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CORRECTION

MEASURE CONCENTRATION FOR EUCLIDEAN DISTANCE
IN THE CASE OF DEPENDENT RANDOM VARIABLES

BY KATALIN MARTON

Ann. Appl. Probab. 32 (2004) 2526–2544

We correct an error in the paper identified in the title. The error affects
the factor before the square root of entropy in Theorem 1; the same factor
appears in Theorem 2.

There is an error in the proof, and also in the statement, of Lemma 1 (page
2537). This error propagates to the Auxiliary Theorem (page 2537) and also affects
Theorems 1 and 2. Here we give a proof of Theorem 1 with a correction term.

THEOREM 1 (Theorem 1 corrected).

W(pn, qn) ≤
(
C ·

√
1

δ
· v

t
+ 1

)
·
√

2

ρ
· D(pn||qn),

where

C = min

√
x

1 − exp(−x)

and the min is taken on values of x of the form x = tδ(M/2N) which varies with M

by steps smaller than t/2N . C is bounded by an absolute constant. In the original
paper this result was claimed without the added term 1.

In the proof we use the following concepts from the original paper:
“Sites” and “patches” are defined on psge 2528. The random sequence of

patches (I1, I2, . . .) and the Markov chain (Y n(0) = Zn(0),Zn(1),Zn(2), . . .) are
defined in Section 2 (pages 2534–2536). The numbers t and v are defined in The-
orem 1 (page 2531).
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PROOF OF THEOREM 1 CORRECTED. We have

W 2(pn, qn) ≤
n∑

i=1

( ∞∑
l=1

(
Zi(l) − Zi(l − 1)

))2

.

For a patch I and l ≥ 1, define a joint conditional distribution,

dist
((

ZI (l − 1),UI (l)
)|Z̄I (l − 1) = z̄i

)
as that joining of the marginals dist(ZI (l − 1)|Z̄I (l − 1) = z̄I ) and Qi(·|z̄I ), that
minimizes the expected squared distance,

E{|ZI (l − 1) − UI (l)|2|Z̄I (l − 1) = z̄I }
for each value of z̄I . [UI (l) cannot be considered as part of some random sequence
Un(l).] We define the joint distribution of the sequence (Zn(m)) and the random
variables UI (l) in such a way that UI (l) depends on the sequence (Zn(m)) only
through Zn(l − 1). Put

VI (l) = ZI (l − 1) − UI (l)

(whether Il = I or not). Moreover, define

δI (l) = 1 if Il = I and δI (l) = 0 if Il �= I.

For fixed I , the sequence (δI (l) : l ∈ [1,M]) is Bernoulli with Pr{δI (l) = 1} =
1/N , and for all l ∈ [1,M], δI (l) is independent of Bl−1, the σ -algebra generated
by (Zn(0),Zn(1), . . . ,Zn(l − 1)). Thus for all m ≥ l,

E{δI (m)VI,i(m)|Bl−1} = E{VI,i(m)|Bl−1}/N.(1)

We have

Zi(l) − Zi(l − 1) = ∑
I�i

δI (l)VI,i(l),

where VI,i(l) denotes the ith coordinate of VI . Thus

W 2(pn, qn) ≤
n∑

i=1

(∑
I�i

∞∑
l=1

δI (l)VI,i(l)

)2

.

We claim that for fixed i and I ,

E

( ∞∑
l=1

δI (l)VI,i(l)

)2

≤ 1/N2 · E

( ∞∑
l=1

VI,i(l)

)2

+ 1/N · E

∞∑
l=1

V 2
I,i(l).(2)

Indeed, we have
∞∑
l=1

δI (l)VI,i(l) = 1/N

∞∑
l=1

VI,i(l) +
∞∑
l=1

(
δI (l)VI,i(l) − 1/NVI,i(l)

)
.(3)
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By (1), the terms of the second sum on the right-hand side are uncorrelated with
each other and also with the terms of the first sum. Thus (3) implies (2).

It follows that

W 2(pn, qn) ≤ 1/N2
∑
i

E

(∑
I�i

∞∑
l=1

|VI,i(l)|
)2

+ 1/N · ∑
I

∑
i∈I

∞∑
l=1

EV 2
I,i(l).

We apply the Cauchy–Schwarz inequality to the first term. Since each i belongs
to, at most, v patches, we get

W 2(pn, qn) ≤ v/N2
∑
i

∑
I�i

E

( ∞∑
l=1

|VI,i(l)|
)2

+ 1/N · ∑
I

∑
i∈I

∞∑
l=1

EV 2
I,i(l)

(4)

= v/N2
∑
I

E

( ∞∑
l=1

|VI (l)|
)2

+ 1/N · ∑
I

∞∑
l=1

EV 2
I (l).

By the Cauchy–Schwarz inequality and Proposition 2 of the original paper, (4)
implies that for every M ≥ 1

(∑
I

E

( ∞∑
l=1

|VI (l)|
)2)1/2

≤ √
M · ∑

I

∞∑
k=1

(
kM∑

l=(k−1)M+1

EV 2
I,i(l)

)1/2

(5)

≤ √
M

∑
I

(
M∑
l=1

EV 2
I,i(l)

)1/2

· 1

1 − (1 − tδ/N)M/2

≤ √
M

∑
I

(
M∑
l=1

EV 2
I,i(l)

)1/2

· 1

1 − exp(−(Mtδ/2N))
.

Substituting (5) into (4),

W(pn, qn) ≤
( √

vM/N

1 − exp(−(Mtδ/2N))
+ 1

)
·
(

1/N
∑
I

∞∑
l=1

EV 2
I (l)

)1/2

.(6)

As in the original paper (page 2540), we have

1/N

∞∑
l=1

EV 2
I (l) =

∞∑
l=1

E{δI (l)V
2
I (l)} =

∞∑
l=1

E
(
ZIl

(l) − ZIl
(l − 1)

)2

≤ 2

ρ
· D(pn||qn).
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So (6) implies

W(pn, qn) ≤
( √

vM/N

(1 − exp(−(Mtδ/2N)))
+ 1

)
·
√

2

ρ
· D(pn||qn).(7)

Now the argument in the last paragraph on page 2542 of the original paper is
used to get the corrected Theorem 1 from (7) . �
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