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In this paper we determine the percolation threshold for an arbitrary se-
quence of dense graphs (Gn). Let λn be the largest eigenvalue of the ad-
jacency matrix of Gn, and let Gn(pn) be the random subgraph of Gn ob-
tained by keeping each edge independently with probability pn. We show
that the appearance of a giant component in Gn(pn) has a sharp threshold at
pn = 1/λn. In fact, we prove much more: if (Gn) converges to an irreducible
limit, then the density of the largest component of Gn(c/n) tends to the sur-
vival probability of a multi-type branching process defined in terms of this
limit. Here the notions of convergence and limit are those of Borgs, Chayes,
Lovász, Sós and Vesztergombi.

In addition to using basic properties of convergence, we make heavy use of
the methods of Bollobás, Janson and Riordan, who used multi-type branching
processes to study the emergence of a giant component in a very broad family
of sparse inhomogeneous random graphs.

1. Introduction. In this paper we study percolation on arbitrary sequences of
dense finite graphs, where the number of edges grows quadratically with the num-
ber of vertices. The study of percolation on finite graphs is much more delicate than
that of percolation on infinite graphs; indeed, percolation on finite graphs provides
the finite-size scaling behavior of percolation on the corresponding infinite graphs
(see, e.g., Borgs, Chayes, Kesten and Spencer [11] for the study of percolation on
finite subcubes of Z

d ).
The first question one asks is whether there is a percolation phase transition. In

the case of a finite graph on n vertices, we say that a percolation phase transition
occurs when the size of the largest component goes from being of order o(n) [typ-
ically in fact O(logn)] below a certain density to order n above that density. Of
course, to make this precise, one must consider a sequence of graphs with n → ∞.
The next question one typically asks is how the size of the second largest compo-
nent behaves. In the few specific cases studied so far, the second largest component
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is of order logn both below and above the transition; the behavior above the tran-
sition is much more difficult to prove. Once the existence of the transition has been
established, one then studies the finite-size scaling (i.e., behavior in n) of the width
of the transition region, and the size of the largest component within that transition
window.

In this paper we establish the existence of a phase transition, including the be-
havior of the largest and second largest components, for a very large class of se-
quences of dense finite graphs. Moreover, we establish the location of the transition
in terms of spectral properties of these graphs.

Consider a sequence of dense graphs (Gn) and a sequence of random sub-
graphs Gn(pn) obtained from Gn by deleting edges independently with proba-
bility 1 − pn. We say that the system percolates if Gn(pn) has a giant component,
that is, a connected component of size �(|Gn|), where |Gn| denotes the number
of vertices in Gn. As usual, we say that the appearance of a giant component has
a sharp threshold if there exists a sequence (pn) such that for all ε > 0, the ran-
dom subgraph Gn(pn(1 − ε)) has no giant component with probability 1 − o(1)

while Gn(pn(1 + ε)) has a giant component with probability 1 − o(1). (Here, and
throughout, all asymptotic notation refers to the limit as n → ∞.)

The simplest sequence (Gn) for which this question has been analyzed is a
sequence of complete graphs on n vertices. The corresponding random subgraph
is the well-known random graph Gn,pn . Erdős and Rényi [16] were the first to
show that with pn = c/n, the random graph Gn,c/n undergoes a phase transition
at c = 1: for c < 1, all components are of size O(logn) while for c > 1 a giant
component of size �(n) emerges. Later, the precise window of this phase transition
was determined by Bollobás [5] and Łuczak [19].

Other specific sequences were considered in both the combinatorics and the
probability communities. Ajtai, Komlós and Szemerédi [1] established a phase
transition for percolation on the n-cube Qn = {0,1}n (see [7, 10] for much more
detailed estimates on this transition). Borgs, Chayes, Kesten and Spencer [11] stud-
ied the case when the graphs Gn are rectangular subsets of Z

2, and determined
both the width of the phase transition window and the size of the largest compo-
nent within this window in terms of the critical exponents of the infinite graph Z

2.
While the question of a phase transition for random subgraphs of general se-

quences (Gn) was already formulated by Bollobás, Kohayakawa and Łuczak [7],
progress on this question has been rather slow. The few papers which deal with
more general classes of graph sequences are still restricted in scope. See, for ex-
ample, Borgs, Chayes, van der Hofstad, Slade and Spencer [8, 9] where the win-
dow for transitive graphs obeying the so-called triangle condition was analyzed,
Frieze, Krivelevich and Martin [17] where the threshold for random subgraphs of
a sequence of quasi-random graphs was analyzed, and Alon, Benjamini and Stacey
[2] for results about expander graphs with bounded degrees.

Here we analyze the phase transition for random subgraphs of dense conver-
gent graph sequences. The concept of convergent graph sequences was intro-
duced for sparse graphs by Benjamini and Schramm [3] and for dense graphs by
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Borgs, Chayes, Lovász, Sós and Vesztergombi in [12] (see also [13]). As shown in
[14, 15], there are many natural, a priori distinct definitions of convergence which
turn out to be equivalent. Here we use the following one: given two graphs F

and G, define the homomorphism density, t (F,G), of F in G as the probability
that a random map from the vertex set of F into the vertex set of G is a homo-
morphism; a sequence (Gn) of graphs is then said to be convergent if t (F,Gn)

converges for all finite graphs F . Note that any sequence (Gn) has a convergent
subsequence, so when studying general sequences of graphs, we may as well as-
sume convergence.

It was shown by Lovász and Szegedy [18] that if a graph sequence converges,
then the limiting homomorphism densities can be expressed in terms of a measur-
able function, W : [0,1]2 → [0,1], which can therefore be thought of as the limit
of the graph sequence. Following [14], we call such functions and their general-
izations graphons. More precisely, a graphon is a bounded measurable function
W : [0,1]2 → [0,∞) with W(x,y) = W(y,x) for all x, y. In [15] it is also shown
that convergence implies convergence of the normalized spectra of the adjacency
matrices to the spectrum of the limiting graphon considered as an operator on
L2([0,1]).

Independently of the results above, Bollobás, Janson and Riordan [6] introduced
a very general model of inhomogeneous random graphs with bounded average
degree, defined in terms of so-called kernels. Although kernels are reminiscent
of graphons, they are more general; in particular, they can be unbounded. One
of the aims of [6] was to prove precise results about the emergence of the giant
component in a general class of random graphs.

Our main result in this paper says that a convergent graph sequence has a sharp
percolation threshold, and, moreover, if the limiting graphon W is irreducible, then
the density of the largest component is asymptotically equal to the survival proba-
bility of a certain multi-type branching process defined in terms of W (see Theo-
rem 1 below).

As a corollary of this result, we obtain that the appearance of a giant component
in an arbitrary sequence of dense graphs (Gn) (convergent or not) has a sharp
threshold at pn = 1/λn, where λn is the largest eigenvalue of the adjacency matrix
of Gn (see Theorem 2 below). As usual, a sequence (Gn) with |Gn| → ∞ is called
dense if the average degree in Gn is of order �(|Gn|).

To state our results precisely, we need some notation. Given two graphs F and
G, write hom(F,G) for the number of homomorphisms (edge-preserving maps)
from F into G, and

t (F,G) = |G|−|F | hom(F,G)

for its normalized form, the homomorphism density. Following [13], we call a
sequence (Gn) of graphs convergent if t (F,Gn) converges for every graph F . It
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was shown in [18] that a sequence (Gn) is convergent if and only if there exists a
symmetric, Lebesgue-measurable function W : [0,1]2 → [0,1] such that

t (F,Gn) → t (F,W) for every graph F ,(1)

where

t (F,W) =
∫
[0,1]V (F)

∏
ij∈E(F)

W(xi, xj )
∏

i∈V (F)

dxi

is the homomorphism density of F in W . In this case the sequence is said to con-
verge to W ; in notation, Gn → W .

We also need the notion of a weighted graph. For the purposes of this paper,
a weighted graph G on a vertex set V is a symmetric function β : (v,w) �→ βvw

from V × V to [0,∞) with βvv = 0 for every v ∈ V . (We thus do not allow vertex
weights, and also restrict ourselves to nonnegative edge weights, instead of the
more general case of real-valued edge weights considered in [14, 15].) Graphs
correspond naturally to weighted graphs taking values in {0,1}. The definitions of
t (F,G) and of convergence extend naturally to weighted graphs: if F is a graph
on [k] and G is a weighted graph on V , then

t (F,G) = |G|−|F | ∑
v1,...,vk∈V

∏
ij∈E(F)

βvivj
.

Let (Gn) be a sequence of weighted graphs. We write βij (n) for the weight of
the edge ij in Gn, suppressing the dependence on n when this does not lead to con-
fusion. We shall assume throughout that |Gn| → ∞, that βmax = supi,j,n βij (n) <

∞ and that (Gn) is convergent in the sense that t (F,Gn) converges for all un-
weighted graphs F , although we shall remind the reader of this assumption in key
places. As shown in [14], the results of [18] immediately generalize to such se-
quences, implying the existence of a graphon W such that Gn → W in the sense
of (1). Let us note that in the context of unweighted graphs, graphons are usually
defined to take values in [0,1]. For weighted graphs with unbounded edge-weights,
one could also consider unbounded limit functions W ; we do not consider this ex-
tension here. One can also consider signed edge weights, in which case the appro-
priate limit objects are signed graphons, that is, (bounded) symmetric measurable
functions from [0,1]2 to R.

Given a signed graphon W , the cut norm of W is

‖W‖� = sup
A,B⊂[0,1]

∣∣∣∣
∫
A×B

W(x, y) dx dy

∣∣∣∣,
where the supremum is taken over all measurable sets. A rearrangement Wφ

of a graphon W is the graphon defined by Wφ(x, y) = W(φ(x),φ(y)) where
φ : [0,1] → [0,1] is a measure-preserving bijection. Finally, the cut metric is the
pseudometric on graphons defined by

δ�(W1,W2) = inf
φ

‖W1 − W
φ
2 ‖�.
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It is proved in [14] that Gn → W if and only if

δ�(WGn,W) → 0,(2)

where WGn denotes the piecewise-constant graphon naturally associated to the
weighted graph Gn.

Given a weighted graph G, let G(p) be the random graph on V (G) in
which edges are present independently, and the probability that ij is an edge is
min{pβij ,1}. We shall lose nothing by assuming that pβij < 1, so we shall of-
ten write pβij for min{pβij ,1}. Alternatively, as in [6], we could take pβij to be
a Poisson “edge intensity,” so the probability of an edge is 1 − exp(−pβij ); this
makes no difference to our results. Our aim is to study the giant component in the
sequence Gn(c/|Gn|). To do this, we shall consider a certain branching process
associated to the graphon cW .

As in [6], there is a natural way to associate a multi-type branching process
XW to a measurable W : [0,1]2 → R

+: each generation consists of a finite set of
particles with “types” in [0,1]. Given generation t , each particle in generation t

has children in the next generation independently of the other particles and of the
history. If a particle has type x, then the types of its children are distributed as a
Poisson process on [0,1] with intensity measure W(x,y) dy, where dy denotes the
Lebesgue measure. In other words, the number of children with types in a measur-
able set A ⊂ [0,1] is Poisson with mean

∫
y∈A W(x, y) dy, and these numbers are

independent for disjoint sets A. The first generation of XW consists of a single par-
ticle whose type x is uniformly distributed on [0,1]. Often we consider the same
branching process but started with a particle of a fixed type x: we write XW(x) for
this process.

If, as we shall always assume in this paper, W is bounded, then

λ(x) =
∫ 1

0
W(x,y) dy,

the expected number of children of a particle of type x, is bounded by ‖W‖∞; in
particular, this expected number is finite. Thus every particle always has a finite
number of children, and the total size of XW is infinite if and only if the process
XW survives for ever.

Writing |XW | for the total number of particles in all generations of the branching
process XW , let ρ(W) = P(|XW | = ∞) be the “survival probability” of XW , and
let ρ(W ;x) be the survival probability of XW(x), the process started with a particle
of type x. From basic properties of Poisson processes we have

ρ(W ;x) = 1 − exp
(
−

∫
W(x,y)ρ(W ;y)dy

)
(3)

for every x, and from the definitions of XW(x) and XW we have

ρ(W) =
∫

ρ(W ;x)dx.
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In general, the functional equation (3) may have several solutions. It is a standard
result of the theory of branching processes (proved in the present context in [6],
for example) that ρ(W ;x) is given by the largest solution, that is, the pointwise
supremum of all solutions.

Let TW be the integral operator defined by

(TW (f ))(x) =
∫

W(x,y)f (y) dy.

From Theorem 6.1 of [6], we have ρ(W) > 0 if and only if ‖TW‖ > 1, where ‖TW‖
is the L2-norm of TW .

We shall show that the condition Gn → W is strong enough to ensure that the
branching process captures enough information about the graph to determine the
asymptotic size of the giant component in Gn(c/|Gn|). For this we need one more
definition, corresponding roughly to connectedness.

A graphon W is reducible if there is a measurable A ⊂ [0,1] with 0 < μ(A) < 1
such that W(x,y) = 0 for almost every (x, y) ∈ A × Ac. Otherwise, W is irre-
ducible. Using the equivalent condition (2) for convergence, together with Sze-
merédi’s lemma, it is easy to show that if Gn → W with W reducible, then the
vertex set of each Gn may be partitioned into two classes so that the induced
graphs Hn and Kn converge to appropriate graphons W1 and W2, with o(|Gn|2)
edges of Gn joining Hn to Kn. In other words, the graphs Gn may be written as
“almost disjoint” unions of convergent sequences Hn and Kn. In the light of this
observation, it will always suffice to consider the case where W is irreducible.

Henceforth, for notational convenience, we shall assume that Gn has n vertices;
we shall often take the vertex set to be [n] = {1,2, . . . , n}. Note that we do not
require Gn to be defined for every n: all results will extend trivially to the general
case |Gn| → ∞ by considering subsequences. Let (Xn) be a sequence of nonneg-
ative random variables and (an) a sequence of nonnegative reals. As usual, we say
that a sequence of events En holds with high probability, or whp, if P(En) → 1 as
n → ∞. As in [6], we write Xn = op(an) if Xn/an converges to 0 in probabil-
ity, Xn = O(an) whp if there is a constant C such that Xn ≤ Can holds whp, and
Xn = �(an) whp if there are constants 0 < C1 ≤ C2 such that C1an ≤ Xn ≤ C2an

holds whp. Note that the assertion Xn = O(an) whp is stronger than the assertion
that Xn/an is bounded in probability [sometimes written Xn = Op(an)].

THEOREM 1. Let (Gn) = (βij (n))i,j∈[n] be a sequence of weighted graphs
with |Gn| = n and βmax = supi,j,n βij (n) < ∞ converging to a graphon W . Let
c > 0 be a constant, and let C1 = C1(n) denote the number of vertices in the
largest component of the random graph Gn(c/n), and C2 = C2(n) the number of
vertices in the second largest component.

(a) If c ≤ ‖TW‖−1, then C1 = op(n).
(b) If c > ‖TW‖−1, then C1 = �(n) whp. More precisely, for any constant α <

(c‖TW‖ − 1)/(cβmax) we have C1 ≥ αn whp.

(c) If W is irreducible, then C1/n
p→ ρ(cW) and C2 = op(n).
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In the result above, we may take c = 1 without loss of generality, rescaling the
edge weights in Gn. The heart of the theorem is part (c); as we shall see later [in
the discussion around (14)], part (b) follows easily.

The first two statements of Theorem 1 immediately imply that an arbitrary se-
quence of dense graphs has a sharp percolation threshold.

THEOREM 2. Let (Gn) be a sequence of dense graphs with |Gn| = n, let λn

be the largest eigenvalue of the adjacency matrix of Gn and let pn = min{c/λn,1}.
(a) If c ≤ 1, then the largest component of Gn(pn) is of size op(n).
(b) If c > 1, then the largest component of Gn(pn) has size �(n) whp.

PROOF. Theorem 2 follows immediately from Theorem 1 and the fact that
any sequence of weighted graphs with uniformly bounded edge weights has a con-
vergent subsequence. Indeed, to see (a), suppose for a contradiction that c ≤ 1,
and for some ε > 0 there is a subsequence (which we again denote by Gn) such
that with probability at least ε, the largest component of Gn(pn) has at least εn

vertices. Let G̃n be the sequence of weighted graphs obtained by weighting each
edge in Gn by n/λn. Since (Gn) is dense, we have λn = �(n), so the edge weights
in (G̃n) are bounded above. By compactness, we may assume that the homomor-
phism densities t (F, G̃n) converge, so by the results of [14], we may assume that
G̃n converges [in the sense of (1)] to some graphon W . Since the largest eigenvalue
of the adjacency matrix of G̃n is equal to n, we have that ‖TW‖ = 1, so by Theo-
rem 1 the largest component of Gn(pn) = G̃n(c/n) has size op(n), a contradiction.
The proof of (b) proceeds along the same lines. �

For convergent sequences of weighted graphs converging to an irreducible
graphon W , we shall prove stronger results about the sizes of the small components
in the noncritical cases. This time we renormalize by scaling the edge weights, tak-
ing c = 1.

THEOREM 3. Let (Gn) be a sequence of edge-weighted graphs with |Gn| = n

and βmax = supi,j,n βij (n) < ∞, and suppose that Gn → W .
If ‖TW‖ < 1, then there is a constant A such that C1(Gn(1/n)) ≤ A logn holds

whp.
If ‖TW‖ > 1 and W is irreducible, then there is a constant A such that

C2(Gn(1/n)) ≤ A logn holds whp.

It is easily seen that ‖TW‖ > 1 does not in itself imply that the second com-
ponent has O(logn) vertices; indeed, for an appropriate sequence (Gn) in which
each Gn is the disjoint union of two graphs, Hn and Kn, with (Hn) and (Kn)

convergent, Hn(1/n) and Kn(1/n) both have giant components whp, so the sec-
ond component of Gn(1/n) has �(n) vertices whp. Note also that adding, say,
�(n3/2) random edges to Gn running from Hn to Kn will almost certainly join
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[in Gn(1/n)] any giant components in Hn(1/n) and Kn(1/n) while preserving
the condition Gn → W . Hence we cannot expect to find the asymptotic size of the
giant component in the reducible case.

Let Nk(G) denote the number of vertices of a graph G that are in components
of size (number of vertices) exactly k. The basic idea of the proof of Theorem 1
is to consider components of each fixed size; the key lemma we shall need is as
follows.

LEMMA 4. Let W : [0,1]2 → [0,∞) be a graphon, and let (Gn) =
(βij (n))i,j∈[n] be a sequence of weighted graphs with Gn → W and βmax =
supi,j,n βij (n) finite. For each fixed k we have

1

n
Nk

(
Gn(1/n)

) p→ P(|XW | = k)(4)

as n → ∞.

Lemma 4 tells us that we have the “right” number of vertices in small com-
ponents; we shall then show that most of the remaining vertices are in a single
large component. Of course, as with any such branching process lemma, the proof
actually gives a little more: for any finite tree T , 1/n times the number of tree
components of Gn(1/n) isomorphic to T converges in probability to a quantity
that may be calculated from the branching process. In particular, considering a
rooted tree T ∗, the normalized number of vertices v in tree components that are
isomorphic to T ∗ with v as the root converges to the probability that the branching
process XW is isomorphic to T ∗, when XW is viewed as a rooted tree in the natural
way.

Lemma 4 will be proved in the next section; the proof of Theorem 1 is then
given in Section 3. Theorem 3 is proved in Section 4 in two separate parts.

Before turning to the proofs, let us remark on the relationship of the present
results to those of [6]. It might at first sight appear that Theorem 1 (and hence
Theorem 2) would follow simply from Theorem 3.1 of [6]. Indeed, given a se-
quence (Gn), the sequence of random subgraphs Gn(c/n) can be seen as an in-
stance of the model of [6] with a sequence κn of kernels given by κn = cWGn .
Passing to a subsequence, we can assume that these kernels converge in the cut
metric. But the results of [6] require pointwise convergence almost everywhere,
which is much stronger. Considering in particular the case where the Gn are un-
weighted graphs, the kernels κn take only the values c and 0, so it is clear that in
general they will have no subsequence that converges pointwise.

One could of course ask whether Theorem 3.1 of [6] may be strengthened by
relaxing the pointwise convergence condition to convergence in the cut metric. Ig-
noring complications due to the more general setting considered in [6], the answer
for bounded kernels turns out to be yes, but that is essentially the content of the
present paper. Indeed, as noted above, Theorem 1 may be viewed as a very special
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case of such a strengthening, for kernels of a special form (piecewise constant on
each 1/n by 1/n square) and the corresponding vertex space. It is easy to extend
this to general sequences of uniformly bounded kernels as long as, in the termi-
nology of [6], we restrict ourselves to the vertex space in which the types of the
vertices are independent and uniformly distributed on [0,1]. We can state such an
extension without reference to the more complicated definitions in [6].

Given a graphon W , for n ≥ supW let G(n,W) be the random (sparse) graph
on [n] obtained as follows: first choose X1, . . . ,Xn independently and uniformly
from [0,1]. Then, given X1, . . . ,Xn, join each pair ij , i < j , with probability
W(Xi,Xj )/n, independently of the other pairs.

THEOREM 5. Let Wn be a sequence of uniformly bounded graphons and W

a graphon, and suppose that δ�(Wn,W) → 0. Then the conclusions of Theorem 1
hold with Gn(c/n) replaced by G(n, cWn).

PROOF. This is essentially immediate from Theorem 4.7 of [14] and The-
orem 1. Indeed, taking X1, . . . ,Xn independent and uniform on [0,1], let
Hn = H(n,Wn) be the (dense) weighted graph on [n] with weights βij (n) =
Wn(Xi,Xj ). Theorem 4.7 of [14] states that with probability at least 1 −
e−n2/(2 log2 n) we have

δ�(Wn,WHn) ≤ 10√
log2 n

supWn ≤ 10M√
log2 n

,

where M = supn supWn < ∞. It follows that δ�(Wn,WHn) → 0 a.s. Since
δ�(Wn,W) → 0, we thus have Hn → W a.s. To construct G(n,Wn), we condition
on the sequence Hn, and then realize G(n,Wn) as Hn(c/n). In this conditioning
we may assume that Hn → W , so the result follows by Theorem 1. �

Note that while Theorem 5 greatly strengthens Theorem 3.1 of [6] by relax-
ing the convergence condition to one that can always be applied to a subse-
quence, it is much weaker in other ways: we must restrict to uniformly bounded
graphons/kernels, and there is no obvious way to handle general vertex spaces.

2. The number of vertices in small components. Let us first prove a slightly
weaker form of the special case k = 2 of Lemma 4, calculating the expected num-
ber of isolated edges in Gn(1/n). The only extra complications in the general case
will be notational. Let

dv = ∑
w

βvw

denote the “weighted degree” of a vertex v in the weighted graph Gn. Note that
for v fixed, the quantity dv = dv(n) is determined by Gn, so it is deterministic.
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Let v and w be two vertices of Gn chosen independently and uniformly at ran-
dom, independently of which edges are selected to form Gn(1/n). Given a random
variable X that depends on Gn, v and w, but not on which edges are selected to
form Gn(1/n), we shall write Evw for the expectation of X over the choice of v

and w. We define Ev similarly.
Let X be the vector-valued random variable X = (dv/n, dw/n,βvw). Note that

‖X‖∞ ≤ supv,w,n βvw(n) < ∞. For nonnegative integers t1 and t2, let

Xt1,t2 = Evw

(
(dv/n)t1(dw/n)t2βvw

)
(5)

denote the (t1, t2,1)st joint moment of the triple X. Then

nt1+t2+2Xt1,t2 = ∑
v

∑
w

dt1
v dt2

wβvw

= ∑
v

∑
w

(∑
u

βvu

)t1(∑
x

βwx

)t2

βvw

= ∑
v

∑
w

∑
u1,...,ut1

∑
x1,...,xt2

βvw

∏
i

βvui

∏
i

βwxi

= nt1+t2+2t (St1,t2,Gn),

where St1,t2 is the “double star” consisting of an edge with t1 extra pendent edges
added to one end and t2 to the other. Note that the summation variables are not
required to be distinct, and that t (F,Gn) counts homomorphisms, not injections.
Since Gn → W , it follows that

Xt1,t2 → t (St1,t2,W)(6)

as n → ∞.
For a given pair of vertices v, w, the probability [when we make the random

choices determining Gn(1/n)] that vw forms an isolated edge in Gn(1/n) is ex-
actly

pvw = βvw

n

∏
z �=v,w

(
1 − βvz

n

)(
1 − βwz

n

)
.

Note that the probability that v is one end of an isolated edge is∑
w �=v

pvw = nEwpvw,

so, with both v and w random, we have

1

n
E

(
N2

(
Gn(1/n)

)) = P(v in isol. edge) = Evw(npvw).

Since the β’s are bounded, we have

pvw ∼ βvw

n
exp

(
−dv

n
− dw

n

)
.(7)
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Let Dvw = dv/n + dw/n. Note that with v and w fixed, the quantity Dvw =
Dvw(n) is determined by Gn, so it is deterministic. For every v and w we have

βvw exp(−Dvw) =
∞∑
t=0

(−1)t
βvwDt

vw

t ! .

Taking v and w uniformly random, for each fixed n we have

Evw(βvw exp(−Dvw)) =
∞∑
t=0

(−1)t
Evw(βvwDt

vw)

t ! .(8)

As n → ∞, from (5) and (6) we have

Evw(βvwDt
vw) = Evw

(
βvw(dv/n + dw/n)t

)
= ∑

t1+t2=t

(
t

t1

)
Xt1,t2 → ∑

t1+t2=t

(
t

t1

)
t (St1,t2,W).

It is easy to see that the n → ∞ limit may be taken inside the sum in (8);
indeed, Dvw is bounded by 2βmax, so the t th summand in (8) is bounded by
Ct = βmax(2βmax)

t/t !. Since
∑

t Ct = βmax exp(2βmax) < ∞, the sum in (8) is
absolutely convergent, uniformly in n. Hence,

lim
n→∞ Evw(βvw exp(−Dvw)) =

∞∑
t=0

(−1)t
limn→∞ Evw(βvwDt

vw)

t !

=
∞∑
t=0

(−1)t

t !
∑

t1+t2=t

(
t

t1

)
t (St1,t2,W).

Putting the pieces together, we have expressed the limiting expectation of
N2(Gn(1/n)) in terms of W :

1

n
E

(
N2

(
Gn(1/n)

)) = Evw(npvw) ∼ Evw(βvw exp(−Dvw))

→
∞∑
t=0

(−1)t

t !
∑

t1+t2=t

(
t

t1

)
t (St1,t2,W)

=
∞∑

t1=0

∞∑
t2=0

(−1)t1

t1!
(−1)t2

t2! t (St1,t2,W).

Recalling that we write λ(x) = ∫
y W(x, y) dy, we have

t (St1,t2,W) =
∫
x

∫
y
W(x, y)λ(x)t1λ(y)t2 dx dy,

so the final quantity above is simply
∞∑

t1=0

∞∑
t2=0

∫
x

∫
y
W(x, y)

(−λ(x))t1

t1!
(−λ(y))t2

t2! dx dy.
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As W is bounded, using dominated convergence we may take the sums inside the
integral, obtaining∫

x

∫
y
W(x, y)e−λ(x)e−λ(y) dx dy = P(|XW | = 2).

We have thus proved a weak form of (4) for k = 2, namely convergence in expec-
tation: 1

n
E(N2(Gn(1/n))) → P(|XW | = 2).

Convergence in expectation for general k is essentially the same, although we
must count trees with each possible structure separately. Note that we need only
consider tree components: if N ′

k(G) denotes the number of vertices of a graph G

that are in components of size k that are not trees, then N ′
k(G) is certainly bounded

by k (or in fact k/3) times the number of vertices of G in cycles of length at most k.
In Gn(1/n), this latter quantity has expectation at most

k∑
�=3

n�(βmax/n)� ≤ k max{1, βk
max},

so we certainly have

E
(
N ′

k

(
Gn(1/n)

)) ≤ k2 max{1, βk
max} = o(n)(9)

as n → ∞ with k fixed. After this preparation, let us now turn to the proof of
Lemma 4.

PROOF OF LEMMA 4. Let T be a rooted tree on k vertices. Let aut(T ) denote
the number of automorphisms of T as a rooted tree. Thus, if T1, . . . , Tr are the
“branches” of T , then aut(T ) = f

∏
aut(Ti), where the factor f is the product of

a factor j ! for each (maximal) set of j isomorphic branches Ti .
The branching process XW may be naturally viewed as a rooted tree, by joining

each particle to its parent and taking the initial particle as the root. We write XW
∼=

T if this tree is isomorphic to T as a rooted tree. Note that

P(|XW | = k) = ∑
T

P(XW
∼= T ),(10)

where the sum runs over all isomorphism classes of rooted trees on k vertices.
Realizing T as a graph on {1,2, . . . , k}, one can show that

P(XW
∼= T ) = 1

aut(T )

∫
x1

· · ·
∫
xk

k∏
i=1

e−λ(xi)
∏

ij∈E(T )

W(xi, xj ).(11)

For example, the stronger statement,

P
(
XW(x1) ∼= T

) = 1

aut(T )

∫
x2

· · ·
∫
xk

k∏
i=1

e−λ(xi)
∏

ij∈E(T )

W(xi, xj )
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may be proved by induction on the size of T , noting that XW
∼= T holds if and only

if, for each isomorphism class of branch Ti of T , we have exactly the right number
of children of the initial particle whose descendants form a tree isomorphic to Ti .

Let T be a tree on {1,2, . . . , k}, which we shall regard as a rooted tree with
root 1, and let v = (v1, . . . , vk) be a k-tuple of vertices of Gn. If v1, . . . , vk are
distinct, let pv,T denote that probability that {v1, . . . , vk} is the vertex set of a com-
ponent of Gn(1/n) with vivj an edge of Gn(1/n) if and only if ij is an edge of T .
(Note that this condition is stronger than the component being isomorphic to T .)
If two or more vi are the same, set pv,T = 0. As before, let dv = ∑

w∈V (Gn) βvw

denote the “degree” of v in Gn; also, let

βv,T = ∏
ij∈E(T )

βvivj
.

Arguing as for (7), since βmax < ∞ we have

pv,T ∼ βv,T

nk−1 exp

(
−

k∑
i=1

dvi

n

)
.

Furthermore, taking v1, . . . , vk uniformly random, and recalling from (9) that we
may ignore nontree components, we have

1

n
E

(
Nk

(
Gn(1/n)

))
= ∑

T

P(random vertex v is root of cpt isom. to T ) + o(1)

= 1

n

∑
T

1

aut(T )

∑
v1,...,vk

pv,T + o(1),

where the sum runs over all isomorphism classes of k-vertex rooted trees T , and
the factor 1/ aut(T ) accounts for the number of labelings of a tree component iso-
morphic (as a rooted tree) to T with a given vertex v1 as the root, which gives the
number of distinct k-tuples (v1, . . . , vk) corresponding to a certain rooted compo-
nent. Putting the above together, we have

1

n
E

(
Nk

(
Gn(1/n)

)) = n−k
∑
T

∑
v

βv,T

aut(T )
exp

(
−

k∑
i=1

dvi

n

)
+ o(1)

= ∑
T

Ev

(
βv,T

aut(T )
exp

(
−

k∑
i=1

dvi

n

))
+ o(1),

where the expectation is over the uniformly random choice of v1, . . . , vk .
The rest of the calculations are as before: it is easy to check that for nonnegative

integers t1, . . . , tk we have

n
∑

ti+k
Ev

(
βv,T

k∏
i=1

(
dvi

n

)ti
)

= n
∑

ti+kt (Tt,Gn),
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where Tt is the graph formed from T by adding ti pendent edges to each vertex i,
so

t (Tt,Gn) → t (Tt,W) =
∫
x1

· · ·
∫
xk

∏
ij∈E(T )

W(xi, xj )

k∏
i=1

λ(xi)
ti .

As all relevant sums are uniformly absolutely convergent, we can expand the term
exp(−∑

dvi
/n) as a sum of terms of the form

∏
i (dvi

/n)ti , sum and take limits as
before, finally obtaining

1

n
E

(
Nk

(
Gn(1/n)

)) = ∑
T

1

aut(T )

∫
x1

· · ·
∫
xk

∏
ij∈E(T )

W(xi, xj )

k∏
i=1

e−λ(xi) + o(1).

But, from (11), the final summand is just P(XW
∼= T ), so, from (10),

1

n
E

(
Nk

(
Gn(1/n)

)) → P(|XW | = k).

To complete the proof of Lemma 4 it remains to give a suitable upper bound on
the variance. Let N≥k(G) denote the number of vertices of a graph G in compo-
nents of size at least k, and set N≥k = N≥k(Gn(1/n)). We shall show that

E
(
(N≥k/n)2) ≤ (

E(N≥k/n)
)2 + o(1)(12)

as n → ∞. This will imply that N≥k/n has variance o(1), and hence that
Nk(Gn(1/n)) = N≥k − N≥k+1 is concentrated about its mean.

Writing c(v) for the number of vertices in the component of Gn(1/n) containing
a given vertex v, and letting v and w be independent random vertices of Gn(1/n),
(12) is equivalent to

P
(
c(v) ≥ k, c(w) ≥ k

) ≤ P
(
c(v) ≥ k

)
P

(
c(w) ≥ k

) + o(1).(13)

But this is more or less immediate from the fact that P(d(v,w) ≤ 2k) = o(1),
where d(v,w) denotes graph distance in Gn(1/n). Indeed, let us first fix v and w.
If c(v) ≥ k, c(w) ≥ k and d(v,w) > 2k, then we can find disjoint sets of edges
Ev,Ew ⊂ Gn(1/n) such that the presence of all edges of Ev in Gn(1/n) is suf-
ficient to guarantee that c(v) ≥ k, and similarly with v replaced by w. [In fact, if
d(v,w) > 2k, then minimal witnesses for the events c(v) ≥ k and c(w) ≥ k must
be disjoint.] In other words, writing, as usual, A � B for the event that two (in-
creasing) events A and B have disjoint witnesses, if d(v,w) > 2k, then whenever
the events A = {c(v) ≥ k} and B = {c(w) ≥ k} hold, so does A � B . Hence

P(A ∩ B) ≤ P
(
d(v,w) ≤ 2k

) + P
(
A � B,d(v,w) > 2k

)
≤ P

(
d(v,w) ≤ 2k

) + P(A � B).

By the van den Berg–Kesten inequality [4] (for a more general inequality, see
Reimer [20]), P(A � B) is at most P(A)P(B), so

P
(
c(v) ≥ k, c(w) ≥ k

) ≤ P
(
c(v) ≥ k

)
P

(
c(w) ≥ k

) + P
(
d(v,w) ≤ 2k

)
.
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Choosing v,w uniformly at random and using the fact that EvwP(d(v,w) ≤ 2k) =
o(1), we obtain the bound (13) and hence (12), completing the proof of Lemma 4.

�

Lemma 4 has an immediate corollary showing that the “right” number of ver-
tices are in “small” components, as long as “small” is defined suitably.

COROLLARY 6. Let W : [0,1]2 → [0,∞) be a graphon, and let (Gn) =
(βij (n))i,j∈[n] be a sequence of weighted graphs with Gn → W and βmax =
supi,j,n βij (n) finite. Then

1

n
N>ω

(
Gn(1/n)

) p→ ρ(W)

as n → ∞ whenever ω = ω(n) tends to infinity sufficiently slowly.

PROOF. By Lemma 4 we have |Nk(Gn(1/n))/n − P(|XW | = k)| p→ 0 for
every fixed k. It follows that there is some function ω = ω(n) with ω(n) → ∞
such that

∑ω
k=1 |Nk(Gn(1/n))/n − P(|XW | = k)| p→ 0. Reducing ω if necessary,

we may and shall assume that ω(n) = o(n). Let us say that a component is small if
it has size at most ω(n) and large otherwise. Note that the number N≤ω(Gn(1/n))

of vertices in small components satisfies

1

n
N≤ω

(
Gn(1/n)

) =
ω∑

k=1

P(|XW | = k) + op(1) = P
(|XW | ≤ ω(n)

) + op(1)

= P(|XW | < ∞) + op(1).

(For the last step, recall that XW is defined without reference to n.) Hence, the
number of vertices in large components is asymptotically nρ(W) = nP(|XW | =
∞), as claimed. �

In the case where ‖TW‖ ≤ 1, Theorem 1 follows from Corollary 6: we have
ρ(W) = 0, so there are op(n) vertices in large components, and the largest com-
ponent has size op(n). When ‖TW‖ > 1, it remains to show that almost all vertices
in large components are in a single giant component. For this we shall use a sprin-
kling argument.

3. Joining up the large components. In the light of Corollary 6, to prove the
heart of Theorem 1, namely part (c), it remains to show that when W is irreducible,
almost all vertices in “large” components are in fact in a single giant component.
Before doing this, we shall show that part (b) of Theorem 1, concerning the re-
ducible case, follows from part (c). As the reducible case is rather uninteresting,
we shall only outline the argument, omitting the straightforward details.
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If W is reducible, it is easy to check that W may be decomposed into a finite or
countably infinite sequence W1,W2, . . . of irreducible graphons in a natural sense.
(For a formal statement and the simple proof, see Lemma 5.17 of [6].) Here each
graphon Wi is defined on Ai × Ai , rather than on [0,1]2, for some disjoint sets
Ai ⊂ [0,1]. If ‖TW‖ > 1, then there is an i for which ‖TWi

‖ > 1. In fact, since W

is bounded (by βmax < ∞), only finitely many of the Wj may have ‖TWj
‖ > 1,

so there is an i with ‖TWi
‖ = ‖TW‖. As noted in the Introduction, if Gn → W

it is easy to check that we may find induced subgraphs Hn of Gn with |Hn| =
(μ(Ai) + o(1))n and Hn → Wi . Since Wi is irreducible, assuming the irreducible
case of Theorem 1, whp the graph Hn(c/n), and hence Gn(c/n), will contain a
component with �(n) vertices.

To obtain the explicit constant in Theorem 1(b), it remains only to show that if
W (here Wi , rescaled to [0,1]2) is an irreducible graphon with ‖TW‖ > 1, then

ρ(W) ≥ ‖TW‖ − 1

‖W‖∞
.(14)

This crude bound is implicit in the results in [6]: indeed, TW has a positive eigen-
function ψ (see [6], Lemma 5.15) with eigenvalue λ = ‖TW‖. Since

‖TW‖ψ(x) = λψ(x) = (TWψ)(x) =
∫
y
W(x, y)ψ(y)dy ≤ ‖W‖∞‖ψ‖1,

we have ‖TW‖‖ψ‖∞ ≤ ‖W‖∞‖ψ‖1. From [6], Remark 5.14, we have

ρ(W) ≥ ‖TW‖ − 1

‖TW‖
‖ψ‖1

‖ψ‖∞
,

which then implies (14).
In the light of the comments above, from now on we assume that W is irre-

ducible. In joining up the large components to form a single giant component, we
must somehow make use of this irreducibility. By an (a, b)-cut in W , we shall
mean a partition (A,Ac) of [0,1] with a ≤ μ(A) ≤ 1 − a such that

∫
A×Ac W ≤ b.

We start with a simple lemma showing that irreducibility [no (a,0)-cut for any
0 < a ≤ 1

2 ] implies an apparently stronger statement. Recall that our graphons are
bounded by definition.

LEMMA 7. Let W be an irreducible graphon, and let 0 < a < 1
2 be given.

There is some b = b(W,a) > 0 such that W has no (a, b)-cut.

PROOF. Define a measure ν on X2 = [0,1]2 by setting ν(U) = ∫
U W(x,

y) dx dy for each (Lebesgue-)measurable set U ⊂ X2. Renormalizing, we may
and shall assume that W(x,y) ≤ 1 for every (x, y) ∈ X2, so that ν(B × C) ≤
μ(B)μ(C). As W is irreducible, we also have w = ν(X2) > 0.

Suppose that the assertion of the lemma is false. Then there is a sequence
(Ai,A

c
i ) of pairs of complementary subsets of X such that a ≤ μ(Ai) ≤ 1 − a
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and the ν-measure of the cuts Ci = (Ai ×Ac
i )∪ (Ac

i ×Ai) tends to 0. By selecting
a subsequence, we may assume that ν(Ci) ≤ 2−i−1w for every i ≥ 1.

For m ≥ 1, let Dm be the set of atoms of the partitions Pi = (Ai,A
c
i ), i =

1, . . . ,m. Thus D ∈ Dm if and only if D = ⋂m
i=1 Bi , with Bi = Ai or Ac

i for each i.
Similarly, write En for the collection of atoms of the partitions Pn, Pn+1, . . . . Since

X2 =
m⋃

i=1

Ci ∪ ⋃
D∈Dm

(D × D)

we have

w = ν(X2) ≤
m∑

i=1

ν(Ci) + ∑
D∈Dm

ν(D × D) ≤ w/2 + ∑
D∈Dm

μ(D)2

≤ w/2 + max
D∈Dm

μ(D)
∑

D∈Dm

μ(D) = w/2 + max
D∈Dm

μ(D).

This shows that for each m ≥ 1, we can find a Dm ∈ Dm with μ(Dm) ≥ w/2.
Clearly, if m < n and D′

n ∈ Dn, then there is a (unique) D′
m ∈ Dm with D′

m ⊃ D′
n.

Since each Dm is finite, by a standard compactness argument (repeated use of
the pigeonhole principle) we may assume that D1 ⊃ D2 ⊃ D3 ⊃ · · ·. Let E1 =⋂∞

m=1 Dm. Then E1 ∈ E1 and w/2 ≤ μ(E1) ≤ 1 − a. For n ≥ 1, let En be the atom
in En containing E1; then E1 ⊂ E2 ⊂ · · · and w/2 ≤ μ(En) ≤ 1 − a for every n.
Finally, set E = ⋃∞

n=1 En, so that w/2 ≤ μ(E) ≤ 1 − a.
We claim that this set E shows that W is reducible. Indeed, for any n, x ∈ E

implies there is an m ≥ n with x ∈ Em. Thus

E × Ec ⊂
∞⋃

m=n

(Em × Ec
m).

Since Em × Ec
m ⊂ ⋃∞

i=m Ci , we have

ν(Em × Ec
m) ≤

∞∑
i=m

ν(Ci) ≤
∞∑

i=m

2−i−1w = 2−mw,

so

ν(E × Ec) ≤ inf
n

∞∑
m=n

ν(Em × Ec
m) ≤ inf

n
2−n+1w = 0,

contradicting our assumption that W is irreducible. �

We are now ready to complete the proof of Theorem 1.

PROOF OF THEOREM 1. As before, we normalize so that c = 1. As noted at
the start of the section, we may assume that W is irreducible.
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By Corollary 6, there is some ω = ω(n) with ω(n) → ∞ and ω(n) = o(n) such
that

1

n
N>ω

(
Gn(1/n)

) p→ ρ(W) = P(|XW | = ∞).

In particular, since the size C1 of the largest component of Gn(1/n) is at most the
maximum of ω and N>ω(Gn(1/n)), for any ε > 0 we have C1 ≤ (ρ(W) + ε)n

whp. Similarly, the sum of the sizes of the two largest components is at most
(ρ(W) + 2ε)n whp. Since ρ(W) = 0 if ‖TW‖ ≤ 1, it remains only to show that, if
‖TW‖ > 1 and W is irreducible, then C1 ≥ (ρ(W) − ε)n holds whp.

Theorem 6.4 of [6] which, like all results in Sections 5 and 6 of that paper, ap-
plies to all graphons (rather than the more restrictive kernels considered elsewhere
in [6]), tells us that if (Wk) is a sequence of graphons with Wk tending up to W

pointwise, then ρ(Wk) → ρ(W). In particular, we have ρ((1 − δ)W) → ρ(W) as
δ → 0. (If we are only interested in the existence of a giant component, rather than
its size, then we may use instead Theorem 6.7 in [15].) It thus suffices to show that
for any δ > 0, whp we have

C1/n ≥ ρ
(
(1 − δ)W

) − 3δ,

say. In doing so we may of course assume that δ is small enough that

ρ
(
(1 − δ)W

)
> 10δ,(15)

say. We shall also assume that δ ≤ 1/100.
Let G′ = Gn((1 − δ)/n) be the (unweighted) graph on [n] in which the edges

are present independently, and the edge ij is present with probability (1−δ)βij /n,
where βij = βij (n) is the weight of ij in Gn. We may regard G′ as G′

n(1/n),
where G′

n is obtained from Gn by multiplying all edge weights by 1 − δ. Since
G′

n → (1 − δ)W , by Corollary 6 there is some ω(n) → ∞ with ω(n) = o(n) such
that

N>ω(G′)/n ≥ ρ
(
(1 − δ)W

) − δ(16)

holds whp.
By an (a, b)-cut in an n-vertex weighted graph G we shall mean a partition of

the vertex set of G into two sets X, Xc of at least an vertices such that the total
weight of edges from X to Xc is at most bn2. By Lemma 7, there is some b > 0
such that W has no (δ,2b)-cut. We may and shall assume that b < 1/10, say. Since
Gn → W in the cut metric [see (2)], it follows that if n is large enough, which we
shall assume from now on, then Gn has no (δ, b)-cut.

The graph Gn(1/n) may be obtained from G′ by adding each nonedge ij with
a certain probability sij , independently of the other nonedges, where sij ≥ δβij /n,
and the inequality is strict unless βij = 0. In fact, we shall add each nonedge ij

with probability exactly δβij /n; the correction from this value to the true value of
sij only works in our favor.
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Let us condition on G′, assuming as we may that (16) holds. Let C1, . . . ,Cr list
the “large” components of G′, that is, the components with more than ω vertices.
To complete the proof of Theorem 1, it suffices to show that, whp, all but at most
2δn vertices of

⋃
Ci lie in a single component of Gn(1/n). Let B be the “bad”

event that this does not happen, so we must show that P(B) = o(1). Since G′ is a
subgraph of Gn(1/n), whenever B holds there is a partition X ∪ Y of {1,2, . . . , r}
such that Gn(1/n) contains no path from CX = ⋃

i∈X Ci to CY = ⋃
i∈Y Ci , with

|CX|, |CY | ≥ 2δn.
Given a weighted graph G, with edge weights βvw , for W ⊂ V (G) and v ∈

V (G), we write

e(v,W) = eG(v,W) = ∑
w∈W

βvw.

Similarly, for V , W ⊂ V (G),

e(V,W) = eG(V,W) = ∑
v∈V

∑
w∈W

βvw.

Unless stated otherwise, the quantities e(v,W) and e(V,W) will refer to the
weighted graph G = Gn.

Fix G′ (and hence C1, . . . ,Cr ) and a partition X,Y of {1,2, . . . , r} for
which |CX|, |CY | ≥ 2δn. We shall inductively define an increasing sequence S0,
S1, . . . , S� of sets of vertices of Gn, in a way that depends on CX and on Gn, but
not on the “sprinkled” edges of Gn(1/n) \ G′. We start with S0 = CX , noting that
|S0| ≥ 2δn. We shall stop the sequence when |St | first exceeds (1 − δ)n. Thus, in
defining St+1 from St , we may assume that δn ≤ |St | ≤ (1 − δ)n. Since Gn has no
(δ, b)-cut, we have ∑

v /∈St

e(v, St ) = e(Sc
t , St ) ≥ bn2.

Let

Tt+1 = {v /∈ St : e(v, St ) ≥ bn/2}.
As all edge weights in Gn are bounded by βmax, we have e(v, St ) ≤ βmax|St | ≤
βmaxn for any v, so

bn2 ≤ e(Sc
t , St ) ≤ bn

2
|V (Gn) \ (St ∪ Tt+1)| + βmaxn|Tt+1| ≤ bn2

2
+ βmaxn|Tt+1|.

Hence, |Tt+1| ≥ bn
2βmax

. Set St+1 = St ∪ Tt+1, and continue the construction until

we reach an S� with |S�| ≥ (1 − δ)n. Note that � ≤ 2βmax
b

= O(1).
We shall now uncover the “sprinkled” edges between Tt and St−1, working

backwards from T�. It will be convenient to set T0 = S0, so St = ⋃t
t ′=0 Tt ′ . Since

|S�| ≥ (1− δ)n, while |CY | ≥ 2δn, the set S� contains at least δn vertices from CY .
Since S0 = T0 = CX is disjoint from CY , it follows that there is some t0, 1 ≤ t0 ≤ �,
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for which Tt0 contains a set Y0 of at least δn/� vertices of CY . Passing to a subset,
we may assume that

|Y0| = min
{
δn

�
,

bn

10βmax

}
+ O(1),

so |Y0| = �(n) but |Y0| ≤ bn/(10βmax) ≤ |Tt |/5 for 1 ≤ t ≤ �.
Next, we construct a set X0 ⊂ St0−1 with |X0| ≥ δb|Y0|/5 such that every

x ∈ X0 is joined to some y ∈ Y0 by an edge of Gn(1/n) \ G′. We start with
the observation that for every vertex y ∈ Y0 we have e(y, St0−1) ≥ bn/2, since
y ∈ Tt0 . Hence the expected number of edges of Gn(1/n) \ G′ from y to St0−1 is
at least δb/2, and the probability that at least one such edge is present is at least
1 − exp(−δb/2) ≥ δb/4. Furthermore, this conclusion remains true (with δb/2
replaced by δb/3) even if we exclude a subset of St0−1 of size at most |Y0|, cor-
responding to at most one neighbor x′ ∈ St0−1 of each vertex y′ ∈ Y0 previously
considered. [To see this, we note that for every X̃0 ⊂ St0−1 with |X̃0| ≤ |Y0|, we
have e(y, St0−1 \ X̃0) ≥ bn/2 − βmax|Y0| ≥ bn/2 − bn/10 ≥ bn/3.] Using inde-
pendence of edges from different vertices y, and the concentration of the binomial
distribution, it follows that with probability at least 1 − exp(−�(n)), we find a set
X0 of at least δb|Y0|/5 vertices of St0−1 such that every x ∈ X0 is joined to some
y ∈ Y0 by an edge of Gn(1/n) \ G′.

Since |X0| ≥ δb|Y0|/5, there is some t1 < t0 such that Y1 = X0 ∩ Tt1 contains
at least δb|Y0|/(5�) vertices. If t1 ≥ 1 then, arguing as above, with probability
1 − exp(−�(n)) we find a t2 and a set Y2 of at least δ2b2|Y0|/(5�)2 vertices of
Tt2 joined in Gn(1/n) to Y1, and so on. As the sequence t0, t1, . . . is decreasing,
this process terminates after s ≤ � steps with ts = 0. Hence, with probability 1 −
exp(−�(n)) we find a set Ys of at least (δb/(5�))�|Y0| = �(n) > 1 vertices of
T0 = S0 = CX joined in Gn(1/n) by paths to vertices in CY . In particular, the
probability that there is no path in Gn(1/n) from CX to CY is exponentially small.

Recalling that r ≤ n/ω = o(n), the number of possible partitions X, Y of the
components C1, . . . ,Cr is at most 2r = exp(o(n)), so the probability of the bad
event B is o(1), as required. �

4. Stronger bounds on the small components. In this section we prove The-
orem 3, considering the subcritical and supercritical cases separately.

4.1. The subcritical case. We start by proving the first statement of Theo-
rem 3, restated below for ease of reference.

THEOREM 8. Let (Gn) = (βij (n))i,j∈[n] be a sequence of weighted graphs
with |Gn| = n and βmax = supi,j,n βij (n) < ∞ converging to a graphon W . If
‖TW‖ < 1, then there is a constant A such that C1(Gn(1/n)) ≤ A logn holds whp.
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PROOF. Let δ be a positive constant chosen so that (1 + δ)‖TW‖ < 1. Let
Wn = WGn be the piecewise constant graphon naturally associated to Gn, and let
W ′

n = (1 + δ)Gn. We claim that if n is large enough, then the neighborhood explo-
ration processes associated to a random vertex of Gn may be coupled with XW ′

n
,

viewed as an n-type branching process, so that the latter dominates.
In the exploration process, we start with a random vertex of Gn. Having reached

a vertex i, we check for possible “new” neighbors of i not yet reached from other
vertices. The chance that j is such a new neighbor is either βij (n)/n or 0, depend-
ing on whether j has been previously reached or not. In particular, this process
is dominated by (may be regarded as a subset of) a binomial n-type process in
which we start with a particle of a random type, and each particle of type i has
a Bernoulli B(βij (n)/n) number of children of type j , independently of every-
thing else. The process XW ′

n
may be described in exactly the same terms except

that the number of children of type j has a Po((1 + δ)βij (n)/n) distribution. As
βij (n) is uniformly bounded and δ is fixed, this Poisson distribution dominates the
corresponding Bernoulli distribution for all large enough n.

Although the branching processes XW ′
n

have different kernels, these kernels are
uniformly bounded. Furthermore, since W and the Wn are uniformly bounded and
Wn → W in the cut norm, it is easy to check (for example, by considering step
function approximations to eigenfunctions of the compact operators TWn and TW )
that ‖TWn‖ → ‖TW‖. (In fact, as mentioned in the Introduction, much more is
true—in [15] it is shown that the normalized spectra converge.) Hence, for all
sufficiently large n, the norms ‖TW ′

n
‖ are bounded by some constant strictly less

than 1. It is a standard result that the branching processes XW ′
n
, associated to uni-

formly bounded, uniformly subcritical kernels W ′
n exhibit uniformly exponential

decay; in other words,

P(|XW ′
n
| ≥ k) ≤ exp(−ak)(17)

for all sufficiently large n and all k ≥ 1, where a > 0 is constant. [This can be
shown by considering E(e

t |XW ′
n
|
).]

Finally, from the coupling above, the expected number of vertices of Gn(1/n)

in components of size at least A logn is at most nP(|XW ′
n
| ≥ A logn); for A = 2/a,

say, (17) tells us that this is at most n exp(−a 2
a

logn) = 1/n = o(1), so whp there
are no such vertices. �

4.2. The supercritical case. In the supercritical case we shall show that there
is a constant A = A(W) such that whp the second largest component of Gn(1/n)

contains at most A logn vertices. More precisely, we shall prove the second part
of Theorem 3, that is, the following result.

THEOREM 9. Let (Gn) = (βij (n))i,j∈[n] be a sequence of weighted graphs
with |Gn| = n and βmax = supi,j,n βij (n) < ∞ converging to a graphon W . Sup-
pose that ‖TW‖ > 1 and that W is irreducible. Then there is a constant A such that
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C2(Gn(1/n)) ≤ A logn holds whp, where C2(G) denotes the number of vertices
in the second largest component of a graph G.

The basic strategy of the proof is to use an idea from [6], although there will
be considerable difficulties in adapting it to the present context. Let us first give a
rough description of this idea. Note that we have already shown in Theorem 1 that
Gn(1/n) has whp a unique component of order �(n), the “giant” component. All
other components are “small,” that is, of order op(n).

Suppose that we have a “supercritical” random graph H on n vertices [here
H = Gn(1/n)], and let k be a large constant to be chosen later. Let us select n/k

of the vertices of H at random to be “left” vertices, the remaining vertices being
“right” vertices; we do this before deciding which edges are present in the random
graph H . If H has probability ε of containing a small component with at least
Ak logn vertices, then [considering a random partition of V (H) into k parts] with
probability at least ε/k the graph H contains a small component that in turn con-
tains at least A logn left vertices. Thus, it suffices to show that whp any component
of H containing at least A logn left vertices is the unique component of H with
size �(n).

If k is chosen large enough, then the subgraph induced by the right vertices
already contains a component of size �(n). Uncovering the subgraphs HR and
HL of H induced by the right and left vertices, respectively, and all edges between
the small components of HR and the left vertices, we have already revealed the
small components of H : writing H ′ for the subgraph of H formed by the edges
revealed so far, any small component of H is a small component of H ′. All that
remains is to uncover the edges of H between the unique giant component of HR

and the left vertices; adding these edges to H ′ will cause certain components of H ′
to merge into the giant component but have no other effect. If the edge probabilities
in H are bounded below by c/n, c > 0, and A is chosen to be large enough, then it
is very unlikely that any component of H ′ with A logn left vertices fails to merge
into the giant component, so it is very unlikely that H has a small component with
at least A logn left vertices.

This argument can be applied as it is to H = Gn(1/n) if the edge weights βij (n)

in Gn are bounded away from zero. However, this is typically not the case. Indeed,
the main interest is when Gn is a graph rather than a weighted graph, so many edge
weights will be zero. To overcome this difficulty we shall use regularity instead of
a lower bound on individual edge probabilities.

Our notation for regularity is standard. Thus, for disjoint sets A, B of vertices of
a weighted graph G, we write e(A,B) = eG(A,B) for the total edge weight from
A to B in G. Also, d(A,B) = e(A,B)/(|A||B|) is the density of the pair (A,B).
An ε-regular pair is a pair (A,B) of sets of vertices of G such that

|d(A′,B ′) − d(A,B)| ≤ ε
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whenever A′ ⊂ A and B ′ ⊂ B with |A′| ≥ ε|A| and |B ′| ≥ ε|B|. A partition P of
V (G) into sets P1, . . . ,PM is ε-regular if |Pi | = �n/M� or �n/M� for every i,
|Pi | ≤ εn, and all but at most εM2 of the pairs (Pi,Pj ), i �= j , are ε-regular.
Szemerédi’s Lemma [21] tells us that, for any ε > 0, there exist M = M(ε) and
n0 = n0(ε) such that any graph G with n ≥ n0 vertices has an ε-regular partition P
into exactly M classes. (Most formulations give at most M classes; applying this
weaker form with a slightly smaller ε, and then randomly partitioning classes into
smaller classes of the desired size, it is easy to deduce the stated form.) Note that
while Szemerédi’s original lemma applies to unweighted graphs, the extension to
graphs with bounded edge weights is immediate (either by adapting the proof, or
by first replacing all edge weights with multiples of ε/100, say).

Given a Szemerédi partition as above, we write G/P for the weighted graph
with vertex set P1, . . . ,PM in which the weight of the edge PiPj is d(Pi,Pj )

if (Pi,Pj ) is ε-regular, and zero otherwise. If the edge weights in the graph G

are bounded by βmax < ∞, then it is easy to check that the cut metric distance
δ�(G,G/P) is at most 4ε(βmax + 1), say.

For the rest of the paper we fix Gn with Gn → W , βmax < ∞, W irreducible and
‖TW‖ > 1. Note that ‖TW‖ ≤ βmax, so βmax > 1. We also fix a constant k ≥ 2 with
(1 − 1/k)2‖TW‖ > 1. Let L be a set of n/k vertices of G = Gn chosen uniformly
from among all such sets, and set R = V (G) \L: these are the sets of left and right
vertices. Here and throughout we ignore rounding to integers, which clutters the
notation without affecting the proofs.

In what follows we shall consider several different graphs defined in terms of
G, L and R, some random and some not. We write GL and GR for the subgraphs
of G = Gn induced by L and R, respectively. We use a superscript minus to denote
graphs in which the edge weights have been multiplied by (1 − 1/k) (i.e., reduced
slightly), and we replace G by H to denote the random “subgraph” of a weighted
graph (G, G−

R , etc.) obtained by selecting each edge ij with probability given by
its weight divided by n. In particular, we shall consider the following graphs at
various stages:

G = Gn,

H = Gn(1/n),

GR = Gn[R],
HR = H [R] = Gn(1/n)[R],
HL = H [L] = Gn(1/n)[L],
G−

R = (1 − 1/k)Gn[R],
H−

R = (1 − 1/k)Gn[R](1/n) = Gn[R]((1 − 1/k)/n
)

as well as

C1 = largest component of HR
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and

C−
1 = largest component of H−

R .

We shall also consider the graph H ′ defined as in the outline proof above: H ′ will
be the subgraph of H consisting of HR ∪ HL together with all edges of H joining
L to R \ C1.

LEMMA 10. Let Gn, W , k ≥ 2, L and R be as above. Then, with probability 1,
GR → W . Furthermore, for any δ > 0 the largest component C−

1 of H−
R satisfies

|C−
1 |/n ≥ (1 − 1/k)ρ

(
(1 − 1/k)2W

) − δ

whp.

PROOF. The first statement is a more or less immediate consequence of Sze-
merédi’s regularity lemma; indeed, using this lemma and a simple sampling argu-
ment, one easily shows that δ�(G,GR) → 0 in probability (see Theorem 2.9 of
[14] for an explicit bound on the error term). Although convergence in probabil-
ity is all we need here, the error probability can be made small enough to ensure
convergence with probability 1. Since G → W , we then have GR → W .

The second part follows by Theorem 1, noting that G−
R has n′ = (1 − 1/k)n

vertices, so H−
R = G−

R(1/n) = G−
R((1 − 1/k)/n′), and that GR → W trivially

implies G−
R → (1 − 1/k)W . �

We next note that irreducibility of W implies that G cannot have too many “low-
degree” vertices. The constants in this lemma are not written in the simplest form,
but rather in the form that we shall use later.

LEMMA 11. Let Gn → W with W irreducible and βmax = supi,j,n βij (n) <

∞, and let k ≥ 2 be constant. There is a constant σ > 0 such that, for all large
enough n, at most n/(10βmax) vertices of Gn have weighted degree less than
50kβmaxσn.

PROOF. Set a = 1/(10βmax). By Lemma 7 there is a σ such that W has no (a,

6kσ)-cut. Since Gn → W , it follows that, for large enough n, the graph Gn has no
(a,5kσ)-cut. But then the conclusion of the lemma follows: otherwise, let A be a
set of exactly n/(10βmax) vertices of Gn with dv ≤ 50kβmaxσn for every v ∈ A.
Then e(A,Ac) ≤ 50kβmaxσn|A| = 5kσn2, so (A,Ac) is an (a,5kσ)-cut in Gn.

�

From now on, we fix a constant σ > 0 for which Lemma 11 holds. We assume,
as we may, that

σ < 10−10/β3
max(18)
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and that

σ < (1 − 1/k)ρ
(
(1 − 1/k)2W

)
/3.(19)

Our next lemma shows that when we split G = Gn into left and right vertices,
most vertices on the left will send a reasonable weight of edges to C1, the giant
component of the random subgraph on the right, that is, the largest component of
HR = GR(1/n) = Gn(1/n)[R]. By Lemma 10 and our assumption (19), we have

|C1| ≥ |C−
1 | ≥ 2σn

whp. Also, by Theorem 1, C1 is whp the unique component of HR with �(n)

vertices.

LEMMA 12. Under the assumptions above there is a constant γ > 0 such that
whp the number of vertices v ∈ L with eG(v,C1) ≤ γ n is at most 3σn.

PROOF. The proof of this technical lemma is somewhat involved. The basic
idea is to take a Szemerédi partition and use regularity. The problem is that a priori
we have no control over the distribution of C1 with respect to this partition: it could
sit almost entirely within a few parts, and there might be many other parts with
low density to these parts. The solution is to start from C−

1 and use irreducibility
to show that the extra sprinkled edges expand C−

1 to a set (C1) that has a decent
number of vertices in almost all parts of the partition.

By Lemma 7, there is a constant b > 0 such that W has no (σ,3b)-cut. We may
and shall assume that b < 1/1000, say. Recalling that βmax > 1, set

ε = σ

2

(
b2

33kβmax

)βmax/b

and apply Szemerédi’s lemma to find, for all sufficiently large n, an ε-regular par-
tition P = Pn of the weighted graph G = Gn into M classes P1, . . . ,PM . As
the partition P depends on G only, not on the random choice of L, whp each
class Pi satisfies |Pi ∩ L| = n/(kM) + o(n). Also, whp every vertex v satisfies
eG(v,L) = dv/k + o(n). From now on we condition on L, assuming these two
properties.

Let G/P be defined as above, noting that δ�(G/P,W) ≤ Cε where C =
4(βmax + 1) is constant. As b < 1/1000, we have Cε < b. Hence, if n is large
enough, which we assume from now on, the graph G/P has no (σ,2b)-cut.

Recall that H−
R is the graph on R in which each edge is present independently,

and the probability that ij is an edge is (1 − 1/k)βij (n)/n. Note that the subgraph
HR = G(1/n)[R] of H = Gn(1/n) induced by the vertices in R may be obtained
from H−

R by “sprinkling,” that is, by adding each nonedge ij of H−
R with proba-

bility (a little larger than) βij /(kn). Let C−
1 be the largest component of H−

R . As
noted above, by Lemma 10 and our choice of σ , we have |C−

1 | ≥ 2σn whp. From
now on we condition on H−

R , assuming that this holds.
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Let S′
0 be the set of classes Pi with |C−

1 ∩ Pi | ≥ σn/M . As

2σn ≤ |C−
1 | ≤ (n/M)|S′

0| + (σn/M)(M − |S′
0|) ≤ (n/M)|S′

0| + σn,

we have |S′
0| ≥ σM . Let S0 be an arbitrary subset of S′

0 of size exactly σM (ig-
noring rounding, as usual). We shall inductively define an increasing sequence
S0 ⊂ S1 ⊂ · · · ⊂ S� of sets of classes of P , stopping the first time we reach an St

with |St | ≥ (1 − σ)M . In doing so, we shall write Ti for Si \ Si−1.
Having defined Si , with σM ≤ |Si | ≤ (1 − σ)M , let Ti+1 be the set of classes

Pj with e(Pj , Si) ≥ bM , where e(·, ·) counts the weight of edges in the graph
G/P . As G/P has no (σ,2b)-cut, we have e(Sc

i , Si) ≥ 2bM2. Since e(Pj , Si) ≤
βmax|Si | ≤ βmaxM for every j , it follows that |Ti+1| ≥ bM/βmax. Set Si+1 = Si ∪
Ti+1 and continue until we reach S� with |S�| ≥ (1 − σ)M . Since there are only
M classes in total, and |Ti | ≥ bM/βmax for every i, the process just defined stops
after � ≤ βmax/b steps.

CLAIM 13. Whp every class Pj in S� contains at least εn/M vertices of C1,
the giant component of HR .

To show this, we shall use induction to prove the stronger statement that, whp,
every class Pj ∈ Ti contains at least cin/M vertices of a certain set C′

i ⊂ C1 that
we shall define in a moment, where

ci = σ

(
b2

33kβmax

)i

and it is convenient to set T0 = S0.
Set C′

0 = C−
1 , so the base case i = 0 holds by the definition of S0 = T0. In

proving the induction step, we shall use the “sprinkled” edges between Ti+1 ∩ R

and Si ∩ R; we define C′
i+1 to be the set obtained from C′

i by adding all vertices
of Ti+1 joined directly to C′

i by such sprinkled edges.
For the induction step, let P ∈ Ti+1 be a class of the partition P . By definition

of Ti+1, we have e(P,Si) ≥ bM , where e(·, ·) counts the weight of edges in G/P .
Since e(Pj ,Pk) ≤ βmax for every j , k, it follows that there is a set Q of least
bM/(2βmax) classes Pj ∈ Si with e(P,Pj ) ≥ b/2 for every Pj ∈ Q. By definition
of G/P , each pair (P,Pj ), Pj ∈ Q, is ε-regular (in Gn) with density at least
b/2. Set P ′ = ⋃

Pj∈Q Pj . From standard properties of ε-regularity, it follows that
the pair (P,P ′) is (2ε)-lower regular with density at least b/4. By the induction
hypothesis, each Pj ∈ Si contains at least cin/M = ci |Pj | vertices of C′

i . Hence
|P ′ ∩ C′

i | ≥ ci |P ′| ≥ 2ε|P ′|. By regularity, it follows that∣∣{v ∈ P : eG(v,C′
i ∩ P ′) ≤ b|C′

i ∩ P ′|/5}∣∣ ≤ 2ε|P | = 2εn/M.(20)

In particular, of the (1 + o(1))(1 − 1/k)n/M vertices of P ∩ R, at least N =
n/(3M), say, have

eG(v,C′
i ) ≥ eG(v,C′

i ∩ P ′) ≥ b|C′
i ∩ P ′|/5 ≥ cib|P ′|/5

(21)
≥ cib

2n/(10βmax),



176 BOLLOBÁS, BORGS, CHAYES AND RIORDAN

where for the last inequality we used |Q| ≥ bM/(2βmax).
A standard calculation using concentration of the Binomial distribution implies

that, whp, at least Ncib
2/(11kβmax) = ci+1|P | of these vertices v are joined to C′

i
by a sprinkled edge, so |C′

i+1 ∩ P | ≥ ci+1|P |, completing the induction argument
and hence (as C′

i ⊂ C1 for all i) proving the claim.
The proof of Lemma 12 is also essentially complete. Set γ = c�b

2/(10βmax).
Since |S0|, |Sc

� | ≤ σM , it suffices to prove that, whp, for each P ∈ Tj , 1 ≤ j ≤ �,
there are at most σ |P | vertices v of P ∩ L with eG(v,C1) ≤ γ n. Since C′

i ⊂ C1
for every i, while ci ≥ c� and 2ε < σ , this is immediate from (20) and (21). �

In proving Theorem 9, we shall first uncover all edges of H = Gn(1/n) be-
tween vertices in R. In addition to revealing the giant component C1 of HR =
Gn(1/n)[R], this also reveals the small components of HR . It will turn out that
certain small components cause difficulty in the proof. Let us say that a vertex
v of G = Gn has low degree if e(v,L) ≤ 49βmaxσn, where σ is the constant in
Lemma 11. We write R− ⊂ R for the set of low-degree vertices in R. Note that
from Lemma 11 and the randomness of our partition, we have

|R−| ≤ n/(10βmax)

whp. Let us say that a component C of HR is annoying if |C ∩ R−| > |C|/2.

LEMMA 14. Let As be the number of vertices of HR in annoying s-vertex
components. Then whp we have As ≤ n exp(−s/200) for every s ≥ 1.

PROOF. Throughout we confine our attention to the subgraph of G induced
by the vertices in R. We shall condition on R, assuming, as we may, that |R−| ≤
n/(10βmax). For any s we have As ≤ 2|R−| ≤ n/(5βmax) ≤ n/5, so we may as-
sume that s ≥ 200, say.

Let v be a random vertex of R, and let Cv denote the component of HR con-
taining v. We shall first show that, for some constant a > 0, we have

ps = P(|Cv| = s, |Cv ∩ R−| ≥ |Cv|/2) ≤ exp(−as).

Note that

ps ≤ P(|Cv| ≥ s, |Cv ∩ R+| ≤ s/2),(22)

where R+ = R \ R−. Let us explore the component Cv in the usual way, writing
v1, v2, . . . , vt for the vertices of Cv in the order we reach them, so v1 = v. For
technical reasons, we continue the sequence (vi) by starting a new exploration at a
new random vertex whenever we exhaust the component currently being explored.

If |Cv| ≥ s and |Cv ∩ R+| ≤ s/2, then at least s/2 − 1 of the vertices v2, . . . , vs

are in R−. In particular, at least s/2 − 1 of the children of v1, . . . , vs are in R−.
Let �t denote the number of children of vt that are in R−. Then

ps ≤ P

(
s∑

t=1

�t ≥ s/2 − 1

)
.
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Now, as |R−| ≤ n/(10βmax), for any vertex w we have eG(w,R−) ≤ n/10. In
particular, when we test edges from a vertex vt to vertices not yet reached in the
exploration, the chance of finding more than k edges to R− in the random subgraph
HR = GR(1/n) of GR is at most 10−k . Hence,

ps ≤ ∑
r≥s/2−1

(
s + r − 1

s − 1

)
10−r ,

with the first factor coming from the number of sequences k1, . . . , ks with ki ≥ 0
and

∑
ki = r . A simple calculation shows that ps ≤ exp(−s/100) for all s ≥ 200,

say.
Let a = 1/100, and fix an s ≥ 200. Then E(As) = |R|ps ≤ n exp(−as), and it

is easy to show that Var(As/n) = o(1). [This follows easily from the observation
that the probability that two fixed vertices v and w are in the same component of
size s is o(1), while for disjoint sets X and Y of s vertices, the events that X and Y

are the vertex sets of the components containing v and w are almost independent.]
Setting c = a/2 = 1/200, it follows that As ≤ n exp(−cs) holds whp for each
fixed s. Hence, there is some s0(n) tending to infinity such that whp the bound
As ≤ n exp(−cs) holds simultaneously for all s ≤ s0. For s ≥ s0 we simply use
Markov’s inequality to note that

P
(∃s ≥ s0 :As ≥ n exp(−cs)

) ≤ ∑
s≥s0

P
(
As ≥ n exp(−cs)

)

≤ ∑
s≥s0

n exp(−as)

n exp(−cs)

= ∑
s≥s0

exp(−cs) → 0.
�

We are finally ready to prove Theorem 9.

PROOF OF THEOREM 9. Let Gn → W be a sequence of weighted graphs sat-
isfying the assumptions of the theorem, and define k, L, R and σ as above. As
before, we write H = Gn(1/n) for the random graph whose component distribu-
tion we are studying.

As noted earlier, if H has probability ε of containing a small component with at
least Ak logn vertices, then with probability at least ε/k, H has such a component
containing at least A logn vertices from L. By Theorem 1, H has whp a unique
component with �(n) vertices, so it suffices to prove that, for some constants A

and δ > 0, whp every component of H containing at least A logn vertices of L

has size at least δn; we shall prove this with δ = 2σ and A a (large) constant to be
chosen later.

As above, define C1 to be the largest component of HR = H [R]. Let H ′ be
the subgraph of H consisting of all edges within R, all edges within L and all
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edges between L and vertices of R \ C1. As H is formed from H ′ by adding some
edges between C1 and other components, whp every small component of H is a
component of H ′. In particular, it suffices to prove that whp every component C

of H ′ with at least A logn vertices in L is joined to C1 in H .
Let γ be as in Lemma 12 above. For the rest of the proof we condition on HR ,

assuming as we may that the property described in Lemma 14 holds. Call a vertex
v ∈ L bad if eG(v,C1) ≤ γ n, and let B ⊂ L be the set of bad vertices. By Lem-
ma 12, we may assume that |B| ≤ 3σn.

It suffices to prove the following claim, which should be taken to hold condi-
tional on HR , under the assumptions above.

CLAIM 15. Let v be a random vertex of L, and let Cv be the component of H ′
containing v. There is a constant c > 0 such that the (conditional) probability that
|Cv ∩ L| = s and |Cv ∩ B| ≥ |Cv ∩ L|/2 is bounded above by exp(−cs) whenever
0 ≤ s ≤ σn.

Indeed, to deduce Theorem 9 from Claim 15, note that if |Cv ∩L| = s ≥ A logn

and |Cv ∩ B| ≤ |Cv ∩ L|/2, then when we uncover the (so far untested) edges
between L and C1, the probability that there is no edge from Cv to C1 in H is
bounded by

exp
(−γ |Cv ∩ (L \ B)|) ≤ exp(−sγ /2) ≤ exp(−Aγ logn/2),

which we can make o(1/n2) by choice of A. On the other hand, from Claim 15,
for A logn ≤ s ≤ σn we have

P(|Cv ∩ L| = s, |Cv ∩ B| ≥ |Cv ∩ L|/2) ≤ exp(−cs) ≤ exp(−Ac logn),

which we can again make o(1/n2) by choice of A. Hence, summing over A logn ≤
s ≤ σn, the probability that v is in a small (size at most σn, say) component of
H ′ containing at least A logn vertices of L but not joined to C1 in H is o(1/n),
and the probability that such a vertex exists is o(1). As noted above, this suffices
to prove the theorem.

It remains to prove Claim 15. Recall that we have already conditioned on HR ;
in particular, we have revealed all edges of H ′ between vertices in R. It remains
to reveal the edges of H ′ between vertices in L, and between vertices in L and
vertices in R \ C1. (By definition of H ′, there are no edges of H ′ between L

and C1.) Let v = v1 be a random vertex of L. We shall explore the component Cv

of v in H ′ in the following way: having “reached” vertices v1, . . . , vr ∈ Cv ∩L and
“tested” v1, . . . , vt−1, t ≤ r , we next “test” vertex vt . First, we add any neighbors
(in the graph H ′) of vt in L not among the vertices reached so far to our list
of reached vertices. Then we test edges between vt and R \ C1, finding the set
of components of HR that vt is joined to in H ′. For each we find its unreached
neighbors in L and add them to our list.
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The basic idea of the proof is simple, and similar to that of Lemma 14: roughly
speaking, at each step we are much more likely to reach a good vertex of L than a
bad vertex. It will follow that the chance that |Cv ∩ L| = s but that the component
Cv contains at least s/2 bad vertices is exponentially small in s. The problem is that
there is an exceptional case: when we reach an annoying component on the right,
this may send many more edges in H ′ to bad vertices than to good ones. But an
annoying component of size s′ is very unlikely to have more than s′ bad neighbors,
and the chance of reaching such a component will be exponentially small in s′, so
the contribution from such annoying components is negligible. Turning this into a
formal proof is now a matter of accounting.

Fix s ≤ σn, and recall that we must show that

P(|Cv ∩ L| = s, |Cv ∩ B| ≥ s/2) ≤ exp(−cs).

Let us define a quantity ft associated with the testing of vertex vt : set

ft = exp(b − g/2 − 1/8)1Et ,

where b and g are the number of new good and bad vertices of L that we reach
when testing vt , and 1Et is the indicator function of the event Et that after testing
vt we have reached at most s vertices in Cv ∩ L. If t > |Cv|, so there is no vertex
vt to test, set ft = 0. The role of the indicator function 1Et is simply to stop our
exploration process if we reach more than s vertices in Cv ∩L, at which point there
is nothing to prove.

Set Fs = ∏s
t=1 ft . If |Cv ∩ L| = s and |Cv ∩ B| ≥ s/2, then

Fs = exp
(|(Cv \ {v}) ∩ B| − |(Cv \ {v}) ∩ (L \ B)|/2 − s/8

)
≥ exp(s/2 − 1 − s/4 − s/8) = exp(s/8 − 1) ≥ exp(s/9),

assuming, as we may, that s ≥ 100. Hence Claim 15 follows if we show that
E(Fs) ≤ 1. In turn, it suffices to show that, conditional on the exploration so far,
we have E(ft ) ≤ 1 for each t .

Let the small components of HR be C2, . . . ,Cm. We shall test vt in several
steps. In step 0 we check for edges from vt to unreached vertices in L. In step i,
2 ≤ i ≤ m, if Ci has not previously been reached by our exploration, we check for
edges from vt to Ci , and, if we find such an edge, then test for edges from Ci to
unreached vertices in L. At every step we assume, as we may, that we have reached
at most s vertices in L; we shall suppress the corresponding indicator functions in
the estimates below.

We may write ft as a product of a factor f ′
i (that also depends on t) for each

step i; up to indicator functions corresponding to 1Et , we may write

f ′
0 = exp(b0 − g0/2 − 1/8)

and

f ′
i = exp(bi − gi/2)
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for i = 2, . . . ,m, where bi and gi are the number of new bad/good vertices reached
in step i. (There is no step 1 as we do not test for edges to C1.)

Since |B| ≤ 3σn and, from (18), σ < 1/(600βmax), for any v ∈ V (G) we have
eG(v,B) ≤ n/200. Hence, writing B ′ for the set of vertices in B not so far reached,
conditional on everything so far, we have

E(exp(b0)) = ∏
w∈B ′

(
1 + (e − 1)βvtw/n

)

≤ ∏
w∈B

exp
(
(e − 1)βvtw/n

)
(23)

= exp
(
(e − 1)eG(vt ,B)/n

)
≤ exp(1/100).

Using only g0 ≥ 0 it follows that E(f ′
0) ≤ E(exp(b0)) exp(−1/8) < exp(−1/10).

Now let us condition not only on the results of testing v1, . . . , vt−1, but also on
steps 0, 2, . . . , i − 1 of the testing of vt , assuming as we may that we have reached
at most s ≤ σn vertices of Cv ∩ L. Let Fi be the event that we find an edge from
vt to Ci .

Suppose that Ci is not annoying. For any vertex v ∈ R \ R−, the total weight of
edges from v to unreached vertices in L is at least

eG(v,L) − βmaxs ≥ 49βmaxσn − βmaxσn ≥ 48βmaxσn.(24)

On the other hand, for any vertex v,

eG(v,B) ≤ βmax|B| ≤ 3βmaxσn.

As |Ci ∩ R−| ≤ |Ci |/2, the total weight w of edges of G from Ci to unreached
vertices in L \ B is at least 21βmaxσn|Ci |. A similar calculation to (23) but
now using 1 − p(1 − e−1/2) ≤ exp(−(1 − e−1/2)p) ≤ exp(−p/3) shows that
E(exp(−gi/2) | Fi) ≤ exp(−7βmaxσ |Ci |). [Of course, we should update the set
of reached vertices as we go, but (24) is valid at every step.] Arguing as for (23),
since the total weight of edges of G between Ci and B is at most 3βmaxσn|Ci |,
we have E(exp(bi) | Fi, gi) ≤ exp(6βmaxσ |Ci |), so E(f ′

i | Fi) ≤ 1. Since f ′
i = 1

whenever Fi does not hold, it follows that the (conditional) expectation of f ′
i is at

most 1.
Finally, suppose that Ci is an annoying component of size s′. Using the bound

eG(v,B) ≤ βmax|B| ≤ 3βmaxσn to bound E(exp(bi)) as above, and using gi ≥ 0,
we have E(f ′

i | Fi) ≤ exp(6βmaxσs′). Since P(Fi) ≤ βmax|Ci |/n = βmaxs
′/n, it

follows that

E(f ′
i ) ≤ 1 + βmaxs

′

n

(
exp(6βmaxσs′) − 1

)
.
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Since σ ≤ 10−10/β3
max, for s′ ≤ 106βmax, say, the bracket above is at most

1/(100βmax), so

log(E(f ′
i )) ≤ s ′

100n
.

For s′ ≥ 106βmax we use the very crude bound

log(E(f ′
i )) ≤ E(f ′

i ) − 1 ≤ βmaxs
′

n
exp(6βmaxσs′).

Recall that As′ counts the number of vertices in annoying s′-vertex components,
and that each such component contains s ′ vertices. As all expectations are con-
ditional on everything preceding them, we can multiply the expectations above
together to conclude that

log(E(ft )) ≤ − 1

10
+ ∑

s′≤106βmax

As′

100n

+ ∑
s′≥106βmax

βmaxAs′

n
exp(6βmaxσs′).

By assumption, As′ ≤ exp(−s ′/200)n for every s′, while
∑

i Ai ≤ n. Hence

log(E(ft )) ≤ − 1

10
+ 1

100
+ ∑

s′≥106βmax

βmax exp(6βmaxσs′ − s′/200)

≤ −0.09 + ∑
s′≥106βmax

βmax exp(−s′/400) < 0.

In other words, E(ft ) < 1. Recalling that the argument above, and hence the
final estimate, hold conditional on all previous steps in the exploration, it follows
that

E(Fs) = E

(
s∏

i=1

ft

)
< 1.

As noted earlier, this implies Claim 15 and hence Theorem 9. �

The proof of Theorem 9 presented above is rather involved, and the reader may
well wonder whether it can be simplified. While writing this paper, we found var-
ious proofs of Theorem 9 that were indeed much simpler; unfortunately they were
also incorrect. Of course, there may well be a simple proof that we have missed. If
so, it would be interesting to find one.
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