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FRACTIONAL MARTINGALES AND CHARACTERIZATION OF
THE FRACTIONAL BROWNIAN MOTION

BY YAOZHONG HU1, DAVID NUALART2 AND JIAN SONG

University of Kansas

In this paper we introduce the notion of fractional martingale as the
fractional derivative of order α of a continuous local martingale, where
α ∈ (− 1

2 , 1
2 ), and we show that it has a nonzero finite variation of order 2

1+2α
,

under some integrability assumptions on the quadratic variation of the local
martingale. As an application we establish an extension of Lévy’s character-
ization theorem for the fractional Brownian motion.

1. Introduction. The fractional Brownian motion (fBm) with Hurst parame-
ter H ∈ (0,1) is a zero mean Gaussian process with covariance

E(BH
t BH

s ) = 1
2(t2H + s2H − |t − s|2H ).(1.1)

This process is a Brownian motion when H = 1
2 . From the relation E(|BH

t −
BH

s |2) = |t − s|2H , it follows that BH has Hölder continuous trajectories of order
H − ε, for any ε > 0. On the other hand, the self-similarity of the fBm and the
ergodic theorem imply that the fBm has 1

H
-variation on any time interval [0, t]

which equals to cH t , where cH = E(|BH
1 |1/H ) (see [10]). We refer to the mono-

graph [4] and the review paper [9] for detailed accounts on the properties of the
fBm.

In the case of Brownian motion, the famous Lévy’s characterization theorem
states that a continuous stochastic process (Bt , t ≥ 0) adapted to a right-continuous
filtration (Ft , t ≥ 0) is an Ft -Brownian motion if and only if B is a local martin-
gale and 〈B〉t = t . A natural problem is the extension of Lévy’s characterization
theorem to the fractional Brownian motion.

The purpose of this paper is to introduce and study the notion of a fractional
martingale, and apply it to the above problem. Fix α ∈ (−1

2 , 1
2). If M = (Mt , t ≥ 0)

is a continuous local martingale, we denote by M(α) = (M
(α)
t , t ≥ 0) the stochastic

process defined by

M
(α)
t =

∫ t

0
(t − s)α dMs,(1.2)
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provided this stochastic integral exists for all t ≥ 0. The process M(α) is called the
Riemann–Liouville process of M . Notice that M(α) is no longer a martingale and
we will say that it is a fractional martingale.

If α ∈ (0, 1
2), then the stochastic integral in (1.2) always exists, and M

(α)
t =

�(1 + α)Iα
0+(M)t , where Iα

0+ is the left-sided fractional integral of order α. If
α ∈ (−1

2 ,0) and M has α′-Hölder continuous trajectories on any finite interval for

some α′ > −α, then M
(α)
t exists and M

(α)
t = �(1 + α)D−α

0+ (M)t , where D−α
0+ is

the left-sided fractional derivative of order −α. We refer to Samko, Kilbas and
Marichev [11] for the definition and properties of the fractional operators.

We are interested in the variation properties of fractional martingales. The
process M(α) has Hölder continuous trajectories of order γ on any finite interval,
for any γ < 1

2 + α, provided M has Hölder continuous trajectories of order 1
2 − ε

on any finite interval, for any ε > 0. Then, it is natural to expect that M(α) has a
finite and nonzero variation of order β = (1

2 + α)−1 = 2
1+2α

. We show that (see
Theorem 2.6) if d〈M〉t = ξ2

t dt , then M(α) has a finite β-variation cα

∫ t
0 |ξs |β ds

under some integrability conditions on ξ , where cα is a constant depending only
on α. The proof of this result is based on the variation properties of the fractional
Brownian motion.

The fractional Brownian motion BH is not a martingale unless H = 1
2 . But the

process

Mt =
∫ t

0
s1/2−H (t − s)1/2−H dBH

s(1.3)

is a martingale with respect to the filtration generated by the fBm, verifying
〈M〉t = dH t2H for some constant dH (see Norros, Valkeila and Virtamo [8]). We
show that if B = (Bt , t ≥ 0) is a continuous square integrable centered process
with B0 = 0, then B is a fractional Brownian motion with Hurst parameter H if
and only if the process B has the following properties:

(i) The sample paths of the process B are Hölder continuous of order γ for any
γ ∈ (0,H).

(ii) The process M defined in (1.3), where BH is replaced by B , is a martin-
gale with respect to the filtration generated by B . If H > 1

2 , we also assume
that the quadratic variation of M is absolutely continuous with respect to the
Lebesgue measure.

(iii) For any t > 0, the process B has 1
H

-variation (in the sense of Definition 2.3)
which equals to cH t on the interval [0, t].

In order to prove that the conditions (i), (ii) and (iii) imply that B is a fractional
Brownian motion, it suffices to show that the martingale M satisfies 〈M〉t = dH t2H

for some constant dH , and this will be a consequence of the condition (iii) and the
general result on the β-variation of a fractional martingale.
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In a recent work [7], Mishura and Valkeila have proved another extension of
the Lévy characterization theorem, where condition (iii) is replaced by an assump-
tion on the renormalized quadratic variation, and no restriction on the quadratic
variation of M is required.

THEOREM 1.1 (Mishura and Valkeila). Assume that B is a continuous square
integrable centered process with B0 = 0. Then the following are equivalent:

(a) The process B is a fractional Brownian motion with Hurst parameter H ∈
(0,1).

(b) The process B satisfies the following properties:
(i) The process B has Hölder continuous sample paths of order γ for any

γ ∈ (0,H) in any finite interval.
(ii) The process M defined in (1.3), where BH is replaced by B , is a martin-

gale with respect to the filtration generated by B .
(iii) For any t > 0,

lim
n→∞n2H−1

n∑
k=1

(
Btk/n − Bt(k−1)/n

)2 = t2H ,

in L1.

The proof of this theorem uses different kind of techniques, and is based on the
stochastic calculus with respect to the fractional Brownian motion.

The paper is organized as follows. Section 2 is devoted to study the β-variation
of fractional martingales, and Section 3 contains the proof of the Lévy characteri-
zation theorem for the fBm. Some technical lemmas are included in the Appendix.

2. β-variation of fractional martingales. Let (	, F ,P ) be a complete prob-
ability space equipped with a right-continuous filtration (Ft , t ≥ 0) such that F0
contains the P -null sets. Fix a parameter α ∈ (−1

2 , 1
2). We introduce the following

notion.

DEFINITION 2.1. A continuous Ft -adapted process (M
(α)
t , t ≥ 0) is called a

fractional martingale of order α if there is a continuous local martingale (Mt , t ≥
0) such that, for all t ≥ 0, ∫ t

0
(t − s)2α d〈M〉s < ∞,(2.1)

almost surely, and

M
(α)
t =

∫ t

0
(t − s)α dMs.(2.2)



FRACTIONAL MARTINGALES 2407

Notice that by Fubini’s theorem condition (2.1) holds true for almost all t ≥ 0.
If α ∈ (0, 1

2), then (2.1) is always fulfilled. Moreover, an integration by parts
implies that the integral appearing in (2.2) exists as a Riemann–Stieltjes integral
and M

(α)
t = �(α + 1)Iα

0+(M)t , where Iα
0+ is the left-sided fractional integral of

order α.
For any α ∈ (−1

2 ,0) we introduce the following hypothesis:

(H). The trajectories of M are α′-Hölder continuous on finite intervals for
some α′ > −α.

Then we have the following result.

LEMMA 2.2. Fix α ∈ (−1
2 ,0), and let M be a continuous local martingale

satisfying condition (H). Then (2.1) holds, M
(α)
t exists as a Riemann–Stieltjes in-

tegral and it coincides with �(α + 1)D−α
0+ (M)t , where D−α

0+ is the left-sided frac-
tional derivative of order −α.

PROOF. Set

Zt = |Mt | + 〈M〉t + sup
0≤s<u≤t

|Ms − Mu|
|s − u|α′ .

For any integer n ≥ 1 we define

TN = inf{t ≥ 0 :Zt > N}.
Then, TN is an nondecreasing sequence of stopping times such that TN ↑ ∞. For
any s < t we can write

E(|〈M〉t∧TN
− 〈M〉s∧TN

|p) ≤ CpE(|Mt∧TN
− Ms∧TN

|2p) ≤ CpN2p|t − s|2pα′
.

By Kolmogorov’s continuity criterion the sample paths of 〈M〉 are Hölder contin-
uous of order γ for any γ < 2α′, on any finite interval. This implies (2.1), and
it is easy to check that the stochastic integral is a Riemann–Stieltjes integral and
coincides with �(α + 1)D−α

0+ (M)t . �

From fractional calculus, assuming condition (H) if α < 0, we have Mt =
1

�(α+1)
I−α

0+ (M(α))t , where I−α = Dα if α > 0. Using the definition of the left-
sided fractional integral and derivative, we have

Mt =

⎧⎪⎪⎨⎪⎪⎩
1

�(1 + α)�(−α)

∫ t

0
(t − s)−1−αM(α)

s ds, if α < 0,

1

�(1 + α)�(1 − α)

∫ t

0
(t − s)−α dM(α)

s , if α > 0.
(2.3)
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In order to define the β-variation, let us first introduce some notation. Fix a time
interval [a, b], and consider the uniform partition

πn = {a = tn0 < tn1 < · · · < tnn = b},
where tni = a + i

n
(b − a) for i = 0, . . . , n. Let β ≥ 1 and let X = (Xt , t ≥ 0) be a

continuous stochastic process.

DEFINITION 2.3. We define the β-variation of X on the interval [a, b], de-
noted by 〈X〉β,[a,b], as the limit in probability of

S
[a,b]
β,n (X) :=

n∑
i=1

|�n
i X|β,(2.4)

if the limit exists, where �n
i X = Xtni

− Xtni−1
. We say that the β-variation of X on

[a, b] exists in L1 if the above limit exists in L1.

We also denote 〈X〉β,[0,t] by 〈X〉β,t . For instance, a continuous local martingale
has a finite 2-variation, denoted by 〈M〉t , and the fractional Brownian motion BH

t

of Hurst parameter H ∈ (0,1) has 1
H

-variation which is equal to cH t , where cH =
E(|BH

1 |)1/H .
A direct consequence of the above definition is that if 〈X〉β,[a,c] exists, then for

any a < b < c, both 〈X〉β,[a,b] and 〈X〉β,[b,c] exist and

〈X〉β,[a,c] = 〈X〉β,[a,b] + 〈X〉β,[b,c].(2.5)

It is also easy to see that the following triangular inequality holds:

S
[a,b]
β,n (X + Y)1/β ≤ S

[a,b]
β,n (X)1/β + S

[a,b]
β,n (Y )1/β .(2.6)

This inequality implies that if X and Y are two continuous stochastic processes
such that 〈X〉β,[a,b] exists and 〈Y 〉β,[a,b] = 0, then

〈X + Y 〉β,[a,b] = 〈X〉β,[a,b].(2.7)

Let W = (Wt , t ≥ 0) be an Ft -Brownian motion. We want to compute the β-
variation of M(α), where M is a martingale of the form Mt = ∫ t

0 ξs dWs . We will
denote by C a generic constant that may depend on α. Consider first the case where
the martingale is just a standard Wiener process. We recall that

β = 2

1 + 2α
.

LEMMA 2.4. Let (Wt , t ≥ 0) be a Wiener process, and set Xt = W
(α)
t =∫ t

0 (t − s)α dWs . Then the β-variation of X exists in L1 and 〈X〉β,[a,b] = cα(b−a),

where cα = cHκ
−1/H
H , H = 1

2 + α, cH = E(|BH
1 |1/H ), and

κH =
(

2H�(3/2 − H)

�(H + 1/2)�(2 − 2H)

)1/2
.(2.8)
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PROOF. Because of (2.5), it is sufficient to show that 〈X〉β,t = cαt . We can ex-
tend the underlying probability space in such a way that (W−t , t ≥ 0) is a Brownian
motion independent of W . Then, the process BH defined by

BH
t = κH

(∫ t

0
(t − s)α dWs +

∫ 0

−∞
(
(t − s)α − (−s)α

)
dWs

)
,

is a fractional Brownian motion with Hurst parameter H (see Mandelbrot and Van
Ness [6]). Hence,

Xt = κ−1
H BH

t − Zt,

where Zt = ∫ 0
−∞((t − s)α − (−s)α) dWs . From the 1

H
-variation property of frac-

tional Brownian motion we know that 〈BH 〉β,t = cH t , in L1, because β = 1
H

.

Then, by (2.7) it suffices to show that limn→∞ E(|S[0,t]
β,n (Z)|) = 0 for all t ≥ 0. We

have
n∑

i=1

E(|Ztni
− Ztni−1

|β)

= C

n∑
i=1

(∫ 0

−∞
(
(tni − s)α − (tni−1 − s)α

)2
ds

)β/2

= C

n∑
i=1

(∫ ∞
0

((
tni−1 + t

n
+ s

)α

− (tni−1 + s)α
)2

ds

)β/2

≤ C

(∫ ∞
0

((
t

n
+ s

)α

− sα

)2

ds

)β/2

+ C

nβ

n∑
i=2

(∫ ∞
0

(tni−1 + s)2α−2 ds

)β/2

= I1 + I2.

It is easy to see by the dominated convergence theorem that I1 → 0 as n → ∞. On
the other hand,

I2 ≤ Ctn−1
n∑

i=2

(i − 1)(2α−1)β/2 ≤ Ctn(2α−1)/(2α+1) → 0

since α < 1/2. This proves the lemma. �

We will make use of the following lemma.

LEMMA 2.5. Fix a > 0. For t ≥ a let Xt = ∫ a
0 (t − s)α dWs , where W =

(Wt , t ≥ 0) is a Wiener process. Then, for all t ≥ a,

lim
n→∞E

(∣∣S[a,t]
β,n (X)

∣∣) = 0.(2.9)
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PROOF. Take β = 2/(1 + 2α). First we have
n∑

i=1

E

∣∣∣∣ ∫ a

0
[(tni − s)α − (tni−1 − s)α]dWs

∣∣∣∣β

≤ C

n∑
i=1

{∫ a

0
[(tni − s)α − (tni−1 − s)α]2 ds

}β/2

,

where t ≥ a and {tni } is a uniform partition on [a, t]. Then we apply a similar
argument as in the proof of Lemma 2.4. �

The following theorem is the main result of this section.

THEOREM 2.6. Set β = 2/(1 + 2α). Consider a continuous local martingale
of the form Mt = ∫ t

0 ξs dWs , where ξ = (ξt , t ≥ 0) is a progressively measurable
process such that, for all t ≥ 0,⎧⎪⎪⎨⎪⎪⎩

∫ t

0
(E(|ξs |β))β

′/β ds < ∞ for some β ′ > β, if α < 0,∫ t

0
(E(ξ2

s ))β/2 ds < ∞, if α > 0.
(2.10)

Then, the β-variation of M(α) on any interval [0, t] exists in L1, and 〈M(α)〉β,t =
cα

∫ t
0 |ξs |β ds, where cα = cHκ

−1/H
H , H = 1

2 + α, and κH is defined in (2.8).

PROOF. We can represent the martingale M as a stochastic integral Mt =∫ t
0 ξs dWs , where W = (Wt , t ≥ 0) is a Brownian motion defined on an extension

(	̃, F̃ , P̃ ) of our original probability space (	, F ,P ). The space (	̃, F̃ , P̃ ) is the
product of (	, F ,P ), and another space (	̂, F̂ , P̂ ) supporting a Brownian motion
independent of M . Clearly, if the conclusion of the theorem holds in the extended
space, it also holds in the original space.

Notice that if α < 0, by Hölder’s inequality condition (2.10) implies that∫ t

0
(t − s)−2αE(ξ2

s ) ds < ∞,

and (2.1) holds.
Suppose first that the process ξ has the form ξt = YI(t1,t2](t), where 0 ≤ t1 < t2

and Y is a bounded Ft1 -measurable random variable. In this case the process M(α),
denoted by X, is given by

Xt = YI[t1,∞)(t)

∫ t∧t2

t1

(t − s)α dWs.

For t ∈ [0, t1], we clearly have 〈X〉β,t = 0. For t ∈ [t1, t2],
Xt = Y

∫ t

0
(t − s)α dWs − Y

∫ t1

0
(t − s)α dWs,
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and by Lemmas 2.4 and 2.5, for any interval [a, b] ⊂ [t1, t2], the β-variation of X

exists in L1, and

〈X〉β,[a,b] = cα|Y |β(b − a).

Finally, by Lemma 2.5, for any interval [a, b] ⊂ [t2,∞), 〈X〉β,[a,b] = 0, in L1.
Hence, we have proved that

〈X〉β,t = cα|Y |β(t ∧ t2 − t1)+ = cα

∫ t

0
|ξs |β ds.

Let us denote by S the space of step functions of the form

ξt =
n∑

i=1

YiI(ti−1,ti ](t),

where Yi is Fti−1 measurable and bounded, and 0 = t0 < · · · < tn. For ξ ∈ S , we
have Xt = ∑n

i=1 Xi
t , where Xi

t = ∫ t
0 ξ i

t (t − s)α dWs and ξ i
t = YiI(ti−1,ti ](t). From

(2.5) we have

〈X〉β,t =
n∑

i=1

〈X〉β,[ti−1,ti ]∩[0,t].

From the first part of the proof we see that

〈Xj 〉β,[ti−1,ti ]∩[0,t] =
{

cα|Yi |β(ti ∧ t − ti−1)+, if j = i,
0, if j �= i,

and applying the triangular inequality (2.6), we see then that

〈X〉β,[ti−1,ti ]∩[0,t] = 〈Xi〉β,[ti−1,ti ]∩[0,t].

Hence,

〈X〉β,[0,t] = cα

n∑
i=1

|Yi |β(ti ∧ t − ti−1)+ = cα

∫ t

0
|ξs |β ds,(2.11)

and this proves the result for step functions.
To complete the proof, we use a density argument. Fix a time interval [0, T ].

We can find a sequence of step functions (ξk, k ≥ 1) in S such that if α > 0, then

lim
k→∞

∫ T

0
(E(|ξs − ξk

s |2))β/2 ds = 0,
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and if α < 0, then

lim
k→∞

∫ T

0
(E(|ξs − ξk

s |β))β
′/β ds = 0.

Define Xk
t = ∫ t

0 (t − s)αξk
s dBs for t ∈ [0, T ]. From the triangular inequality (2.6)

and the Burkholder–Davis–Gundy inequality (see, for instance, [5]), we have, for
all t ∈ [0, T ],

E
(∣∣S[0,t]

β,n (X)1/β − S
[0,t]
β,n (Xk)1/β

∣∣)
≤ E

((
S

[0,t]
β,n (X − Xk)

)1/β)
≤ C

(
E

(
n∑

i=1

∣∣∣∣ ∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)
(ξs − ξk

s ) dWs

∣∣∣∣β
))1/β

(2.12)

≤ C

(
E

(
n∑

i=1

∣∣∣∣ ∫ tni

0

(
(tni − s)α

− (tni−1 − s)α+
)2

(ξs − ξk
s )2 ds

∣∣∣∣β/2
))1/β

.

Now we will consider two cases depending on the sign of α.

(i) If α > 0, namely, β < 2, then by the concavity of xβ/2 and Lemma A.1, we
have

E
(∣∣S[0,t]

β,n (X)1/β − S
[0,t]
β,n (Xk)1/β

∣∣)
≤ C

(
n∑

i=1

∣∣∣∣ ∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2
E(|ξs − ξk

s |2) ds

∣∣∣∣β/2
)1/β

(2.13)

≤ C

(∫ t

0

(
E(|ξs − ξk

s |2))β/2
ds

)1/β

.

Then

E

(∣∣∣∣S[0,t]
β,n (X)1/β −

(
cα

∫ t

0
|ξs |β ds

)1/β ∣∣∣∣)
≤ E

(∣∣S[0,t]
β,n (X)1/β − S

[0,t]
β,n (Xk)1/β

∣∣)
+ E

(∣∣∣∣S[0,t]
β,n (Xk)1/β −

(
cα

∫ t

0
|ξk

s |β ds

)1/β ∣∣∣∣)

+ c1/β
α E

(∣∣∣∣(∫ t

0
|ξk

s |β ds

)1/β

−
(∫ t

0
|ξs |β ds

)1/β ∣∣∣∣).
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From (2.13) and (2.11) we obtain

lim sup
n→∞

E

(∣∣∣∣S[0,t]
β,n (X)1/β −

(
cα

∫ t

0
|ξs |β ds

)1/β ∣∣∣∣)

≤ C

(∫ t

0
(E|ξs − ξk

s |2)β/2 ds

)1/β

+ c1/β
α E

(∣∣∣∣(∫ t

0
|ξk

s |β ds

)1/β

−
(∫ t

0
|ξs |β ds

)1/β ∣∣∣∣),

and letting k tend to zero, we prove the desired result.
(ii) If α < 0, namely, β > 2, then applying the Minkovski inequality in (2.12)

and using Lemma A.2, we have

E
(∣∣S[0,t]

β,n (X)1/β − S
[0,t]
β,n (Xk)1/β

∣∣)
≤ C

(
n∑

i=1

∣∣∣∣ ∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2(
E(|ξs − ξk

s |β)
)2/β

ds

∣∣∣∣β/2
)1/β

≤ C

(∫ t

0
(E|ξs − ξk

s |β)β
′/β ds

)1/β ′
.

Now in the same way as for the case α > 0, we can show

lim
n→∞E

(∣∣∣∣S[0,t]
β,n (X)1/β −

(
cα

∫ t

0
|ξs |β ds

)1/β ∣∣∣∣) = 0.

This proves the theorem. �

REMARK 2.7. If α > 0 and
∫ t

0 E(ξ2
s ) ds < ∞, then

∫ t
0 (E(ξ2

s ))β/2 ds < ∞,
and the β-variation of the fractional martingale M(α) exists in L1, and 〈M(α)〉β,t =
cα

∫ t
0 |ξs |β ds. Using a localization argument, we can prove that this result re-

mains true with the convergence in probability, for any continuous local martin-
gale such that 〈M〉t = ∫ t

0 ξ2
s ds for all t ≥ 0. On the other hand, if α < 0 and∫ t

0 E(|ξs |β ′
) ds < ∞ for all t ≥ 0, and for some β ′ > β , then the β-variation of

the fractional martingale M(α) exists in L1 and 〈M(α)〉β,t = cα

∫ t
0 |ξs |β ds. As

a consequence, again by a localization argument, the result remains true with
the convergence in probability, for any continuous local martingale such that
〈M〉t = ∫ t

0 ξ2
s ds, assuming that

∫ t
0 |ξs |β ′

ds < ∞ almost surely, for all t ≥ 0, and
for some β ′ > β .

COROLLARY 2.8. Consider a continuous local martingale M = (Mt , t ≥ 0)

with M0 = 0 and 〈M〉t = ∫ t
0 ξ2

s ds, where ξ = (ξt , t ≥ 0) is a progressively mea-
surable process. Suppose that M satisfies (2.1) for some α ∈ (−1

2 , 1
2). Then there
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exists C > 0, such that

lim inf
n→∞ E

(
S

[a,b]
β,n

(
M(α))) ≥ C

∫ b

a
E(|ξs |β) ds.

PROOF. For each integer N ≥ 1 let ψN(x) = x if |x| ≤ N and ψN(x) = N
x

if

|x| > N . Denote M
(α),N
t = ∫ t

0 (t − s)αψN(ξs) dMs . An application of Burkholder’s
inequality yields

E
(
S

[a,b]
β,n

(
M(α))) = E

(
n∑

i=1

∣∣∣∣ ∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)
dMs

∣∣∣∣β
)

≥ CE

(
n∑

i=1

∣∣∣∣ ∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2|ξs |2 ds

∣∣∣∣β/2
)

≥ CE

(
n∑

i=1

∣∣∣∣ ∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2
(|ξs | ∧ N)2 ds

∣∣∣∣β/2
)

≥ CE
(
S

[a,b]
β,n

(
M(α),N ))

.

By Theorem 2.6, S
[a,b]
β,n (M(α),N) converges to

∫ b
a (|ξs | ∧N)β ds in L1 as n tends to

infinity. So, limn→∞ E(S
[a,b]
β,n (M(α),N)) = ∫ b

a E((|ξs |∧N)β)ds and, consequently,

lim infn→∞ E(S
[a,b]
β,n (M(α))) ≥ C

∫ b
a E|ξs |β ds. �

So far we have considered continuous local martingales such that 〈M〉t is ab-
solutely continuous with respect to the Lebesgue measure. The next result says
that in the case α < 0 if the quadratic variation of the martingale is not absolutely
continuous with respect to the Lebesgue measure with positive probability, then
the β-variation is infinite.

PROPOSITION 2.9. Fix −1
2 < α < 0. Suppose that M = (Mt , t ≥ 0) is a con-

tinuous local martingale, satisfying (2.1). Consider the Lebesgue decomposition
of its quadratic variation given by 〈M〉t = μt + νt , where μt and νt are continu-
ous nondecreasing adapted processes such that dμt is absolutely continuous with
respect to the Lebesgue measure, and dνt is singular. If P(dνt �= 0) > 0, then we
have limn→∞ E(S

[0,t]
β,n (M(α))) = ∞, for all t ≥ 0.

PROOF. By Burkholder’s inequality, we have

E

(
n∑

i=1

∣∣M(α)

tni
− M

(α)

tni−1

∣∣β)

≥ C

n∑
i=1

E

(∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2
d〈M〉s

)β/2
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≥ C

n∑
i=1

E

(∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2
dμs

)β/2

+ C

n∑
i=1

E

(∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2
dνs

)β/2

.

Then the result follows from the above inequality and Lemma A.3, proved in the
Appendix. �

On the other hand, the next result says that in the case α ∈ (0, 1
4), the β-variation

is zero if the quadratic variation of the martingale is singular.

PROPOSITION 2.10. Suppose that M = (Mt , t ≥ 0) is a continuous local
martingale, such that almost surely the measure d〈M〉t is singular with respect to
the Lebesgue measure. Then, if α ∈ (0, 1

4), we have limn→∞ E(S
[0,t]
β,n (M(α))) = 0,

for all t ≥ 0.

PROOF. The result is an immediate consequence of Lemma A.3, proved in
the Appendix. �

3. Characterization of fractional Brownian motion. Suppose that BH is
a fractional Brownian motion with Hurst parameter H ∈ (0,1). The process BH

admits the following representation (see [4]):

BH
t =

∫ t

0
ZH(t, s) dWs,(3.1)

where

ZH(t, s) = κH

[(
t

s

)H−1/2

(t − s)H−1/2

(3.2)

−
(
H − 1

2

)
s1/2−H

∫ t

s
uH−3/2(u − s)H−1/2 du

]
,

with κH defined in (2.8).
The next theorem is the main result of this paper and provides an extension of

Lévy characterization to the fractional Brownian motion.

THEOREM 3.1. Fix H ∈ (0,1), H �= 1
2 . Suppose that B = (Bt , t ≥ 0) is a zero

mean continuous stochastic process. The following two conditions are equivalent:

(1) B is a fractional Brownian motion with Hurst parameter H .
(2) The process B satisfies the following conditions:

(i) The trajectories of B are Hölder continuous of order H − ε for any H −
ε ∈ (0,H).
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(ii) Let

Mt =
∫ t

0
s1/2−H (t − s)1/2−H dBs.(3.3)

Then M is a local martingale. Furthermore, if H > 1
2 , the quadratic vari-

ation of the martingale M is absolutely continuous with respect to the
Lebesgue measure almost surely.

(iii) For any t > 0, the 1
H

-variation of B in the interval [0, t] exists in L1,
and 〈B〉1/H,t = cH t , where cH = E(|ξ |1/H ) and ξ is a standard normal
random variable.

REMARK 3.2. Notice that condition (i) is always true if H < 1
2 , and the

Riemann–Stieltjes integral in (3.3) exists by Proposition A.6.

PROOF OF THEOREM 3.1. From the properties of the fractional Brownian
motion we know that (1) implies (2). Suppose that (2) holds. Fix H − ε ∈ (0,H),
and T > 0. We are going to show that B is a fractional Brownian motion with Hurst
parameter H in the time interval [0, T ]. Denote by ‖B‖H−ε the Hölder norm of
order H − ε on [0, T ] [see (A.2)]. The proof is divided into several steps.

Step 1. From (3.3), we can solve the integral equation to express B as a func-
tional of M . This can be done as in the proof of Theorem 5.2 of [8]. In this way
we obtain

Bt = dH

[
tH−1/2Rt − (

H − 1
2

)
Yt

]
,

where dH = B(3
2 − H,H + 1

2)−1,

Rt =
∫ t

0
(t − s)H−1/2 dMs,

and

Yt =
∫ t

0

(∫ t

s
uH−3/2(u − s)H−1/2 du

)
dMs.

Comparing with the representation formula (3.1) for the fractional Brownian mo-
tion, it suffices to prove that

d〈M〉s = (κHd−1
H s1/2−H )2 ds,(3.4)

because this implies that M is a Gaussian martingale, and B has the covariance of
the fractional Brownian motion with Hurst parameter H . In order to show (3.4),
we are going to compute the 1

H
-variation of R, from the decomposition

Rt = d−1
H t1/2−HBt + (

H − 1
2

)
t1/2−H Yt .(3.5)



FRACTIONAL MARTINGALES 2417

Step 2. Fix 0 < ε < H ∧ 1
2 ∧ (1 − H) and suppose that E(‖B‖1/H

H−ε) < ∞. We
will first show that the 1

H
-variation of the process Zt = t1/2−HBt exists in L1 in

any interval [0, t] ⊂ [0, T ], and

〈Z〉1/H,t = 2HcH t1/(2H).(3.6)

An application of the triangular inequality yields

S
[0,t]
1/H,n(Z) ≤

∣∣∣∣∣
(

n∑
i=1

(tni )1/(2H)−1|Btni
− Btni−1

|1/H

)H

(3.7)

+
(

n∑
i=1

|(tni )1/2−H − (tni−1)
1/2−H |1/H |Btni−1

|1/H

)H ∣∣∣∣∣
1/H

,

and

S
[0,t]
1/H,n(Z) ≥

∣∣∣∣∣
(

n∑
i=1

(tni )1/(2H)−1|Btni
− Btni−1

|1/H

)H

(3.8)

−
(

n∑
i=1

|(tni )1/2−H − (tni−1)
1/2−H |1/H |Btni−1

|1/H

)H ∣∣∣∣∣
1/H

.

We have
n∑

i=1

|(tni )1/2−H − (tni−1)
1/2−H |1/H |Btni−1

|1/H

≤ C‖B‖1/H
H−ε

(
t

n

)1/(2H)−ε/H n∑
i=2

(i − 1)−1/(2H)−ε/H(3.9)

≤ C‖B‖1/H
H−εt

1/(2H)−ε/Hn1−1/H ,

which converges in L1 to 0 as n tends to infinity. From (3.7) to (3.9) we obtain

lim
n→∞S

[0,t]
1/H,n(Z) = lim

n→∞
n∑

i=1

(tni )1/(2H)−1|Btni
− Btni−1

|1/H ,(3.10)

in L1, provided that the limit on the right-hand side of (3.10) exists. Denote In
j =

(tnj−1, t
n
j ] for j = 1,2, . . . , n. We divide every subinterval In

j into m parts, and we
get a finer partition 0 = tnm

0 < · · · < tnm
nm = t . Then, we have∣∣∣∣∣

nm∑
i=1

(tnm
i )1/(2H)−1|Btnm

i
− Btnm

i−1
|1/H −

n∑
j=1

cH (tnj )1/(2H)−1(tnj − tnj−1)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=1

( jm∑
i=(j−1)m+1

(
(tnm

i )1/(2H)−1 − (tnj )1/(2H)−1)|Btnm
i

− Btnm
i−1

|1/H
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+ (tnj )1/(2H)−1

( jm∑
i=(j−1)m+1

|Btnm
i

− Btnm
i−1

|1/H − cH (tnj − tnj−1)

))∣∣∣∣∣
≤

n∑
j=1

∣∣(tnj )1/(2H)−1 − (tnj−1)
1/(2H)−1∣∣ jm∑

i=(j−1)m+1

|Btnm
i

− Btnm
i−1

|1/H

+ (tnj )1/(2H)−1

∣∣∣∣∣
jn∑

i=(j−1)m+1

|Btnm
i

− Btnm
i−1

|1/H − cH (tnj − tnj−1)

∣∣∣∣∣.
Letting m tend to infinity and using assumption (ii), we obtain

lim
n→∞

n∑
i=1

(tni )1/(2H)−1|Btni
− Btni−1

|1/H = 2HcH t1/(2H),

in L1, which shows (3.6).
Step 3. We claim that the 1

H
-variation of the process Vt = t1/2−HYt in L1 is

zero. The increment |Yt − Ys | can be estimated by Lemma A.7 in the Appendix
with α = 1

2 −H , f being a trajectory of the process B and β = H − ε. Notice that
α + β = 1

2 − ε, and 2α + β = 1 − H − ε. Hence, for any s, t ∈ [0, T ], we have

|Yt − Ys | ≤ C‖B‖H−ε(t
β − sβ).

Therefore, as in (3.7), we have

E
(
S

[0,t]
1/H,n(V )

) ≤ C

n∑
i=1

(tni )1/(2H)−1E(|Ytni
− Ytni−1

|1/H )

+ C

n∑
i=1

(
(tni )1/2−H − (tni−1)

1/2−H )1/H
E(|Ytni−1

|1/H )

= An + Bn.

For the term An we have

An ≤ C‖B‖1/H
H−ε

n∑
i=1

(tni )1/(2H)−1(
(tni )H−ε − (tni−1)

H−ε)1/H

= C‖B‖1/H
H−ε

(
t

n

)1/(2H)−ε/H n∑
i=1

i1/(2H)−1(i − 1)1−ε/H−1/H

≤ C‖B‖1/H
H−ε

(
t

n

)1/(2H)−ε/H

n−1/(2H)−ε/H+1.
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By Lemma A.7, limn→∞ E(An) = 0. For the term Bn, using that E(|Ytni−1
|1/H ) ≤

CE(‖B‖1/H
H−ε)|tni−1|1−ε/H , we obtain

E(Bn) ≤ CE(‖B‖1/H
H−ε)

n∑
i=1

(tni−1)
−1/(2H)−ε/H

(
t

n

)1/H

≤ CE(‖B‖1/H
H−ε)

(
1

n

)−1+1/H−ε/H

→ 0.

Hence, 〈Y 〉1/H,t = 0, in L1, for all t ∈ [0, T ].
Step 4. From (3.5), (3.6), Step 3 and (2.7), we get that the 1

H
-variation of the

process R in any interval [0, t] ⊂ [0, T ] exists in L1, and

〈R〉1/H,t = cHd
−1/H
H 2Ht1/(2H).(3.11)

On the other hand, since Rt is an H − 1
2 martingale, Theorem 2.6 and Propo-

sition 2.9 imply that if H < 1/2, the quadratic variation d〈M〉s must be ab-
solutely continuous with respect to the Lebesgue measure, almost surely. In the
case H > 1

2 this is true by the assumption (ii). This implies that 〈M〉t = ∫ t
0 ξ2

s ds,
where ξ = (ξt , t ≥ 0) is a progressively measurable process.

By Corollary 2.8, there is a positive constant C such that, for any t1, t2 ∈ [0, T ],
C

∫ t2
t1

s1/(2H)−1 ds ≥ ∫ t2
t1

E(|ξs |1/H ) ds. Then E(|ξs |1/H ) ≤ Cs1/(2H)−1. Thus, we

can apply Theorem 2.6 to obtain 〈R〉1/H,t = cHκ
−1/H
H

∫ t
0 |ξs |1/H ds. Comparing

this with (3.11), we obtain

|ξs | = κHd−1
H s1/2−H , 0 ≤ s ≤ t,

and (3.4) holds. This proves that B is a fractional Brownian motion with Hurst
parameter H under the condition E(‖B‖1/H

H−ε) < ∞.

Step 5. If E(‖B‖1/H
H−ε) is not necessarily finite, we can use a localization argu-

ment. Denote

TK = inf{t ≥ 0 :‖B‖t,H−ε ≥ K} ∧ T ,

and BK
t = Bt∧TK

. Since
∑n

i=1 |BK
tni

− BK
tni−1

|1/H ≤ ∑n
i=1 |Btni

− Btni−1
|1/H +

(K t
n
)1/H , by the dominated convergence theorem, we can also get

lim
n

E

(∣∣∣∣∣
n∑

i=1

|BK
tni

− BK
tni−1

|1/H − cH (t ∧ TK)

∣∣∣∣∣
)

= 0.

By modifying the proof in Steps 1–4 slightly, we get

|ξs | = κHd−1
H s1/2−H , 0 ≤ s ≤ t ∧ TK.

Clearly, limK→∞ TK = T , and then

|ξs | = κHd−1
H s1/2−H , 0 ≤ s ≤ T . �
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REMARK 3.3. Notice that in the case H > 1
2 we have imposed the additional

assumption that the martingale (3.3) has an absolutely continuous quadratic vari-
ation. This is true, for instance, if the filtration generated by the process B is
included in the filtration generated by a Brownian motion. The next proposition
shows that this condition is necessary at least in the case H ∈ (1

2 , 3
4).

PROPOSITION 3.4. Suppose that H ∈ (1
2 , 3

4). There exists a process B , satis-
fying conditions (i) and (iii) of Theorem 3.1, such that the process M defined in
(3.3) is a local martingale, and B is not a fractional Brownian motion.

PROOF. Let BH be a fractional Brownian motion with Hurst parameter H ∈
(1

2 , 3
4). Define

Mt =
∫ t

0
s1/2−H (t − s)1/2−H dBH

s .

Let Nt = Wφ(t), where W is a Brownian motion independent of BH , and φ is a
strictly increasing, Hölder continuous function of exponent γ for any γ < 1, null at
zero, such that the measure dφ(t) is singular with respect to the Lebesgue measure
(for the existence of such function, see Lemma A.8 in the Appendix). Set

M̃t = Mt + Nt and B̃H
t = BH

t + Yt ,

where

Yt = dH

(
tH−1/2

∫ t

0
(t − s)H−1/2 dNs

−
(
H − 1

2

)∫ t

0

(∫ t

s
uH−3/2(u − s)H−1/2 du

)
dNs

)
.

The process B̃H clearly satisfies (i) and it is not a fractional Brownian motion.
Finally, 〈B̃H 〉1/H,t = cH t in L1, because the 1

H
-variation of

∫ t
0 (t − s)H−1/2 dNs

is zero by Proposition 2.10, and, by the same arguments as in the proof of Theo-
rem 3.1, we can show that the 1

H
-variation of Y vanishes. �

APPENDIX

A.1. Some technical lemmas.

LEMMA A.1. Let α ∈ (0, 1
2). Fix an interval [0, t]. For any natural number

m, we define tmi = i
m

t , 0 ≤ i ≤ m. Let g be a measurable function on [0,∞)
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such that, for all t ≥ 0,
∫ t

0 |g(s)|ds < ∞. Then there exists a function C(t) > 0
satisfying

lim sup
m→∞

m∑
i=1

(∫ tmi

0

(
(tmi − s)α − (tmi−1 − s)α+

)2|g(s)|ds

)β/2

≤ C(t)

∫ t

0
|g(s)|β/2 ds.

PROOF. Set

Am =
m∑

i=1

(∫ tmi

0

(
(tmi − s)α − (tmi−1 − s)α+

)2|g(s)|ds

)β/2

.

We have Am ≤ C(A1,m + A2,m + A3,m), where

A1,m =
m∑

i=3

(∫ tmi−2

0

(
(tmi − s)α − (tmi−1 − s)α

)2|g(s)|ds

)β/2

,

A2,m =
m∑

i=2

(∫ tmi−1

tmi−2

(
(tmi − s)α − (tmi−1 − s)α

)2|g(s)|ds

)β/2

and

A3,m =
m∑

i=1

(∫ tmi

tmi−1

(tmi − s)2α|g(s)|ds

)β/2

.

Let φm(x) = ((x + t
m

)α − xα)2. The φ(x) is a nonincreasing of x when x ≥ 0. As
a consequence,

A1,m = m

t

m∑
i=3

∫ tmi−1

tmi−2

(∫ tmi−2

0

(
(tmi − s)α − (tmi−1 − s)α

)2|g(s)|ds

)β/2

du

= m

t

m∑
i=3

∫ tmi−1

tmi−2

(∫ tmi−2

0
φm(tmi−1 − s)|g(s)|ds

)β/2

du

≤ m

t

∫ t

0

(∫ u

0
φm(u − s)|g(s)|ds

)β/2

du.

Using the Hölder inequality, we obtain(∫ u

0
φm(u − s)|g(s)|ds

)β/2

≤
(∫ u

0
φm(u − s) ds

)β/2−1

×
∫ u

0
φm(u − s)|g(s)|β/2 ds

≤
(∫ t

0
φm(s) ds

)β/2−1 ∫ u

0
φm(u − s)|g(s)|β/2 ds.
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Integrating in the variable u yields

A1,m ≤ m

t

(∫ t

0
φm(s) ds

)β/2−1 ∫ t

0

∫ u

0
φm(u − s) ds|g(s)|β/2 ds du

= m

t

(∫ t

0
φm(s) ds

)β/2−1 ∫ t

0

(∫ t

s
φm(u − s) du

)
|g(s)|β/2 ds

(A.1)

≤ m

t

(∫ t

0
φm(s) ds

)β/2−1 ∫ t

0

(∫ t

0
φm(u)du

)
|g(s)|β/2 ds

= m

t

(∫ t

0
φm(s) ds

)β/2 ∫ t

0
|g(s)|β/2 ds.

Therefore,

lim
m→∞A1,m = t−1

(∫ ∞
0

(
(x + t)α − xα)2

dx

)β/2 ∫ t

0
|g(s)|β/2 du.

For the term A3,m we can write

A3,m ≤
(

t

m

)αβ m∑
i=1

(∫ tmi

tmi−1

|g(s)|ds

)β/2

=
m∑

i=1

(
m

t

∫ tmi

tmi−1

|g(s)|ds

)β/2 t

m
.

The functions

gm(s) = m

t

m∑
i=1

(∫ tmi

tmi−1

|g(s)|ds

)
I(tmi−1,t

m
i ](s)

converge almost everywhere to |g|, and they are bounded in L1([0, t]). Hence,
|g(s)|β/2 is uniformly integrable on [0, t]. Therefore,

lim sup
m→∞

A3,m ≤ lim
m→∞

∫ t

0
|gm(s)|β/2 ds =

∫ t

0
|g(s)|β/2 ds.

From the fact that |xα − yα| ≤ |x − y|α , we see that

A2,m ≤
m∑

i=2

(∫ tmi−1

tmi−2

|tmi − tmi−1|2α|g(s)|ds

)β/2

.

Thus, in the same way as for A3,m, we have

lim sup
m→∞

A2,m ≤ 2
∫ t

0
|g(s)|β/2 ds. �

LEMMA A.2. Let α ∈ (−1
2 ,0). Fix an interval [0, t]. For any natural num-

ber m, we define tmi = i
m

t , 0 ≤ i ≤ m. Let g be a measurable function on [0,∞)
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such that, for all t ≥ 0,
∫ t

0 |g(s)|β ′/2 ds < ∞ for some β ′ > β . Then there exists a
constant C depending on t such that

m∑
i=1

(∫ tmi

0

(
(tmi − s)α − (tmi−1 − s)α+

)2|g(s)|ds

)β/2

≤ C

(∫ t

0
|g(s)|β ′/2 ds

)β/β ′
.

PROOF. Consider the decomposition given in the proof of Lemma A.1. For
the first term we can write, from inequality (A.1),

A1,m ≤ C
m

t

(∫ t

0

(
s2α −

(
s + t

m

)2α)
ds

)β/2 ∫ t

0
|g(s)|β/2 ds

≤ C
m

t

(
t1+2α +

(
t

m

)1+2α

−
(
t + t

m

)1+2α)β/2 ∫ t

0
|g(s)|β/2 ds

≤ C
m

t

(
t

m

)(1+2α)β/2 ∫ t

0
|g(s)|β/2 ds

≤ C

∫ t

0
|g(s)|β/2 ds ≤ C

(∫ t

0
|g(s)|β ′/2 ds

)β ′/β
.

Let 2αp > −1 and 1
p

+ 1
q

= 1. Then β ′ = 2q > β , and applying Hölder’s inequal-
ity, we can write

A3,m ≤
m∑

i=1

(∫ tmi

tmi−1

(tmi − s)2αp ds

)β/(2p)(∫ tmi

tmi−1

|g(s)|q ds

)β/(2q)

≤ C

m∑
i=1

(
t

m

)((1+2αp)/p)β/2(∫ tmi

tmi−1

|g(s)|q ds

)β/(2q)

≤ Ct((1+2αp)/p)β/2
(∫ t

0
|g(s)|q ds

)β/(2q)

.

For the term A2,m, with the same notation as above, we can write

A2,m ≤ C

m∑
i=2

(∫ tmi−1

tmi−2

(tmi−1 − s)2α|g(s)|ds

)β/2

≤ C

m∑
i=2

(
t

m

)((1+2αp)/p)β/2(∫ tmi−1

tmi−2

|g(s)|q ds

)β/(2q)

≤ Ct((1+2αp)/p)β/2
(∫ t

0
|g(s)|q ds

)β/(2q)

. �
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LEMMA A.3. Suppose that v is a measure on an interval [0, t], which is sin-
gular with respect to the Lebesgue measure. We have the following:

(i) If α ∈ (−1
2 ,0), then

lim
n→∞

n∑
i=1

(∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2
dνs

)β/2

= ∞.

(ii) If α ∈ (0, 1
4), then

lim
n→∞

n∑
i=1

(∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2
dνs

)β/2

= 0.

PROOF. Denote �n
i := (tni−1, t

n
i ]. Set

An =
n∑

i=1

(∫ tni

0

(
(tni − s)α − (tni−1 − s)α+

)2
dνs

)β/2

.

(i) If α ∈ (−1
2 ,0), then

An ≥
n∑

i=1

(∫ tni

tni−1

(tni − s)2α dνs

)β/2

≥ C

(
t

n

)αβ n∑
i=1

(ν(�n
i ))

β/2 ≥
n∑

i=1

C

(
t

n

)(
ν(�n

i )

m(�n
i )

)β/2

,

where m denotes the Lebesgue measure. Suppose that Fn is the σ -field of subsets
of the interval [0, t] generated by the partition {�n

i , i = 1, . . . , n}. Denote by νn

and mn the restrictions of the measures ν and m to the σ -field Fn. Set

Xn =
n∑

i=1

ν(�n
i )

m(�n
i )

I�n
i
.

Then An ≥ CE(X
β/2
n ). The sequence (X2k , k ≥ 0) is a martingale with respect to

the filtration F2k . As a consequence (see, for instance, Theorem 3.3 in [2]), we have
limn→∞ X2k = X(m + ν)-a.e. Since ν ⊥ m,X = 0 m-a.e. If limk→∞ E(X

β/2
2k ) <

∞, then (X2k , k ≥ 0) would be a uniformly integrable martingale and, hence,
X2k = E(X|F2k ) = 0, which is a contradiction.

(ii) If α ∈ (0, 1
4), then

An =
n∑

i=1

(∫ ti−1

0

(
(tni − s)α − (tni−1 − s)α

)2
dνs

)β/2

+
n∑

i=1

(∫ tni

ti−1

(tni − s)2α dνs

)β/2

= Bn + Cn.
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For the term Cn we have

Cn ≤
(

t

n

)αβ n∑
i=1

(ν(�n
i ))

β/2 = tαβ
n∑

i=1

1

n
(ν(�n

i )n)β/2 = tαβE(Xβ/2
n ).

Since E(Xn) = ν([0, t]) < ∞,
β
2 < 1, and Xn → 0 a.e., we have limn→∞ Cn = 0.

On the other hand,

Bn ≤
n∑

i=1

(
i−1∑
j=1

∫ tj

tj−1

(
(tni − s)α − (tni−1 − s)α

)2
dνs

)β/2

≤
n∑

i=1

(
i−1∑
j=1

(
t

n

)2α(
iα − (i − 1)α

)2
ν(�n

j )

)β/2

≤
n∑

i=1

(
i−1∑
j=1

(
t

n

)αβ(
iα − (i − 1)α

)β
ν(�n

j )
β/2

)

≤
(

t

n

)αβ n∑
i=1

(
iα − (i − 1)α

)β n∑
j=1

ν(�n
j )

β/2.

Notice that
n∑

i=1

(
iα − (i − 1)α

)β ≤ C +
n∑

i=2

(
iα − (i − 1)α

)β
≤ C +

n∑
i=2

(i − 1)(α−1)β = C + O(nαβ−β+1),

where C > 0. If α ∈ (0, 1
4), we have αβ −β + 1 < 0 and then supn

∑n
i=1(i

α − (i −
1)α)β < ∞. Then, similarly, limn An = 0. �

A.2. Transformations of Hölder continuous functions. Let β ∈ (0,1]. We
denote by Cβ([0, T ]) the set of Hölder continuous functions on [0, T ]. For any
function f in Cβ([0, T ]) and any 0 ≤ a < b ≤ T , we will write

‖f ‖β,a,b = sup
a≤s<t≤b

|f (t) − f (s)|
|t − s|β .(A.2)

We also set ‖f ‖β = ‖f ‖β,0,T .

LEMMA A.4. Suppose that f ∈ Cβ([0, T ]), and assume that 0 ≤ a < b < v ≤
T . Let, γ ≥ 0 and α + β �= 0. Then∣∣∣∣ ∫ b

a
sγ (v − s)α df (s)

∣∣∣∣ ≤ ‖f ‖β

(
2 +

∣∣∣∣ α

α + β

∣∣∣∣)bγ (
(v − b)α+β + (v − a)α+β)

.
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PROOF. Suppose first γ > 0. Integrating by parts yields∣∣∣∣ ∫ b

a
sγ (v − s)α df (s)

∣∣∣∣
=

∣∣∣∣bγ (v − b)α
(
f (b) − f (v)

) − aγ (v − a)α
(
f (a) − f (v)

)
−

∫ b

a

(
f (s) − f (v)

)[sγ (v − s)α]′ ds

∣∣∣∣
≤ ‖f ‖β,a,v

(
bγ (v − b)α+β + aγ (v − a)α+β

+ γ

∫ b

a
(v − s)α+βsγ−1 ds + α

∫ b

a
(v − s)α+β−1sγ ds

)
≤ ‖f ‖β,a,v

[
bγ (v − b)α+β + bγ (v − a)α+β

+ max{(v − a)α+β, (v − b)α+β}(bγ − aγ )

+ bγ

∣∣∣∣ α

α + β

∣∣∣∣((v − a)α+β − (v − b)α+β)]

≤ ‖f ‖β,a,v

(
2 +

∣∣∣∣ α

α + β

∣∣∣∣)bγ (
(v − b)α+β + (v − a)α+β)

.

The case γ = 0 is proved in a similar way. �

LEMMA A.5. Suppose that f ∈ Cβ([0, T ]), and suppose α < 0, α + β > 0.
Let g(t) = ∫ t

0 sα df (s). Then, g ∈ Cα+β([0, T ]), and

‖g‖α+β ≤ β

α + β
‖f ‖β.

PROOF. Fix 0 ≤ a < b ≤ T . Integrating by parts yields

|g(b) − g(a)| =
∣∣∣∣ ∫ b

a
sαd[f (s) − f (a)]

∣∣∣∣
=

∣∣∣∣bα[f (b) − f (a)] + α

∫ b

a
[f (s) − f (a)]sα−1 ds

∣∣∣∣
≤ ‖f ‖βbα|b − a|β + |α|

∫ b

a
|f (s) − f (a)|(s − a)α−1 ds

≤ ‖f ‖β

(
|b − a|α+β + |α|

∫ b

a
(s − a)α+β−1 ds

)
≤ ‖f ‖β

β

α + β
|b − a|α+β,
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which give the desired result. �

PROPOSITION A.6. Fix α ∈ (−1
2 , 1

2) and β ∈ (0,1] such that 0 < α + β ≤ 1.
Suppose that f ∈ Cβ([0, T ]), and let g(t) = ∫ t

0 sα(t − s)α dfs . Then:

1. If α > 0, g ∈ Cα+β([0, T ]) and for any 0 ≤ a < b ≤ T , we have

|g(b) − g(a)| ≤ C‖f ‖βbα(b − a)α+β.(A.3)

2. If α < 0 and 0 < 2α + β ≤ 1, then g ∈ C2α+β([0, T ]) and

|g(b) − g(a)| ≤ C‖f ‖β(b − a)2α+β.

PROOF. We can write

g(b) − g(a) =
∫ a

0
sα(

(b − s)α − (a − s)α
)
dfs +

∫ b

a
sα(b − s)α dfs

= α

∫ b

a

(∫ a

0
sα(v − s)α−1 dfs

)
dv +

∫ b

a
sα(b − s)α dfs

= A + B.

If α > 0, using Lemma A.4 yields

|A| ≤ C‖f ‖βaα
∫ b

a

(
(v − a)α+β + vα+β)

dv

= C‖f ‖βaα[(b − a)α+β + bα+β − aα+β]
and

|B| ≤ C‖f ‖βbα(b − a)α+β,

which implies (A.3) follows. On the other hand, if α < 0, the function h(t) =∫ t
0 sα dfs is (α + β)-Hölder continuous by Lemma A.5, and ‖h‖α+β ≤ C‖f ‖β .

Then, applying Lemma A.4 to the function h, we obtain the estimates

|A| ≤ α

∣∣∣∣ ∫ b

a

(∫ a

0
(v − s)α−1 dhs

)
dv

∣∣∣∣
≤ C‖f ‖β

∫ b

a
[(v − a)2α+β−1 + v2α+β−1]dv

≤ C‖f ‖β[(b − a)2α+β + b2α+β − a2α+β ],
and

|B| ≤
∣∣∣∣ ∫ b

a
(b − s)α dhs

∣∣∣∣ ≤ C‖f ‖β(b − a)2α+β.

The proof is complete. �
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LEMMA A.7. Fix α ∈ (−1
2 , 1

2) and β ∈ (0,1] such that 0 < α + β ≤ 1 and
0 < 2α + β ≤ 1. Suppose that f ∈ Cβ([0, T ]), and let g(t) = ∫ t

0 sα(t − s)α dfs .
Set

h(t) =
∫ t

0
u−α−1

(∫ u

0
(u − s)−α dgs

)
du.

Then for any 0 ≤ a < b ≤ T , we have

|h(b) − h(a)| ≤ C‖f ‖β(bβ − aβ).

PROOF. We have

|h(b) − h(a)| ≤
∫ b

a
u−α−1

∣∣∣∣ ∫ u

0
(u − s)−α dgs

∣∣∣∣du.(A.4)

Suppose first that α < 0. Then, ‖g‖2α+β ≤ C‖f ‖β , and Lemma A.4 yields∣∣∣∣ ∫ u

0
(u − s)−α dgs

∣∣∣∣ ≤ C‖f ‖βuα+β.(A.5)

Substituting (A.5) into (A.4) yields the results. In the case α > 0, the Hölder norm
‖g‖α+β in an interval [0, u] is bounded by Cuα‖f ‖β , and Lemma A.4 yields∣∣∣∣ ∫ u

0
(u − s)−α dgs

∣∣∣∣ ≤ C‖f ‖βuβ+α.

This completes the proof of the lemma. �

A.3. Existence of singular Hölder continuous distribution functions. Let
0 < H < 1 and ρ > 1. Suppose that X = (Xt , t ≥ 0) is a zero mean Gaussian
process with stationary increments and a variance σ 2(t) = E(X2

t ) given by

σ 2(t) =
∫ ∞

0

(
1 − cos(xt)

)
g(x) dx,(A.6)

where g(x) = x−2H−11[0,2)(x) + (| logx|ρx)−11[2,∞)(x). If we replace g(x) by
gH (x) = x−2H−1 in equation (A.6), then the process X is a fractional Brownian
motion with Hurst parameter H . Taking into account that g(x) ≥ CgH(x) for some
constant C > 0, it follows that the process X satisfies the local nondeterminism
property in some interval (0, d) (see Theorem 4.1 in [1]).

The following lemma implies the existence of finite measures on the real line
which are singular with respect to the Lebesgue measure, and whose distribution
function is Hölder continuous of order γ , for any γ < 1 on any finite interval.

LEMMA A.8. Let X be the Gaussian process introduced above. Then, there
exists a version of its local time L(t, x), jointly continuous in t and x, with the
following properties:
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(i) For each x ∈ R and γ < 1, L(t, x) is Hölder continuous of order γ with
respect to t , on any finite interval.

(ii) L(t, x) is a nondecreasing function of t .
(iii) For each x ∈ R, the support of the measure L(dt, x) is the set {s,Xs = x},

which has a Lebesgue measure 0.

PROOF. The function σ 2 satisfies

σ 2(t) ≥ C| log t−1|−α,

for some constant C > 0 and for t ∈ (0, 1
2). Then, property (i) follows by Theo-

rem 8.1 in [1]. From Theorem 6.4, page 11, in [3], it follows that for each x ∈ R

the support of the measure L(dt, x) is the set �x = {s,Xs = x}. Finally, to show
that �x has a Lebesgue measure 0, we write

E

∫ T

0
1�x (s) ds =

∫ T

0
E(1Xs=x) ds = 0,

which implies that
∫ T

0 1�x (s) ds = 0 almost surely. This completes the proof of the
lemma. �
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