k〉 = ∑
I

cI

∑
P∈P(I )

E〈fnIP 〉.(4.10)

Since fn is a function of the overlaps (Rl,l′) which takes only a finite number of
values (1.1), it can be written as a linear combination of indicator functions of sets
of the type

{Rl,l′ = ql,l′ : 1 ≤ l, l′ ≤ n}(4.11)

for any symmetric nonnegative definite matrix (ql,l′)1≤l,l′≤n with ql,l′ ∈ {q1, . . . ,

qk} and diagonal elements ql,l = qk. Therefore, we can assume that fn is the in-
dicator of the set (4.11). By (3.1) or by (3.2), we can assume that the constraints
(ql,l′) in (4.11) induce a partition Q on the set {1, . . . , n} according to the rule

l ∼Q l′ if and only if ql,l′ = qk(4.12)

and constraints ql,l′ depend on l, l′ only through the partition elements in Q which
they belong to. If partition Q consists of sets Q1, . . . ,Qp and lj = min{l : l ∈ Qj }
is the smallest index in each set, then fn can be written as

fn = f ′
nIQ, where f ′

n = I
({

Rl,l′ = ql,l′ : l, l′ ∈ {l1, . . . , lp}}).(4.13)

In this representation, we separate constraints which describe how coordinates
group together in the partition Q from constraints between representatives
l1, . . . , lr of each element of the partition, defined by f ′

n. Note that in the defi-
nition of f ′

n, all ql,l′ �= qk for l �= l′.
Returning to (4.10), if a partition P of {1, . . . , n + k} does not agree with Q on

{1, . . . , n}, then fnIP = f ′
nIQIP ≡ 0. This means that in (4.10), we can redefine

P(I ) to include only partitions P that agree with Q, that is, IQIP = IP . For such
partitions, we will now compute

E〈fnIP 〉 = E〈f ′
nIP 〉

slightly more explicitly. Suppose that

P = P1 ∪ · · · ∪ Pp ∪ Pp+1 ∪ · · · ∪ Pr

(we will abuse notation and write a partition as a union of its elements), where
Pl ∩ {1, . . . , n} = Ql for 1 ≤ l ≤ p and Pl ⊆ {n + 1, . . . , n + k} for p < l ≤ r. Of
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course, it is possible that r = p. Our immediate goal will be to demonstrate that
the Ghirlanda–Guerra identities imply that

E〈f ′
nIP 〉 = �(P )E〈f ′

n〉(4.14)

for some function �(P ) that depends only on the configuration of the partition P.

The exact formula for �(P ) will not be important, but what will be important is
to observe that it does not depend on the constraints in (4.13) that define f ′

n. For
1 ≤ j ≤ r, we denote by

lj = min{l : l ∈ Pj }(4.15)

the smallest index in the set Pj . Obviously, this definition agrees with the previous
definition of lj for Qj . Let us consider one of the sets in the partition that contains
at least two points, for example, Pr . Let l be the largest index in Pr and let P ′ be the
restriction of the partition P to the set {1, . . . , n+ k} \ {l}. We can then write IP =
IP ′I (σ lr = σ l). By (3.1), {σ l = σ l′ } = {Rl,l′ = qk} and we can treat I (σ l = σ l′)
as a function of Rl,l′ when using the Ghirlanda–Guerra identities. Therefore, (3.7)
implies that

E〈f ′
nIP 〉 = 1 − mk

n + k − 1
E〈f ′

nIP ′ 〉 + 1

n + k − 1

∑
j �=lr ,l

E〈f ′
nIP ′I (σ lr = σ j )〉.

The only nonzero terms in the last sum correspond to j ∈ Pr \{lr , l} and for such j ,
the constraint σ lr = σ j is already included in P ′, so IP ′I (σ lr = σ j ) = IP ′ and we
get

E〈f ′
nIP 〉 = 1 − mk

n + k − 1
E〈f ′

nIP ′ 〉 + |Pr | − 2

n + k − 1
E〈f ′

nIP ′ 〉 = |Pr | − 1 − mk

n + k − 1
E〈f ′

nIP ′ 〉.
Recursively, we can sequentially remove all coordinates with indices in Pr , ex-
cept σ lr . If we consider the partition

P ′ = P1 ∪ · · · ∪ Pr−1 ∪ {lr},
then

E〈f ′
nIP 〉 = (|Pr | − 1 − mk) · · · (|Pr | − (|Pr | − 1) − mk)

(n + k − 1) · · · (n + k − (|Pr | − 1))
E〈f ′

nIP ′ 〉.

We can carry out the same computation on each of the partitions P1, . . . ,Pr−1. As
a result, if we consider the partition

P ′ = {l1} ∪ · · · ∪ {lp} ∪ {lp+1} ∪ · · · ∪ {lr}(4.16)

and denote

κj = (|Pj | − 1 − mk) · · · (|Pj | − (|Pj | − 1) − mk

)
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for 1 ≤ j ≤ r and κj = 1 if |Pj | = 1, then

E〈f ′
nIP 〉 = κr · · ·κ1

(n + k − 1) · · · (n + k − (|Pr | − 1) − · · · − (|P1| − 1))
(4.17)

× E〈f ′
nIP ′ 〉.

Finally, let us simplify E〈f ′
nIP ′ 〉. If p = r , then f ′

nIP ′ = f ′
n. If p < r , then we

continue and consider a partition

P ′′ = {l1} ∪ · · · ∪ {lp} ∪ {lp+1} ∪ · · · ∪ {lr−1}.(4.18)

Then IP ′ = IP ′′ − ∑r−1
j=1 IP ′′I (σ lr = σ lj ) and, using the Ghirlanda–Guerra identi-

ties,

E〈f ′
nIP ′ 〉 = E〈f ′

nIP ′′ 〉 −
r−1∑
j=1

1

r − 1
E〈f ′

nIP ′′ 〉(1 − mk) = mkE〈f ′
nIP ′′ 〉.

Recursively, we can remove all coordinates σ lp+1, . . . , σ lr to get

E〈f ′
nIP ′ 〉 = m

r−p
k E〈f ′

n〉.(4.19)

In this last term, we do not need to write the indicator of the partition {l1} ∪ · · · ∪
{lp} since these constraints are already contained in the definition of f ′

n. Therefore,
we have proven (4.14) with

�(P ) = κr · · ·κ1

(n + k − 1) · · · (n + k − (|Pr | − 1) − · · · − (|P1| − 1))
m

r−p
k

and equation (4.10) becomes

E〈fnEε�n+1 · · ·�n+k〉 =
(∑

I

cI

∑
P∈P(I )

�(P )

)
E〈f ′

n〉.(4.20)

It seems difficult to show algebraically that
∑

I cI

∑
P∈P(I ) �(P ) = 0. However,

as mentioned above, one can note that the computation leading to (4.20) depends
on fn only through IQ in (4.13) since we only used the fact that partitions P ∈
P(I ) should agree with Q on {1, . . . , n}. Therefore, (4.20) takes exactly the same
form for fn = IQ, for which f ′

n is the indicator corresponding to the partition
Q0 = {l1} ∪ · · · ∪ {lp}, that is,

E〈IQEε�n+1 · · ·�n+k〉 =
(∑

I

cI

∑
P∈P(I )

�(P )

)
E〈IQ0〉.

Another way to see this is simply to add up (4.20) for all fn corresponding to the
same partition Q. Therefore, since E〈IQ0〉 �= 0, we will complete the proof if we
can show that

E〈IQEε�n+1 · · ·�n+k〉 = E〈IQ�n+1 · · ·�n+k〉 = 0.
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However, this is the kth derivative of the function ϕQ(t) = E〈IQ〉π at t = 0 and
the result will follow if we can show that ϕQ(t) ≡ ϕQ(0). The crucial observation
here is that E〈IQ〉π depends only on the distribution of the sequence (wπ

l ) because

σ l = σ l′ ⇐⇒ wπ
σl = wπ

σl′ ,(4.21)

provided that all of the weights in (wπ
l ) are different with probability 1. By (4.2),

(wπ
l ) has the Poisson–Dirichlet distribution PD(mk) and, therefore, all of the

weights wπ
l are different with probability 1, (wπ

l ) and (wl) have the same dis-
tribution and, by (4.21), E〈IQ〉π = E〈IQ〉. This proves that ϕQ(t) ≡ ϕQ(0) and
completes the proof of (4.4).

If R and Rπ are Gram–de Finetti matrices generated by the random directing
measures μ and μπ , respectively, then (4.4) obviously implies that R

D= Rπ. It
remains to prove that

R
D= Rπ �⇒ (w, R)

D= (wπ, Rπ).

This will follow from the fact that, conditionally on (w, R), the matrix R is gener-
ated by Rl,l′ = R

σ l,σ l′ , as in (3.6), from which one can show that (w, R) = φ(R)

almost surely for some measurable function φ, that is, the configuration (w, R) of
the directing measure can be uniquely reconstructed from the overlap matrix R.
Note that, by (3.1), with probability 1, the matrix R is ultrametric at the level k,
in the sense that the relation l ∼k l′ defined by Rl,l′ = qk is an equivalence relation
on N, and for any two equivalence classes N1 and N2, the coordinates Rl,l′ are
equal for all l ∈ N1 and l′ ∈ N2. Let wn(R) be the vector of frequencies of the
equivalence classes restricted to the set {1, . . . , n}, arranged in decreasing order
and then extended to an infinite vector by appending all zeros. Let Rn(R) be the
matrix of overlaps between the equivalence classes defined by

(Rn(R))l,l′ = Ri,j

for any representatives i and j of the equivalence classes corresponding to nonzero
wn(l) and wn(l′) and extended to an infinite matrix by setting qk on the diagonal
and zeros everywhere else. Define φ(R) as the coordinate-wise limit

φ(R) = lim
n→+∞(wn(R), Rn(R))(4.22)

if such limit exists and some fixed value otherwise, including when the matrix R

is not ultrametric at the level k. Since, conditionally on (w, R), the matrix R is
generated as in (3.6), by the strong law of large numbers, wn(R) converges almost
surely to w coordinate-wise. All coordinates of w are different with probability 1
since the sequence (wl) has the Poisson–Dirichlet distribution. For any such w,

given (w, R), Rn(R) also converges almost surely to R coordinate-wise because,
asymptotically, each equivalence class corresponds to a unique ξ(i) in the sup-
port of μ. This proves that (w, R) = φ(R) with probability 1 and since, by (4.4),
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the distribution of R is the same under the directing measures μ or μπ, we get

(wπ, Rπ)
D= (w, R). �

Finally, it remains to prove that the invariance principle of Theorem 4 implies
exchangeability of the matrix R.

PROOF OF THEOREM 3. Even though the underlying idea of our proof is the
same as the idea in Proposition 3.3 in [3], we provide a more direct argument
based on a very explicit control of the mixing induced by the random change of
density (3.9). Let us start with the observation that Theorem 4 also holds if we
replace a Rademacher sequence in the change of density (3.9) by an i.i.d. standard
Gaussian sequence (gl).

LEMMA 2. Theorem 4 holds with the change of density

wt
l = wle

tgl∑
p≥1 wpetgp

(4.23)

for arbitrary t > 0 and i.i.d. standard Gaussian (gl).

PROOF. This follows from the fact that the invariance provided by Theorem 4
will be preserved if we iterate the process of making the change of density (3.9).
Namely, if (εk

l )l≥1 are i.i.d. copies of (εl)l≥1 for k ≥ 1 and if we define Sk
l =

ε1
l + · · · + εk

l , then replacing (3.9) with

vt
l = wle

tSk
l∑

p≥1 wpetSk
p

,(4.24)

the statement of Theorem 4 still holds. We can replace t in (4.24) by tk−1/2 for
any fixed t > 0 and large enough k such that tk−1/2 < 1/2. Each element of the
i.i.d. sequence (k−1/2Sk

l )l≥1 converges in distribution to the standard Gaussian as
k → +∞. Therefore, we can choose these sequences for all k ≥ 1 on the same
probability space with some i.i.d. Gaussian sequence (gl)l≥1 so that k−1/2Sk

l → gl

almost surely for each l. It is easy to check that the sum∑
p≥1

wp exp(tk−1/2Sk
p) → ∑

p≥1

wp exp tgp a.s.,

possibly over some subsequence (k(n)). Then (vt
l ) converges almost surely to the

sequence (4.23) and, as a result, (wπ, Rπ) defined in terms of (4.24) also con-
verges almost surely to the corresponding configuration defined in terms of (gl).
Since, by Theorem 4, the distribution of (wπ, Rπ) remains the same along this
sequence, the distribution of the limiting configuration (wπ, Rπ) defined in terms
of (gl) is equal to the distribution of (w, R). �
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Now, given n ≥ 1, let us consider a fixed permutation ρ of {1, . . . , n} and
a measurable subset A ⊆ [−1,1]n2

. Given m ≥ 1, consider a measurable subset
B ⊆ [0,1]m. To prove that conditionally on w the overlap matrix R is weakly
exchangeable, we need to show that

P
(

Rρ
n ∈ A, (wl)l≤m ∈ B

)
, where Rρ

n = (
Rρ(l),ρ(l′)

)
1≤l,l′≤n,

does not depend on the permutation ρ. Without loss of generality, we can assume
that m = n, by redefining the sets A and B and permutation ρ. Also, to simplify
notation, we will write w ∈ B instead of (wl)l≤m ∈ B . Let π be a permutation of
indices induced by the rearrangement of the sequence (4.23), that is, wπ

l = wt
π(l).

If we let

Rπ◦ρ
n = (

Rπ◦ρ(l),π◦ρ(l′)
)
1≤l,l′≤n,

then Theorem 4 implies that

P(Rρ
n ∈ A,w ∈ B) = P(Rπ◦ρ

n ∈ A,wπ ∈ B).(4.25)

Intuitively, when t goes to infinity, the order of π(1), . . . , π(n) becomes com-
pletely random because it is determined by the order of logwπ(l) + tgπ(l) for
1 ≤ l ≤ n, which is asymptotically, for t → +∞, determined by the order of
gπ(1), . . . , gπ(n). Therefore, in the limit, the distribution of Rπ◦ρ

n , and, thus,
of Rn, should not depend on ρ, which means that R is weakly exchangeable.
However, since, a priori, we do not control the dependence of w and R, turn-
ing this intuition into a rigorous argument requires some work. Let us denote
by j = (j (1), . . . , j (n)) a generic vector with all indices j (l) different and let
π ◦ ρ = (π ◦ ρ(1), . . . , π ◦ ρ(n)). With this notation, the right-hand side of (4.25)
can be written as ∑

j

P(Rπ◦ρ
n ∈ A,wπ ∈ B,π ◦ ρ = j)

(4.26)
= ∑

j

P(Rj
n ∈ A,wπ ∈ B,π ◦ ρ = j),

where we have also introduced the notation Rj
n = (Rj (l),j (l′))1≤l,l′≤n. Condition-

ally on w = (wl), the events {Rj
n ∈ A} and {wπ ∈ B,π ◦ ρ = j} are independent

since the latter depends only on the sequence (gl) and, therefore,

P(Rj
n ∈ A,wπ ∈ B,π ◦ ρ = j |w)

(4.27)
= P(Rj

n ∈ A|w)P(wπ ∈ B,π ◦ ρ = j |w).

If τ is another fixed permutation of {1, . . . , n}, then (4.25), (4.26) and (4.27) imply
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that

|P(Rρ
n ∈ A,w ∈ B) − P(Rτ

n ∈ A,w ∈ B)|
≤ ∑

j

∫ ∣∣P(wπ ∈ B,π ◦ ρ = j |w)(4.28)

− P(wπ ∈ B,π ◦ τ = j |w)
∣∣d�(w),

where � is the distribution of w. Let us express one of the events Cρ =
{wπ ∈ B,π ◦ ρ = j} in terms of the sequence (gl). If we let

k = j ◦ ρ−1, that is, k(l) = j (ρ−1(l)) for 1 ≤ l ≤ n,(4.29)

then, by the definition of π, the event {π ◦ ρ = j} expresses the fact that for 1 ≤
l ≤ n, the number wk(l) exp tgk(l) occupies the position l among all the elements of
(wi exp tgi) arranged in decreasing order. If we introduce the notation

γk(l) = t−1 logwk(l), zl = gk(l) + γk(l),

x = sup
i /∈j

(gi + t−1 logwi), y = ∑
i /∈j

wie
tgi ,

then the event Cρ can be written as

Cρ =
{(

etzl

y + ∑
1≤i≤n etzi

)
1≤l≤n

∈ B,z1 ≥ · · · ≥ zn ≥ x

}
.(4.30)

Let us first consider the probability of Cρ conditionally on w and (gi)i /∈j , that is,
for fixed x, y and (γk(l)). Since (zl) are independent and zl has normal distribution
N(γk(l),1), we can write

P(Cρ |w, (gi)i /∈j ) = 1

(
√

2π)n

∫
Cρ

exp

(
−1

2

n∑
l=1

(
zl − γk(l)

)2
)

dz1 · · · dzn

= 1

(
√

2π)n
exp

(
−1

2

n∑
l=1

γ 2
j (l)

)

×
∫
Cρ

exp

(
n∑

l=1

γk(l)zl − 1

2

n∑
l=1

z2
l

)
dz1 · · · dzn.

Since the event (4.30) does not explicitly depend on ρ, the last integral depends
on ρ only through the term

∑n
l=1 γk(l)zl. If we denote by (γ −

l ) and (γ +
l ) the se-

quence (γk(l)) arranged in decreasing and increasing order, respectively, then, on
the event Cρ (since z1 ≥ · · · ≥ zn),

n∑
l=1

γ +
l zl ≤

n∑
l=1

γk(l)zl ≤
n∑

l=1

γ −
l zl .
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Therefore, the probability P(Cρ |w, (gi)i /∈j ) is maximized on the permutation ρ

for which the sequence k(l) = j (ρ−1(l)) in (4.29) is increasing, that is, ρ and j

are similarly ordered. This is, obviously, equivalent to π ◦ e = j+, where e is the
identity permutation, e(l) = l, and j+ is the increasing rearrangement of j. Simi-
larly, P(Cρ |w, (gi)i /∈j ) is minimized on the permutation ρ for which the sequence
in (4.29) is decreasing, which is equivalent to π ◦ e′ = j+ for the inverse permuta-
tion, e′(l) = n − l + 1. Averaging over (gi)i /∈j , we have proven that

P(wπ ∈ B,π ◦ e′ = j+|w) ≤ P(wπ ∈ B,π ◦ ρ = j |w)

≤ P(wπ ∈ B,π ◦ e = j+|w)

and, therefore,

|P(wπ ∈ B,π ◦ ρ = j |w) − P(wπ ∈ B,π ◦ τ = j |w)|
≤ P(wπ ∈ B,π ◦ e = j+|w) − P(wπ ∈ B,π ◦ e′ = j+|w)

for any ρ, τ and j. Plugging this into (4.28) gives

1

n! |P(Rρ
n ∈ A,w ∈ B) − P(Rτ

n ∈ A,w ∈ B)|
(4.31)

≤ P(wπ ∈ B,∃j :π ◦ e = j+) − P(wπ ∈ B,∃j :π ◦ e′ = j+).

We divide by n! because each j+ corresponds to n! different j . It remains to show
that the right-hand side goes to zero when t in (4.23) goes to infinity. Let us recall
the definition wπ

l = wt
π(l) and let us similarly define gπ

l = gπ(l). The event {∃j :π ◦
e = j+} can then be expressed in terms of (wπ,gπ), as follows. On one hand, this
event simply means that π(1) < · · · < π(n). On the other hand, (4.23) implies that,
if we let κ = ∑

p≥1 wpetgp ,

wπ(l) = κwt
π(l)e

−tgπ(l) = κwπ
l e−tgπ

l

and, therefore,

{∃j :π ◦ e = j+} = {wπ
1 e−tgπ

1 > · · · > wπ
n e−tgπ

n }.(4.32)

By (4.2), (wπ
l ) has the Poisson–Dirichlet distribution � = PD(mk) and it is easy

to check that (4.3) and (4.1) imply that (gπ
l ) is an i.i.d. sequence with normal

distribution ν = N(tmk,1), independent of (wπ
l ). Therefore,

P(wπ ∈ B,∃j :π ◦ e = j+)

=
∫
B

ν⊗n(
(gπ

l )1≤l≤n :wπ
1 e−tgπ

1 > · · · > wπ
n e−tgπ

n
)
d�(wπ).

For any fixed wπ, ν⊗n(wπ
1 e−tgπ

1 > · · · > wπ
n e−tgπ

n ) → 1/n! when t → +∞
since, asymptotically, this event is equivalent to gπ

1 < · · · < gπ
n and, therefore,

P(wπ ∈ B,∃j :π ◦ e = j+) → �(B) as t → +∞. Similarly, the fact that P(wπ ∈
B,∃j :π ◦ e′ = j+) → �(B), together with (4.31), completes the proof. �



GHIRLANDA–GUERRA IDENTITIES AND ULTRAMETRICITY 347

Acknowledgments. The author would like to thank Michel Talagrand and the
referees for many valuable comments and suggestions.

REFERENCES

[1] AIZENMAN, M. and CONTUCCI, P. (1998). On the stability of the quenched state in mean-field
spin-glass models. J. Statist. Phys. 92 765–783. MR1657840

[2] ALDOUS, D. J. (1985). Exchangeability and related topics. In École D’été de Probabil-
ités de Saint-Flour, XIII—1983. Lecture Notes in Math. 1117 1–198. Springer, Berlin.
MR883646

[3] ARGUIN, L.-P. and AIZENMAN, M. (2009). On the structure of quasi-stationary competing
particles systems. Ann. Probab. 37 1080–1113.

[4] BOLTHAUSEN, E. and SZNITMAN, A.-S. (1998). On Ruelle’s probability cascades and an
abstract cavity method. Comm. Math. Phys. 197 247–276. MR1652734

[5] BOVIER, A. and KURKOVA, I. (2004). Derrida’s generalised random energy models. I. Mod-
els with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Statist. 40 439–480.
MR2070334

[6] DOVBYSH, L. N. and SUDAKOV, V. N. (1982). Gram-de Finetti matrices. Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 119 77–86, 238, 244–245. MR666087

[7] GHIRLANDA, S. and GUERRA, F. (1998). General properties of overlap probability distribu-
tions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A 31 9149–9155.
MR1662161

[8] PARISI, G. (1980). A sequence of approximate solutions to the S-K model for spin glasses.
J. Phys. A 13 L115–L121.

[9] PANCHENKO, D. (2007). A note on Talagrand’s positivity principle. Electron. Comm. Probab.
12 401–410 (electronic). MR2350577

[10] PANCHENKO, D. and TALAGRAND, M. (2007). On one property of Derrida–Ruelle cascades.
C. R. Math. Acad. Sci. Paris 345 653–656. MR2371485

[11] RUELLE, D. (1987). A mathematical reformulation of Derrida’s REM and GREM. Comm.
Math. Phys. 108 225–239. MR875300

[12] RUZMAIKINA, A. and AIZENMAN, M. (2005). Characterization of invariant measures at the
leading edge for competing particle systems. Ann. Probab. 33 82–113. MR2118860

[13] SHERRINGTON, D. and KIRKPATRICK, S. (1975). Solvable model of a spin glass. Phys. Rev.
Lett. 35 1792–1796.

[14] TALAGRAND, M. (2003). Spin Glasses: A Challenge for Mathematicians. Ergebnisse der
Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathemat-
ics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics] 46. Springer, Berlin. MR1993891

[15] TALAGRAND, M. (2009). Construction of pure states in mean-field models for spin glasses.
Probab. Theory Related Fields. To appear.

DEPARTMENT OF MATHEMATICS

TEXAS A&M UNIVERSITY

MAILSTOP 3386
COLLEGE STATION, TEXAS 77843
USA
E-MAIL: panchenk@math.tamu.edu

http://www.ams.org/mathscinet-getitem?mr=1657840
http://www.ams.org/mathscinet-getitem?mr=883646
http://www.ams.org/mathscinet-getitem?mr=1652734
http://www.ams.org/mathscinet-getitem?mr=2070334
http://www.ams.org/mathscinet-getitem?mr=666087
http://www.ams.org/mathscinet-getitem?mr=1662161
http://www.ams.org/mathscinet-getitem?mr=2350577
http://www.ams.org/mathscinet-getitem?mr=2371485
http://www.ams.org/mathscinet-getitem?mr=875300
http://www.ams.org/mathscinet-getitem?mr=2118860
http://www.ams.org/mathscinet-getitem?mr=1993891
mailto:panchenk@math.tamu.edu

	Introduction and main result
	Basic consequences of GGI and exchangeability
	Ultrametricity in the discrete case
	Invariance and exchangeability
	Acknowledgments
	References
	Author's Addresses

