CORRECTION

MEASURE CONCENTRATION FOR EUCLIDEAN DISTANCE IN THE CASE OF DEPENDENT RANDOM VARIABLES

By Katalin Marton
Ann. Appl. Probab. 32 (2004) 2526-2544

We correct an error in the paper identified in the title. The error affects the factor before the square root of entropy in Theorem 1; the same factor appears in Theorem 2.

There is an error in the proof, and also in the statement, of Lemma 1 (page 2537). This error propagates to the Auxiliary Theorem (page 2537) and also affects Theorems 1 and 2. Here we give a proof of Theorem 1 with a correction term.

THEOREM 1 (Theorem 1 corrected).

$$
W\left(p^{n}, q^{n}\right) \leq\left(C \cdot \sqrt{\frac{1}{\delta} \cdot \frac{v}{t}}+1\right) \cdot \sqrt{\frac{2}{\rho} \cdot D\left(p^{n} \| q^{n}\right)},
$$

where

$$
C=\min \frac{\sqrt{x}}{1-\exp (-x)}
$$

and the \min is taken on values of x of the form $x=t \delta(M / 2 N)$ which varies with M by steps smaller than $t / 2 N . C$ is bounded by an absolute constant. In the original paper this result was claimed without the added term 1.

In the proof we use the following concepts from the original paper:
"Sites" and "patches" are defined on psge 2528. The random sequence of patches $\left(I_{1}, I_{2}, \ldots\right)$ and the Markov chain $\left(Y^{n}(0)=Z^{n}(0), Z^{n}(1), Z^{n}(2), \ldots\right)$ are defined in Section 2 (pages 2534-2536). The numbers t and v are defined in Theorem 1 (page 2531).

[^0]Proof of Theorem 1 corrected. We have

$$
W^{2}\left(p^{n}, q^{n}\right) \leq \sum_{i=1}^{n}\left(\sum_{l=1}^{\infty}\left(Z_{i}(l)-Z_{i}(l-1)\right)\right)^{2}
$$

For a patch I and $l \geq 1$, define a joint conditional distribution,

$$
\operatorname{dist}\left(\left(Z_{I}(l-1), U_{I}(l)\right) \mid \bar{Z}_{I}(l-1)=\bar{z}_{i}\right)
$$

as that joining of the marginals $\operatorname{dist}\left(Z_{I}(l-1) \mid \bar{Z}_{I}(l-1)=\bar{z}_{I}\right)$ and $Q_{i}\left(\cdot \mid \bar{z}_{I}\right)$, that minimizes the expected squared distance,

$$
\mathbb{E}\left\{\left|Z_{I}(l-1)-U_{I}(l)\right|^{2} \mid \bar{Z}_{I}(l-1)=\bar{z}_{I}\right\}
$$

for each value of \bar{z}_{I}. [$U_{I}(l)$ cannot be considered as part of some random sequence $U^{n}(l)$.] We define the joint distribution of the sequence $\left(Z^{n}(m)\right)$ and the random variables $U_{I}(l)$ in such a way that $U_{I}(l)$ depends on the sequence $\left(Z^{n}(m)\right)$ only through $Z^{n}(l-1)$. Put

$$
V_{I}(l)=Z_{I}(l-1)-U_{I}(l)
$$

(whether $I_{l}=I$ or not). Moreover, define

$$
\delta_{I}(l)=1 \quad \text { if } I_{l}=I \quad \text { and } \quad \delta_{I}(l)=0 \quad \text { if } I_{l} \neq I .
$$

For fixed I, the sequence $\left(\delta_{I}(l): l \in[1, M]\right)$ is Bernoulli with $\operatorname{Pr}\left\{\delta_{I}(l)=1\right\}=$ $1 / N$, and for all $l \in[1, M], \delta_{I}(l)$ is independent of \mathcal{B}_{l-1}, the σ-algebra generated by $\left(Z^{n}(0), Z^{n}(1), \ldots, Z^{n}(l-1)\right)$. Thus for all $m \geq l$,

$$
\begin{equation*}
\mathbb{E}\left\{\delta_{I}(m) V_{I, i}(m) \mid \mathcal{B}_{l-1}\right\}=\mathbb{E}\left\{V_{I, i}(m) \mid \mathcal{B}_{l-1}\right\} / N \tag{1}
\end{equation*}
$$

We have

$$
Z_{i}(l)-Z_{i}(l-1)=\sum_{I \ni i} \delta_{I}(l) V_{I, i}(l),
$$

where $V_{I, i}(l)$ denotes the i th coordinate of V_{I}. Thus

$$
W^{2}\left(p^{n}, q^{n}\right) \leq \sum_{i=1}^{n}\left(\sum_{I \ni i} \sum_{l=1}^{\infty} \delta_{I}(l) V_{I, i}(l)\right)^{2} .
$$

We claim that for fixed i and I,

$$
\begin{equation*}
\mathbb{E}\left(\sum_{l=1}^{\infty} \delta_{I}(l) V_{I, i}(l)\right)^{2} \leq 1 / N^{2} \cdot \mathbb{E}\left(\sum_{l=1}^{\infty} V_{I, i}(l)\right)^{2}+1 / N \cdot \mathbb{E} \sum_{l=1}^{\infty} V_{I, i}^{2}(l) \tag{2}
\end{equation*}
$$

Indeed, we have

$$
\begin{equation*}
\sum_{l=1}^{\infty} \delta_{I}(l) V_{I, i}(l)=1 / N \sum_{l=1}^{\infty} V_{I, i}(l)+\sum_{l=1}^{\infty}\left(\delta_{I}(l) V_{I, i}(l)-1 / N V_{I, i}(l)\right) \tag{3}
\end{equation*}
$$

By (1), the terms of the second sum on the right-hand side are uncorrelated with each other and also with the terms of the first sum. Thus (3) implies (2).

It follows that

$$
W^{2}\left(p^{n}, q^{n}\right) \leq 1 / N^{2} \sum_{i} \mathbb{E}\left(\sum_{I \ni i} \sum_{l=1}^{\infty}\left|V_{I, i}(l)\right|\right)^{2}+1 / N \cdot \sum_{I} \sum_{i \in I} \sum_{l=1}^{\infty} \mathbb{E} V_{I, i}^{2}(l) .
$$

We apply the Cauchy-Schwarz inequality to the first term. Since each i belongs to, at most, v patches, we get

$$
W^{2}\left(p^{n}, q^{n}\right) \leq v / N^{2} \sum_{i} \sum_{I \ni i} \mathbb{E}\left(\sum_{l=1}^{\infty}\left|V_{I, i}(l)\right|\right)^{2}+1 / N \cdot \sum_{I} \sum_{i \in I} \sum_{l=1}^{\infty} \mathbb{E} V_{I, i}^{2}(l)
$$

$$
\begin{equation*}
=v / N^{2} \sum_{I} \mathbb{E}\left(\sum_{l=1}^{\infty}\left|V_{I}(l)\right|\right)^{2}+1 / N \cdot \sum_{I} \sum_{l=1}^{\infty} \mathbb{E} V_{I}^{2}(l) \tag{4}
\end{equation*}
$$

By the Cauchy-Schwarz inequality and Proposition 2 of the original paper, (4) implies that for every $M \geq 1$

$$
\begin{align*}
& \left(\sum_{I} \mathbb{E}\left(\sum_{l=1}^{\infty}\left|V_{I}(l)\right|\right)^{2}\right)^{1 / 2} \\
& \quad \leq \sqrt{M} \cdot \sum_{I} \sum_{k=1}^{\infty}\left(\sum_{l=(k-1) M+1}^{k M} \mathbb{E} V_{I, i}^{2}(l)\right)^{1 / 2} \\
& \quad \leq \sqrt{M} \sum_{I}\left(\sum_{l=1}^{M} \mathbb{E} V_{I, i}^{2}(l)\right)^{1 / 2} \cdot \frac{1}{1-(1-t \delta / N)^{M / 2}} \tag{5}\\
& \quad \leq \sqrt{M} \sum_{I}\left(\sum_{l=1}^{M} \mathbb{E} V_{I, i}^{2}(l)\right)^{1 / 2} \cdot \frac{1}{1-\exp (-(M t \delta / 2 N))} .
\end{align*}
$$

Substituting (5) into (4),

$$
\begin{equation*}
W\left(p^{n}, q^{n}\right) \leq\left(\frac{\sqrt{v M / N}}{1-\exp (-(M t \delta / 2 N))}+1\right) \cdot\left(1 / N \sum_{I} \sum_{l=1}^{\infty} \mathbb{E} V_{I}^{2}(l)\right)^{1 / 2} \tag{6}
\end{equation*}
$$

As in the original paper (page 2540), we have

$$
\begin{aligned}
1 / N \sum_{l=1}^{\infty} E V_{I}^{2}(l) & =\sum_{l=1}^{\infty} \mathbb{E}\left\{\delta_{I}(l) V_{I}^{2}(l)\right\}=\sum_{l=1}^{\infty} \mathbb{E}\left(Z_{I_{l}}(l)-Z_{I_{l}}(l-1)\right)^{2} \\
& \leq \frac{2}{\rho} \cdot D\left(p^{n} \| q^{n}\right)
\end{aligned}
$$

So (6) implies
(7) $\quad W\left(p^{n}, q^{n}\right) \leq\left(\frac{\sqrt{v M / N}}{(1-\exp (-(M t \delta / 2 N)))}+1\right) \cdot \sqrt{\frac{2}{\rho} \cdot D\left(p^{n} \| q^{n}\right)}$.

Now the argument in the last paragraph on page 2542 of the original paper is used to get the corrected Theorem 1 from (7) .

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences
H-1364 Budapest
P.O. Box 127

Hungary
E-MAIL: marton@renyi.hu

[^0]: Received August 2008.
 ${ }^{1}$ Supported in part by the Grant OTKA T-76088 and T-68258 of the Hungarian Academy of Sciences.

 AMS 2000 subject classifications. 60K35, 82C22.
 Key words and phrases. Measure concentration, Wasserstein distance, relative entropy, Dobrushin-Shlosman mixing condition, Gibbs sampler.

