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NONDIFFERENTIABLE FUNCTIONS OF ONE-DIMENSIONAL
SEMIMARTINGALES

BY GEORGE LOWTHER

We consider decompositions of processes of the form Y = f (t,Xt )

where X is a semimartingale. The function f is not required to be differ-
entiable, so Itô’s lemma does not apply.

In the case where f (t, x) is independent of t , it is shown that requiring f

to be locally Lipschitz continuous in x is enough for an Itô-style decomposi-
tion to exist. In particular, Y will be a Dirichlet process. We also look at the
case where f (t, x) can depend on t , possibly discontinuously. It is shown, un-
der some additional mild constraints on f , that the same decomposition still
holds. Both these results follow as special cases of a more general decom-
position which we prove, and which applies to nondifferentiable functions of
Dirichlet processes.

Possible applications of these results to the theory of one-dimensional dif-
fusions are briefly discussed.

1. Introduction. Suppose that we have a real valued semimartingale X and a
function f : R+×R → R. In the case where f is twice continuously differentiable,
Itô’s lemma shows that f (t,Xt) decomposes as

f (t,Xt) =
∫ t

0
Dxf (s,Xs−) dXs + Vt(1)

for a finite variation process V . In particular, it follows that f (t,Xt) is itself a
semimartingale. The goal of this paper is to generalize this decomposition to situa-
tions where f is not differentiable. The case where f is merely once continuously
differentiable has been studied previously by several authors and requires going
outside the class of semimartingales. Continuous Dirichlet processes were defined
by Follmer in [10] as the sum of a continuous local martingale and a process with
zero quadratic variation, and it is known that the class of such processes is closed
under C1 transformations [2, 4, 7]. These results were applied in [1, 8] and [9] to
the study of diffusions with distributional drift.

Noncontinuous Dirichlet processes were defined in [18] as the sum of a semi-
martingale and a process with zero quadratic variation. It was then shown in [3]
that this class of processes is also closed under C1 transformations.

Alternatively, for noncontinuously differentiable functions, decomposition (1)
has been studied in [6] assuming that (i) the left derivative ∂f/∂t exists and is left
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continuous in t and (ii) there is a decomposition f = fh + fv such that ∂fh/∂x

exists, is continuous and has a left continuous and locally bounded left derivative,
and the left derivative ∂fv/∂x exists and has a locally bounded variation in (t, x).

In the case where f (t, x) is independent of t , we shall show that being locally
Lipschitz continuous in x is enough to conclude that the process V in (1) has well-
defined quadratic variation with zero continuous part. Working under the slightly
generalized definition of a noncontinuous Dirichlet process as the sum of a semi-
martingale and a process whose quadratic variation has zero continuous parts, this
shows that f (Xt) will indeed be a Dirichlet process. We also look at the case
where f is a possibly discontinuous function of time. It is required that locally
the variation of f (t, x) in t is integrable with respect to x. If, additionally, it is
locally Lipschitz continuous with left and right derivatives with respect to x, then
we show that decomposition (1) can be used, and V will have zero continuous
quadratic variation. Furthermore, in Section 2 the general situation where X is a
Dirichlet process will be looked at. In that case, additional “almost everywhere”
differentiability conditions need to be imposed on f and, as we show, it then fol-
lows that f (t,Xt) is itself a Dirichlet process. We also give a brief discussion
later in this section of the possible applications of these results to one-dimensional
diffusions.

Throughout this paper we assume the existence of a complete filtered proba-
bility space (�, F , (Ft )t∈R+,P). The definition of quadratic variation used fol-
lows that of [17]. First, a (stochastic) partition P of R+ is a sequence of stopping
times 0 = τP

0 ≤ τP
1 ≤ · · · ↑ ∞. Then for càdlàg processes X,Y the approximation

[X,Y ]P to the quadratic covariation along a partition P is

[X,Y ]Pt ≡
∞∑

k=1

(XτP
k ∧t − XτP

k−1∧t )(YτP
k ∧t − YτP

k−1∧t ).(2)

The quadratic covariation [X,Y ], if it exists, is defined to be the limit of [X,Y ]P as
the mesh |P | ≡ supk∈N‖τP

k − τP
k−1‖∞ goes to zero, with the topology of uniform

convergence on compacts in probability (ucp for short).

[X,Y ] = lim|P |→0
[X,Y ]P (ucp).

We also write [X] ≡ [X,X] for the quadratic variation. If the quadratic varia-
tions and covariation of processes X,Y all exist, then by the polarization identity
[X,Y ] = ([X + Y ] − [X] − [Y ])/2, the quadratic covariation is a difference of
increasing processes and so has locally finite variation. By ucp convergence, the
jumps of the quadratic covariation are �[X,Y ] = �X�Y , so its continuous part
can be written as

[X,Y ]ct ≡ [X,Y ]t − ∑
s≤t

�Xs�Ys
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and [X]c ≡ [X,X]c. A càdlàg process X will be said to have zero continuous
quadratic variation if its quadratic variation exists, and [X]c = 0. Alternatively,
for short, X will be referred to as a z.c.q.v. process. Then the following definition
of Dirichlet processes will be used.

DEFINITION 1.1. We say that a real valued process X is a Dirichlet process if
it has a decomposition X = Y + V where Y is a semimartingale and V is a càdlàg
adapted z.c.q.v. process.

We now state the first result which says that a locally Lipschitz continuous func-
tion of a semimartingale is a Dirichlet process. Such functions are differentiable
almost everywhere, so we set f ′(x) ≡ lim suph→0(f (x +h)−f (x))/h which will
be locally bounded and equal to the derivative of f wherever it is differentiable.

THEOREM 1.2. Let X be a semimartingale and f : R → R be locally Lip-
schitz continuous. Then

f (Xt) =
∫ t

0
f ′(Xs−) dXs + Vt ,

where V has zero continuous quadratic variation.

The proof of this is given in Section 3 and follows as a special case of the
decomposition of functions of Dirichlet processes (Theorem 2.1).

For time-dependent functions, as well as requiring f (t, x) to be locally Lip-
schitz continuous in x with left and right derivatives everywhere, it will also be
required that, locally, its variation in t is integrable with respect to x. This leads us
to look at the following classes of functions.

DEFINITION 1.3. We shall denote by D0 the set of functions f : R+ ×R → R

such that:

• f (t, x) is locally Lipschitz continuous in x and càdlàg in t ,
• for every K0 < K1 ∈ R and T ∈ R+ then∫ K1

K0

∫ T

0
|dtf (t, x)|dx < ∞.

If, furthermore, the left and right derivatives of f (t, x) with respect to x exist
everywhere, then we write f ∈ D.

As with the time-independent case above, the derivative of f (t, x) with respect
to x need not exist everywhere, and the notation Dxf (t, x) will be used to denote
lim suph→0(f (t, x + h) − f (t, x))/h. Again, this will be locally bounded for any
f ∈ D0 and equal to the partial derivative with respect to x wherever it exists.
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THEOREM 1.4. Let X be a semimartingale and f ∈ D. Then

f (t,Xt) =
∫ t

0
Dxf (s,Xs−) dXs + Vt ,

where V has zero continuous quadratic variation.

In particular, this shows that f (t,Xt) is a Dirichlet process. In Section 2 we
state, and prove, a more general decomposition result which generalizes Theo-
rem 1.4 to arbitrary Dirichlet processes. However, this result will also require
f (t, x) to be differentiable with respect to x in an almost everywhere sense. Then,
in Section 3 we show that if X is a semimartingale then any function f ∈ D is in-
deed differentiable in the necessary “almost everywhere” sense, from which The-
orem 1.4 follows.

Let us first discuss some possible applications of Theorems 1.2 and 1.4 to the
theory of one-dimensional diffusions. Diffusions with a distributional drift have
been studied in [8] and [9] via a generator L, written formally as

Lf = 1
2σ 2f ′′ + b′f ′.(3)

Here σ = σ(x) and b = b(x) are continuous functions. The diffusion X is then
defined such that

f (Xt) −
∫ t

0
Lf (Xs) ds

is a local martingale for all functions f in the domain of the generator L. If b is
not differentiable then (3) is understood only as a formal expression, and the full
definition of L and its domain are given in [8] and [9]. Let us consider the case
where b = ασ 2/2 for some α ∈ (0,1]. Then f is in the domain of the generator L,
if σ 2αf ′ is continuously differentiable and

Lf = 1
2σ 2−2α(σ 2αf ′)′.

In particular, Lh = 0 is solved by

h(x) =
∫ x

0
σ−2α(y) dy,

so Y = h(X) is a local martingale. Then, h−1 is continuously differentiable and it
follows that X = h−1(Y ) is a Dirichlet process.

We could consider extending this analysis to the case where σ is merely
bounded and measurable, such that σ−2α is locally integrable. In that case h−1

might not be differentiable, although it will be locally Lipschitz continuous. Then
Theorem 1.2 shows that X = h−1(Y ) will still be a Dirichlet process. Using The-
orem 1.4, these ideas could be generalized to the case where σ = σ(t, x) is time-
dependent.

Another application of these results, which will be investigated in a future paper,
is in obtaining generalizations of the backward Kolmogorov equation. Suppose, for
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the moment, that X is a diffusion satisfying a stochastic differential equation of the
form

dXt = σ(t,Xt) dWt + b(t,Xt) dt(4)

for a Brownian motion W . Given a twice continuously differentiable function
f (t, x), the backward equation says that f (t,Xt) is a local martingale if

∂f

∂t
+ 1

2
σ 2 ∂2f

∂x2 + b
∂f

∂x
= 0,(5)

which is a straightforward consequence of Itô’s lemma. In particular, if f is
bounded and satisfies the boundary condition f (T , x) = g(x), then (5) provides
a sufficient condition for

f (t,Xt) = E[g(XT )|Ft ](6)

to be satisfied for all t < T . Under sufficiently strong conditions for the coeffi-
cients σ and b—such as Hölder continuity (see [11])—this can be used to prove
uniqueness of solutions to (4). Now, suppose that σ , b are not smooth (and more
generally, could be distributions). Then requiring f to be twice differentiable is too
restrictive for the backward equation to be useful, and (4) can fail to have unique
solutions. However, in many cases, it is sufficient to restrict to functions f ∈ D.
For example, if X is a continuous and strong Markov martingale, then the results
of [14] and [16] show that if g is convex, then f (t, x) satisfying (6) turns out to be
convex in x and decreasing in t .

As any local martingale with zero quadratic variation must be constant, Theo-
rem 1.4 shows that f (t,Xt) will be a local martingale if and only if

Vt = V0 −
∫ t

0
Dxf (s,Xs)b(s,Xs) ds.

Using this idea, it is possible to derive generalizations of the backward equation
which apply to nondifferentiable functions. We shall apply such methods in a fu-
ture paper to obtain uniqueness results for time-inhomogeneous one-dimensional
diffusions.

We end this section with a few remarks on Dirichlet and z.c.q.v. processes. First,
the quadratic covariation [X,Y ] is easy to describe whenever either of X or Y has
zero continuous quadratic variation.

LEMMA 1.5. Let X and Y be càdlàg processes such that X has zero contin-
uous quadratic variation and [Y ] exists. Then the covariation [X,Y ] exists and
satisfies [X,Y ]c = 0.

The proof of this is given in Section 2. If [X] = 0 then this result reduces to
the statement [X,Y ] = 0, which is a simple consequence of the Cauchy–Schwarz
inequality. One implication of Lemma 1.5 is that the sum of any two z.c.q.v.
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processes is itself a z.c.q.v. process, and it follows that the space of Dirichlet
processes is closed under taking linear combinations.

Note that although the decomposition into a semimartingale and zero continu-
ous quadratic variation process will not be unique, any Dirichlet process X has the
canonical decomposition

X = M + V,(7)

where M is a continuous local martingale and V is a z.c.q.v. process with V0 = 0.
The existence of the decomposition follows from the existence for the case where
X is a semimartingale ([12], page 209 or [15], page 527). Uniqueness follows from
the fact that any local martingale with zero quadratic variation is constant.

Alternatively, the following Doob–Meyer-style decomposition can be used and
is a generalization of the canonical decomposition for special semimartingales.

LEMMA 1.6. Let X be a Dirichlet process such that X∗
t ≡ sups≤t |Xs | is lo-

cally integrable. Then there exists a unique decomposition X = M + V where M

is a local martingale and V is a previsible z.c.q.v. process with V0 = 0.

PROOF. First, as every previsible local martingale is continuous, it follows that
every previsible z.c.q.v. local martingale has zero quadratic variation and, there-
fore, is constant. So, the decomposition is unique.

Existence of the decomposition is trivial for local martingales, so, by decom-
position (7), it is enough to consider the case where X has zero continuous
quadratic variation. Write p�X for the previsible projection of the process �X.
Then Theorem 7.42 of [12] shows that there exists a local martingale M such that
�M = �X − p�X. By applying decomposition (7) to M , without loss of gen-
erality we may suppose that M has zero continuous quadratic variation. Writing
V = X − M we see that �V = p�X is previsible, so V is a previsible z.c.q.v.
process. �

2. Functions of Dirichlet processes. In this section we shall state and prove
the most general decomposition result of this paper for functions of Dirichlet
processes. As f (t, x) will be required to be differentiable with respect to x in
an “almost everywhere” sense, we start by defining

diff(f ) = {(t, x) ∈ R+ × R :f (t, x) is differentiable in x}.(8)

We also define the subset of R+ ×R at which f (t, x) is differentiable with respect
to x in a rather strong sense.

diffC(f ) =
{
(t, x) : lim

s→t
y,z→x

(
f (s, z) − f (s, y)

)
/(z − y) exists

}
⊆ diff(f ).(9)

Here, the limit is taken over all s ∈ R+ and y, z ∈ R with y = z. Alternatively,
diffC(f ) is the set of points at which Dxf is continuous.

We now state the decomposition result.
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THEOREM 2.1. Let X = Y +Z where Y is a semimartingale and Z is a càdlàg
adapted z.c.q.v. process. Let f ∈ D0 satisfy∫

1{(t,Xt )/∈diff(f )} d[X]ct = 0,(10)
∫ ∫

1{(t,x)/∈diffC(f ),P(Xt=x)>0}|dtf (t, x)|dx = 0.(11)

Then

f (t,Xt) =
∫ t

0
Dxf (s,Xs−) dYs + Vt ,(12)

where V is a z.c.q.v. process.

Equation (11) is trivially satisfied whenever f is time independent, and, as will
be shown in Lemma 3.2, it is always satisfied in the case where X is a semimartin-
gale.

The proof of Theorem 2.1 is given in this section. We start with a necessary
and sufficient condition for a process to have zero continuous quadratic variation
(Lemma 2.3). This result is used firstly to give a short proof of Lemma 1.5, and
then applied to Theorem 2.1, the proof of which is split up into several lemmas.

Let us introduce some notation in order to simplify the formulas used in this
section. For any process X and stochastic partition P of R+, we use δP

k X ≡ XτP
k

−
XτP

k−1
, so expression (2) can be written as

[X,Y ]Pt = ∑
k>0

δP
k XtδP

k Y t .

Here, Xt denotes the stopped process Xt
s ≡ Xs∧t . Now suppose that X,Y are any

càdlàg processes and S ⊆ R+ × � is a jointly measurable set containing only
finitely many times in each bounded time interval (restricting to any ω ∈ �). We
shall make use of the following limit, in order to subtract out the discontinuities of
X and Y ,

lim|P |→0

∞∑
k=1

1{]]τP
k−1,τ

P
k ]]∩S =∅}δ

P
k XtδP

k Y t = ∑
s≤t

1{s∈S}�Xs�Ys.(13)

This follows from the fact the left-hand side reduces to a finite sum with one term
for each time in ]]0, t]] ∩ S, and convergence is almost-surely uniform over finite
time intervals. So, define S to be the collection of jointly measurable subsets of
R+ ×� which contain only finitely many times in each bounded time interval (for
each ω ∈ �). By the debut theorem ([5], IV.50 or [12], IV.1), this is the same as the
sets which can be expressed as the union of graphs of a sequence of random times
increasing to infinity,

S =
{ ∞⋃

n=1

[[τn]] : τn :� → R+ ∪ {∞} are measurable and τn ↑ ∞
}
.(14)
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For any partition P , S ∈ S and t > 0, we write [P,S, t] to denote the (random) set
of k ∈ N such that τP

k < t and ]]τP
k−1, τ

P
k ]] ∩ S is empty. Using this notation, we

now give a sufficient condition for [X,Y ]c = 0 to be satisfied.

LEMMA 2.2. Let X and Y be càdlàg adapted processes such that

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

|δP
k XδP

k Y | > ε

)
= 0(15)

for all t, ε > 0. The limit is taken as P ranges over the partitions of R+.
Then the quadratic covariation [X,Y ] exists and [X,Y ]c = 0.

PROOF. First, we note that for every S ∈ S and t > 0,∑
s<t

|�Xs�Ys | ≤
∑

s∈S,s<t

|�Xs�Ys | + lim inf|P |→0

∑
k∈[P,S,t]

|δP
k XδP

k Y |.

By (15), the right-hand side of this expression must, with probability 1, be finite for
some S ∈ S . Therefore, the locally-finite variation process At = ∑

s≤t �Xs�Ys is
well defined. We show that [X,Y ] = A. Consider the following identity:

[X,Y ]Ps − As =
∞∑

k=1

1{]]τP
k−1,τ

P
k ]]∩S =∅}δ

P
k XsδP

k Y s − ∑
u∈S

�Xs
u�Y s

u

+
∞∑

k=1

1{]]τP
k−1,τ

P
k ]]∩S=∅}δ

P
k XsδP

k Y s − ∑
u/∈S

�As
u.

Limit (13) says that the first two terms on the right-hand side vanish as |P | goes to
zero (uniformly over all s < t), giving

lim sup
|P |→0

P

(
sup
s<t

|[X,Y ]Ps − As | ≥ ε
)

≤ lim sup
|P |→0

P

( ∑
k∈[P,S,t]

|δP
k XδP

k Y | ≥ ε/2

)
+ P

( ∑
s /∈S,s<t

|�As | ≥ ε/2

)

for all t, ε > 0. As A is càdlàg and measurable, S can be increased to include all
the jump times of A in the limit, so the last term on the right-hand side can be
made arbitrarily small. Also, by the condition of the lemma, the first term can also
be made as small as we like. �

This leads to the following necessary and sufficient condition for a process to
have zero continuous quadratic variation.
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LEMMA 2.3. Let X be a càdlàg process. Then it has zero continuous
quadratic variation if and only if

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

(δP
k X)2 > ε

)
= 0(16)

for all t, ε > 0.

PROOF. If (16) is satisfied, then Lemma 2.2 with Y = X gives the result. Con-
versely, suppose that X has zero continuous quadratic variation and consider the
following identity,∑

k∈[P,S,t]
(δP

k X)2 = [X]Pτ − ∑
s≤τ

(�Xs)
2 + ∑

s /∈S,s≤τ

(�Xs)
2

+ ∑
s∈S,s≤τ

(�Xs)
2 − ∑

τP
k <t

1{]]τP
k−1,τ

P
k ]]∩S =∅}(δ

P
k X)2.

Here, τ is the maximum of the stopping times τP
k satisfying τP

k < t . As X has zero
continuous quadratic variation, the first two terms on the right-hand side converge
to zero in probability as |P | tends to 0. Also, limit (13) shows that the last two
terms vanish, giving

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

(δP
k X)2 > ε

)
≤ P

( ∑
s /∈S,s<t

(�Xs)
2 ≥ ε

)
.

The result follows by noting that we can increase S to include all the jump times
of X in the limit. �

Lemma 1.5 follows as a simple consequence of Lemmas 2.2 and 2.3.

PROOF OF LEMMA 1.5. For S ∈ S , t > 0 and partition P , the Cauchy–
Schwarz inequality gives

∑
k∈[P,S,t]

|δP
k XδP

k Y | ≤
( ∑

k∈[P,S,t]
(δP

k X)2
)1/2( ∑

τP
k <t

(δP
k Y )2

)1/2

.

As the quadratic variation [Y ] is well defined we can take limits as |P | → 0,

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

|δP
k XδP

k Y | > ε

)

≤ lim sup
|P |→0

P

(
[Y ]t

∑
k∈[P,S,t]

(δP
k X)2 ≥ ε2

)

≤ lim sup
|P |→0

P

(
K

∑
k∈[P,S,t]

(δP
k X)2 ≥ ε2

)
+ P([Y ]t > K)
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for all ε,K > 0. As X has zero continuous quadratic variation, Lemma 2.3 says
that the first term on the right-hand side of this inequality goes to 0 if we take the
infimum over all S ∈ S . Then, taking the limit as K → ∞, we see that the second
term on the right-hand side also vanishes. So, the result follows from Lemma 2.2.

�

The remainder of this section is dedicated to proving Theorem 2.1. Let V be the
process appearing on the right-hand side of (12),

Vt ≡ f (t,Xt) −
∫ t

0
Dxf (s,Xs−) dYs.

It needs to be shown that this is a z.c.q.v. process, and the approach used is to split
δP
k V into separate parts,

δP
k V = (

f (τP
k ,XτP

k
) − f (σ,XτP

k
) + f (σ,XτP

k−1
) − f (τP

k−1,XτP
k−1

)
)

+
(
ζσ δP

k X −
∫ τP

k

τP
k−1

Dxf (t,Xt−) dYt

)
(17)

+ (
f (σ,XτP

k
) − f (σ,XτP

k−1
) − ζσ δP

k X
)
.

Here, σ is a suitably chosen stopping time in the interval [τP
k−1, τ

P
k ] and ζ is a sim-

ple previsible process which, by definition, are linear combinations of processes of
the form A1{t>τ } for stopping times τ and bounded Fτ -measurable random vari-
ables A.

Using Lemma 2.3, we show that the contribution of each of the three terms on
the right-hand side of (17) to the continuous part of the quadratic variation of V

can be made arbitrarily small (by making suitable choices of σ and ζ ).
We start by showing that the contribution to the continuous part of the quadratic

variation coming from the first term on the right-hand side of (17) is zero. The idea
is to smooth out the time increments of f by making use of the following identity:

g(y) = 1

a

∫ y

y−a

(
(a − y + x)g′(x) + g(x)

)
dx,(18)

which is an application of integration by parts and applies for every absolutely
continuous function g and every a > 0.

LEMMA 2.4. Let X be a càdlàg process and let f ∈ D0 satisfy (11). Then for
any t > 0,

ess inf
S∈S

lim sup
|P |→0

∑
k∈[P,S,t]

sup
s∈[τP

k−1,τ
P
k ]

(
f (τP

k ,Xs) − f (τP
k−1,Xs)

)2 = 0.
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PROOF. For any u < v ∈ R+ and x ∈ R, we use the notation

δu,vf (x) ≡ f (v, x) − f (u, x).

Then for any a > 0, substituting g(x) = (δu,vf (x))2 into (18) gives

(δu,vf (y))2 = 1

a

∫ y

y−a

(
2(a − y + x)(δu,vDxf (x))δu,vf (x) + (δu,vf (x))2)

dx

= 1

a

∫ y

y−a

∫ v

u

(
2(a − y + x)δu,vDxf (x) + δu,vf (x)

)
dtf (t, x) dx.

For any S ∈ S , it follows that if hP,S
a (u, x) is the (random) function

hP,S
a (u, x) = 1

a

∞∑
k=1

1{τP
k−1<u≤τP

k }1{]]τP
k−1,τ

P
k ]]∩S=∅} sup

s∈[τP
k−1,τ

P
k ]

1{x∈(Xs−a,Xs)}

× |2(a − Xs + x)δτP
k−1,τ

P
k
Dxf (x) + δτP

k−1,τ
P
k
f (x)|,

then

AP
S ≡ ∑

k∈[P,S,t]
sup

s∈[τP
k ,τP

k−1]
(δτP

k−1,τ
P
k
f (Xs))

2 ≤
∫ ∞
−∞

∫ t

0
hP,S

a (s, x)|dsf (s, x)|dx.

Without loss of generality, we can assume that f (t, x) is Lipschitz continuous in
x with coefficient K , in which case

lim sup
|P |→0

|hP,S
a (s, x)| ≤ 1{s /∈S}ga(s, x),

ga(s, x) ≡ 1{Xs−∧Xs−a≤x≤Xs−∨Xs}
× (

4K1{(s,x)/∈diffC(f )} + a−1|�sf (s, x)|),
where �sf (s, x) ≡ f (s, x) − f (s−, x). So, by bounded convergence,

lim sup
|P |→0

AP
S ≤

∫ ∞
−∞

∫ t

0
1{s /∈S}ga(s, x)|dsf (s, x)|dx.

As S ∈ S can be increased to include (in the limit) all the times at which either
f (s, x) or Xs is not continuous,

ess inf
S∈S

lim sup
|P |→0

AP
S ≤ 2K

∫ ∞
−∞

∫ t

0
1{Xs−a≤x≤Xs,(s,x)/∈diffC(f )}|dsf (s, x)|dx.

Also, a can be chosen arbitrarily small,

ess inf
S∈S

lim sup
|P |→0

AP
S ≤ 2K

∫ ∞
−∞

∫ t

0
1{x=Xs,(s,x)/∈diffC(f )}|dsf (s, x)|dx.

Finally, (11) shows that the right-hand side has zero expectation, so it must almost
surely be equal to 0. �
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We now bound the contribution to the continuous part of the quadratic variation
of V coming from the second term on the right-hand side of (17). The previsible
process ηs below will be chosen to be equal to Dxf (s,Xs−).

LEMMA 2.5. Let X = Y + Z where Y is a semimartingale and Z is a càdlàg
adapted process with zero continuous quadratic variation. Given any uniformly
bounded and previsible process η and simple previsible process ζ set,

BP
k ≡ sup

s∈[τP
k−1,τ

P
k ]

∣∣∣∣ζsδ
P
k X −

∫ τP
k

τP
k−1

ηu dYu

∣∣∣∣
for all partitions P of R+. Then

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

(BP
k )2 ≥ ε

)
≤ P

(∫ t

0
(ζ − η)2 d[Y ] ≥ ε

)

for all t, ε > 0.

PROOF. First, as ζ is simple previsible, it is piecewise constant and there are
only finitely many times at which it is not continuous. So, we can restrict to those
S ∈ S which contain all the discontinuity times of ζ . In that case, for any k ∈
[P,S, t] and s ∈ (τP

k−1, τ
P
k ], we have ζs = ζτP

k
. So, for k ∈ [P,S, t],

±BP
k = ζτP

k
δP
k Z +

(
ζτP

k
δP
k Y −

∫ τP
k

τP
k−1

ηs dYs

)

= ζτP
k
δP
k Z + δP

k U,

where U is the process U = ∫
(ζ − η)dY . Then the triangle inequality gives( ∑

k∈[P,S,t]
(BP

k )2
)1/2

≤ K

( ∑
k∈[P,S,t]

(δP
k Z)2

)1/2

+
( ∞∑

k=1

(δP
k Ut )2

)1/2

,(19)

where K is any upper bound for |ζ |. As Z has zero continuous quadratic variation,
Lemma 2.3 gives

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

(δP
k Z)2 ≥ ε

)
= 0

for every ε > 0. Finally, using the definition of quadratic variation, the last term
on the right-hand side of inequality (19) will converge in probability to [U ]t =∫ t

0 (ζ − η)2 d[Y ] as |P | → 0, giving the result. �

We now turn to the third term on the right-hand side of (17). This will require
making a suitable choice for σ ∈ [τP

k−1, τ
P
k ]. More precisely, for every partition P ,



88 G. LOWTHER

we will choose stopping times (σP
k )k∈N satisfying

τP
k−1 ≤ σP

k ≤ τP
k ,

(20)
σP

k > τP
k−1 whenever τP

k > τP
k−1,

for each k. Once these times have been chosen, they define a new partition P̃ given
by

τ P̃
k =

{
τP
k/2, if k is even,

σP
(k+1)/2, if k is odd.

(21)

The choice of σP
k will be made with the help of the following lemma, the proof of

which makes use of the optional section theorem ([5], IV.84 or [12], Theorem 4.7).

LEMMA 2.6. Let X be a Dirichlet process, and ξ be any nonnegative optional
process uniformly bounded by some K ∈ R+. For every partition P set

DP
k ≡ ξσP

k

(
(XτP

k
− XσP

k
)2 + (XσP

k
− XτP

k−1
)2)

.

Then for every δ > 0 we can choose the stopping times σP
k satisfying inequalities

(20) such that

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

DP
k ≥ ε

)
≤ P

(∫ t

0

(
K1{|ξs |>δ} + δ

)
d[X]cs ≥ ε

)

for all t, ε > 0.

PROOF. First, by decomposition (7), write X = Y + Z for a continuous local
martingale Y and z.c.q.v. process Z. Let us set

AP
k ≡ ξσP

k

(
(YτP

k
− YσP

k
)2 + (YσP

k
− YτP

k−1
)2)

,

BP
k ≡ ξσP

k

(
(ZτP

k
− ZσP

k
)2 + (ZσP

k
− ZτP

k−1
)2)

.

Choosing any S ∈ S the triangle inequality gives( ∑
k∈[P,S,t]

DP
k

)1/2

≤
( ∑

τP
k <t

AP
k

)1/2

+
( ∑

k∈[P,S,t]
BP

k

)1/2

≤
( ∑

τP
k <t

AP
k

)1/2

+
(
K

∑
k∈[P̃ ,S,t]

(δP̃
k Z)2

)1/2

,

where P̃ is the partition defined by (21). If we choose any ε′ < ε and set ε′′ =
K−1(

√
ε − √

ε′)2, this gives

P

( ∑
k∈[P,S,t]

DP
k ≥ ε

)
≤ P

( ∑
τP
k <t

AP
k ≥ ε′

)
+ P

( ∑
k∈[P̃ ,S,t]

(δP̃
k Z)2 ≥ ε′′

)
.
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As Z has zero continuous quadratic variation, Lemma 2.3 says that the second
term on the right-hand side vanishes if we let |P | go to zero and take the infimum
over all S ∈ S ,

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

DP
k ≥ ε

)
≤ lim sup

|P |→0
P

( ∑
τP
k <t

AP
k ≥ ε′

)
.(22)

This simplifies the problem to the case of a continuous local martingale.
We now make a choice for the stopping times σP

k . For any partition P and k ∈ N,
the set of times s ∈ (τP

k−1, τ
P
k ] such that ξs ≤ δ is optional. So, by the optional

section theorem the stopping time σP
k can be chosen such that inequalities (20) are

satisfied, ξσP
k

≤ δ whenever σP
k < τP

k and

P(σP
k < τP

k ) ≥ P
(∃s ∈ (τP

k−1, τ
P
k ) s.t. ξs ≤ δ

) − 2−k|P |.
It follows that

P(ξσP
k

> δ) ≤ P
(∀s ∈ (τP

k−1, τ
P
k ], ξs > δ

) + 2−k|P |.
Also, by the debut theorem, we can define the stopping times

σ̃ P
k = inf{s ∈ (τP

k−1, τ
P
k ] : ξs ≤ δ} ∪ {τP

k }.
By the choice of σP

k and σ̃ P
k , the following holds outside of a set of probability at

most 2−k|P |:
AP

k ≤ δ
(
(YτP

k
− YσP

k
)2 + (YσP

k
− YτP

k−1
)2) + K1{σP

k =τP
k }(YτP

k
− YτP

k−1
)2

≤ δ
(
(δP̃

2kY )2 + (δP̃
2k−1Y)2) + K(Yσ̃P

k
− YτP

k−1
)2

= δ(δP̃
2kY )2 + δ(δP̃

2k−1Y)2 + 2K

∫ σ̃ P
k

τP
k−1

(Ys − YτP
k−1

) dYs + K

∫ σ̃ P
k

τP
k−1

d[Y ]s,

where P̃ is the partition defined by (21). Noting that ξs > δ whenever s ∈
(τP

k−1, σ̃
P
k ), this inequality gives

AP
k ≤ δ(δP̃

2kY )2 + δ(δP̃
2k−1Y)2 + K

∫ τP
k

τP
k−1

1{ξs>δ} d[Y ]s + 2K

∫ τP
k

τP
k−1

αP
s dYs(23)

outside of a set with probability at most 2−k|P | and with

αP
s ≡

∞∑
k=1

1{s∈(τP
k−1,σ̃

P
k ]}(Ys − YτP

k−1
).

The continuity of Y implies that αP → 0 as |P | → 0, so bounded convergence for
stochastic integration gives

sup
s<t

∣∣∣∣
∫ s

0
αP

u dYu

∣∣∣∣ → 0
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in probability as |P | → 0. Summing inequality (23) over k and taking the limit as
|P | → 0 gives

lim sup
|P |→0

P

( ∑
τP
k <t

AP
k ≥ ε′

)

≤ lim sup
|P |→0

P

(
δ

∑
τ P̃
k <t

(δP̃
k Y )2 + K

∫ t

0
1{ξs>δ} d[Y ]s > ε̃

)
+ lim sup

|P |→0

∞∑
k=0

2−k|P |

≤ P

(∫ t

0

(
δ + K1{ξs>δ}

)
d[Y ]s ≥ ε̃

)
,

where ε̃ is any real number in the range 0 < ε̃ < ε′. The result now follows from
combining this with inequality (22) and letting ε̃ increase to ε. �

We use Lemma 2.6 to bound the contribution to the continuous part of the
quadratic variation of V coming from the third term on the right-hand side of (17).

LEMMA 2.7. Let X be a Dirichlet process and f : R+ × R → R be càdlàg
in t and Lipschitz continuous in x. Choosing any bounded optional process ζ and
any h > 0, set

ξs ≡ sup
0<|a|≤h

∣∣(f (s,Xs + a) − f (s,Xs)
)
/a − ζs

∣∣.
Also, for every partition P , set

CP
k ≡ f (σP

k ,XτP
k
) − f (σP

k ,XτP
k−1

) − ζσP
k
δP
k X.

Then for any δ > 0 the stopping times σP
k satisfying inequalities (20) can be chosen

such that

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

(CP
k )2 ≥ ε

)
≤ P

(
2

∫ t

0

(
1{ξs>δ}K2 + δ2)

d[X]cs ≥ ε

)

for all t, ε > 0 where K ∈ R is any upper bound for ξ .

PROOF. First note that we can restrict a to the rational numbers in the def-
inition of ξ , so it is the supremum of a countable set of optional processes and
therefore is itself optional.

For every partition P , set

aP
k ≡ XτP

k
− XσP

k
, bP

k ≡ XτP
k−1

− XσP
k
.

Then we can rewrite CP
k as

CP
k = 1{aP

k =0}
((

f (σP
k ,XσP

k
+ aP

k ) − f (σP
k ,XσP

k
)
)
/aP

k − ζσP
k

)
aP
k

− 1{bP
k =0}

((
f (σP

k ,XσP
k

+ bP
k ) − f (σP

k ,XσP
k
)
)
/bP

k − ζσP
k

)
bP
k .
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In particular, if |aP
k | and |bP

k | are both smaller than h, then

|CP
k | ≤ ξσP

k
(|XτP

k
− XσP

k
| + |XσP

k
− XτP

k−1
|)

and so

(CP
k )2 ≤ BP

k ≡ 2ξ2
σP

k

(
(XτP

k
− XσP

k
)2 + (XσP

k
− XτP

k−1
)2)

.(24)

So, if we let S ∈ S include all the times s for which |�Xs | ≥ h, then inequal-
ity (24) will hold whenever ]]τP

k−1, τ
P
k ]] ∩ S = ∅ and τP

k < t for all fine enough
partitions P . Therefore,

P

( ∑
k∈[P,S,t]

(CP
k )2 ≥ ε

)
≤ P

( ∑
k∈[P,S,t]

BP
k ≥ ε

)

in the limit as |P | → 0. The result now follows by applying Lemma 2.6 with 2ξ2

in place of ξ , 2K2 in place of K , and 2δ2 in place of δ. �

Finally, for this section, we put together the results of Lemmas 2.4, 2.5 and 2.7
to prove Theorem 2.1.

PROOF OF THEOREM 2.1. By the condition of the theorem, X = Y + Z for
semimartingale Y and z.c.q.v. process Z. Using decomposition (7) we may sup-
pose that Y is continuous, so [Y ] = [X]c. It needs to be shown that V defined
by (12) has zero continuous quadratic variation. By localization, we may assume
that f (t, x) is Lipschitz continuous in x with coefficient L, rather than just locally
Lipschitz.

Let η be the previsible process ηs = Dxf (s,Xs−), which is uniformly bounded
by L. Also pick any simple previsible process ζ such that |ζ | ≤ L. For any h > 0,
set

ξh
s ≡ sup

0<|a|≤h

∣∣(f (s,Xs + a) − f (s,Xs)
)
/a − ζs

∣∣,
which is bounded by 2L. Supposing that for every partition P stopping times σP

k

satisfying inequalities (20) have been chosen, (17) allows us to write

δP
k V = AP

k + BP
k + CP

k

with

AP
k = f (τP

k ,XτP
k
) − f (σP

k ,XτP
k
) + f (σP

k ,XτP
k−1

) − f (τP
k−1,XτP

k−1
),

BP
k = ζσP

k
δP
k X −

∫ τP
k

τP
k−1

ηs dYs,

CP
k = f (σP

k ,XτP
k
) − f (σP

k ,XτP
k−1

) − ζσP
k
δP
k X,
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where σP
k are stopping times satisfying inequalities (20). In particular,

(δP
k V )2 ≤ 3(AP

k )2 + 3(BP
k )2 + 3(CP

k )2.(25)

If P̃ is the partition defined by (21), then Lemma 2.4 with P̃ in place of P gives

ess inf
S∈S

lim sup
|P |→0

∑
k∈[P,S,t]

(AP
k )2 = 0

for all t > 0. So, by applying Lemmas 2.5 and 2.7, respectively, to the second and
third terms on the right-hand side of (25), for any δ > 0, the stopping times σP

k can
be chosen so that

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

(δP
k V )2 ≥ ε

)

≤ P

(∫ t

0
(ζ − η)2 d[X]ct ≥ ε/3

)
(26)

+ P

(
2

∫ t

0

(
1{ξh

s >δ}4L2 + δ2)
d[X]cs ≥ ε/3

)

for any ε > 0. Also, whenever (s,Xs) ∈ diff(f ) then the definition of ξh gives

ξh
s → |Dxf (s,Xs) − ζs |

as h → 0. By (10), this limit holds almost everywhere with respect to the measure∫ t
0 ·d[X]c. Combining this with the inequality 1{ξh>δ} ≤ δ−2(ξh)2, we can take

limits as h → 0 in inequality (26),

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

(δP
k V )2 ≥ ε

)

≤ P

(∫ t

0
(ζ − η)2 d[X]c ≥ ε/3

)
(27)

+ P

(
2

∫ t

0

(
4δ−2L2(

Dxf (s,Xs) − ζs

)2 + δ2)
d[X]cs ≥ ε/3

)
.

As the simple previsible processes generate the previsible σ -algebra, the monotone
class lemma shows that there exists a sequence of simple previsible processes ζ n

satisfying

P

(∫ t

0
(ζ n

s − ηs)
2 d[X]cs ≥ ε

)
→ 0

as n → ∞ for every ε > 0. Furthermore, if η is bounded by L, then ζ n can also be
chosen to be bounded by L. So, we can substitute ζ n for ζ in the right-hand side
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of inequality (27) and take limits

inf
S∈S

lim sup
|P |→0

P

( ∑
k∈[P,S,t]

(δP
k V )2 ≥ ε

)

≤ P

(
2

∫ t

0

(
4δ−2L2(

Dxf (s,Xs) − ηs

)2 + δ2)
d[X]ct ≥ ε/3

)

= P(2δ2[X]ct ≥ ε/3).

This last equality holds because ηs = Dxf (s,Xs) whenever �Xs = 0. The result
now follows by letting δ decrease to 0 and applying Lemma 2.3. �

3. Functions of semimartingales. In this section, the decomposition result
Theorem 2.1 is applied to the case where X is a semimartingale. Using Lemma A.3
for the “almost everywhere” differentiability of functions in D, it is shown that (11)
is automatically satisfied, and (10) is satisfied for every f ∈ D. Theorems 1.2 and
1.4 then follow.

We start with the following simple result, which allows us to represent the mar-
ginal distributions of a semimartingale by a function C ∈ D.

LEMMA 3.1. Let X be an càdlàg adapted process which decomposes as X =
M + A for a martingale M and integrable process A with integrable variation
over each finite time interval. Define the function C : R+ × R → R by C(t, x) ≡
E[(Xt − x)+]. Then C(t, x) is convex in x, càdlàg in t and for every x ∈ R,

C(t, x) + E

[∫ t

0
|dAs |

]

is increasing in t . In particular, C ∈ D.

PROOF. First, (Xt − x)+ is convex in x, so by the linearity of expectations,
C(t, x) will also be convex in x. Also, from the decomposition of X we see that
{Xt : t ≤ T } is uniformly integrable for every T > 0. Therefore, as (Xt − x)+ is
càdlàg in t we see that C(t, x) will also be càdlàg.

Let us now set f (t) ≡ E[∫ t
0 |dAs |]. Then for every s < t , Jensen’s inequality

E[(Mt + As − x)+] ≥ E[(Ms + As − x)+] gives

C(t, x) = E[(Mt + At − x)+] ≥ E[(Mt + As − x)+] − E[(At − As)−]
≥ E[(Ms + As − x)+] − f (t) + f (s) = C(s, x) − f (t) + f (s).

So C(t, x) + f (t) is increasing in t .
It only remains to show that C ∈ D. First, the convexity in x shows that C(t, x)

is locally Lipschitz continuous with left and right derivatives in x. Secondly,
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C(t, x) can be expressed as the sum of C(t, x) + f (t) and −f (t), which are
monotonic in t . So its variation satisfies∫ T

0
|dtC(t, x)| ≤ C(T , x) + 2f (T ),

which is locally bounded. �

Equality (11) follows easily for semimartingales.

LEMMA 3.2. Let X be a semimartingale and f ∈ D0. Then∫ ∫
1{(t,x)/∈diffC(f ),P(Xt=x)>0}|dtf (t, x)|dx = 0.

PROOF. As X is a semimartingale it decomposes as X = M + A for a local
martingale M and finite variation process A. By pre-localization, we only need
to consider the case where supt≥0 |Xt | is integrable and, therefore, A has locally
integrable variation. Then, by localization, we may suppose that A has integrable
variation, and M is a uniformly integrable martingale.

We now set C(t, x) ≡ E[(Xt − x)+]. Then, letting D−
x C, D+

x C be its left and
right derivatives in x, respectively,

P(Xt = x) = D+
x C(t, x) − D−

x C(t, x).

Therefore, ∫ ∫
1{(t,x)/∈diffC(f ),P(Xt=x)>0}|dtf (t, x)|dx

≤
∫ ∫

1{D+
x C(t,x) =D−

x C(t,x)}|dtf (t, x)|dx

=
∫ ∫

1{(t,x)/∈diff(C)}|dtf (t, x)|dx.

However, Lemma 3.1 says that C ∈ D, so by Lemma A.3, the right-hand side of
the above equality is 0. �

In order to complete the proof of Theorems 1.2 and 1.4 it is necessary to show
that equality (10) is satisfied. The following identity, which follows from Itô’s
lemma, will be be used to this end.

LEMMA 3.3. Let X be a càdlàg adapted process which decomposes as X =
M + A for a martingale M and càdlàg integrable process A with integrable vari-
ation over finite time intervals. Set C(t, x) ≡ E[(Xt − x)+] so that, by Lemma 3.1,
C ∈ D.
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Then, for any nonnegative and measurable θ : R+ × R → R with bounded sup-
port, ∫ ∫

θdtC dx = 1

2
E

[∫ ∞
0

θ(t,Xt) d[X]ct
]

+ E

[∫ ∞
0

∫ Xt−

−∞
θ(t, y) dy dAt

]

+ E

[ ∑
t∈R+

∫ Xt

Xt−
(Xt − x)θ(t, x) dx

]
.(28)

PROOF. It is enough to consider the case where θ(t, x) is nonnegative, twice
continuously differentiable in x and once in t , and with compact support in
(0,∞) × R. The general case follows from the monotone class lemma. So sup-
pose that θ satisfies these properties and define f : R+ × R → R by

f (t, x) =
∫

θ(t, y)(x − y)+ dy,

which is twice continuously differentiable in x with Dxxf = θ . Also, as θ has
compact support, f has bounded derivatives and 0 ≤ f (t, x) ≤ K(1 + |x|) for
some constant K . Then Itô’s lemma gives

f (t,Xt) =
∫ t

0
Dxf (s,Xs−) dXs + 1

2

∫ t

0
θ(s,Xs) d[X]cs

+
∫ t

0
Dtf (s,Xs) ds + ∑

s≤t

∫ Xs

Xs−
(Xs − x)θ(s, x) dx.

As
∫ t

0 Dxf (s,Xs−) dMs is a local martingale, there exist stopping times Tn ↑ ∞
such that

E

[∫ t∧Tn

0
Dxf (s,Xs−) dMs

]
= 0.

So,

E[f (t ∧ Tn,Xt∧Tn)]

= E

[∫ t∧Tn

0
Dxf (s,Xs−) dAs

]
(29)

+ 1

2
E

[∫ t∧Tn

0
θ(s,Xs) d[X]cs

]
+ E

[∫ t∧Tn

0
Dtf (s,Xs) ds

]

+ E

[ ∑
s≤t∧Tn

∫ Xs

Xs−
(Xs − x)θ(s, x) dx

]
.

Letting n go to infinity, monotone convergence implies convergence of the sec-
ond and fourth terms on the right-hand side and dominated convergence implies
convergence of the first and third terms. Also, uniform integrability of Xt∧Tn =
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Mt∧Tn + At∧Tn over n ∈ N shows that the term on the left-hand side will also
converge.

Taking t large enough so that the support of θ is contained in [0, t] × R,
f (t,Xt) = 0 and taking the limit as n → ∞ in (29) gives

0 = E

[∫
Dxf (s,Xs−) dAs

]
+ 1

2
E

[∫
θ(s,Xs) d[X]cs

]

+ E

[∫
Dtf (s,Xs) ds

]
+ E

[∑
s>0

∫ Xs

Xs−
(Xs − x)θ(s, x) dx

]
.

The result now follows by substituting in

E

[∫
Dxf (s,Xs−) dAs

]
= E

[∫ ∫ Xs−

−∞
θ(s, y) dy dAs

]

and by using integration by parts∫
E[Dtf (s,Xs)]ds =

∫
E

[∫
Dtθ(s, x)(Xs − x)+dx

]
ds

=
∫ ∫

Dtθ(t, x)C(t, x) dt dx

= −
∫ ∫

θ(t, x) dtC(t, x) dx. �

The following simple consequence of Lemma 3.3 will be used to show that (10)
is satisfied.

COROLLARY 3.4. Let X be a càdlàg adapted process which decomposes as
X = M + A for a martingale M and càdlàg integrable process A with integrable
variation over finite time intervals. Define C ∈ D by C(t, x) ≡ E[(Xt − x)+].

If f (t, x) is locally Lipschitz continuous in x then,

E

[∫
1{(t,Xt )/∈diff(f )} d[X]ct

]
= 2

∫ ∫
1{(t,x)/∈diff(f )}|dtC(t, x)|dx.

PROOF. First, choose any nonnegative bounded and measurable θ : R+ ×R →
R with bounded support.

We use a result of Lebesgue which states that any locally Lipschitz continu-
ous function on the reals is differentiable almost everywhere ([13], Theorem 3.2),
giving∫ Xt−

−∞
1{(t,y)/∈diff(f )}θ(t, y) dy =

∫ Xt

Xt−
1{(t,x)/∈diff(f )}(Xt − x)θ(t, x) dx = 0.

So, replacing θ(t, x) by 1{(t,x)/∈diff(f )}θ(t, x) in (28) gives

E

[∫
1{(t,Xt )/∈diff(f )}θ(t,Xt) d[X]ct

]
= 2

∫ ∫
1{(t,x)/∈diff(f )}θ(t, x) dtC(t, x) dx.
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Letting θ increase to 1 gives the result. �

We can now complete the proof of Theorem 1.2, which makes use of Lebesgue’s
result that locally Lipschitz continuous functions of the reals are differentiable
almost everywhere ([13], Theorem 3.2).

PROOF OF THEOREM 1.2. As in the proof of Lemma 3.2, pre-localization can
be used to reduce to the case where X decomposes as the sum of a martingale and
a càdlàg integrable process with integrable variation. Define C ∈ D by C(t, x) =
E[(Xt − x)+].

Let diff(f ) be the set of x ∈ R at which f is differentiable. Also, choose any
t > 0 and set θ(x) = ∫ t

0 |dsC(s, x)|. Corollary 3.4 gives

E

[∫ t

0
1{Xs /∈diff(f )} d[X]cs

]
= 2

∫
1{x /∈diff(f )}θ(x) dx.

However, as f is locally Lipschitz continuous, Lebesgue’s theorem tells us that f

is differentiable almost everywhere, and the right-hand side of the above equality
is 0. So, (10) is satisfied and Lemma 3.2 gives (11). The result now follows from
Theorem 2.1. �

The proof of Theorem 1.4 also follows easily.

PROOF OF THEOREM 1.4. As above, we may restrict to the case where X is
a sum of a martingale and a càdlàg integrable process with integrable variation.
Then Corollary 3.4 and Lemma A.3 give

E

[∫
1{(t,Xt )/∈diff(f )} d[X]ct

]
= 2

∫ ∫
1{(t,x)/∈diff(f )}|dtC(t, x)|dx = 0.

Therefore, (10) is satisfied and Lemma 3.2 gives (11), so Theorem 2.1 gives the
result. �

APPENDIX: “ALMOST EVERYWHERE” DIFFERENTIABILITY

In this appendix, we show that functions in D are differentiable in the “almost
everywhere” sense required by the proof of Theorem 1.4. See Lemma A.3 below
for the statement of the result.

For every a ∈ R \ {0} we use ∇a to represent the finite difference operator

∇af (t, x) ≡ (
f (t, x + a) − f (t, x)

)
/a.

Also, for f ∈ D0, the left limit in t is denoted by

f −(t, x) ≡
{

lim
s↑↑t

f (s, x), if t > 0,

f (0, x), if t = 0.

Then we have the following integration by parts formula.
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LEMMA A.1. Suppose that one of f,g ∈ D0 has compact support in (0,∞)×
R. Then ∫ ∫

∇af dtg dx =
∫ ∫

∇−ag
− dtf dx.(30)

PROOF. Choosing any a ∈ R, integration by parts and the condition that fg

has compact support in (0,∞) × R, gives∫
f (t, x + a)dtg(t, x) +

∫
g−(t, x) dtf (t, x + a) = 0.

Then integrate with respect to x,∫ ∫
f (t, x + a)dtg(t, x) dx +

∫ ∫
g−(t, x − a)dtf (t, x) dx = 0.

The result follows by subtracting this equation from itself with a replaced by 0 and
dividing by a. �

Letting ∇̂af be the difference of the left and right finite differences

∇̂af ≡ ∇af − ∇−af,

then the previous result can be used to prove the following limit.

LEMMA A.2. Let f,g ∈ D0 and θ : R+ ×R → R be measurable and bounded
with bounded support. Then∫ ∫

θ∇̂af dtg dx +
∫ ∫

θ∇̂ag dtf dx → 0(31)

as a → 0.

PROOF. First, if we suppose that f has compact support in (0,∞) × R, then
we can take the difference of (30) with itself, with a replaced by −a to get∫ ∫

∇̂af dtg dx +
∫ ∫

∇̂ag
− dtf dx = 0.(32)

Now for general f,g ∈ D0, choose any continuously differentiable θ : R+ × R →
R with compact support in (0,∞) × R. Replacing f by θf in (32),∫ ∫

∇̂a(θf ) dtg dx +
∫ ∫

θ∇̂ag
− dtf dx +

∫ ∫
(∇̂ag

−)
∂θ

∂t
f dt dx = 0.(33)

For any function h(t, x) which is locally Lipschitz continuous in x, we can make
use of the identity ∇−ah(t, x) = ∇ah(t, x − a) to get∫

u(x)∇̂ah(t, x) dx

=
∫ (

u(x)∇ah(t, x) − u(x)∇ah(t, x − a)
)
dx

=
∫ (

u(x) − u(x + a)
)∇ah(t, x) dx → 0
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as a → 0, whenever u is continuous with compact support. Combining this with
dominated convergence for the following integrals gives∫ ∫

(∇̂ag
−)

∂θ

∂t
f dt dx =

∫ (∫
(∇̂ag

−)
∂θ

∂t
f dx

)
dt → 0,

∫ ∫
θ
(∇̂a(g

− − g)
)
dtf dx = ∑

t>0

∫
θ∇̂a(g

− − g)(f − f −) dx → 0

as a → 0. In the second of these limits, the fact that that there are only countably
many times at which g− = g has been used to write the integral as an infinite sum.
Combining these limits with (33),∫ ∫

∇̂a(θf ) dtg dx +
∫ ∫

θ∇̂ag dtf dx → 0(34)

as a → 0. Now, the limit

∇a(θf ) − θ∇af = f ∇aθ + a∇aθ∇af → f
∂θ

∂x

as a → 0 implies that ∇̂a(θf ) − θ∇̂af → 0. Applying this with dominated con-
vergence to the first integral in (34) gives (31). The result for arbitrary θ follows
from the monotone class lemma. �

Finally for this section, Lemma A.2 is used to show that every f ∈ D is differ-
entiable with respect to x in an “almost everywhere” sense. It is not clear if this
result will generalize to arbitrary f ∈ D0 which would imply that Theorem 1.4
holds for all f in D0.

LEMMA A.3. For any f ∈ D and g ∈ D0,∫ ∫
1{(t,x)/∈diff(f )}|dtg(t, x)|dx = 0.

PROOF. Write D−
x f (t, x) and D+

x f (t, x) for the left and right derivatives,
respectively, of f (t, x) by x. Then f (t, x) is differentiable with respect to x at
those points where D−

x f = D+
x f .

The definition of ∇̂a gives ∇̂af → D+
x f − D−

x f as a ↓ 0. So (31) with g re-
placed by f gives ∫ ∫

θ(D+
x f − D−

x f ) dtf dx = 0.

As this is true for every bounded and measurable θ with bounded support,∫ ∫
1{(t,x)/∈diff(f )}|dtf |dx = 0.(35)
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Similarly, (31) gives∫ ∫
θ(D+

x f − D−
x f ) dtg dx = − lim

a↓0

∫ ∫
θ∇̂ag dtf dx.(36)

Letting K(t, x) be the locally bounded function lim supa↓0 |∇̂ag(t, x)|, applying
dominated convergence to the right-hand side of (36) gives∣∣∣∣

∫ ∫
θ(D+

x f − D−
x f ) dtg dx

∣∣∣∣ ≤
∫ ∫

|θ |K|dtf |dx.

Replace θ by 1{(t,x)/∈diff(f )}θ in this inequality and apply (35),∣∣∣∣
∫ ∫

θ(D+
x f − D−

x f ) dtg dx

∣∣∣∣ ≤
∫ ∫

1{(t,x)/∈diff(f )}|θ |K|dtf |dx = 0.

As this is true for every measurable and bounded θ with bounded support, the
result follows. �
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