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INTERVENTION ANALYSIS WITH STATE-SPACE MODELS TO
ESTIMATE DISCONTINUITIES DUE TO A SURVEY REDESIGN1

BY JAN VAN DEN BRAKEL AND JOERI ROELS

Statistics Netherlands

An important quality aspect of official statistics produced by national sta-
tistical institutes is comparability over time. To maintain uninterrupted time
series, surveys conducted by national statistical institutes are often kept un-
changed as long as possible. To improve the quality or efficiency of a survey
process, however, it remains inevitable to adjust methods or redesign this
process from time to time. Adjustments in the survey process generally affect
survey characteristics such as response bias and therefore have a systematic
effect on the parameter estimates of a sample survey. Therefore, it is impor-
tant that the effects of a survey redesign on the estimated series are explained
and quantified. In this paper a structural time series model is applied to es-
timate discontinuities in series of the Dutch survey on social participation
and environmental consciousness due to a redesign of the underlying survey
process.

1. Introduction. Surveys conducted by national statistical institutes are gen-
erally conducted continuously or repeatedly in time with the purpose to produce
consistent series. Quality of official statistics is based on various dimensions; see
Brackstone (1999) for a discussion. One important quality aspect is comparability
over time. To produce consistent series, national statistical institutes generally keep
their survey processes unchanged as long as possible. It remains inevitable, how-
ever, to redesign survey processes from time to time to improve the quality or the
efficiency of the underlying survey process. In an ideal survey transition process,
the systematic effects of the redesign are explained and quantified in order to keep
series consistent and preserve comparability of the outcomes over time. There are
various possibilities to quantify the effect of a survey redesign; see van den Brakel,
Smith and Compton (2008) for an overview. If the redesign affects the data collec-
tion phase, then a parallel run is a reliable approach to avoid the confounding of
real changes in the underlying phenomenon of interest with the systematic effect
of the redesign. Therefore, the redesign of long-standing surveys like, for exam-
ple, the US Current Population Survey and the US National Crime Victimization
Survey, are accompanied with a parallel run [Dippo, Kostanich and Polivka (1994)
and Kindermann and Lynch (1997)].
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Significance and power constraints necessary to establish the prespecified treat-
ment effects generally require large sample sizes for both the regular and the new
survey in the parallel run. This is not always tenable due to budget constraints.
The National Health Interview Survey (NHIS), established in 1956, is another ex-
ample of a long standing survey. This survey was radically redesigned in 1997
[Fowler (1996)]. The absence of a parallel run obstructed the analysis of trends
in different key variables of the NHIS. Akinbami and Schoendorf (2002) and Ak-
inbami, Schoendorf and Parker (2003) reported that trends in estimates of child-
hood asthma prevalence are disrupted due to changes in the NHIS design in 1997,
which created the impression that childhood asthma prevalence declined in this
period. Caban et al. (2005) used NHIS data to study trends in prevalence rates of
obesity among working adults. Data were analyzed separately for NHIS periods
1986 until 1995 and 1997 until 2002 because of the major redesign of the NHIS
in 1997. These examples illustrate that in situations were no parallel run is avail-
able, alternative methods, which are based on explicit statistical models, should
be considered to quantify the effect of a redesign. In this paper an intervention
analysis using structural time series models is proposed as an alternative for con-
ducting large scale field experiments and applied to a real life example at Statistics
Netherlands. This is a direct application of the intervention approach proposed by
Harvey and Durbin (1986) to estimate the effect of seat belt legislation on British
road casualties.

In survey methodology, time series models are frequently applied to develop es-
timates for periodic surveys. Blight and Scott (1973) and Scott and Smith (1974)
proposed to regard the unknown population parameters as a realization of a sto-
chastic process that can be described with a time series model. This introduces
relationships between the estimated population parameters at different time points
in the case of nonoverlapping as well as overlapping samples. The explicit mod-
eling of this relationship between these survey estimates with a time series model
can be used to combine sample information observed in the past to improve the
precision of estimates obtained with periodic surveys. This approach is frequently
applied in the context of small area estimation. Some key references to authors that
applied the time series approach to repeated survey data to improve the efficiency
of survey estimates are Scott, Smith and Jones (1977), Tam (1987), Binder and
Dick (1989, 1990), Bell and Hillmer (1990), Tiller (1992), Rao and Yu (1994), Pf-
effermann and Burck (1990), Pfeffermann (1991), Pfeffermann and Bleuer (1993),
Pfeffermann, Feder and Signorelli (1998), Pfeffermann and Tiller (2006), Harvey
and Chung (2000), Feder (2001) and Lind (2005).

In 1997 Statistics Netherlands started the Permanent Survey on Living Condi-
tions (PSLC). This is a module-based integrated survey combining various themes
concerning living conditions and quality of life. Two modules of the PSLC, the
Module Justice and Environment and the Module Justice and Participation, are
used to publish figures about justice and crime victimization. The first module is
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also used to publish figures about environmental consciousness. The second mod-
ule is used additionally to publish information about social participation. To realize
expenditure cuts, the PSLC stopped at the end of 2004. From that moment on, fig-
ures about social participation and environmental consciousness are based on a
separate survey, called the Dutch Survey on Social Participation and Environmen-
tal Consciousness (SSPEC).

In this survey transition the data collection mode, the questionnaire, the con-
text of the survey and the fieldwork period changed, which resulted in systematic
effects in the outcomes of the survey. Since the redesign mainly affects the data
collection process in this application, a large scale field experiment is very appro-
priate to test the effect on the parameter estimates of the survey; see, for example,
van den Brakel (2008). An experimental approach might, however, be hampered
due to budget and other practical constraints, which was the case for the Dutch
SSPEC. Therefore, an intervention analysis using a structural time series model is
used as an alternative to quantify the effect of the redesign on the main series of
the sample survey.

All target variables of the PSLC and the SSPEC have multinomial responses
which are transformed to proportions of units classified in K ≥ 2 categories. The
survey estimates of these proportions are observed on a (K − 1)-dimensional sim-
plex and comprise a composition. Aitchison (1986) developed statistical methods
for the analysis of compositional data, using additive logratio and central logra-
tio transformations. Brunsdon and Smith (1998) developed VARMA models for
logratio transformed compositional time series. Silva and Smith (2001) applied
the structural time series modeling approach to logratio transformed composi-
tional time series. In this paper the intervention approach proposed by Harvey and
Durbin (1986) is applied to estimate the effect of a survey redesign on composi-
tional time series obtained with periodic surveys.

In Section 2 the PSLC and the SSPEC are described. The systematic effects due
to the redesign are discussed in Section 3. A time series model to quantify these
discontinuities is developed in Section 4. Results for the most important indicators
for four different models are given in Section 5. The performance of these models
are investigated in a simulation study, which is also described in Section 5. The
paper concludes with a discussion in Section 6.

2. Survey designs.

2.1. Permanent survey on living conditions. The PSLC was conducted as a re-
peatedly cross sectional survey, which implies that there is no sample overlap in
time. The Module Justice and Environment and the Module Justice and Participa-
tion of the PSLC use persons aged 15 years or older as the target population. The
PSLC was a continuously conducted survey. Each month a self-weighted stratified
two-stage sample of persons was drawn from a sample frame derived from the
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municipal basic registration of population data. Strata are formed by geographi-
cal regions. Municipalities are considered as primary sampling units and persons
as secondary sampling units. The monthly sample size averaged between 550 and
700 persons for both modules. With response rates varying around a level of 60%,
this resulted in a yearly net response of about 4000 to 5000 persons for both mod-
ules.

Interviewers visited all the sampled persons at home and administered the ques-
tionnaire in a face-to-face interview. This is generally referred to as computer as-
sisted personal interviewing (CAPI). The estimation procedure used to compile
official statistics is based on the generalized regression estimator [Särndal, Swens-
son and Wretman (1992), Chapter 6] using a weighting scheme that is based on
different sociodemographic categorical variables.

2.2. Survey on social participation and environmental consciousness. The
PSLC stopped at the end of 2004. From that moment figures about social participa-
tion and environmental consciousness are based on the SSPEC. This survey is also
conducted as a repeatedly cross sectional survey and is based on a self-weighted
stratified two-stage sample design of persons aged 15 years and older residing in
the Netherlands. Data are collected by computer assisted telephone interviewing
(CATI). As a result, the subpopulation aged 15 years and older with an unlisted
telephone number or cell-phone number is not observed. The data collection of
the SSPEC is conducted in the months September, October and November with
a monthly sample size of about 2500 persons. The estimation procedure is, like
the PSLC, based on the generalized regression estimator. The response rates in the
SSPEC varied around 65%. As a result, about 4500 respondents are observed in
the yearly samples.

Since 2005, figures about justice and crime victimization are based on the Dutch
Security Monitor. See van den Brakel, Smith and Compton (2008) for more details
about this redesign and the effects on the main series of this survey.

2.3. Target parameters. All target variables about environmental conscious-
ness and social participation are based on closed questions where the respondent
can choose one out of K answer categories to specify his opinion or behavior on
an ordinal scale. The target parameters are the estimated proportions that specify
the distribution over these K categories for the entire population or subpopula-
tions. In this paper the series of two variables are used for illustrative purposes.
The first variable, Separating chemical waste, is an example of environmental con-
sciousness. This variable contains five answer categories: (1) always, (2) often,
(3) sometimes, (4) rarely and (5) never. The second variable, Contact frequency
with neighbors, is an example of social participation. This variable contains four
answer categories: (1) at least once a week, (2) once within two weeks, (3) less
than once within two weeks and (4) never. An overview of all target variables can
be found in the supplemental paper, van den Brakel and Roels (2010).
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FIG. 1. Separating chemical waste. Solid line: observed series under the PSLC, dashed line: ob-
served series under the SSPEC, dotted line: 95% confidence interval.

3. Factors responsible for discontinuities. The redesign from the PSLC to
the SSPEC resulted in discontinuities in most of the parameters about social par-
ticipation and environmental consciousness. As an example the series with the
annual figures of the parameters “Separating chemical waste” and “Contact fre-
quency with neighbors” are shown in Figures 1 and 2, respectively. For both vari-
ables it appears that there are significant discontinuities in two or more of the
underlying categories. The observed differences between the last year of the PSLC
in 2004 and the first year of the SSPEC in 2005 are summarized in Table 1. The
observed differences between the year before and the year after the changeover
for other variables about environmental consciousness and social participation are
described in the supplemental paper, van den Brakel and Roels (2010).

The observed differences are the results of the factors that changed simultane-
ously in the survey redesign, real developments of the parameter and sampling
errors. The most important factors that changed in the survey redesign are as fol-
lows:

• Differences between sampled target populations. The SSPEC is based on a sam-
ple of persons aged 15 years and older with a listed telephone number or cell-
phone number. The PSLC is based on a sample of persons aged 15 years and
older. The SSPEC does not observe the subpopulation without a listed telephone
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FIG. 2. Contact frequency with neighbors. Solid line: observed series under the PSLC, dashed line:
observed series under the SSPEC, dotted line: 95% confidence interval.

number or cell-phone number. Additional analyses showed that this results in
an under-representation of young people and ethnic minorities. This explains a
substantial part of the discontinuities.

• Differences in data collection modes. The SSPEC is a telephone based survey,
while in the PSLC data are collected in face-to-face interviews conducted at the
respondents’ homes. Many references in the literature emphasize that different
collection modes have systematic effects on the responses; see, for example, De
Leeuw (2005) and Dillman and Christian (2005). These so-called model effects
arise for different reasons. Generally the interview speed in a face-to-face inter-
view is lower compared to an interview conducted by telephone. Furthermore,
respondents are more engaged with the interview and are more likely to exert
the required cognitive effort to answer questions carefully in a face-to-face inter-
view. Also, fewer socially desirable answers are obtained under the CAPI mode
due to the personal contact with the interviewer. As a result, fewer measure-

TABLE 1
Observed differences between the year before and the year after the changeover for “Separating

chemical waste” and “Contact frequency with neighbors”

Category

Variable 1 2 3 4 5

Freq. cont. neighb. 4.38∗∗ (0.90) 0.46 (0.62) −2.99∗∗ (0.63) −1.84∗∗ (0.47)
Sep. chemical waste 2.26∗∗ (0.89) −5.25∗∗ (0.50) 0.79 (0.53) 2.54∗∗ (0.39) −0.33 (0.54)

∗: p-value < 0.05; ∗∗: p-value < 0.01. Standard errors in brackets.
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ment errors are expected under the CAPI mode [Holbrook, Green and Krosnick
(2003) and Roberts (2007)].

• Differences between data collection periods. The data collection for the SSPEC
is conducted in September through November, while the PSLC is conducted
continuously throughout the year. In the series of the quarterly figures observed
under the PSLC, seasonal effects are observed in several parameters, which par-
tially explain the discontinuities.

• Differences between questionnaire designs. Under the PSLC, questions about
social participation and environmental consciousness were combined with ques-
tions about justice and crime victimization in two different modules. Under the
SSPEC, the questions about social participation and environmental conscious-
ness are delineated in a new survey, which might have systematic effects on
the outcomes of these surveys [Kalton and Schuman (1982) and Dillman and
Christian (2005)].

• Differences between the contexts of the surveys. The SSPEC is introduced as
a survey that is focused on topics about social participation and environmen-
tal consciousness. The PSLC is introduced as a more general survey on living
conditions. Subsequently, the survey focuses on topics about justice, crime vic-
timization, social participation or environmental consciousness. This might have
a systematic selection effect on the respondents who decide to participate in the
survey. Furthermore, in the SSPEC the attention of the respondent is completely
focused on one topic, contrary to the PSLC, which also may have systematic
effects on the answer patterns of the respondents.

It is not immediately clear to what extent the differences summarized in Table 1
are the result of a real change in the underlying phenomenon of interest or are
induced by the redesign of the survey. Even if no significant difference is observed,
it is still possible that a real development could be nullified by an opposite redesign
effect.

A general way to avoid confounding the autonomous development with re-
design effects is to conduct an experiment embedded in the ongoing survey. If
the effect of the separate factors that has changed in the survey process should be
quantified, then a factorial design should be considered. Factorial designs or frac-
tional factorial designs are generally hard to combine with the fieldwork restric-
tions encountered in the daily practice of survey sampling. Therefore, it is gener-
ally necessary to combine the factors that changed in the redesign of the survey
into one treatment and test the total effect of all factors that changed simultane-
ously in the redesign against the regular approach in a two-treatment experiment.
See van den Brakel (2008) and van den Brakel, Smith and Compton (2008) for a
detailed discussion and alternative approaches to quantify the effect of a survey
redesign.

Since an experimental approach is not applied in this application, a time series
model is developed in the next section to quantify the total effect of all factors
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that are modified in the survey redesign with the purpose to avoid confounding
with real developments of the respective parameter. Some insight into the effect
for some of the factors that have changed in the survey redesign can be obtained
by conducting additional calculation on the existing data. The selection effect of
surveying the subpopulation that can be contacted by telephone can be estimated
with standard sampling theory for domain estimators from the data obtained with
the PSLC since this survey approaches the entire population face-to-face. The ef-
fect of changing the period of data collection can also be quantified by making, for
example, quarterly series for the PSLC and estimating the seasonal pattern. Due to
the relatively small sample sizes and the limited length of the series, it turned out
to be hard to establish significant seasonal effects.

4. Structural times series models. In this section structural time series mod-
els are developed to estimate the discontinuities in the series of a survey due to
the redesign of the underlying survey process. With a structural time series model,
a series is decomposed in a trend component, seasonal component, other cyclic
components, regression component and an irregular component. For each com-
ponent a stochastic model is assumed. This allows not only the trend, seasonal
and cyclic component but also the regression coefficients to be time dependent.
If necessary, ARMA components can be added to capture the autocorrelation in
the series beyond these structural components. See Harvey (1989) or Durbin and
Koopman (2001) for details about structural time series modeling.

4.1. Intervention analysis for time series obtained with periodic surveys. The
variables of the PSLC and the SSPEC are defined as categorical variables mea-
sured on an ordinal scale and the population values of interest are the distributions
in the population over the K categories of these variables. For each variable a
K-dimensional vector yt = (yt,1, . . . , yt,K) is defined where the elements of yt

specify the proportions over the K categories. Based on the data observed under
the PSLC and the SSPEC, direct estimates for the unknown population values are
obtained with the generalized regression estimator. As a result, for each variable K

series are observed that specify the estimated proportions over K categories and
are collected in the K-dimensional vector ŷt = (ŷt,1, . . . , ŷt,K), t = 1, . . . , T .

Developing a time series model for survey estimates observed with a peri-
odic survey starts with a model, which states that the survey estimate can be de-
composed in the value of the population variable and a sampling error: ŷt,k =
yt,k + et,k , with et,k the sampling error. Scott and Smith (1974) proposed to con-
sider the true population value yt,k as the realization of a stochastic process that
can be properly described with a time series model. This approach is applied to the
series observed with the PSLC and the SSPEC using the framework of structural
time series modeling.

In classical sampling theory, it is generally assumed that the observations ob-
tained in the sample are true fixed values observed without error; see, for example,
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Cochran (1977). This assumption is not tenable if systematic differences are ex-
pected due to a redesign of the survey process. van den Brakel and Renssen (2005)
proposed a measurement error model for experiments embedded in sample sur-
veys that link systematic differences between a finite population variable observed
under different survey implementations. They consider the observed population
value obtained under a complete enumeration under two or more different imple-
mentations of the survey process as the sum of a true intrinsic value that is biased
with a systematic effect induced by the survey design, that is, yt,k,l = ut,k + bk,l .
Here yt,k,l is the population value of the kth parameter at time t observed under
the lth survey approach, ut,k the true population value of this parameter and bk,l

the measurement bias induced by the lth survey process used to measure ut,k . The
systematic difference between two survey approaches is obtained by the contrast
yt,k,l −yt,k,l′ = bk,l −bk,l′ ≡ βk . In the case of embedded experiments, the system-
atic difference between two or more survey approaches is estimated as the contrast
between estimates obtained from subsamples assigned to the different survey ap-
proaches. In the time series approach, these differences are estimated using an
appropriate intervention variable. This allows for time dependent differences. For
notational convenience, the subscript l will be omitted in yt,k,l , since the survey
approach will be indicated implicitly with the time period.

In the case of the PSLC and the SSPEC, a relatively short series for annual
data is considered. Therefore, the autonomous development of the indicator that
is described by the series is modeled with a stochastic trend, a regression com-
ponent and an irregular component. The regression component consists of an in-
tervention variable with a time independent regression coefficient that describes
the effect of the survey transition. This approach is initially proposed by Harvey
and Durbin (2000). Seasonal, cyclic, ARMA and other auxiliary regression com-
ponents can be included in the model, for example, in the case of longer series or
monthly or quarterly data.

Based on the preceding considerations, the univariate structural time series
model for the kth component of ŷt is defined as

ŷt,k = Lt,k + βkδt + νt,k + et,k(1)

with Lt,k a stochastic trend, δt an intervention variable that describes under which
survey the observations are obtained at period t , βk the time independent regres-
sion coefficient for the intervention variable, νt,k an irregular component for the
time series model of the population values yt,k and et,k the sampling error. It is
assumed that the irregular component is normally and independently distributed:
νt,k

∼= N(0, σ 2
ν ).

Surveys are often based on a rotating panel design. Such designs result in par-
tially overlapping samples with correlated sampling errors. Particularly in these
cases, a separate component for the sampling error in the time series model might
be required to capture this serial correlation. Through this component the esti-
mated variances for the ŷt,k , which are generally available from the survey, can
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be included in the time series model as prior information. Binder and Dick (1990)
proposed the following general form for the sampling error model to allow for
nonhomogeneous variance in the sampling errors:

et,k = ωt,kẽt,k,(2)

where ωt,k is the standard error of ŷt,k and ẽt,k an ARMA process that models
the serial correlation between the sampling errors. Abraham and Vijayan (1992)
and Harvey and Chung (2000) applied MA models for the serial correlation in the
sampling errors. Pfeffermann (1991), Pfeffermann, Feder and Signorelli (1998)
and van den Brakel and Krieg (2009) used AR models for the serial correlation in
the sampling errors. Autocorrelations can be estimated from the survey data and
can be used, like the design variances of ŷt,k , as prior information in the sampling
error model. Pfeffermann, Feder and Signorelli (1998) developed a procedure to
estimate the autocorrelation in the survey errors from the separate panel estimates
of a rotating panel design and used this prior information to estimate the autocor-
relation coefficients of an AR model.

Generally there are systematic differences between the subsequent panels of a
rotating panel design. In the literature, this phenomenon is known as rotation group
bias (RGB) [Bailar (1975)]. Pfeffermann (1991) applied a multivariate structural
time series model to the series of the survey estimates of the separate panel waves
that accounts for this RGB and applied an AR model for the autocorrelation of
the sampling errors of the different panels. Variances and autocorrelations of the
sampling errors are obtained by standard maximum likelihood estimation in this
application. van den Brakel and Krieg (2009) used a multivariate structural time
series model similar to the model proposed by Pfeffermann (1991). They estimated
the variances and autocorrelations of the sampling errors from the survey data and
used this as prior information in the time series model.

The PSLC and the SSPEC are based on nonoverlapping cross-sectional sam-
ples. The only difference between the sample designs is the yearly sample size.
As a result, there is no serial correlation between sampling errors and nonhomoge-
neous variance is caused by differences in the yearly sample size. Based on these
considerations, it is decided to combine both terms νt,k and εt,k in one irregular
term, which is assumed to be normally and independently distributed with zero
mean and a variance that is inversely proportional to the sample size:

νt,k + et,k = εt,k, εt,k
∼= N

(
0,

σ 2
ε,k

nt

)
.(3)

Defining the variance of the irregular term inversely proportional to the sample
size implies that it is implicitly assumed that the sampling error dominates the
irregular term. Note that the variance of εt,k is the variance of a binomial out-
come and therefore also depends on the value of ŷt,k . This could be taken into
account, for example, by taking Var(εt,k) = ŷt,k(100 − ŷt,k)/nt or by including
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the estimated standard error of ŷt,k as prior information in the model according
to equation (2). This aspect, however, is ignored in the models used in this paper.
It is also assumed that the irregular components of (3) at different time points are
uncorrelated: Cov(εt,kεt ′,k) = 0 for t �= t ′. As a result, model (1) simplifies to

ŷt,k = Lt,k + βkδt + εt,k.(4)

For the stochastic trend, the widely applied smooth trend model is assumed [see,
e.g., Durbin and Koopman (2001)]:

Lt,k = Lt−1,k + Rt−1,k,
(5)

Rt,k = Rt−1,k + ηt,R,k,

with Lt,k the level component and Rt,k the stochastic slope component of the trend
and ηt,R,k an irregular component. The smooth trend model (5) is a special case of
the local linear trend model, which also has an irregular term for Lt,k ; see, for ex-
ample, Durbin and Koopman (2001), equation (3.2). The population values in this
application do not change rapidly over time. Therefore, a model that gives smooth
trend estimates seems to be appropriate. The choice for (5) also results in a more
parsimonious model, which is an additional advantage in this application where the
length of the observed series is small. It is assumed that the irregular components
of (5) are normally and independently distributed, that is, ηt,R,k

∼= N(0, σ 2
R,k) and

that they are uncorrelated at different time points, that is, Cov(ηt,R,kηt ′,R,k) = 0
for t �= t ′. Furthermore, it is assumed that the irregular components of (4) and (5)
are uncorrelated: Cov(εt,kηt ′,R,k) = 0 for all t and t ′.

The intervention variable models the effect of the survey redesign. Three types
of interventions are discussed: a level shift, a slope intervention and an intervention
on a seasonal pattern. Let TR denote the time period at which the survey process is
redesigned. In the case of a level intervention, it is assumed that the magnitude of
the discontinuity due to the survey redesign is constant over time. In this case δt is
defined as a dummy variable:

δt =
{

0, if t < TR,

1, if t ≥ TR.
(6)

In the case of a slope intervention, it is assumed that the magnitude of the discon-
tinuity increases over time. This is accomplished by defining δt as

δt =
{

0, if t < TR,

1 + t − TR, if t ≥ TR.
(7)

It is also possible to define an intervention on the seasonal or cyclic pattern. Such
interventions can be considered if an interaction is expected between the survey
redesign and the months or the quarters of the year. In this case, a stochastic
seasonal component is added to equation (1) or (4). Widely applied models are
trigonometric models and the dummy variable seasonal model; see Durbin and
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Koopman (2001), Section 3.2, for expressions. Furthermore, the intervention vari-
able δt has the form (6) and the regression coefficient βk is replaced by a time
independent seasonal component.

The interventions described so far assume that the redesign only affects the point
estimates of the survey. A survey redesign could, however, also affect the vari-
ance of the measurement errors. An increase or decrease of the variance of the
measurement errors will be reflected in the estimated variance of ŷt,k . A straight-
forward way to account for such effects is to incorporate the estimated variances
of the survey estimates as prior information using sampling error model (2). An-
other possibility is to define separate model variances for the irregular term εt,k in
the measurement equation for the period before and after the implementation of
the survey redesign, that is, Var(εt,k) = σ 2

ε,k,1 if t < TR and Var(εt,k) = σ 2
ε,k,2 if

t ≥ TR . The ratio between σ 2
ε,k,1 and σ 2

ε,k,2 can be used to test hypotheses about
the equivalence of both variance components. This approach, however, requires
a sufficient number of observations under both surveys to test the equivalence of
these variance components with sufficient power.

The discontinuity in the series is modeled with an intervention variable that de-
scribes the moment that the survey process is redesigned. This approach assumes
that the other components of the time series model approximate the real devel-
opment of the population variable reasonably well and that there is no structural
change in, for example, the trend or the seasonal component at the moment that
the new survey is implemented. If a change in the real development of the popula-
tion variable exactly coincides with the implementation of the new survey, then the
model will wrongly assign this effect to the intervention variable which is intended
to describe the redesign effect. Information available from series of correlated vari-
ables can be used to evaluate the assumption that there is no structural change in
the real evolution of the population parameter. Such auxiliary series can also be
added as a regression component to the model, with the purpose to reduce the
risk that a structural change in the evolution of the series of the target parameter
is wrongly assigned to the intervention variable. An auxiliary series can also be
included as a dependent variable in a multivariate model, which accounts for the
correlation between the parameters of the trend and seasonal components [Pfeffer-
mann and Burck (1990), Pfeffermann and Bluer (1993)] or allows for a common
trend [Harvey and Chung (2000)].

The risk that the intervention variable wrongfully absorbs a part of the develop-
ment of the real population value can be reduced by applying parsimonious inter-
vention parameters. Therefore, time dependent interventions, like an intervention
on a seasonal component, must be applied carefully. These intervention parame-
ters are more flexible and will more easily absorb a part of the real evolution of
the population value, particularly if only a limited number of observations after the
survey changeover are available.

The intervention approach can be generalized in a straightforward way to situa-
tions were the survey process has been redesigned at two or more occasions. This
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is achieved by adding a separate intervention variable for each time that the survey
process has been modified.

4.2. State-space representation. The structural time series models developed
in Section 4.1 for the separate parameters ŷt,k of the vector ŷt comprise a K-
dimensional structural time series model. The general way to proceed is to put this
model in state-space representation and analyze the model with the Kalman filter.
The state-space representation for this K-dimensional structural time series model
reads as

ŷt = Ztαt + εt ,(8)

αt = Tαt−1 + ηt .(9)

The measurement equation (8) describes how the observed series depends on a
vector of unobserved state variables αt and a vector with disturbances εt . The
state vector contains the level and slope components of the trend models and the
regression coefficients of the intervention variables. The transition equation (9)
describes how these state variables evolve over time. The vector ηt contains the
disturbances of the assumed first-order Markov processes of the state variables.
The matrices in (8) and (9) are given by

αt = (Lt,1,Rt,1, . . . ,Lt,K,Rt,K,β1, . . . , βK)T ,(10a)

Zt = (
I[K] ⊗ (1,0)|δtI[K]

)
,(10b)

T = Blockdiag
(
Ttr, I[K]

)
,(10c)

Ttr = I[K] ⊗
(

1 1
0 1

)
(10d)

with 0[p] a column vector of order p with each element equal to zero and I[p] the
p × p identity matrix. The disturbance vectors are defined as

εt = (εt,1, . . . , εt,K)T ,

ηt = (
0, ηt,R,1, . . . ,0, ηt,R,K,0T[K]

)T
.

It is assumed that

E(εt ) = 0[K], Cov(εt ) = 1

nt

Diag(σ 2
ε,1, . . . , σ

2
ε,K),

E(ηt ) = 0[3K], Cov(ηt ) = Diag
(
0, σ 2

R,1, . . . ,0, σ 2
R,K,0T[K]

)
.

In the case that each measurement equation and each transition equation has
its own separate hyperparameter, then (10) is a set of K univariate structural
time series models. If the measurement equations or the transition equations
share common hyperparameters, then (10) is a K-dimensional seemingly unre-
lated multivariate structural time series model. This is, for example, the case if
σ 2

ε,1 = · · · = σ 2
ε,K = σ 2

ε .
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The time independent regression coefficients of the intervention variables are
also included in the state vector, as described by Durbin and Koopman (2001),
Section 6.2.2. The Kalman filter can be applied straightforwardly to obtain esti-
mates for the regression coefficients. An alternative approach of estimating the
regression coefficients is by augmentation of the Kalman filter; see Durbin and
Koopman (2001), Section 6.2.3, for details.

In this application, each variable specifies the proportions over K categories. In
other words, each variable makes up a K-dimensional series, which obeys the re-
striction that at each point in time these series add up to one, that is,

∑K
k=1 ŷt,k = 1

and 0 ≤ ŷt,k ≤ 1. As a result, the K regression coefficients of the intervention
variables must obey the restriction

∑K
k=1 βk = 0. The multivariate structural time

series model (10) can be augmented with this restriction by using the following
design matrix in the transition equation (9):

T = Blockdiag(Ttr,Tiv),(10e)

where Ttr is defined by (10d) and

Tiv =
(

I[K−1] 0[K−1]
−1T[K−1] 0

)
(10f)

with 1[p] a column vector of order p with each element equal to one. Due to Tiv,
defined in (10f), the regression coefficients as well as their Kalman-filter estimates
obey the restriction

∑K
k=1 βk = 0. In the case of a level intervention, the time se-

ries after the moment of the survey transition can be adjusted for the estimated
discontinuities with ỹt,k = ŷt,k − β̂k . As an alternative, the series before the survey
transition can be adjusted with ỹt,k = ŷt,k + β̂k . In the case of a slope intervention,
the time series is adjusted with ỹt,k = ŷt,k − β̂kδt . If the time series after the mo-
ment of the survey transition is adjusted, then δt is defined by (7). If the time series
before the changeover is adjusted, then δt is defined as

δt =
{

t − TR, if t < TR,

0, if t ≥ TR.
(11)

Since the observed series and the estimated discontinuities obey the required con-
sistencies, the adjusted series does too.

An intervention on a seasonal component can be implemented in a way sim-
ilar to a level intervention. Let s denote the number of time periods of the sea-
sonal set. The state vector αt is augmented with K × s state variables to model
the seasonal pattern for each parameter ŷt,k . The K regression coefficients βk are
replaced by another set of K × s state variables to model the intervention on sea-
sonal pattern for each target parameter. The design matrix of the measurement
equation Zt is augmented with a term I[K] ⊗ zT[s], where z[s] is an s-dimensional
vector that describes the relation between the observed series and the state vari-
able of the trigonometric seasonal model or the dummy variable seasonal model.
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Furthermore, δtI[K] in Zt is replaced by δtI[K]⊗zT[s]. The design matrix of the tran-
sition equation is augmented with a block diagonal element I[K] ⊗ Ts , where Ts

denotes the transitional relation for a trigonometric model or the dummy variable
seasonal model. See Durbin and Koopman (2001), Section 3.2, for expressions
of z[s] and Ts . To force that the sum over the seasonal intervention variables of
the K parameters equals zero, the design matrix of the transition equation is aug-
mented with Tiv ⊗ Ts , where Tiv is defined by (10f). Adjusted series are obtained
with the approach described for the level intervention.

4.3. Logratio transformations. The multivariate model developed for ŷt

accounts for the restriction that
∑K

k=1 ŷt,k = 1, but ignores the restriction
0 ≤ ŷt,k ≤ 1. Ignoring the second restriction might result in adjusted parameter
estimates taking values outside the admissible range [0,1]. In fact, each parameter
defines a set of time series that are observed on the (K − 1)-dimensional simplex.
One way to account for both restrictions is to apply a logratio transformation to
the original data:

x̂t,k = ln
(

ŷt,k

ŷt,K

)
, k = 1, . . . ,K − 1.(12)

With (12) the original observations ŷt are transformed from the (K − 1)-
dimensional simplex to the (K − 1)-dimensional real space; see Aitchison (1986)
for details. State-space models are applied to logratio transformed compositional
time series obtained from repeated surveys by Silva and Smith (2001). They also
give the details on how to account for serial correlation between the sampling
errors in logratio transformed survey data in the case of partially overlapping sur-
veys.

Instead of modeling the original series ŷt and explicitly benchmarking the re-
gression coefficients to restriction (10f), it is also possible to develop a set of K −1
univariate structural time series models or a set of K −1 seemingly unrelated struc-
tural time series for x̂t = (x̂t,1, . . . , x̂t,K−1)

t .
This model is obtained with formulas (8) and (9), where ŷt is replaced by x̂t and

taking

αt = (Lt,1,Rt,1, . . . ,Lt,K−1,Rt,K−1, β1, . . . , βK−1)
T ,

Zt = (
I[K−1] ⊗ (1,0)|δtI[K−1]

)
,

T = Blockdiag(Ttr,Tiv), Ttr = I[K−1] ⊗
(

1 1
0 1

)
,Tiv = I[K−1],(13)

εt = (εt,1, . . . , εt,K−1)
T ,

ηt = (
0, ηt,R,1, . . . ,0, ηt,R,K−1,0T[K−1]

)T
.

The estimated discontinuities apply to the K − 1 transformed series. In the case of
level intervention, the series observed after the survey transition can be adjusted
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to the level of the series before the changeover using x̃t,k = x̂t,k − β̂k . The series
observed before the survey transition can be adjusted to the level under the new
situation with x̃t,k = x̂t,k + β̂k . In the case of a slope intervention, the time series
is adjusted with x̃t,k = x̂t,k − β̂kδt . If the time series after the moment of the sur-
vey transition is adjusted, then δt is defined by (7). If the time series before the
changeover is adjusted, then δt is defined by (11). The state-space representation
for a seasonal intervention follows in a straightforward way from Section 4.2. Sub-
sequently, the adjusted series can be transformed back to their original values that
specify the proportions over K categories on the simplex by the inverse of (12),
which is given by

ỹt,k = exp(x̃t,k)∑K−1
k=1 exp(x̃t,k) + 1

, k = 1, . . . ,K − 1,

(14)

ỹt,K = 1∑K−1
k=1 exp(x̃t,k) + 1

.

The adjusted series meets the consistency property that the adjusted proportions
add up to 1 and the values of the K categories take values in the range [0,1],
since the logratio transformation accounts for the properties of the data observed
on a simplex. The most important drawback of this approach is that the interpre-
tation of the results is more difficult and the asymmetric treatment of the classes
in the logratio transformation (12). Aitchison (1986) shows that analysis results
obtained with logratio transformed compositional data are invariant for the choice
of the reference category that is used as the denominator. This result is generalized
to VARMA models applied to logratio transformed compositional time series by
Brunsdon and Smith (1998) and state-space models by Silva and Smith (2001).
The outcomes for the adjusted series, nevertheless, depend on the choice of the
category that is used in the denominator of the logratio transformation, and can be
attributed to the numerical optimization procedure used for maximum likelihood
estimation (see Section 4.5).

The asymmetric treatment of the K classes in logratio transformation (12) can
be avoided by replacing the reference category ŷt,K in the denominator by the
geometric mean over the K categories. This results in the so-called central logratio
transformation, which is defined by

ẑt,k = ln
(

ŷt,k

g(ŷt )

)
, k = 1, . . . ,K,(15)

with

g(ŷt ) =
(

K∏
k=1

ŷt,k

)1/K

.(16)

The advantage of this transformation is that the results do not depend on the choice
of a reference category. With (15), however, the vector ŷt is transformed from the
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(K − 1)-dimensional simplex to a linear subspace of the K-dimensional real space
that is confined by

∑K
k=1 ẑt,k = 0.

The central logratio transformed series can be modeled with a K-dimensional
structural time series model. Since the K regression coefficients of the intervention
variables must still obey the restriction

∑K
k=1 βk = 0, time series model (8), (9),

(10a) through (10f) can be applied to model the series obtained after the central
logratio transformation. The series can be adjusted for the estimated discontinu-
ities in a similar way as described for the untransformed and logratio transformed
series. Subsequently, the adjusted series can be transformed back to their original
values by the inverse of (15):

ỹt,k = exp(z̃t,k)∑K
k=1 exp(z̃t,k)

, k = 1, . . . ,K.(17)

4.4. Benchmarking with series for subpopulations. In sample surveys, para-
meter estimates for the total population are often also itemized in different sub-
populations or domains. The following relationship applies between the series at
the national level and its breakdown in H subpopulations:

ŷt =
H∑

h=1

Nh

N
ŷh
t .(18)

Here ŷh
t and Nh denote the parameter estimate and the size of subpopulation h

respectively and N = ∑H
h=1 Nh the size of the total population. Applying the time

series models, described in Sections 4.1, 4.2 and 4.3, separately to the series at
the national level and its breakdown for these H subpopulations might result in
inconsistencies between these series after adjustment for the discontinuities. These
inconsistencies arise since the regression coefficients for the intervention variables
do not account for the consistency requirement specified by (18).

One solution is to benchmark the adjusted series for the subpopulations to
the adjusted series at the national level, for example, by using a Lagrange
function. Let ỹt = (ỹT

t,tot, ỹT
t,1, . . . , ỹT

t,H )T denote a (H + 1)K-vector containing
the adjusted parameter estimates for period t for the total population ỹt,tot =
(ỹt,tot,1, . . . , ỹt,tot,K)T and the H subpopulations ỹt,h = (ỹt,h,1, . . . , ỹt,h,K)T .
These parameters must obey a set of linear restrictions such that (18) is met and the
unit sum constraint for the vectors ỹt,tot and ỹt,h, for h = 1, . . . ,H , still applies.
This gives rise to a set of (H + K) linear restrictions that can be expressed as

Rỹ∗
t = c(19)

with

R =
((

1,−fT[H ]
) ⊗ L

I[H+1] ⊗ 1T[K]

)
, L = (

I[K−1] 0[K−1]
)
, f =

(
N1

N
, . . . ,

NH

N

)T
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and

c = (
0T[K−1],1T[H+1]

)T
.

Applying the method of Lagrange multipliers gives

ỹ∗
t = ỹt + VRT (RVRT )−1[c − Rỹt ],(20)

where V denotes the covariance matrix of ỹt . In (20) the discrepancies [c−Rỹt ] are
distributed over the values of ỹt proportional to their accuracy measure specified
by V. This implies that the parameters for the total population receive smaller
adjustments than the parameters for the subpopulations, since parameters for the
total population are estimated more precisely compared to domain estimates. The
covariance matrix of (20) is given by

V(ỹ∗
t ) = V − VRT (RVRT )−1RV.

The benchmarked estimates obtained with (20) have smaller or equal variances
than the separately adjusted series. The interpretation of this variance reduction is
that the restrictions specified by (19) add additional information to the model that
is applied to adjust the series for the observed discontinuities.

Inconsistencies can also be avoided by modeling the untransformed series for
the total population and its breakdown in the H subpopulations, that is, ŷt =
(ŷT

t,tot, ŷT
t,1, . . . , ŷT

t,H )T , simultaneously in one multivariate model and including
the consistency requirements in the transition equation for the regression coeffi-
cient of the intervention variables. To avoid unnecessary mathematical notation,
the transition equation is only given for the regression coefficients of these in-
tervention variables. The formulation of the complete state-space representation
follows directly from the models defined in Section 4.1.

Let β = Tβ denote the transition equation for the time invariant regression coef-
ficients of the intervention variables for the series of the total population and the H

subpopulations, that is, β = (βT
tot,β

T
1 , . . . ,βT

H )T , with β tot the K-dimensional
vector containing the intervention variables for the K categories of the parameter
for the total population and βh the K-dimensional vector containing the interven-
tion variables of the parameter for the hth subpopulation. If the transition matrix
is defined as

T =
( O[K×K] fT[H ] ⊗ Tiv

1[H ] ⊗ O[K×K] I[H ] ⊗ Tiv

)
,

where Tiv is defined by (10f), then it follows that the adjusted series meet the
consistencies specified by (18) as well as the unit sum constraint for the K classes
of the parameter for the total population and the H subpopulations.

Both methods can be generalized to benchmark the series for the population
total and two or more domain classifications simultaneously. Adding too many
restrictions, however, might result in numerical problems for solving (20) or esti-
mating the state-space model.
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4.5. Implementation of the Kalman filter. After having expressed the multi-
variate structural time series model in state-space representation and under the
assumption of normally distributed error terms, the Kalman filter can be applied to
obtain optimal estimates for the state variables as well as the measurement equa-
tion; see, for example, Durbin and Koopman (2001). Estimates for state variables
for period t based on the information available up to and including period t are re-
ferred to as the filtered estimates. The filtered estimates of past state vectors can be
updated if new data become available. This procedure is referred to as smoothing
and results in smoothed estimates that are based on the completely observed time
series. So the smoothed estimate for the state vector for period t also accounts for
the information made available after time period t . In this paper, point estimates
and standard errors for the state variables are based on the smoothed Kalman-
filter estimates using the fixed interval smoother. See Harvey (1989) or Durbin and
Koopman (2001) for technical details.

The nonstationary state variables are initialized with a diffuse prior, that is, the
expectations of the initial states are equal to zero and the initial covariance matrix
of the states is diagonal with large diagonal elements. The time independent re-
gression coefficients of the intervention variables are also initialized with a diffuse
prior, as described by Durbin and Koopman (2001), Section 6.2.2.

The analysis is conducted with software developed in Ox in combination with
the subroutines of SsfPack 3.0; see Doornik (1998) and Koopman, Shephard and
Doornik (1999, 2008). In SsfPack 3.0 an exact diffuse log-likelihood function is
obtained with the procedure proposed by Koopman (1997). Maximum likelihood
estimates for the hyperparameters, that is, the variance components of the sto-
chastic processes for the state variables, are obtained using a numerical optimiza-
tion procedure [BFGS algorithm, Doornik (1998)]. To avoid negative variance
estimates, the log-transformed variances are estimated. The Ox-program, used
to conduct the analyses, is available as a supplemental file, van den Brakel and
Roels (2010).

5. Results.

5.1. Results with four different time series models. The time series models
developed in Section 4 are applied to the series of “Separating chemical waste”
and “Contact frequency with neighbors,” which are plotted in Figures 1 and 2. The
results obtained with four different models are compared. These models assume
that the series can be decomposed in a stochastic trend, a level intervention and an
irregular term. Because the series concern annual data, it was not necessary to use
a seasonal component. This allowed the selection of very parsimonious models,
which was inevitable since the series are very short (11 years). Adding AR or MA
components deteriorated the model fits and generally resulted in overfitting of the
data.
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The first model, denoted M1, is a seemingly unrelated structural time series
model applied to the untransformed series. This model is defined by equations (6),
(8), (9), (10a), (10b), (10c) and (10d). Note that there is no restriction for the esti-
mated discontinuities. This is a seemingly unrelated structural time series model,
since it is assumed that the variances of the irregular terms in the measurement
equations are equal, that is, σ 2

ε,1 = · · · = σ 2
ε,K = σ 2

ε . Due to the limited length of
the series, this assumption is made to reduce the number of hyperparameters to be
estimated.

The second model, denoted M2, is the restricted multivariate model defined by
equations (6), (8), (9), (10a), (10b), (10d), (10e) and (10f). The observed series are
not transformed and the regression coefficients of the intervention variables are
explicitly benchmarked by restriction Tiv defined in (10f). It is also assumed that
σ 2

ε,1 = · · · = σ 2
ε,K = σ 2

ε .
The third model, denoted M3, is a seemingly unrelated structural time series

model applied to the K − 1 series obtained after applying logratio transforma-
tion (12) using the last category as the reference category in the denominator. This
model is defined by (6), (8), (9) and (13). To reduce the number of hyperparame-
ters, it is assumed that σ 2

ε,1 = · · · = σ 2
ε,K−1 = σ 2

ε .
The fourth model, denoted M4, is the restricted multivariate model applied to

the K series obtained after applying the central logratio transformation (15). This
model is defined by equations (6), (8), (9), (10a), (10b), (10d), (10e) and (10f). It
is assumed that σ 2

ε,1 = · · · = σ 2
ε,K−1 = σ 2

ε .
For each model two analyses are conducted. One is based on the data available

up to and including 2006, the other on the complete series, including 2007. This
gives some intuition of the size of the revision of the estimate of the discontinuity
if an additional observation under the new approach becomes available.

Estimation results for the discontinuities under the different models are given
in Table 2 for the parameter “Separating chemical waste” and in Table 3 for the
parameter “Contact frequency with neighbors.”

As expected in advance, the estimated discontinuities under M1 do not obey the
restriction

∑K
k=1 β̂k = 0. As a result, the corrected series are not consistent, since

the categories for a parameter do not add up to one.
The multivariate model for the original series (M2) and the central logratio

transformed series (M4) results in consistent series since the estimates for the dis-
continuities are forced to obey the required restriction. Augmenting the model with
restriction (10f) also reduces the standard errors of the estimated discontinuities,
since the restriction adds additional information to the model. This follows if the
results obtained with the multivariate model (M2) are compared with the results
obtained with the seemingly unrelated time series model (M1) for the original se-
ries.

Another way to preserve the consistency between the series of the K categories
of a parameter is to apply the logratio transformation, since this transformation
eliminates the redundancy due to the unit sum constraint over the K categories.
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TABLE 2
Estimated discontinuities for “Separating chemical waste” with different models

Category

Model T 1 2 3 4 5

M1 2006 4.29 (1.21) −4.34 (1.21) 0.00 (1.21) 1.50 (1.21) −1.44 (1.21)
M1 2007 1.91 (1.88) −4.15 (0.77) −0.07 (0.77) 1.49 (0.77) −1.17 (0.98)
M2 2006 4.29 (1.07) −4.35 (1.07) −0.01 (1.07) 1.50 (1.07) −1.44 (1.07)
M2 2007 3.07 (1.44) −4.01 (0.75) 0.07 (0.75) 1.63 (0.75) −0.76 (0.98)
M3∗ 2006 −0.06 (0.14) −1.08 (0.20) 0.16 (0.10) 1.00 (0.20)

M3∗ 2007 0.19 (0.15) −0.77 (0.21) 0.23 (0.11) 0.68 (0.12)

M4∗ 2006 −0.04 (0.26) −1.06 (0.26) 0.22 (0.31) 1.01 (0.16) −0.13 (0.07)
M4∗ 2007 −0.05 (0.25) −1.09 (0.26) 0.17 (0.30) 1.00 (0.21) −0.03 (0.07)

∗: Results obtained for the (central) logratio transformed series. T : Period of the last observation
included in the analysis. Standard errors in brackets.

The estimated discontinuities for the logratio and central logratio transformation
in Tables 2 and 3 are the results obtained with the transformed series.

The results obtained under equivalent models illustrate the size of the revision
for the estimated discontinuities if the data for an additional year becomes avail-
able. Adding the estimates obtained in 2007 to the series results in a revision of
the estimated discontinuities. Large revisions are observed for the first category of
“Separating chemical waste” under model M1 and the fourth category of “Contact
frequency with neighbors” under model M1. For the other three models the sizes of
the revisions are smaller with respect to the standard errors. It can be expected that

TABLE 3
Estimated discontinuities for “Contact frequency neighbors” with different models

Category

Model T 1 2 3 4

M1 2006 4.79 (1.19) 0.31 (0.69) −4.19 (1.32) 1.60 (0.51)
M1 2007 4.40 (1.20) −0.09 (0.59) −3.18 (1.30) −1.36 (0.59)
M2 2006 5.02 (0.93) 0.46 (0.66) −3.92 (0.96) −1.56 (0.48)
M2 2007 4.44 (0.93) −0.07 (0.56) −3.01 (0.95) −1.35 (0.56)
M3∗ 2006 0.33 (0.09) 0.27 (0.09) 0.16 (0.09)

M3∗ 2007 0.38 (0.11) 0.30 (0.10) 0.14 (0.08)

M4∗ 2006 0.14 (0.06) 0.08 (0.06) −0.03 (0.06) −0.19 (0.06)
M4∗ 2007 0.12 (0.05) 0.07 (0.05) −0.03 (0.05) −0.16 (0.05)

∗: Results obtained for the (central) logratio transformed series. T : Period of the last observation
included in the analysis. Standard errors in brackets.
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FIG. 3. Separating chemical waste. Solid line 1997–2004 estimate based on the PSLC, solid line
2005–2007 estimate based on the SSPEC, dotted line corrected series based on a logratio transfor-
mation, dashed line corrected series based on untransformed data, thin solid line corrected series
based on central logratio transformation.

the size of the revisions decreases if the length of the series increases, particularly
if the number of data points after the changeover increases.

The original data, the corrected series obtained with models M2, M3 and M4,
are shown in Figures 3 and 4. The outcomes obtained under the SSPEC for the
period 2005 through 2007 are corrected to make the series comparable with the
outcomes of the PSLC, using the procedure described in Section 4. In Section 5.2
a simulation study is conducted to investigate which model is most appropriate to
estimate discontinuities and produce corrected series for the variables of the PSLC
and the SSPEC.

5.2. Model evaluation. The underlying assumptions of the state-space model
are that the disturbances of the measurement and system equations are normally
distributed and serially independent with constant variances. There are different
diagnostic tests available in the literature to test to what extent these assumptions
are met; see Durbin and Koopman (2001), Section 2.12.

In this application model evaluation is particularly important. The observed se-
ries are the outcome of variables that have a multinomial response at each time pe-
riod. The Gaussian models M1 and M2 are applied to the untransformed data and
therefore do not account for this property. Models M3 and M4 are also Gaussian,
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FIG. 4. Contact frequency with neighbors. Solid line 1997–2004 estimate based on the PSLC,
solid line 2005–2007 estimate based on the SSPEC, dotted line corrected series based on a logratio
transformation, dashed line corrected series based on untransformed data, thin solid line corrected
series based on central logratio transformation.

but account for the multinomial response through the logratio and a central logra-
tio transformation. Durbin and Koopman (2000) and Durbin and Koopman (2001),
Chapters 10 and 11, describe simulation methods for the analysis of non-Gaussian
models and can be used as an alternative.

Another point of concern is the limited length of the available series. Only 11
periods are observed, which might affect the precision of the maximum likeli-
hood estimates for the hyperparameters and the smoothed Kalman-filter estimates
for the discontinuities. Furthermore, standard diagnostic tests to evaluate model
assumptions will not have sufficient power to asses model deficiencies and are
therefore not very useful in this application. As an alternative, two simulations are
conducted.

5.2.1. Simulation with different time series lengths. In the first simulation the
effect of the length of the series on the reliability of the estimates for the hyper-
parameters and the discontinuities is investigated. Replications of time series are
generated from the unconditional distribution implied by model M3 using the max-
imum likelihood estimates for the hyperparameters and the smoothed estimates for
the discontinuities obtained for the variable “Contact frequency with neighbors.”

For each replication, states and observations are generated using the SsfPack
procedure SsfRecursion as described in Koopman, Shephard and Doornik (2008),
Section 4.1. This procedure uses standard normal random numbers for the distur-
bance terms of the measurement and system equations. The maximum likelihood
estimates for the hyperparameters and the smoothed estimates for the discontinu-
ities are used to define the state-space model. Subsequently, model M3 is applied
to analyze the simulated time series.
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Three different simulations are conducted. In the first simulation, time series
with a length of 11 observations, 8 before and 3 after the survey redesign, are
generated. In the second simulation, time series with a length of 22 observations,
16 before and 6 after the survey redesign, are generated. In the third simulation,
time series with a length of 44 observations, 32 before and 12 after the survey
redesign, are generated. The variance of the irregular terms of the measurement
equation is inversely proportional to the yearly sample size of the survey. For the
first simulation the actual sample sizes of the PSLC and the SSPEC are used. In
the second and the third simulation additional sample sizes are generated from a
uniform distribution where the minimum and maximum yearly sample size of the
PSLC and the SSPEC are used as the lower and upper boundaries of the uniform
distribution. For each simulation study 10,000 time series are generated.

The resample distributions of the maximum likelihood estimates for the hy-
perparameters and the smoothed estimates for the discontinuities are used to ob-
tain more insight in the reliability of these model estimates in this application
where only a limited number of data points are available. In Table 4 the means
and standard errors of the resample distributions of the estimated hyperparameters
and discontinuities are compared with the values used in the assumed distribution.
Standard errors are obtained with the resample standard deviation. The resample
distributions of the estimated hyperparameters and discontinuities are plotted in
Figures 5 and 6.

The absolute difference between the real value and the mean of the resample
estimates for the hyperparameters and the discontinuities can be considered as a
measure for unbiasedness. The standard error of the mean of the resample esti-
mates can be taken as a measure for the precision. The differences between the

TABLE 4
Simulation results for the estimated hyperparameters and discontinuities with different lengths

of the times series

Simulated values

Parameter Real values T = 11 T = 22 T = 44

Hyp. 1 0.0480 0.0460 (0.0464) 0.0445 (0.0208) 0.0467 (0.0123)
Hyp. 2 0.0237 0.0261 (0.0412) 0.0210 (0.0139) 0.0227 (0.0079)
Hyp. 3 0.000 0.0170 (0.0392) 0.0027 (0.0064) 0.0006 (0.0014)
Hyp. 4 5.260 4.7182 (1.2177) 5.1664 (0.5833) 5.2223 (0.3869)
Disc. 1 0.380 0.380 (0.141) 0.378 (0.124) 0.379 (0.123)
Disc. 2 0.300 0.298 (0.122) 0.300 (0.105) 0.300 (0.101)
Disc. 3 0.140 0.142 (0.104) 0.139 (0.070) 0.140 (0.049)

Hyp. 1, Hyp. 2, Hyp. 3: Standard deviations irregular terms of the slope from the trend model for three
series obtained after logratio transformation, that is, σR,1, σR,2, σR,3. Hyp. 4: Standard deviation
irregular terms of the measurement equations, that is, σε . Disc. 1, Disc. 2, Disc. 3: Discontinuity for
three series obtained after logratio transformation, that is, β1, β2, β3. Standard errors in brackets.
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FIG. 5. Resample distributions estimated hyperparameters for different time series lengths. Hyp. 1,
Hyp. 2, Hyp. 3: Standard deviations irregular terms of the slope from the trend model for three series
obtained after logratio transformation, that is, σR,1, σR,2, σR,3. Hyp. 4: Standard deviation irregular
terms of the measurement equations, that is, σε .
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FIG. 6. Resample distributions estimated discontinuities for different time series lengths. Disc. 1,
Disc. 2, Disc. 3: Discontinuity for three series obtained after logratio transformation, that is, β1, β2,
β3.

real value and the mean of the resample estimates are small with respect to the
standard error for different lengths of the time series. This implies that there are no
indications that a limited number of observations results in biased parameter esti-
mates. The precision of the maximum likelihood estimates of the hyperparameters
clearly improves with the length of the time series. It follows from Table 4 that
the size of the standard errors decreases with the length of the series. The same
conclusion follows from Figure 5. Short series result in wide and skewed resample
distributions around the true values. The resample distributions center on the true
value and become more symmetrical if the length of the series increases. The pre-
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cision of the smoothed estimates of the discontinuities, on the other hand, is much
better in the case of the shortest time series. It can be seen from Table 4 that the
decrease of the standard errors if the length of the series increases is much smaller
compared to the hyperparameters. The same conclusion follows from Figure 6.
The effect of the length of the series on the dispersion of the resample distribution
around the true values is much smaller. The sample distributions are also allocated
more symmetrically around the true values, even in the case of the shortest time
series.

5.2.2. Simulation with different models under multinomial response. In the
second simulation the performance of the four models, used in Section 5.1, under
a multinomial response with different discontinuities is studied. In this simulation,
time series with a length of 11 time points are generated as follows. For each time
point nt independent trials are drawn from a multinomial distribution with para-
meters nt and pt = (pt,1,pt,2,pt,3,pt,4), with nt the yearly sample size and pt the
observed distribution over the four categories of “Contact frequency with neigh-
bors” observed with the PSLC in the first 8 years and the SSPEC in the last 3 years.
The distributions observed with the SSPEC are corrected for the estimated discon-
tinuities obtained with model M2. Thus, pt = ŷt if t ≤ 2004 and pt = ŷt − β̂ if
t > 2004. According to this approach, uninterrupted time series pr∗

t are generated.
Subsequently, two different types of discontinuities are added to the last three

time points of the series, that is, pr
t = pr∗

t + �t . The first set of discontinu-
ities are chosen constant over time by taking �t = (4.5,−0.1,−3.0,−1.4)t for
t = 2005,2006 and 2007. These discontinuities are approximately equal to the
estimated discontinuities under model M2; see Table 3. The second set of dis-
continuities is derived from the estimation results obtained with model M3. Time
varying discontinuities are obtained by taking �t = ŷt − ỹt for t = 2005,2006
and 2007. Here ŷt are the originally observed series under the SSPEC and ỹt the
adjusted series obtained with the inverse of the logratio transformation (14). Al-
though M3 assumes a time independent regression coefficient for the intervention
variable, the discontinuities become time dependent since the adjusted series is
mapped from the real space back to the simplex with the inverse of the logratio
transformation (14).

In each simulation 10,000 series are generated and analyzed with the four mod-
els proposed in Section 5.1. Let �̂r

t denote the estimated discontinuities for time
periods t = 2005, 2006 and 2007 for the r th replicate. For models M1 and M2 the
estimated discontinuities are equal to the estimated regression coefficients of the
intervention variable, that is, �̂r

t = β̂r , and thus constant in time. For models M3
and M4 the simulated series are transformed using the logratio and the central
logratio transformation respectively. Time varying discontinuities for the r th repli-
cate are estimated as the difference between the original and adjusted series, that
is, �̂r

t = pr
t − p̃r

t , for t = 2005,2006 and 2007. Here p̃r
t denotes the adjusted series
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TABLE 5
Real and simulated values time independent discontinuities

Discontinuity

Cat. 1 Cat. 2 Cat. 3 Cat. 4

Real value 4.5 −0.1 −3.0 −1.4
M1 4.400 (1.232) 0.037 (0.631) −2.672 (1.248) −1.529 (0.489)
M2 4.266 (1.209) −0.001 (0.650) −2.694 (1.125) −1.572 (0.497)
M3-2005 3.489 (1.430) 0.042 (0.759) −1.818 (1.118) −1.713 (0.578)
M3-2006 3.946 (1.682) 0.100 (0.685) −2.274 (1.437) −1.773 (0.696)
M3-2007 3.976 (1.677) 0.108 (0.745) −2.038 (1.230) −2.046 (0.850)
Mean value M3∗ 3.804 0.083 −2.043 −1.844
M4-2005 3.353 (1.336) 0.191 (0.864) −1.935 (1.443) −1.609 (0.577)
M4-2006 3.852 (1.658) 0.230 (0.775) −2.426 (1.853) −1.657 (0.680)
M4-2007 3.847 (1.591) 0.256 (0.852) −2.192 (1.707) −1.911 (0.825)
Mean value M4∗ 3.684 0.226 −2.184 −1.725

∗: Mean over the three years. Standard errors between brackets.

for the r th replicate obtained with the inverse of the logratio transformation (14)
or the inverse central logratio transformation (17).

In Table 5 the mean and standard errors of the estimated discontinuities �̂r
t

are summarized for the simulation with constant discontinuities. Standard errors
are obtained with the resample standard deviation. In Table 6 the same analysis
results are specified for the simulations with time dependent discontinuities. To
compare the simulation results of the models applied to the untransformed series
with the results obtained with the models applied to the transformed series, the
discontinuities estimated with models M3 and M4 are transformed back to their
original values on the simplex using the approach described in the third paragraph
of Section 5.2.2.

For each model it follows that the difference between the real value and the
mean of the resample estimates of the discontinuities are small compared to the
standard errors, which implies that there are no indications that one of the models
results in biased parameter estimates for the discontinuities. Nevertheless, it can
be concluded that the simulated means of the discontinuities of model M1 and M2
are closer to the real values of the discontinuities than models M3 and M4. This is
the case for the simulation with constant discontinuities (Table 5) and also for the
time varying discontinuities (Table 6). Furthermore, the simulated standard errors
under models M1 and M2 are smaller than the simulated standard errors obtained
with models M3 and M4.

5.3. Implementation. The simulations indicate that time series models applied
to the untransformed series result in more accurate estimates for the discontinuities
than the models applied to the logratio or central logratio transformed series. The
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TABLE 6
Real and simulated values time dependent discontinuities

Discontinuity

Cat. 1 Cat. 2 Cat. 3 Cat. 4

Real value 2005 4 −0.21 −1.96 −1.83
Real value 2006 4.45 −0.11 −2.46 −1.88
Real value 2007 4.47 −0.12 −2.20 −2.15
M1 3.788 (1.207) −0.035 (0.614) −1.562 (1.134) −1.975 (0.446)
M2 3.665 (1.153) −0.072 (0.629) −1.582 (1.052) −2.011 (0.459)
M3-2005 2.997 (1.245) −0.041 (0.710) −0.845 (0.932) −2.111 (0.538)
M3-2006 3.207 (1.422) −0.010 (0.645) −0.993 (1.123) −2.204 (0.681)
M3-2007 3.331 (1.461) 0.001 (0.703) −0.896 (1.041) −2.437 (0.830)
M4-2005 2.910 (1.153) 0.064 (0.781) −0.925 (1.184) −2.048 (0.548)
M4-2006 3.146 (1.361) 0.083 (0.705) −1.095 (1.445) −2.134 (0.679)
M4-2007 3.246 (1.348) 0.107 (0.774) −0.996 (1.348) −2.357 (0.813)

Standard errors between brackets.

main advantage of the logratio and central logratio transformation is that the ad-
justed values add up to one and always take values within the admissible range
of [0,1] by definition. The major drawback of both transformations is that the in-
terpretation of the results is complex. The estimated discontinuities as well as the
corrected series for a particular class are influenced by the discontinuity of the
reference class in the case of the logratio transformation. In the case of the central
logratio transformation, the estimated discontinuities as well as the corrected series
for each particular class are influenced by the discontinuities of all other classes,
via the geometric mean over all classes in the denominator of this transformation.
An additional disadvantage of the logratio transformation is that the results de-
pend on the choice of the reference category to be used in the denominator of the
logratio transformation.

The advantage of the multivariate model applied to the untransformed data is
that the interpretation of the results is straightforward and that the estimated dis-
continuities for the separated categories are only affected by the other categories
through the zero sum constraint. The major drawback is that the corrected values
might take values outside the admissible range of [0,1]. This, however, did not
occur in this application.

Based on these considerations, the multivariate model M2 applied to the un-
transformed data is finally used in this application to estimate discontinuities and
calculate corrected time series for all other parameters about environmental con-
sciousness and social participation. The common picture of the effect of the re-
design is an increase of the proportion of respondents in the first categories com-
pensated by a decrease in the last categories after the changeover. A more detailed



1134 J. VAN DEN BRAKEL AND J. ROELS

discussion about the results can be found in the supplemental paper, van den Brakel
and Roels (2010).

In this application, the series for the two domains of gender were also analyzed
and adjusted for the observed discontinuities. For a few parameters, the Lagrange
function, described in Section 4.4, was applied to restore the consistency with
the series for the total population. In this case the covariance matrix in (20) was
taken diagonal with the variances of the smoothed Kalman-filter estimates for the
regression coefficients of the intervention variables as elements. This benchmark
resulted in small modifications of the adjusted series.

Consistent time series can be obtained by correcting the observed series for
the estimated discontinuity. Depending on the anticipated impact of the redesign
on the quality of the estimates, the series observed in the past can be adjusted
to make it comparable with the outcomes obtained under the new design. It is
also possible to adjust the outcomes obtained under the new approach to make
them comparable with the series under the old survey design. In this application
the data collection mode changed from CAPI under the PSLC to CATI under the
SSPEC. Therefore, it is anticipated that the series observed in the past are more
accurate than the outcomes obtained under the SSPEC. Indeed, with the CAPI
mode the entire target population is reached while the CATI mode only surveys
the subpopulation with a listed telephone number. Furthermore, less measurement
errors and socially desirable answers are expected under the CAPI mode due to
the personal contact with an interviewer and the lower interview speed; see, for
example, Holbrook, Green and Krosnick (2003) and Roberts (2007). Based on
these considerations, it was decided that the outcomes obtained under the SSPEC
are corrected to make the series comparable with the outcomes of the PSLC. Under
the assumption that the development observed with the CATI data is representative
for the entire target population, consistent time series are obtained.

6. Discussion. The relevance of official statistics, produced by national statis-
tical institutes, strongly depends on the comparability of the outcomes over time.
A redesign of the survey process generally results in discontinuities in time series
obtained with repeatedly conducted sample surveys. To avoid the confounding of
real developments with the systematic effect induced by the redesign, structural
time series models with an intervention variable are developed to estimate the size
of the discontinuities. This approach relies on the assumption that there is no struc-
tural change in the evolution of the series of the population value at the moment
that the survey is redesigned. Additional auxiliary information and subject matter
expert knowledge can be used to asses whether the assumption that there is no
structural change in the real evolution of the population variable is tenable. Auxil-
iary time series can be incorporated in the model to improve the estimates for the
discontinuities. If this assumption is questionable, experiments where both surveys
are run in parallel for some period of time should be considered as an alternative.
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The transition of the PSLC to the SSPEC resulted in systematic differences in
the estimates for parameters about environmental consciousness and social partic-
ipation. In this application, Gaussian state-space models are applied to composi-
tional time series which are derived from variables with a multinomial response
at each time period. In a simulation study the performance of multivariate models
applied to untransformed, logratio transformed and central logratio transformed
series are compared. In this application the most accurate estimates for the dis-
continuities are obtained with a multivariate model applied to the untransformed
series that accounts for the unit sum constraint. This is a remarkable result, since
the logratio and central logratio transformations were considered to account for
the multinomial response. It is worthwhile to investigate to what extent simulation
methods for the analysis of non-Gaussian models further improve the accuracy of
the estimated discontinuities.

Another point of concern is the limited length of the available series. Simula-
tions indicate that the dispersion of the resample distribution of the maximum like-
lihood estimates for the hyperparameters narrows rapidly if the length of the avail-
able series increases. The dispersion of the resample distribution of the smoothed
estimates of the discontinuities, on the other hand, remains more stable if the length
of the series in the simulations increases. Therefore, it appears that although the
maximum likelihood estimates of the hyperparameters of the state-space models
can be far from the true values under the available series, the models already pro-
duce useful estimates for the discontinuities. This is a plausible result. Most in-
formation about the size of the discontinuity comes from the observations close
to the moment of the survey redesign. This also depends on the flexibility of the
other model components. The discontinuities are increasingly based on local ob-
servations close to the moment of the survey redesign, as the trend and other model
components are more flexible.

One aspect of the time series approach is that more observations under the new
approach become available when time proceeds. The advantage is that the discon-
tinuities can be quantified more accurately if this additional information becomes
available. A concomitant drawback is that the estimated discontinuities three years
after redesigning the survey are still subject to revisions. A publication policy is
required to deal with these revisions in practice. For this application it was decided
to base the final estimates for the discontinuities on the information available up
until 2007.
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SUPPLEMENTARY MATERIAL

Supplement (DOI: 10.1214/09-AOAS305SUPP; .zip). The supplementary ar-
ticle contains additional information about discontinuities in the target variables

http://dx.doi.org/10.1214/09-AOAS305SUPP
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about social participation and environmental consciousness that occurred due to
the changeover from the PSLC to the SSPEC. It contains a description of the tar-
get variables about social participation and environmental consciousness as well
as an overview of the observed differences that occurred during the year of the
changeover from the PSLC in 2004 to the SSPEC in 2005. Finally, the analysis
results using the time series model selected in Section 5.3 are presented for these
variables. As an example, the estimated series and the corrected series for three
variables are provided.

This supplement also contains the Ox-program, used to conduct the interven-
tion analysis with the state-space models developed in this paper. Input files (time
series of “contact frequency with neighbors” and “separating chemical waste” and
a series with the sample sizes of the surveys for the different time points) are also
provided to illustrate the use of the program.
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