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First of all we want to thank the editor, Michael Newton, for leading the review
and discussion of our work.

We also want to thank all discussants for their interesting comments. Some of
them are in fact short research papers that expand the scope of Brownian Distance
Covariance. Many of the comments emphasized the existence of some competing
notions like maximal correlation; others requested further clarifications or sug-
gested several extensions. Most of the comments were theoretical in nature. We
do hope that once our new correlation is applied in practice we shall receive com-
ments from the broader community of applied statisticians. Let us now continue
with replies to the discussions collectively by grouping the topics.

1. Unbiased distance covariance. In the discussion Cope observes that the
distance dependence statistics are biased, and that this bias may be substantial and
increasing with dimension. As he points out, in genomic studies, high dimension
and small sample sizes are common.

In this section we present an unbiased estimator of the population distance co-
variance, define a corrected distance correlation statistic Cn, and propose a simple
decision rule for the high dimension, small sample size situation.

The expected value of V 2
n is E[V 2

n(X,Y)] = n−1
n2 [(n − 2)V 2(X,Y ) + μ1μ2],

where μ1 = E|X − X′| and μ2 = E|Y − Y ′|. An unbiased estimator of V 2(X,Y )

can be defined as follows.

DEFINITION 1.

Un(X,Y) = n2

(n − 1)(n − 2)

[
V 2

n(X,Y) − T2

n − 1

]
, n ≥ 3,

where T2 is the statistic defined in Theorem 1.

We proposed to normalize the V -statistic nV 2
n by dividing by T2. Under inde-

pendence, it follows from Corollary 2(i) that

nUn

T2
= n2

(n − 1)(n − 2)

[
nV 2

n

T2
− n

n − 1

]
D−→

∞∑
k=0

λk(Z
2
k − 1) as n → ∞,

which is the limiting distribution of the corresponding U -statistic.
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A modified distance correlation statistic Cn can be defined by substituting in
the original definition of R2

n the unbiased estimators Un. It can be shown that
Un(X,X) ≥ 0 for n ≥ 3, so that Un(X)Un(Y) > 0 whenever V 2

n(X)V 2
n(Y) > 0,

n ≥ 3.

DEFINITION 2. The corrected distance correlation for sample sizes n ≥ 3 is

Cn(X,Y) =
⎧⎨
⎩

Un(X,Y)√
Un(X)Un(Y)

, Un(X)Un(Y) > 0;

0, otherwise.

If n = 1 or n = 2 define Cn = 1.

If X and Y are independent, (p + q)/n is large and n is moderately large, one
can compare nCn with percentiles of a Normal(0, σ 2 = 2) distribution, under very
general conditions on the distributions of X and Y .

2. Other measures of dependence, old and new. Bickel and Xu mentioned
canonical correlation ρ, rank correlation r and Rényi correlation R. Of these,
only R is the one which vanishes if and only if X and Y are independent. A big
advantage of dCor vs R is that dCor is much easier to compute. In the discussion
there is a method to approximate Rényi’s R, but frankly we do not think that the
simplicity of computing or even approximating R is comparable to the simplicity
of computing Pearson correlation. Part of the reason is that there is no explicit for-
mula for computing R in general. On the other hand, we have an explicit formula
to compute dCov, and practitioners or applied statisticians should find it easy to
use.

For the first named author it was heartwarming to see several references to
Rényi because Rényi was his first advisor and mentor. In his 1959 paper, Rényi
[5] characterized R with seven “natural postulates.” His last postulate is that the
dependence measure equals the absolute value of Pearson correlation for bivari-
ate normal distributions. This axiom does not hold in our case, although dCor is a
deterministic function of Pearson correlation. It would be nice to extend Rényi’s
theorem and prove a joint characterization of R and dCor.

Bickel and Xu remind us that “if R = 1 then then there exist nontrivial func-
tions f and g such that P(f (X) = g(Y )) = 1 . . . .” However, the following ex-
ample suggests that this is not necessarily a desirable property. Consider ran-
dom variables X = sin kU and Y = sinmU , where U is uniformly distributed on
(0,2π), and k,m are distinct positive integers. Their Pearson correlation is 0, yet
for Chebyshev polynomials {Tk}, we have

Tk(cos 2mU) = Tm(cos 2kU)

= Tk(1 − 2Y 2) = Tm(1 − 2X2).
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Thus, R = 1 even though in many cases X and Y are heuristically quite unrelated:
neither f nor g is invertible, Y is not a function of X and vice versa; exceptions
are when m is an odd multiple of k. Our simulations suggest that 0 < dCor < 1/3
for the examples above, and reaches its maximum when m = 3k.

Because X and Y are not independent, it is not surprising that the CLT does not
hold for

Sn = sinU + sin 2U + · · · + sinnU.

Nevertheless, it can be surprising that Sn tends to C/2 in distribution, as n → ∞,
where C is a standard Cauchy random variable. (It is not a misprint that we did
not divide by

√
n; here we do not need any kind of normalization.) For the proof

of this result and generalizations to other “trigonometric coins,” other orthogonal
series, and finite Fourier series, see “Trigonometric Coins” [8]. The general infinite
Fourier series case is an open problem. One of the advantages of dCov is that
in terms of dCov = 0 type conditions we can prove general CLTs for strongly
stationary series (Székely and Bakirov [7]).

Further dependence measures can be found in the discussion of Gretton, Fukuz-
imu and Sriperumbudur. We recognize the theoretical importance of RKHS-based
dependence measures, but they do not look as simple as our distance covariance,
and they do not seem to be formal extensions of Brownian distance covariance
because our weight function (2.4) is not integrable.

3. Generalizations to metric spaces. One can easily extend the definition of
Brownian distance covariance via formula (2.8) to all metric spaces; all we need
is to replace the Euclidean distances between observations with their metric dis-
tances. Thus in principle we can measure the dependence between two samples
where the sample elements come from two arbitrary metric spaces. In order to
prove counterparts of our theorems, we need further restrictions. One of the pos-
sible approaches is to try to represent the abstract samples in finite dimensional
Euclidean spaces such that the distances akl, bkl become interpoint distances in
these Euclidean spaces. Necessary and sufficient conditions are established in the
multidimensional scaling literature (see, e.g., Mardia, Kent and Bibby [3], Chap-
ter 14). When such a representation is possible, many theorems in this paper can
be extended to measuring and testing independence of random vectors that take
values in abstract metric spaces. For example, the metric space extension is ap-
plicable for testing independence of categorical data. They are not in Euclidean
spaces, but their association can be used as a distance.

A very important area of applications is how to measure the dependence of
stochastic processes. In this respect, infinite dimensional extensions of our paper
are crucial, so we commend the discussion of Kosorok. Because of his work we
now have an extension of our theorems to certain Hilbert spaces.
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4. Invariance. Our test statistic is scale invariant and also rotation invariant.
Cramér–von Mises type test statistics, mentioned, for example, in Rémillard’s dis-
cussion Section 2, are not rotation invariant. This is a major problem if one wants
to extend the measure to metric spaces. Let us emphasize that our test procedure
is invariant with respect to marginal distributions, even though the test statistic is
not. On the other hand, it is true that we can easily make our dependence measure
even more invariant (invariant with respect to the marginals and with respect to
monotone transformations) if we apply the transformations suggested in Section 1
of Rémillard. The negative side of this is that we might lose power, especially if
the sample size is small.

Rémillard asked if certain dependence measures can be written in our form.
The general answer is no, because the well-known measures such as Kendall’s
tau and many other rank based measures do not characterize independence, or
the statistics are not rotation invariant (e.g., Cramér–von Mises), or like maximal
correlation they do not have an explicit computing formula, or may not be defined
for arbitrary dimension (e.g., Feuerverger’s measure [2]).

Invariance with respect to monotone transformations in one dimension suggests
rank type tests such as Feuerverger [2], but they have the disadvantage of be-
ing one-dimensional. We can also eliminate all kinds of moment conditions by
transforming X and Y to bounded random variables first and then compute their
distance covariance, but then there is an arbitrariness in choosing these bounded
functions. In one dimension the rank is a natural choice. Section 2 of Rémillard’s
discussion proposes a natural rank based transformation for the multivariate case.

5. Applications. Genovese asks about the generality or required conditions
for the test of nonlinearity, Example 6. The application of dCov to testing for non-
linearity requires only that the linear model Y = Xβ + ε can be estimated, and that
observations (X, ε̂) are i.i.d. The existence of first moments is implicit in the lin-
ear model specification. Distance covariance is defined in arbitrary dimension, so
the procedure can be applied to models with a multivariate response. This expands
the scope of the test, because models can often be specified with a multivariate
response and i.i.d. errors.

The extension of distance covariance methods to non-i.i.d. samples would be
very important for applications; see, e.g., Rémillard’s discussion Section 3 on the
application to time series: Serial Brownian Distance Correlation. We agree with
Rémillard that “there are still many interesting avenues” to explore in this context.

6. Simplicity/complexity. Our formula (2.8) to compute dCov is not only
simple, it has an obvious formal similarity to Pearson product moment covariance,
except that we need to average n2 products. Genovese comments that the O(n2)

computational complexity of Rn or Vn can be burdensome for very large n. How-
ever, the simplicity of the computing formula (2.8) in terms of products AklBkl
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provides economies of reusable computations. The distances need only be com-
puted once in the permutation test implementation, as the permutation of sample
indices of Y corresponds to permutations of indices of Bkl , for example.

If we compare the complexity of our statistic (2.8) to the complexity of other
measures of dependence (including, e.g., RKHS-based methods suggested by the
discussants Gretton et al., or our own measure proposed in Bakirov, Rizzo and
Székely [1]), then the superiority of Brownian distance covariance is clear. On
top of that, one can compute dCov even if the X sample and the Y sample are in
completely different metric spaces, because it is not necessary to add or multiply
the sample elements; we need only operations on their real valued distances. This
is a significant advantage if we want to measure the dependence of apples and
oranges, even infinite dimensional ones.

7. Distance covariance vs product-moment covariance and how to teach
them. After noticing that Pearson and distance covariance are two different spe-
cial cases of a general notion of covariance with respect to stochastic processes,
we have not explored the boundaries of this generalization. We focused on the
two most natural and simplest cases: Brownian covariance and Pearson covari-
ance. Feuerverger raises some interesting questions in this direction at the end
of his discussion. Rémillard also raises some questions on the role of stochastic
processes U,V . Genovese’s discussion sheds some light on these questions. Al-
though we have not yet explored the frontiers of these extensions, these questions
and the research of Genovese on this topic are indeed interesting.

For more than a century Pearson correlation has dominated the world of measur-
ing dependence. Even though we know that for nonnormal distributions, product-
moment correlation does not characterize independence (does not really measure
what we want) for reasons of simplicity, perhaps, it is the first and sometimes the
only measure of dependence that students may see. Here Genovese raises a good
pedagogical question: should distance correlation be introduced in our teaching at
an introductory level? Indeed, we agree that the idea of distance correlation is un-
derstandable even at the undergraduate level (without proofs), and one could then
continue with product-moment correlation for normal distributions obtained with
exponent α = 2.

8. Final comments. Our test of independence is implemented in R as part
of the “energy” package [4, 6]. The explanation of this cover name is that New-
ton’s potential energy is a function of the Euclidean distances between objects in
a gravitational space. In energy statistics the “objects” are the elements of the sta-
tistical sample, and the statistics are functions of the Euclidean distances between
the sample elements. These statistics, the statistical potential energies, govern the
cosmos of our paper.
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