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TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH
AN APPLICATION TO MISSING DATA IMPUTATION

BY GENEVERA I. ALLEN AND ROBERT TIBSHIRANI

Stanford University

Missing data estimation is an important challenge with high-dimensional
data arranged in the form of a matrix. Typically this data matrix is transpos-
able, meaning that either the rows, columns or both can be treated as features.
To model transposable data, we present a modification of the matrix-variate
normal, the mean-restricted matrix-variate normal, in which the rows and
columns each have a separate mean vector and covariance matrix. By placing
additive penalties on the inverse covariance matrices of the rows and columns,
these so-called transposable regularized covariance models allow for maxi-
mum likelihood estimation of the mean and nonsingular covariance matrices.
Using these models, we formulate EM-type algorithms for missing data im-
putation in both the multivariate and transposable frameworks. We present
theoretical results exploiting the structure of our transposable models that al-
low these models and imputation methods to be applied to high-dimensional
data. Simulations and results on microarray data and the Netflix data show
that these imputation techniques often outperform existing methods and offer
a greater degree of flexibility.

1. Introduction. As large data sets have become more common in biological
and data mining applications, missing data imputation is a significant challenge.
We motivate missing data estimation in matrix data with the example of the Net-
flix movie rating data [Bennett and Lanning (2007)]. This data set has around
18,000 movies (columns) and several hundred thousand customers (rows). Cus-
tomers have rated some of the movies, but the data matrix is very sparse with a
only small percentage of the ratings present. The goal is to predict the ratings for
unrated movies so as to better recommend movies to customers. The movies and
customers, however, are very correlated and an imputation method should take ad-
vantage of these relationships. Customers who enjoy horror films, for example, are
likely to rate movies similarly, in the same way that horror films are likely to have
similar ratings from these customers. Modeling the ratings by the relationships be-
tween only the movies or only the customers, as with multivariate methods and
k-nearest neighbor methods, seems shortsighted. Customer A’s rating of Movie 1,
for example, is related to Customer B’s rating of Movie 2 by more than simply the
connection between Customer A and B or Movie 1 and 2. In addition, modeling

Received April 2009; revised November 2009.
Key words and phrases. Matrix-variate normal, covariance estimation, imputation, EM algorithm,

transposable data.

764

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/09-AOAS314
http://www.imstat.org


TRANSPOSABLE REGULARIZED COVARIANCE MODELS 765

ratings as a linear combination of the ratings of movies or a combination of cus-
tomer ratings as with singular value decomposition (SVD) methods fails to capture
a more sophisticated connection between the movies and customers [Troyanskaya
et al. (2001)]. Bell et al., in their discussion of imputation for the Netflix data,
call all of these methods either “movie-centric” or “user-centric” [Bell, Koren and
Volinsky (2007)].

We propose to directly model the correlations among and between both the
customers (rows) and the movies (columns). Thus, our model is transposable in
the sense that it treats both the rows and columns as features of interest. The model
is based on the matrix-variate normal distribution brought to our attention by Efron
(2009), which has separate covariance matrix parameters for both the rows and the
columns. Thus, both the relationships between customers and between movies are
incorporated in the model. If matrix-variate normal data is strung out in a long
vector, then it is distributed as multivariate normal with the covariance related to
the original row and column covariance matrices through their Kronecker product.
This means that the relationship between Customer A’s rating of Movie 1 and
Customer B’s rating of Movie 2 can be modeled directly as the interaction between
Customers A and B and Movies 1 and 2.

In practice, however, transposable models based on the matrix-variate normal
distribution have largely been of theoretical interest and have rarely applied to
real data sets because of the computational burden of high-dimensional parameters
[Gupta and Nagar (1999)]. In this paper we introduce modifications of the matrix-
variate normal distribution, specifically restrictions on the means and penalties on
the inverse covariances, that allow us to fit this transposable model to a single ma-
trix of data. The penalties we employ give us nonsingular covariance estimates
that have connections to the singular value decomposition and graphical models.
With this theoretical foundation, we present computationally efficient Expectation
Maximization-type (EM) algorithms for missing data imputation. We also develop
a two-step process for calculating conditional distributions and an algorithm for
calculating conditional expectations of scattered missing data that has the compu-
tational cost of comparable multivariate methods. These contributions allow one
to fit this parametric transposable model to a single data matrix at reasonable com-
putational cost, opening the door to numerous applications including user-ratings
data.

We organize the paper beginning with a review of the multivariate regularized
covariance models (RCM) and a new imputation method based on these models,
Section 2. The RCMs form the foundation for the transposable regularized co-
variance models (TRCM) introduced in Section 3. We then present new EM-type
imputation algorithms for transposable data, Section 4, along with a one-step ap-
proximation in Section 4.2. Simulations and results on microarray and the Netflix
data are given in Section 5, and we conclude with a discussion of our methods in
Section 6.
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2. Regularized covariance models and imputation with multivariate data.
Several recent papers have presented algorithms and discussed applications of
regularized covariance models (RCM) for the multivariate normal distribution
[Friedman, Hastie and Tibshirani (2007); Witten and Tibshirani (2009)]. These
models regularize the maximum likelihood estimate of the covariance matrix by
placing an additive penalty on the inverse covariance or concentration matrix. The
resulting estimates are nonsingular, thus enabling covariance estimation when the
number of features is greater than the number of observations. In this section we
give a review of these models and briefly describe a new penalized EM algorithm
for imputation of missing values using the regularized covariance model.

Let Xi ∼ N(0,�) for i = 1, . . . , n, i.i.d. observations and p features. Thus, our
data matrix, X, is n × p with covariance matrix � ∈ �p×p . The penalized log-
likelihood of the regularized covariance model is then proportional to

�(�) = n

2
log |�−1| − 1

2
tr(XT X�−1) − ρ‖�−1‖q,(1)

where ‖ · ‖q = ∑p2

i=1 | · |q and q is either 1 or 2, that is, the sum of the absolute
value or square of the elements of �−1. The penalty parameter is ρ. With an L2

penalty, we can write the penalty term as ρ tr(�−1�−1) = ρ‖�−1‖2
F.

Maximizing �(�) gives the penalized-maximum likelihood estimate (MLE) of
�. Friedman, Hastie and Tibshirani (2007) present the graphical lasso algorithm
to solve the problem with an L1 penalty. The graphical lasso uses the lasso method
iteratively on the rows of �̂−1, and gives a sparse solution for �̂−1. A zero in
the ij th component of �−1 implies that variables i and j are conditionally in-
dependent given the other variables. Thus, these penalized-maximum likelihood
models with L1 penalties can be used to estimate sparse undirected graphs. With
an L2 penalty, the problem has an analytical solution [Witten and Tibshirani
(2009)]. If we take the singular value decomposition (SVD) of X, X = UDVT ,
with d = diag(D), then

�̂ = V diag(θ)VT , θi = d2
i +

√
d4
i + 16nρ

2n
.(2)

Thus, the inclusion of the L2 penalty simply regularizes the eigenvalues of the
covariance matrix. When p > n and letting r be the rank of X, the final n − r

values of θ are constant and are equal to 2
√

ρ/n. While a rank-k SVD approxi-
mation uses only the first k eigenvalues, the L2 RCM gives a covariance estimate
with all nonzero eigenvalues. Regularized covariance models provide an alterna-
tive method of estimating the covariance matrix with many desirable properties
[Rothman et al. (2008)].

With this underlying model, we can form a new missing data imputation al-
gorithm by maximizing the observed penalized log-likelihood of the regularized



TRANSPOSABLE REGULARIZED COVARIANCE MODELS 767

covariance model via the EM algorithm. Our method is the same as that of the EM
algorithm for the multivariate normal described in Little and Rubin [Little and Ru-
bin (2002)], except for an addition in the maximization step. In our M step, we find
the MLE of the RCM covariance matrix instead of the multivariate normal MLE.
Thus, our method fits into a class of penalized EM algorithms which give nonsin-
gular covariance estimates [Green (1990)], thus enabling use of the EM framework
when p > n. We give full details of the algorithm, which we call RCMimpute, in
the Supplementary Materials [Allen and Tibshirani (2010)]. As we will discuss
later, this imputation algorithm is a special case of our algorithm for transposable
data and forms an integral part of our one-step approximation algorithm presented
in Section 4.2.

3. Transposable regularized covariance models. As previously mentioned,
we model the possible dependencies between and within the rows and columns
using the matrix-variate normal distribution. In this section we first present a mod-
ification of this model, the mean-restricted matrix-variate normal distribution. We
confine the means to limit the total number of parameters and to provide inter-
pretable marginal distributions. We then introduce our transposable regularized
covariance models by applying penalties to the covariances of our matrix-variate
distribution. Finally, we present the penalized-maximum likelihood parameter es-
timates and illustrate the connections between these estimates and those of multi-
variate models, the singular value decomposition and graphical models.

3.1. Mean-restricted matrix-variate normal distribution. We introduce the
mean-restricted matrix-variate normal, a variation on the matrix-variate normal,
presented by Gupta and Nagar [Gupta and Nagar (1999)]. A restriction on the
means is needed because the matrix-variate normal has a mean matrix, M, of the
same dimension as X, meaning that there are n × p mean parameters. Since the
matrix-variate normal is mostly applied in instances where there are several inde-
pendent samples of the random matrix X [Dutilleul (1999)], this parameter for-
mulation is appropriate. We propose, however, to use the model when we only
have one matrix X from which to estimate the parameters. Also, we wish to pa-
rameterize our model so that the marginals are multivariate normal, thus easing
computations and improving interpretability.

We denote the mean-restricted matrix-variate normal distribution by X ∼
Nn,p(ν,μ,�,�) with X ∈ �n×p , the row mean ν ∈ �n, the column mean μ ∈ �p ,
the row covariance � ∈ �n×n and the column covariance � ∈ �p×p . If we place
the matrix X into a vector of length np, we have vec(X) ∼ N(vec(M),�), where
M = ν1T

(p) + 1(n)μ
T , and � = � ⊗ �. Thus, our mean-restricted matrix-variate

normal model is a multivariate normal with a mean matrix composed of additive
elements from the row and column mean vectors and a covariance matrix given
by the Kronecker product between the row and column covariance matrices. This
covariance structure can be seen as a tensor product Gaussian process on the rows
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and columns, an approach explored in Bonilla, Chai and Williams (2008) and Yu
et al. (2007).

This distribution implies that a single element, Xij , has mean νi + μj along
with variance �ii�jj , a mean and variance component from the row and column
to which it belongs. As pointed out by a referee, this can be viewed as the fol-
lowing random effects model: Xij = νi + μj + εij , where εij ∼ N(0,�ii�jj ),
which has two additive fixed effects depending on the row and column means and
a random effect whose variance depends on the product of the corresponding row
and column covariances. This model shares the same first and second moments
as elements from the mean-restricted matrix-variate normal. It does not, however,
capture the Kronecker covariance structure between the elements of X unless both
the row and column covariances, � and �, are diagonal. This random effect model
differs from the more common two-way random effects model with additive errors,
which assumes that errors from the two sources are independent. Our model, how-
ever, assumes that the errors are related and models them as an interaction effect.
A similar random effects approach was taken in Yu et al. (2009), also using a Kro-
necker product covariance matrix.

To further illustrate the model, we note that the rows and columns are both
marginally multivariate normal. The ith row, denoted as Xir , is distributed as
Xir ∼ N(νi + μ,�ii�) and the j th column, denoted by Xcj , is distributed as
Xcj ∼ N(ν + μj ,�jj�). The familiar multivariate normal distribution is a spe-
cial case of the mean-restricted matrix-variate normal as seen by the following two
statements. If � = I and ν = 0, then X ∼ N(μ,�), and if � = I and μ = 0, then
X ∼ N(ν,�). Also, two elements from different rows or columns are distributed
as a bivariate normal, (Xij ,Xi′j ′) ∼ N(

( νi+μj

νi′+μj ′
)
,
( �ii�jj

�i′i�j ′j
�ii′�jj ′
�i′i′�j ′j ′

)
). Thus, our

model is more general than the multivariate normal, with the flexibility to encom-
pass many different marginal multivariate models.

For completeness, the density function of this distribution is

p(ν,μ,�,�)

= (2π)−np/2|�|−p/2|�|−n/2

× etr
(−1

2

(
X − ν1T

(p) − 1(n)μ
T )

�−1(
X − ν1T

(p) − 1(n)μ
T )T

�−1)
,

where etr(·) is the exponential of the trace function. Hence, our formulation of
the matrix-variate normal distribution adds restrictions on the means, giving the
distribution desirable properties in terms of its marginals and easing computation
of parameter estimates, discussed in the following section.

3.2. Transposable Regularized Covariance Model (TRCM). In the previous
section we have reformulated the distribution to limit the mean parameters and
in this section we regularize the covariance parameters. This allows us to obtain
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nonsingular covariance estimates which are important for use in any application,
including missing data imputation.

As in the multivariate case, we seek to penalize the inverse covariance matrix.
Instead of penalizing the overall covariance, �, we add two separate penalty terms,
penalizing the inverse covariance of the rows and of the columns. The penalized
log-likelihood is thus

�(ν,μ,�,�)

= p

2
log |�−1| + n

2
log |�−1|

(3)

− 1

2
tr

(
�−1(

X − ν1T
(p) − 1(n)μ

T )
�−1(

X − ν1T
(p) − 1(n)μ

T )T )
− ρr‖�−1‖qr − ρc‖�−1‖qc ,

where ‖ · ‖qr = ∑m2

i=1 | · |qr and qr and qc are either 1 or 2, that is, the sum of the
absolute value of the matrix elements or squared elements. ρr and ρc are the two
penalty parameters. Note that we will refer to the four possible types of penal-
ties as Lqr :Lqc . Placing separate penalties on the two covariance matrices is not
equivalent to placing a single penalty on the Kronecker product covariance matrix
�. Using two separate penalties gives greater flexibility, as the covariance of the
rows and columns can be modeled separately using differing penalties and penalty
parameters. Also, having two penalty terms leads to simple parameter estimation
strategies.

With transposable regularized covariance models, as with their multivariate
counterpart, the penalties are placed on the inverse covariance matrix, or concen-
tration matrix. Estimation of the concentration matrix has long been associated
with graphical models, especially with an L1 penalty which is useful to model
sparse graphical models [Friedman, Hastie and Tibshirani (2007)]. Here, a nonzero
entry of the concentration matrix, �ij 	= 0, means that the ith row conditional on
all other rows is correlated with row j . Thus, a “link” is formed in the graph struc-
ture between nodes i and j . Conversely, zeros in the concentration matrix imply
conditional independence. Hence, since we are estimating both a regularized row
and column concentration matrix, our model can be interpreted as modeling both
the rows and columns with a graphical model.

3.3. Parameter estimation. We estimate the means and covariances via penal-
ized maximum likelihood estimation. The estimates, however, are not unique, but
the overall mean, M̂, and overall covariance �̂ are unique. Hence, ν̂ and μ̂ are
unique up to an additive constant and �̂ and �̂ are unique up to a multiplicative
constant. We first begin with the maximum likelihood estimation of the mean pa-
rameters.
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PROPOSITION 1. The MLE estimates for ν and μ are

ν̂ =
p∑

j=1

(Xcj − μ̂j )

p
, μ̂ =

n∑
i=1

(Xir − ν̂i)

n
,(4)

where Xcj denotes the j th column and Xir the ith row of X ∈ �n×p .

PROOF. See Supplementary Materials. �

The estimates for ν and μ are obtained by centering with respect to the rows
and then the columns. Note that centering by the columns first will change μ̂ and
ν̂, but will still give the same additive result. Thus, the order in which we center is
unimportant.

Maximum likelihood estimation of the covariance matrices is more difficult.
Here, we will assume that the data has been centered, M = 0. Then, the penal-
ized log-likelihood, �(�,�), is a bi-concave function of �−1 and �−1. In words,
this means that for any fixed �−1′, �(�′,�) is a concave function of �−1, and
for any fixed �−1′, �(�,�′) is a concave function of �−1. We exploit this struc-
ture to maximize the penalized likelihood by iteratively maximizing along each
coordinate, either �−1 or �−1.

PROPOSITION 2. Iterative block coordinate-wise maximization of �(�,�)

with respect to �−1 and �−1 converges to a stationary point of �(�,�) for both
L1 and L2 penalty types.

PROOF. See Supplementary Materials. �

While block coordinate-wise maximization (Proposition 2) reaches a stationary
point of �(�,�), it is not guaranteed to reach the global maximum. There are
potentially many stationary points, especially with L1 penalties, due to the high-
dimensional nature of the parameter space. We also note a few straightforward
properties of the coordinate-wise maximization procedure, namely, that each iter-
ation monotonically increases the penalized log-likelihood and the order of maxi-
mization is unimportant.

The coordinate-wise maximization is accomplished by setting the gradients
with respect to �−1 and �−1 equal to zero and solving. We list the gradients
with L2 penalties. With L1 penalties, only the third term is changed and is given
in parentheses:

∂�

∂�−1 = � − X�−1XT /p − 4ρr

p
�−1

(
2ρr

p
sign(�−1)

)
,

(5)
∂�

∂�−1 = � − XT �−1X/n − 4ρc

n
�−1

(
2ρc

n
sign(�−1)

)
.
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Maximization with L1 penalties can be achieved by applying the graphical lasso
algorithm to the second term with the coefficient of the third term as the penalty
parameter. With L2 penalties, we maximize by taking the eigenvalue decomposi-
tion of the second term and regularizing the eigenvalues as in the multivariate case,
(2). Thus, coordinate-wise maximization leads to a simple iterative algorithm, but
it comes at a cost since it does not necessarily converge to the global maximum.
When both penalty terms are L2 penalties, however, we can find the global maxi-
mum.

3.3.1. Covariance estimation for L2 penalties. Covariance estimation when
both penalties of the transposable regularized covariance model are L2 penalties
reduces to a minimization problem involving the eigenvalues of the covariance
matrices. This problem has a unique analytical solution and, thus, our estimates,
�̂ and �̂, are globally optimal.

THEOREM 1. The global unique solution maximizing �(�,�) with L2 penal-
ties on both covariance parameters is given by the following: Denote the SVD of
X as X = UDVT with d = diag(D) and let r be the rank of X, then

�∗ = U diag(β∗)UT and �∗ = V diag(θ∗)VT ,(6)

where β∗ ∈ �n+ and θ∗ ∈ �p+ given by

β∗
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2

√
ρr

p
, if i ≥ r ,

√√√√√−c
(i)
2 −

√
c
(i)
2

2 − 4c
(i)
1 c

(i)
3

2c
(i)
1

, otherwise,

θ∗
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√

ρc

n
, if i ≥ r ,

d2
i β∗

i

pβ∗
i

2 − 4ρr

, otherwise,

with coefficients

c
(i)
1 = −4ρcp

2, c
(i)
2 = 32ρrρcp + d4

i (n − p), and

c
(i)
3 = 4ρr(d

4
i − 16ρrρc).

PROOF. See Supplementary Materials. �

With L2 penalties, maximum likelihood covariance estimates �̂ and �̂ have
eigenvectors given by the left and right singular vectors of X, respectively. To re-
veal some intuition as to how these covariance estimates compare to other possible



772 G. I. ALLEN AND R. TIBSHIRANI

eigenvalue regularization methods, we present the two gradient equations in terms
of the eigenvalues β and θ (these are discussed fully in the proof of Theorem 1):

pθiβ
2
i − d2

i βi − 4ρrθi = 0 and nβiθ
2
i − d2

i θi − 4ρcβi = 0.

These are two quadratic functions in β and θ , so the quadratic formula gives us
the eigenvalues in terms of each other. We see that the eigenvalues regularize the
square of the singular values by a function of the dimensions, the penalty parame-
ters and the eigenvalues of the other covariance estimate. From Theorem 1, L2 :L2
covariance estimation has a unique and globally optimal solution, which cannot be
said of the other combinations of penalties. We give numerical results comparing
our TRCM covariance estimates to other shrinkage covariance estimators in the
Supplementary Materials.

Here, we also pause to compare our TRCM model with L2 penalties to the
singular value decomposition model commonly employed with matrix data. If we
include both row and column intercepts, we can write the rank-reduced SVD model
as Xij = νi + μj + uT

i Drvj + ε, where ui and vj are the ith and j th right and
left singular vectors, Dr is the rank-reduced diagonal matrix of singular values
and ε ∼ N(0, σ 2). Thus, the model appears similar to L2 TRCM, which can be
written as Xij = νi + μj + εij where εij ∼ N(0,uT

i diag(β)ui ∗ vT
j diag(θ)vj ).

There are important differences between the models, however. First, the left and
right singular vectors are incorporated directly into the SVD model, whereas they
form the bases of the variance component of TRCM. Second, a rank-reduced SVD
incorporates only the first r left and right singular vectors. Our model uses all
the singular vectors as β and θ are of lengths n and p, respectively. Finally, the
SVD allows the covariances of the rows to vary with ui , whereas with TRCM
the rows share a common covariance matrix. Thus, while the SVD and TRCM
share similarities, the models differ in structure and, hence, each offers a separate
approach to matrix-data.

4. Imputation for transposable data. Imputation methods for transposable
data are the main focus of this paper. We formulate methods based on the trans-
posable regularized covariance models introduced in Section 3. Because compu-
tational costs have limited use of the matrix-variate normal in applications, we let
computational considerations motivate the formulation of our imputation methods.

We propose a Multi-Cycle Expectation Conditional Maximization (MCECM)
algorithm, given by Meng and Rubin (1993), maximizing the observed penalized
log-likelihood of the transposable regularized covariance models. The algorithm
exploits the structure of our model by maximizing with respect to one block of
coordinates at a time, saving considerable mathematical and computational time.
First, we develop the algorithm mathematically, provide some rationale behind
the structure of the algorithm via numerical examples, and then briefly discuss
computational strategies and considerations.
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In high-dimensional data, however, the MCECM algorithm we propose for im-
putation is not computationally feasible. Hence, we suggest a computation-saving
one-step approximation in Section 4.2. The foundation of our approximation lies
in new methods, given in Theorems 2 and 3, for calculating conditional distrib-
utions with the mean-restricted matrix-variate normal. We also demonstrate the
utility of this one-step procedure in numerical examples. A Bayesian variation of
the one-step approximation using Gibbs sampling is given in the Supplementary
Materials.

Prior to formulating the imputation algorithm for transposable models, we
pause to address a logical question: Why do we not use the multivariate im-
putation method based on regularized covariance models, given that the mean-
restricted matrix normal distribution can be written as a multivariate normal with
vec(X) ∼ N(vec(M),�)? There are two reasons why this is inadvisable. First, no-
tice that TRCMs place an additive penalty on both the inverse covariance matrices
of the rows and the columns. The overall covariance matrix, �, however, is their
Kronecker product. Thus, converting the TRCM into a multivariate form yields a
messy penalty term leading to a difficult maximization step. The second reason to
avoid multivariate methods is computational. Recall that � is a np × np matrix
which is expensive to repeatedly invert. We will see that the mathematical form of
the ECM imputation algorithm we propose leads to computational strategies that
avoid the expensive inversion of �.

4.1. Multi-cycle ECM algorithm for imputation. Before presenting the algo-
rithm, we first review the notation used throughout the remainder of this paper. As
previously mentioned, we use i to denote the row index and j the column index.
The observed and missing parts of row i are oi and mi , respectively, and oj and
mj are the analogous parts of column j . We let m and o denote the totality of
missing and observed elements, respectively. Since with transposable data there is
no natural orientation, we set n to always be the larger dimension of X and p the
smaller.

4.1.1. Algorithm. We develop the ECM-type algorithm for imputation mathe-
matically, beginning with the observed data log-likelihood which we seek to max-
imize. Letting x∗

oj ,j = �
−1/2
oj ,oj (xoj ,j − νoj

),

�(ν,μ,�,�) = 1

2

[ p∑
j=1

log |�−1
oj ,oj

| +
n∑

i=1

|�−1
oi ,oi

|
]

− 1

2
tr

(
n∑

i=1

(x∗
i,oi

− μoi
)T (x∗

i,oi
− μoi

)�−1
oi ,oi

)
(7)

− ρr‖�−1‖qr − ρc‖�−1‖qc .
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One can show that this is indeed the observed log-likelihood by starting with
the multivariate observed log-likelihood and using vec(X) and the corresponding
vec(M) and �. We maximize (7) via an EM-type algorithm which, similarly to the
multivariate case, gives the imputed values as a part of the Expectation step.

We present two forms of the E step, one which leads to simple maximization
with respect to �−1 and the other with respect to �−1. This is possible because
of the structure of the matrix-variate model, specifically the trace term. Letting
θ = {ν,μ,�,�}, the parameters of the mean-restricted matrix-variate normal, and
letting o be the indices of the observed values, the E step, denoted by Q(θ |θ ′,Xo),
has the following form. Here, we assume that X is centered:

Q(θ |θ ′,Xo) = E(�(ν,μ,�,�)|Xo, θ
′) ∝ E[tr(XT �−1X�−1)|Xo, θ

′]
∝ tr[E(XT �−1X|Xo, θ

′)�−1] ∝ tr[E(X�−1XT |Xo, θ
′)�−1].

Thus, we have two equivalent forms of the conditional expectation which we give
below.

PROPOSITION 3. The E step is proportional to the following form:

E[tr(XT �−1X�−1)|Xo, θ
′] = tr

[(
X̂T �−1X̂ + G(�−1)

)
�−1]

(8)
= tr

[(
X̂�−1X̂T + F(�−1)

)
�−1]

,

where X̂ = E(X|Xo, θ
′) and

G(�−1) =
⎛
⎜⎝

tr
(
C(11)�−1) · · · tr

(
C(1p)�−1)

...
. . .

...

tr
(
C(p1)�−1) · · · tr

(
C(pp)�−1)

⎞
⎟⎠ ,

C(jj ′) = Cov(Xcj ,Xcj ′ |Xo, θ
′),

F(�−1) =
⎛
⎜⎝

tr
(
D(11)�−1) · · · tr

(
D(1n)�−1)

...
. . .

...

tr
(
D(n1)�−1) · · · tr

(
D(nn)�−1)

⎞
⎟⎠ ,

D(ii′) = Cov(Xir ,Xi′r |Xo, θ
′).

PROOF. See Supplementary Materials. �

The E step in the matrix-variate normal framework has a similar structure to
that of the multivariate normal (see Supplementary Materials) with an imputa-
tion step (X̂) and a covariance correction step [C(jj ′) and D(ii′)]. The matrices
C(jj ′) ∈ �n×n and D(ii′) ∈ �p×p , while G(�−1) ∈ �p×p and F(�−1) ∈ �n×n.
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Note that C(jj ′) is sparse and only nonzero at C(jj ′)
ii′ when xij and xi′j ′ are both

missing. C(jj ′) is not symmetric, but C(jj ′)T = C(j ′j), hence, G(�−1) is symmet-
ric. The matrices D(ii′) and F(�−1) are structured analogously. Thus, we have two
equivalent forms of the E step, which will be inserted between the two Conditional
Maximization (CM) steps to form the MCECM algorithm.

The CM steps which maximize the conditional expectation functions, in Propo-
sition 3, along with either �−1 or �−1 are direct extensions of the MLE solvers
for the multivariate RCMs. This is easily seen from the gradients. Note that we
only show the gradients with an L2 penalty, since an L1 penalty differs only in the
last term:

∂Q

∂�−1 = � − [X̂�−1X̂T + F(�−1)]/p − 4ρr

p
�−1,

∂Q

∂�−1 = � − [X̂T �−1X̂ + G(�−1)]/n − 4ρc

n
�−1.

With an L2 penalty, the estimate is given by taking the eigenvalue decomposition
of the second term and regularizing the eigenvalues as in (2). The graphical lasso
algorithm applied to the second term gives the estimate in the case with an L1
penalty.

We now put these steps together and present the Multi-Cycle ECM algorithm
for imputation with transposable data, TRCMimpute, in Algorithm 1. A brief com-
ment regarding the initialization of parameter estimates is needed. Estimating the
mean parameters when missing values are present is not as simple as centering the
rows and columns as in (4). Instead, we iterate centering by rows and columns,

Algorithm 1 Imputation with Transposable Regularized Covariance Models
(TRCMimpute)
1. Initialization:

(a) Estimate ν̂ and μ̂ from the observed data.
(b) If xij is missing, set xij = ν̂i + μ̂j .
(c) Start with nonsingular estimates �̂ and �̂.

2. E Step (�): Calculate X̂T �̂−1X̂ + G(�̂−1).
3. M Step (�):

(a) Update estimates of ν̂ and μ̂.
(b) Maximize Q with respect to �−1 to obtain �̂.

4. E Step (�): Calculate X̂�̂−1X̂T + F(�̂−1),
5. M Step (�):

(a) Update estimates of ν̂ and μ̂.
(b) Maximize Q with respect to �−1 to obtain �̂.

6. Repeat Steps 2–5 until convergence.
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ignoring the missing values by summing over the observed values, until conver-
gence. Second, the initial estimates of �̂−1 and �̂−1 must be nonsingular in order
to preform the needed computations in the E step. While any nonsingular matrices
will work, we find that the algorithm converges faster if we start with the MLE esti-
mates with the missing values fixed and set to the estimated mean. Some properties
and numerical comparisons of the MCECM algorithm are given in the Supplemen-
tary Materials.

4.1.2. Computational considerations. We have presented our imputation al-
gorithm for transposable data, TRCMimpute, but have not yet discussed the com-
putations required. Calculation of the terms for the two E steps can be especially
troublesome and, thus, we concentrate on these. Particularly, we need to find
X̂ = E(X|Xo, θ

′), and the covariance terms, C(jj ′) = Cov(Xcj ,Xcj ′ |Xo, θ
′) and

D(ii′) = Cov(Xir ,Xi′r |Xo, θ
′). The simplest but not always the most efficient way

to compute these is to use the multivariate normal conditional formulas with the
Kronecker covariance matrix �, that is, if we let m be the indices of the missing
values of vec(X) and o be the observed,

vec(X̂)k =
{

vec(M)k + �ko�
−1
oo

(
vec(X)o − vec(M)o

)
, if k ∈ m,

vec(X)k, if k ∈ o,
(9)

and the nonzero elements of C and D corresponding to covariances between pairs
of missing values come from

Cov(vec(X)m,vec(X)m|Xo, θ
′) = �mm − �mo�

−1
oo �om.(10)

This computational strategy may be appropriate for small data matrices, but even
when n and p are medium-sized, this approach can be computationally expensive.
Inverting � can be of order O(n3p3), depending on the amount of missing data.
So, even if we have a relatively small matrix of dimension 100 × 50, this inversion
costs around O(1010)! Using Gibbs sampling to approximate the calculations of
the E steps in either a Stochastic or Stochastic Approximation EM-type algorithm
[Celeux, Chauveau and Diebolt (1996)] is one computational approach (we present
Gibbs sampling as part of our Bayesian one-step approximation in the Supplemen-
tary Materials). A stochastic approach, however, is still computationally expensive
and, thus, an approximation to our MCECM algorithm is needed.

4.2. One-step approximation to TRCMimpute. For high-dimensional trans-
posable data, the imputation algorithm, TRCMimpute, can be computationally
prohibitive. Thus, we propose a one-step approximation which has computational
costs comparable to multivariate imputation methods.
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4.2.1. One-step algorithm. The MCECM algorithm for imputation with trans-
posable regularized covariance models iterates between the E step, taking condi-
tional expectations, and the CM steps, maximizing with respect to the inverse co-
variances. Both of these steps are computationally intensive for high-dimensional
data. While each iterate increases the observed log-likelihood, the first step usu-
ally produces the steepest increase in the objective. Thus, we propose an algorithm
that instead of iterating between E and CM steps, approximates the solution of the
MCECM algorithm by stopping after only one step.

Many have noted in other iterative maximum likelihood-type algorithms that a
one-step algorithm from a good initial starting point often produces an efficient,
if not comparable, approximation to the fully-iterated solution [Lin and Zhang
(2006); Fan and Li (2001)]. Thus, for our one-step approximation we seek a good
initial solution from which to start our CM and E steps. For this, we turn to the
multivariate regularized covariance models. Recall that all marginals of the mean-
restricted matrix-variate normal are multivariate normal and, hence, if one of the
penalty parameters for the TRCM model is infinitely large, we obtain the RCM so-
lution (i.e., if ρr = ∞, we get the RCM solution with penalized covariance among
the columns). We propose to use the estimates from the two marginal distributions
with penalized row covariances and penalized column covariances to obtain our
initial starting point. This is similar to the COSSO one-step algorithm which uses
a marginal solution as a good initial starting point [Lin and Zhang (2006)].

Since the final goal of our approximation algorithm is missing value imputa-
tion, and not parameter estimation, we then tailor our one-step algorithm to fa-
vor imputation. First, instead of using the marginal RCM covariance estimates
as starting values for the subsequent TRCMimpute E and CM steps, we use the
marginal estimates to obtain two sets of imputed missing values through applying
the RCMimpute method to the rows and then the columns. We then average the
two sets of missing value estimates and fix these to find the maximum likelihood
parameter estimates for the TRCM model, completing the maximization step. In
summary, our initial estimates are obtained by applying an EM-type method to the
marginal models. Biernacki, Celeux and Govaert (2003) similarly use other EM-
type algorithms to find good initial starting values for their EM mixture model
algorithm. The final step of our algorithm is the Expectation step where we take
the conditional expectation of the missing values given the observed values and
the TRCM estimates. Note that the E step of the MCECM algorithm includes both
an imputation part and a covariance correction part (see Proposition 3). For our
one-step algorithm, however, the covariance correction part is unnecessary since
our final goal is missing value imputation. We give the one-step approximation,
called TRCMAimpute, in Algorithm 2.

Before discussing the calculations necessary in the final step of the algorithm,
we pause to note a major advantage of our one-step method. If the sets of missing
values from the marginal models using RCMimpute are saved in the first step,
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Algorithm 2 One-step algorithm approximating TRCMimpute (TRCMAimpute)
1. Initial imputation:

(a) Impute missing values with RCMimpute assuming � = I.
(b) Impute missing values with RCMimpute assuming � = I.
(c) Average the two estimates.

2. Find the MLE’s of the transposable regularized covariance model, ν̂, μ̂, �̂ and
�̂ with the imputed missing values fixed.

3. Set the missing values to their conditional expectation given these parameters:
X̂m = E(Xm|Xo, ν̂, μ̂, �̂, �̂).

then TRCMAimpute can give three sets of missing value estimates. Since it is
often unknown whether a given data set may have independent rows or columns,
cross-validation, for example, can be used to determine whether penalizing the
covariances of the rows, columns or both is best for missing value imputation.
This is discussed in detail in the Supplementary Materials.

4.2.2. Conditional expectations. We now discuss the final conditional expec-
tation step of our one-step approximation algorithm. Recall that the conditional
expectation can be computed via (9), but this requires inverting � and is therefore
avoided. Instead, we exploit a property of the mean-restricted matrix-variate nor-
mal, namely, that all marginals of our model are multivariate normal. This allows
us to find the conditional distributions in a two step process given by Theorem 2.

THEOREM 2. Let X ∼ Nn,p(ν,μ,�,�), M = ν1T + μT 1 and partition X,
M, �, � as

X =
(

Xi,mi
Xi,oi

Xk,mi
Xk,oi

)
=

(
Xmj ,j Xmj ,l

Xoj ,j Xoj ,l

)
, M =

(
Mi,r

Mk,r

)
= (Mc,j Mc,l ) ,

� =
(

�i,i �i,k

�k,i �k,k

)
, and � =

(
�j,j �j,l

�l,j �l,l

)
,

where i and j denote indices of a row and column, respectively, k and l are vectors
of indices of length n − 1 and p − 1, respectively, and mi and oi denote vectors of
indices within row i and mj and oj indices within column j .
Define

ψ = Mi,r + �i,k�
−1
k,k(Xk,r − Mk,r ), η = Mc,j + (Xc,l − Mc,l)�

−1
l,l �l,j ,

� = [�i,i − �i,k�
−1
k,k�k,i] ⊗ �, and � = � ⊗ [�j,j − �j,l�

−1
l,l �l,j ].

Partition ψ , η, � and � as ψ = (ψmi
ψoi

)
, η = (ηmj

ηoj
),

� =
(

�mi,mi
�mi,oi

�oi ,mi
�oi ,oi

)
, and � =

(
�mj ,mj

�mj ,oj

�oj ,mj
�oj ,oj

)
.
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Then,

(a) (Xi,mi
|Xi,oi

,Xk,r )

∼ N
(
ψmi

+ �mi,oi
�−1

oi ,oi
(Xi,oi

− ψoi
),�mi,mi

− �mi,oi
�−1

oi ,oi
�oi ,mi

)
.

(b) (Xmj ,j |Xoj,j
,Xc,l)

∼ N
(
ηmj

+ �mj ,oj
�−1

oj ,oj
(Xoj ,j − ηoj

),

�mj ,mj
− �mj ,oj

�−1
oj ,oj

�oj ,mj

)
.

PROOF. See Supplementary Materials. �

Thus, from Theorem 2, the conditional distribution of values in a row or column
given the rest of the matrix can be calculated in a two step process where each step
takes at most the number of computations as required for calculating multivariate
conditional distributions. The first step finds the distribution of an entire row or
column conditional on the rest of the matrix, and the second step finds the condi-
tional distribution of the values of interest within the row or column. By splitting
the calculations in this manner, we avoid inverting the np × np Kronecker product
covariance. This alternative form for the conditional distributions of elements in a
row or column leads to an iterative algorithm for calculating the conditional expec-
tation of the missing values given the observed values. We call this the Alternating
Conditional Expectations Algorithm, given in Algorithm 3.

THEOREM 3. Let X ∼ Nn,p(ν,μ,�,�) and partition vec(X) =
(vec(Xm) vec(Xo)) where m and o are indices partitioned by rows (mi and
oi ) and columns (mj and oj ), so that a row Xi,r = (Xi,mi

Xi,oi
) and a column

Xc,j = (Xmj ,j

Xoj ,j

)
. Then, the Alternating Conditional Expectations Algorithm, Algo-

rithm 3, converges to E(Xm|Xo).

Algorithm 3 Alternating Conditional Expectations Algorithm

1. Initialize X̂(0)
i,j = ν̂i + μ̂j for Xi,j ∈ Xm.

2. For each row, i, with missing values:

• Set X̂(k+1)
i,mi

= E(Xi,mi
|X(k)

i,oi
,X(k)

	=i,r ).

3. For each column, j , with missing values:

• Set X̂(k+1)
mj ,j = E(Xmj ,j |X(k)

oj ,j ,X(k)
c,	=j ).

4. Repeat Steps 1 and 2 until convergence.
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PROOF. See Supplementary Materials. �

Theorem 3 shows that the conditional expectations needed in Step 3 of the one-
step approximation algorithm can be calculated in an iterative manner from the
conditional distributions of elements in a row and column, as in Algorithm 3. Thus,
Theorems 2 and 3 mean that the conditional expectations can be calculated by sep-
arately inverting the row and column covariance matrices, instead of the overall
Kronecker product covariance. This reduces the order of operations from around
O(n3p3) to O(n3 + p3), a substantial savings. In addition, if both the covariance
estimates and their inverses are known, then one can use the properties of the Schur
complement to further speed computation. For extremely sparse matrices or data
with few missing elements, the order of operations is nearly linear in n and p

(See Supplementary Materials). We also note that the structure of the Alternating
Conditional Expectations Algorithm often leads to a faster rate of convergence, as
discussed in the proof of Theorem 3. For high-dimensional data, these two results
mean that matrix-variate models can be used in any application where multivari-
ate models are computationally feasible, thus opening the door to applications of
transposable models!

4.2.3. Numerical comparisons. We now investigate the accuracy of the one-
step approximation algorithm in terms of observed log-likelihood and imputation
accuracy with a numerical example. Here, we simulate fifty data sets, 25 × 25,
from the matrix-variate normal model with autoregressive covariance matrices:

• Autoregressive: �ij = 0.8|i−j | and �ij = 0.6|i−j |.
We delete values at random according to certain percentages and report the mean
MSE for both the MCECM algorithm, TRCMimpute, and the one-step approxi-
mation, TRCMAimpute on the right in Figure 1. The one-step approximation per-
forms comparably, or slightly better, in terms of imputation error to the MCECM
algorithm for all percentages of missing values. We note that TRCMAimpute could
give better missing value estimates if the MCECM algorithm converges to a sub-
optimal stationary point of the observed log-likelihood. For a data set with 25%
missing values, we apply the MCECM algorithm and also apply our approxima-
tion extended beyond the first step, but denote the observed log-likelihood after the
first step with a star on the right in Figure 1. This shows that using marginals to
provide a good starting value does indeed start the algorithm at a higher observed
log-likelihood. Also, after the first step, the observed log-likelihood is very close
to the fully-iterated maximum. Thus, the one-step approximation appears to be a
comparable approximation to the TRCMimpute approximation which is feasible
for use with high-dimensional data sets.

5. Results and simulations. The following results indicate that imputation
with transposable regularized covariance models is useful in a variety of situations
and data types, often giving much better error rates than existing methods. We
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FIG. 1. Comparison of the mean MSE with standard errors (left) of the MCECM imputation al-
gorithm (TRCMimpute) and the one-step approximation (TRCMAimpute) for transposable data of
dimension 25 × 25 with various percentages of missing data. Fifty data sets were simulated from
the matrix-variate normal distribution with autoregressive covariances as given in Section 4.2.3. Ob-
served log-likelihood (right) verses iterations for TRCMimpute and TRCMAimpute with 25% missing
values. The one-step approximation begins at the TRCM parameter estimates using the imputed val-
ues from RCMimpute. The observed log-likelihood of one-step approximation is given by a star after
the first step. All methods use L2 penalties with ρr = ρc = 1 for comparison purposes.

first assess the performance of our one-step approximation, TRCMAimpute, un-
der a variety of simulations with both full and sparse covariance matrices. Authors
have suggested that microarrays and user-ratings data, such as the Netflix movie-
rating data, are transposable or matrix-distributed [Efron (2009); Bell, Koren and
Volinsky (2007)], hence, we also assess the performance of our methods on these
types of data sets. We compare performances to three commonly used single impu-
tation methods—SVD methods (SVDimpute), k-nearest neighbors (KNNimpute)
and local least squares (LLSimpute) [Troyanskaya et al. (2001); Kim, Golub and
Park (2005)]. For the SVD method, we use a reduced rank model with a column
mean effect. The rank of the SVD is determined by cross-validation; regulariza-
tion is not used on the singular vectors so that only one parameter is needed for
selection by cross-validation. For k-nearest neighbors and local least squares also,
a column mean effect is used and the number of neighbors, k, is selected via cross-
validation. If the number of observed elements is limited, the pairwise-complete
correlation matrix is used to determine the closest neighbors.

5.1. Simulations. We test our imputation method for transposable data under
a variety of simulated distributions, both multivariate and matrix-variate. All sim-
ulations use one of four covariance types given below. These are numbered as they
appear in the simulation table:

1. Autoregressive: �ij = 0.8|i−j | and �ij = 0.6|i−j |.
2. Equal off-diagonals: �ij = 0.5 and �ij = 0.5 for i 	= j , and �ii = 1

and �ii = 1.
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3. Blocked diagonal: �ii = 1 and �ii = 1 with off-diagonal elements of 5 × 5
blocks of � are 0.8 and of �, 0.6.

4. Banded off-diagonals: �ii = 1 and �ii = 1 with

�ij =
{

0.8, if |i − j | divisible by 5,
0, otherwise.

�ij =
{

0.6, if |i − j | divisible by 5,
0, otherwise.

The first simulation, with results in Table 1, compares performances with both
multivariate distributions, only � given, and matrix-variate distributions, both �

and � given. In these simulations, the data is of dimension 50 × 50 with either
25% or 75% of the values missing at random. The simulation given in Table 2
gives results for matrix-variate distributions with one dimension much larger than
the other, 100 × 10 and 10% of values missing at random. The final simulation,
in Table 3, tests the performance of our method when the data has a transposable
covariance structure, but is not normally distributed. Here, the data, of dimension
50×50 with 25% of values missing at random, is either distributed Chi-square with
three degrees of freedom or Poisson with mean three. The Chi-square and Poisson
distributions introduce large outliers and the Poisson distribution is discrete. All
three sets of simulations are compared to SVD imputation and k-nearest neighbor
imputation.

These simulations show that TRCMAimpute is competitive with two of the most
commonly used single imputation methods, SVD and k-nearest neighbor imputa-
tion. First, TRCM with L2 penalties outperforms the other possible TRCM penalty
types. This may be due to the fact that the covariance estimates with L2 penalties
has a globally unique solution, Theorem 1, while the estimation procedure for
other penalty types only reaches a stationary point, Proposition 2. The one-step
approximation permits the flexibility to choose either multivariate or transposable
models. As seen with smaller percentages of missing values, cross-validation gen-
erally chooses the correct model for the L1 :L1 penalty-type, but seems to prefer
the marginal multivariate models for the L2 :L2 penalties. However, with 75% of
the values missing, the transposable model is often chosen even if the underlying
distribution is multivariate. The additional structure of the TRCM covariances may
allow for more information to be gleaned from the few observed values, perhaps
explaining the better performance of the matrix-variate model. TRCMAimpute
seems to perform best in comparison to SVD and k-nearest neighbor imputation
for the full covariances with equal off-diagonal elements. Our TRCM-based im-
putation methods appear particularly robust to departures from normality and per-
form well even in the presence of large outliers, as shown in Table 3. Overall,
imputation methods based on transposable covariance models compare favorably
in these simulations.
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TABLE 1
Mean MSE with standard error computed over 50 data sets of dimension 50 × 50 simulated under
the matrix-variate normal distribution with covariances given in Section 5.1. In the upper portion

of the table, 25% of values are missing and in the lower, 75% missing. The TRCM one-step
approximation with L1 :L1, L1 :L2 and L2 :L2 penalties was used as well as the SVD and
k-nearest neighbor imputation. Below the errors for TRCMAimpute, we give the number of
simulations out of 50 in which a marginal, multivariate method (RCMimpute) was chosen

over the matrix-variate method. Parameters were chosen for all methods via 5-fold
cross-validation. Best performing methods are given in bold

TRCMAimpute Others

L1 :L1 L1 :L2 L2 :L2 SVD KNN

�1 0.8936 (0.01) 0.725 (0.0069) 0.5919 (0.0056) 0.634 (0.0081) 0.448 (0.005)
45/50 0/50 50/50

�1, �1 0.8255 (0.012) 0.6315 (0.0078) 0.5402 (0.0067) 0.4603 (0.0083) 0.8034 (0.016)
0/50 0/50 0/50

�2 0.895 (0.016) 0.7829 (0.013) 0.6392 (0.008) 0.993 (0.019) 0.9498 (0.017)
43/50 0/50 48/50

�2, �2 0.749 (0.044) 0.6867 (0.034) 0.4556 (0.0098) 0.6821 (0.051) 0.8273 (0.055)
0/50 0/50 48/50

�3 1.04 (0.017) 1.02 (0.017) 0.9348 (0.016) 0.7384 (0.012) 0.9115 (0.014)
37/50 9/50 49/50

�3, �3 1.012 (0.02) 0.9477 (0.019) 0.8585 (0.017) 0.7271 (0.016) 0.9886 (0.019)
5/50 0/50 37/50

�4 0.9986 (0.018) 0.9407 (0.017) 0.8067 (0.014) 0.4903 (0.0076) 0.9057 (0.014)
37/50 3/50 48/50

�4, �4 0.9726 (0.033) 0.855 (0.028) 0.6999 (0.022) 0.5282 (0.024) 0.9366 (0.031)
6/50 0/50 39/50

�1 0.9134 (0.0096) 0.9083 (0.0092) 0.8948 (0.009) 1.173 (0.013) 0.9349 (0.0092)
21/50 18/50 21/50

�1, �1 0.867 (0.011) 0.8569 (0.01) 0.845 (0.0096) 0.9535 (0.01) 0.9736 (0.013)
0/50 0/50 0/50

�3 1.053 (0.01) 1.052 (0.01) 1.048 (0.01) 1.22 (0.013) 1.03 (0.01)
7/50 7/50 7/50

�3, �3 1.001 (0.014) 0.9968 (0.014) 0.9945 (0.014) 1.11 (0.016) 1.006 (0.014)
0/50 0/50 1/50

5.2. Microarray data. Microarrays are high-dimensional matrix-data that of-
ten contain missing values. Usually, one assumes that the genes are correlated
while the arrays are independent. Efron questions this assumption, however, and
suggests using a matrix-variate normal model [Efron (2009)]. Indeed, the matrix-
variate framework, and, more specifically, the TRCM model seem appropriate
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TABLE 2
Mean MSE with standard errors over 50 data sets of dimension 100 × 10 with 10% missing values

simulated under the matrix-variate normal with covariances given in Section 5.1. The TRCM
one-step approximation with L2 :L1 and L2 :L2 penalties was used as well as the SVD and

k-nearest neighbor imputation. Parameters were chosen for all methods via 5-fold
cross-validation. Best performing methods are given in bold

TRCMAimpute Others

L2 :L1 L2 :L2 SVD KNN

�1, �1 0.8227 (0.019) 0.7072 (0.016) 1.075 (0.024) 0.6971 (0.018)
�2, �2 1.019 (0.15) 0.9441 (0.13) 1.306 (0.23) 1.057 (0.17)
�3, �3 0.9372 (0.047) 0.841 (0.042) 1.121 (0.05) 0.9241 (0.042)
�4, �4 0.7044 (0.059) 0.6148 (0.049) 0.9751 (0.074) 1.118 (0.089)

models for microarray data for several reasons. First, one usually centers both the
genes and the arrays before analysis, a structure which is built in to our model.
Second, TRCMs have the ability to span many models which include a marginal
model where the rows are distributed as a multivariate normal and the arrays are
independent. Hence, if a microarray is truly multivariate, our model can accom-
modate this. But, if there are true correlations within the arrays, TRCM can appro-
priately measure this correlation and account for it when imputing missing values.
Last, the graphical nature of our model can estimate the gene network and then use
this information to more accurately estimate missing data.

For our analysis, we use a microarray data set of kidney cancer tumor samples
[Zhao, Tibshirani and Brooks (2005)]. The data set contains 14,814 genes and 178
samples. About 10% of the data is missing. For the following figures, all of the
genes with no missing values were taken, totaling 1031 genes. Missing values were

TABLE 3
Mean MSE with standard error computed over 50 data sets of dimension 50 × 50 with 25%

missing values simulated under the Chi-square distribution with 3 degrees of freedom or
the Poisson distribution with mean 3 with Kronecker product covariance structure given by
the covariances in Section 5.1. The TRCM one-step approximation with L2 :L1 and L2 :L2
penalties was used as well as the SVD and k-nearest neighbor imputation. Parameters were

chosen for all methods via 5-fold cross-validation. Best performing methods are given in bold

TRCMAimpute Others

L2 :L1 L2 :L2 KNN SVD

Chi-square �1, �1 3.824 (0.065) 2.611 (0.044) 6.85 (0.34) 7.684 (0.15)
�3, �3 5.525 (0.14) 5.068 (0.15) 29.41 (0.83) 50.16 (0.74)

Poisson �1, �1 2.442 (0.05) 1.571 (0.021) 8.04 (0.34) 5.824 (0.11)
�3, �3 3.045 (0.075) 2.813 (0.081) 29.13 (0.95) 49.2 (0.68)
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FIG. 2. Left: Comparison of MSE for imputation methods on kidney cancer microarray data with
different proportions of missing values. Genes in which all samples are observed are taken with
values deleted at random. TRCMAimpute, L2 :L2 and common imputation methods KNNimpute,
SVDimpute and LLSimpute are compared with all parameters chosen by 5-fold cross-validation.
Cross-validation chose to penalize only the arrays for the one-step approximation algorithm,
TRCMAimpute. Right: Boxplots of individual absolute errors for various imputation methods. Genes
in which all samples are observed were taken and deleted in the same pattern as a random gene in the
original data set. Lines are drawn at the 50%, 75%, 95%, 99% and 99.9% quantiles. TRCMAimpute,
L2 :L2 has a mean absolute error of 0.37 and has lower errors at every quantile than its closest
competitor, SVDimpute, which has a mean absolute error of 0.46.

then placed at random. Errors were assessed by comparing the imputed values to
the true observed values.

We assess the performance of TRCM imputation methods on this microar-
ray data and compare them to existing methods for various percentages of miss-
ing values, deleted at random, on the right in Figure 2. Here, we use L2 penal-
ties since these are computationally less expensive for high-dimensional data.
TRCMAimpute outperforms competing methods in terms of imputation error for
all percentages of missing values. We note that cross-validation exclusively chose
the marginal, multivariate model from the one-step approximation. This indicates
that the arrays in this microarray data set may indeed by independent.

Often, microarray data sets are not missing randomly. Also, researchers are in-
terested in not only the error in terms of MSE, but the individual errors made as
well. To investigate these issues, we assess individual absolute errors of data that
is missing in the same pattern as the original data. For each complete gene, val-
ues were set to missing in the same arrays as a randomly sampled gene from the
original data set. The right panel of Figure 2 displays the boxplots of the absolute
imputation errors. Lines are drawn at quantiles to assess the relative performances
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of each method. Here, TRCMAimpute has lower absolute errors at each quantile.
Also, the set of imputed values has far fewer outliers than competing methods. The
mean absolute error for TRCMAimpute is 0.37, far below the next two methods,
LLSimpute and SVDimpute which have a mean absolute error of 0.46. Altogether,
our results illustrate the utility and flexibility of using TRCMs for missing value
imputation in microarray data.

5.3. Netflix data. We compare transposable regularized covariance models
and existing methods on the Netflix movie rating data [Bennett and Lanning
(2007)]. The TRCM framework seems well-suited to model this user-ratings data.
As discussed in the Introduction, our model allows for not only correlations among
both the customers and movies, but also between them as well. In addition, TRCM
models the graph structure of the customers and the movies. Thus, we can fill in
a customer’s rating of a particular movie based on the customer’s links with other
customers and the movie’s links with other movies. Also, many have noted that
the unrated movies in the Netflix data are not simply missing at random and may
contain meaningful information. A customer, for example, may not have rated a
movie because the movie was not of interest and, thus, they never saw it. While it
may appear that our method requires a missing at random assumption, this is not
necessarily the case. When two customers have similar sets of unrated movies, af-
ter removing the means, our algorithm begins with the unrated movies set to zero.
Thus, these two customers would exhibit high correlation simply due to the pat-
tern of missing values. This correlation could yield an estimated “link” between
the customers in the inverse covariance matrix. This would then be used to esti-
mate the missing ratings. Hence, our method can find relationships between sets
of missing values and use these to impute the missing values.

The Netflix data set is extremely high-dimensional, with over 480,000 cus-
tomers and over 17,000 movies, and is very sparse, with over 98% of the ratings
missing. Hence, assessing the utility of our methods from this data as a whole is
not currently feasible. Instead, we rank both the movies and the customers by the
number of ratings and take as a subset the top 250 customer’s ratings of the top
250 movies. This subset has around 12% of the ratings missing. We then delete
more data at random to evaluate the performance of the methods. In addition, for
each customer in this subset ratings were deleted for movies corresponding to the
unrated movies of a randomly selected customer with at least one rating out of
the 250 movies. This leaves 74% of ratings missing. Figure 3 compares the per-
formances of the TRCM methods to existing methods for both subsets with both
missing at random and missing in the pattern of the original values.

Before discussing these results, we first make a note about the comparability
of our errors rates to those for the Netflix Prize [Bennett and Lanning (2007)].
Because we chose the subset of data based on the number of observed ratings, we
can expect the RMSE to be higher here than applying these methods to the full data
set. This method of obtaining a subset leaves out potentially thousands of highly



TRANSPOSABLE REGULARIZED COVARIANCE MODELS 787

FIG. 3. Left: Comparison of the root MSE (RMSE) for a subset of the Netflix data for
TRCMAimpute, L2 :L2 and L1 :L1, to KNNimpute and SVDimpute. A dense subset was obtained
by ranking the movies and customers in terms of number of ratings and taking the top 250 movies
and 250 customers. This subset has around 12% missing and additional values were deleted at ran-
dom, up to 95%. With 95% missing, the RMSE of TRCMAimpute is 1.049 compared to 1.084 of the
SVD and 1.354 using the movie averages. Right: Boxplots of absolute errors for the dense subset with
missing entries in the pattern of the original data. Customers with at least one ranking out of the 250
movies were selected at random and entries were deleted according to these customers leaving 74%
missing. Quantiles of the absolute errors are shown at 50%, 75%, 95%, 99% and 99.9%. The RMSE
of the methods are as follows L2 :L2: 1.005, L1 :L1: 1.029, SVD: 1.032, KNN: 1.184.

correlated customers or movies that would greatly increase a method’s predictive
ability. In fact, the RMSE of the SVD method on the entire Netflix data is 0.91
[Salakhutdinov, Mnih and Hinton (2008)], much less than the observed RMSE of
1.084 for the SVD on our subset with 95% missing. Thus, we can conjecture that
all of the methods we present would do better in terms of RMSE using the entire
data set than the small subset on which we present results.

The results indicate that TRCM imputation methods, particularly with L2 penal-
ties, are competitive with existing methods on the missing at random data. At
higher percentages of missing values, our methods perform notably well. With
95% missing values in our subset, TRCMAimpute has a RMSE of 1.049 compared
to the SVD at 1.084 and 1.354 using the movie averages. This is of potentially
great interest for missing data imputation on a larger scale where the percentage
of missing data is greater than 98%. We note that at smaller percentages of miss-
ing values, marginal models penalizing the movies were often chosen by cross-
validation, indicating that the movies may have more predictive power, whereas,
at larger percentages of missing values, cross-validation chose to penalize both the
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rows and the columns, indicating that possibly more information can be gleaned
from few observed values using transposable methods.

Our methods also preform well when the data is missing in the same pattern
as the original. The L2 : L2 method had the best results with a RMSE of 1.005
followed by L1 : L1 with 1.029, SVD with 1.032 and k-nearest neighbors with
1.184. From the boxplots of absolute values Figure 3 (right), we see that the SVD
has many large outliers in absolute value, while the L1 penalties led to the fewest
number of large errors. Since leading imputation methods for the Netflix Prize are
ensembles of many different methods [Bell, Koren and Volinsky (2007)], we do
not believe that TRCM methods alone would outperform ensemble methods. If,
however, our methods outperform other individual methods, they could prove to
be beneficial additions to imputation ensembles.

6. Discussion. We have formulated a parametric model for matrix-data along
with computational advances that allow this model to be applied to missing value
estimation in high-dimensional data sets with possibly complex correlations be-
tween and among the rows and columns.

Our MCECM and one-step approximation imputation approaches are restricted
to data sets where for each pair of rows, there is at least one column in which
both entries are observed and vice versa for each pair of columns. A major draw-
back of TRCM imputation methods is computational cost. First, RCMimpute using
the columns as features costs O(p3). This is roughly on the order of other com-
mon imputation methods such as the SVDimpute which costs O(np2). Our one-
step approximation, TRCMAimpute, using the computations for the Alternating
Conditional Expectations algorithm given in the Supplementary Materials, costs
O(

∑n
i=1 min{|mi |, |oi |}3 +∑p

j=1 min{|mj |, |oj |}3 +n3 +p3), where |mi | and |oi |
are the number of missing and observed elements of row i, respectively.

The main application of this paper has been to missing value imputation. We
note that this is separate from the matrix-completion methods via convex optimiza-
tion of Candes and Recht [Candes and Recht (2009)], which focuses on matrix-
reconstruction instead of imputation. Also, we have presented a single imputation
procedure, but our techniques can easily be extended to incorporate multiple im-
putation. We present a repeated imputations approach by taking samples from the
posterior distribution [Rubin (1996)] with the Bayesian one-step approximation
in the Supplementary Materials. In addition, we have not discussed ultimate use
or analysis of the imputed data, which will often dictate the imputation approach.
Our imputation methods form a foundation that can be extended to further address
these issues.

We also pause to address the appropriateness of the Kronecker product covari-
ance matrix to model the covariances observed in real data. While we do not as-
sume that this particular structure is suitable for all data, we feel comfortable us-
ing the model because of its flexibility. Recall that all marginal distributions of the
mean-restricted matrix-variate normal are multivariate normal. This includes the
distribution of elements within a row or column, or the distribution of elements
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from different rows or columns. All of the marginals of a set of elements are given
by the mean and covariance parameters of the elements’ rows and columns. Thus,
our model says that the location of elements within a matrix determine their distri-
bution, often a reasonable assumption. Also, if either the covariance matrix of the
rows or the columns is the identity matrix, then we are back to the familiar mul-
tivariate normal model. This flexibility to fit numerous multivariate models and to
adapt to structure within a matrix is an important advantage of our matrix-variate
model.

Transposable regularized covariance models may be of potential mathematical
and practical interest in numerous fields. TRCMs allow for nonsingular estimation
of the covariances of the rows and columns, which is essential for any application.
Adding restrictions to the mean of the TRCM allows one to estimate all parame-
ters from a single observed data matrix. Also, introduction of efficient methods
of calculating conditional distributions and expectations make this model compu-
tationally feasible for many applications. Hence, transposable regularized covari-
ance models have many potential future uses in areas such as hypothesis testing,
classification and prediction, and data mining.

Acknowledgments. Thanks to Steven Boyd for a discussion about the mini-
mization of biconvex functions. We also thank two referees and the Editor for their
helpful comments that led to several improvements in this paper.

SUPPLEMENTARY MATERIAL

Additional methods and proofs (DOI: 10.1214/09-AOAS314SUPP; .pdf).
This includes sections on the multivariate imputation method RCMimpute, nu-
merical results on TRCM covariance estimation, a discussion of properties of the
MCECM algorithm for imputation, computations for the Alternating Conditional
Expectations Algorithm, a Bayesian one-step approximation to TRCMimpute
along with a Gibbs sampling algorithm, discussion of cross-validation for esti-
mating penalty parameters, and proofs of theorems and propositions.

REFERENCES

ALLEN, G. I. and TIBSHIRANI, R. (2010). Supplement to “Transposable regularized covariance
models with an application to missing data imputation.” DOI: 10.1214/09-AOAS314SUPP.

BELL, R. M., KOREN, Y. and VOLINSKY, C. (2007). Modeling relationships at multiple scales to
imporve accuracy of large recommender systems. In Proceedings of KDD Cup and Workshop
95–104. San Jose.

BENNETT, J. and LANNING, S. (2007). The Netlflix prize. In Proceedings of KDD Cup and Work-
shop. San Jose.

BIERNACKI, C., CELEUX, G. and GOVAERT, G. (2003). Choosing starting values for the EM algo-
rithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Statist.
Data Anal. 41 561–575. MR1968069

BONILLA, E., CHAI, K. M. and WILLIAMS, C. (2008). Multi-task Gaussian process prediction.
Advances in Neural Information Processing Systems 20 153–160.

http://dx.doi.org/10.1214/09-AOAS314SUPP
http://dx.doi.org/10.1214/09-AOAS314SUPP
http://www.ams.org/mathscinet-getitem?mr=1968069


790 G. I. ALLEN AND R. TIBSHIRANI

CANDES, E. J. and RECHT, B. (2009). Exact matrix completion via convex optimization. Found.
Comput. Math. 9 717–772.

CELEUX, G., CHAUVEAU, D. and DIEBOLT, J. (1996). Stochastic versions of the EM algorithm:
An experimental study in the mixture case. J. Stat. Comput. Simul. 55 287–314.

DUTILLEUL, P. (1999). The MLE algorithm for the matrix normal distribution. J. Stat. Comput.
Simul. 64 105–123.

EFRON, B. (2009). Are a set of microarrays independent of each other? Ann. Appl. Statist. 3 922–
942.

EFRON, B. (2009). Correlated z-values and the accuracy of large-scale statistical estimates. Working
paper, Stanford Univ.

FAN, J. and LI, R. (2001). Variable selection via penalized likelihood and its oracle properties.
J. Amer. Stat. Assoc. 96 1348–1360. MR1946581

FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2007). Sparse inverse covariance estimation with
the lasso. Biostatistics 9 432–441.

GREEN, P. J. (1990). On use of the EM algorithm for penalized likelihood estimation. J. Roy. Statist.
Soc. Ser. B 52 443–452. MR1086796

GUPTA, A. K. and NAGAR, D. K. (1999). Matrix Variate Distributions. CRC Press, Boca Raton,
FL. MR1738933

KIM, H., GOLUB, G. and PARK, H. (2005). Missing value estimation for DNA microarray gene
expression data: Local least squares imputation. Bioinformatics 21 187–198.

LIN, Y. and ZHANG, H. H. (2006). Component selection and smoothing in multivariate nonpara-
metric regression. Ann. Statist. 34 2272–2297. MR2291500

LITTLE, R. J. A. and RUBIN, D. B. (2002). Statistical Analysis with Missing Data. Wiley, Hoboken,
NJ. MR1925014

MENG, X.-L. and RUBIN, D. (1993). Maximum likelihood estimation via the ECM algorithm:
A general framework. Biometrika 80 267–278. MR1243503

ROTHMAN, A. J., BICKEL, P. J., LEVINA, E. and ZHU, J. (2008). Sparse permutation invariant
covariance estimation. Electron. J. Stat. 2 494–515. MR2417391

RUBIN, D. B. (1996). Multiple imputation after 18+ years. J. Amer. Statist. Assoc. 91 473–489.
SALAKHUTDINOV, R., MNIH, A. and HINTON, G. (2008). Restricted Boltzmann machines for col-

laborative filtering. Technical report, Univ. Toronto.
TROYANSKAYA, O., CANTOR, M., SHERLOCK, G., BROWN, P., HASTIE, T., TIBSHIRANI, R.,

BOTSTEIN, D. and ALTMAN, R. B. (2001). Missing value estimation methods for DNA mi-
croarrays. Bioinformatics 17 520–525.

WITTEN, D. M. and TIBSHIRANI, R. (2009). Covariance-regularized regression and classification
for high-dimensional problems. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 615–636.

YU, K., CHU, W., YU, S., TRESP, V. and XU, Z. (2007). Stochastic relational models for discrimi-
native link prediction. Advances in Neural Information Processing Systems 19 1553–1560.

YU, K., LAFFERTY, J. D., ZHU, S. and GONG, Y. (2009). Large-scale collaborative prediction
using a nonparametric random effects model. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14–18, 2009
(A. P. Danyluk, L. Bottou, M. L. Littman, eds.). ACM International Conference Proceeding Series
382. ACM Press, New York.

ZHAO, H., TIBSHIRANI, R. and BROOKS, J. (2005). Gene expression profiling predicts survival in
conventional renal cell carcinoma. PLOS Medicine 3 511–533.

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305
USA
E-MAIL: giallen@stanford.edu

tibs@stanford.edu

http://www.ams.org/mathscinet-getitem?mr=1946581
http://www.ams.org/mathscinet-getitem?mr=1086796
http://www.ams.org/mathscinet-getitem?mr=1738933
http://www.ams.org/mathscinet-getitem?mr=2291500
http://www.ams.org/mathscinet-getitem?mr=1925014
http://www.ams.org/mathscinet-getitem?mr=1243503
http://www.ams.org/mathscinet-getitem?mr=2417391
mailto:giallen@stanford.edu
mailto:tibs@stanford.edu

	Introduction
	Regularized covariance models and imputation with multivariate data
	Transposable regularized covariance models
	Mean-restricted matrix-variate normal distribution
	Transposable Regularized Covariance Model (TRCM)
	Parameter estimation
	Covariance estimation for L2 penalties


	Imputation for transposable data
	Multi-cycle ECM algorithm for imputation
	Algorithm
	Computational considerations

	One-step approximation to TRCMimpute
	One-step algorithm
	Conditional expectations
	Numerical comparisons


	Results and simulations
	Simulations
	Microarray data
	Netflix data

	Discussion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

