
The Annals of Applied Statistics
2010, Vol. 4, No. 2, 988–1013
DOI: 10.1214/09-AOAS300
© Institute of Mathematical Statistics, 2010

BAYESIAN META-ANALYSIS FOR IDENTIFYING PERIODICALLY
EXPRESSED GENES IN FISSION YEAST CELL CYCLE1

BY XIAODAN FAN, SAUMYADIPTA PYNE AND JUN S. LIU

Harvard University and Chinese University of Hong Kong, Broad Institute
and Harvard University

The effort to identify genes with periodic expression during the cell cy-
cle from genome-wide microarray time series data has been ongoing for a
decade. However, the lack of rigorous modeling of periodic expression as
well as the lack of a comprehensive model for integrating information across
genes and experiments has impaired the effort for the accurate identifica-
tion of periodically expressed genes. To address the problem, we introduce a
Bayesian model to integrate multiple independent microarray data sets from
three recent genome-wide cell cycle studies on fission yeast. A hierarchi-
cal model was used for data integration. In order to facilitate an efficient
Monte Carlo sampling from the joint posterior distribution, we develop a
novel Metropolis–Hastings group move. A surprising finding from our inte-
grated analysis is that more than 40% of the genes in fission yeast are signif-
icantly periodically expressed, greatly enhancing the reported 10–15% of the
genes in the current literature. It calls for a reconsideration of the periodically
expressed gene detection problem.

1. Introduction. The cell division cycle is the concerted sequence of process-
es by which a cell duplicates its DNA and divides into two daughter cells. Many
genes are expressed periodically at a specific stage during the cell cycle when they
peak and trough over a certain time range. They are termed as “cell cycle-regulated
genes.” Here, in the context of mRNA expression studies, we call these “Period-
ically Expressed (PE) genes.” In contrast, other genes are called “APeriodically
Expressed (APE) genes.” Identification of PE genes is both of theoretical impor-
tance because of the need to understand the different mechanisms underlying these
genes’ involvements in the cell cycle processes, and of practical importance due to
the biological links between cell cycle control and many diseases such as cancer
[Sherr (1996); Whitfield et al. (2002); Bar-Joseph et al. (2008)].

With the help of the microarray techniques and various cell phase synchroniza-
tion methods (synchronizing the progression of cells through the stages of cell
cycle), researchers have conducted genome-wide time series expression analy-
ses on synchronized cells for various species ranging from fungi to plant to hu-
man [Cho et al. (1998); Spellman et al. (1998); Laub et al. (2000); Ishida et al.
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(2001); Menges et al. (2002); Whitfield et al. (2002); Rustici et al. (2004); Oliva
et al. (2005); Peng et al. (2005); Bar-Joseph et al. (2008)]. Several strategies for
identifying PE genes on these data have been developed, such as the fitting of a
sinusoidal function [Spellman et al. (1998)], clustering techniques [Eisen et al.
(1998); Whitfield et al. (2002)], the single-pulse model [Zhao, Prentice and Bree-
den (2001)], the partial least squares regression approach [Johansson, Lindgren
and Berglund (2003)], the average periodogram [Wichert, Fokianos and Strimmer
(2004)], the linear combination of cubic B-spline basis [Luan and Li (2004)], the
random-periods model [Liu et al. (2004)], the least square fitting for the periodic-
normal mixture model [Lu et al. (2004)], the Fourier score combined with p-value
of regulation [de Lichtenberg et al. (2005)], the robust spectral estimator com-
bined with g-statistic [Ahdesmaki et al. (2005)] and the up-down signature method
[Willbrand et al. (2005)]. Zhou, Wakefield and Breeden (2005) applied a Bayesian
approach for single experiment data by fixing the period at pre-estimated value.
Most of these methods use a set of known PE genes to estimate the cell cycle
period prior to testing the periodicity for other genes.

While the previous efforts have often reported positively about the presence of
the periodic signal in these gene expression data, doubts were raised as to whether
such periodic gene regulation was reproducible [Shedden and Cooper (2002);
Wichert, Fokianos and Strimmer (2004)] and, by extension, about the identity and
count of PE genes discovered by subsequent analyses. One prevalent reason for
skepticism is the reliance of many of the studies on ad hoc thresholds to classify
genes as PE or otherwise. For example, Cho et al. (1998) detected the PE genes by
visual inspection; Spellman et al. (1998) designed a cutoff value based on prior bi-
ological knowledge. Another possible reason is that the commonly assumed white
noise background model for time series might be too unrealistic to allow correct
inference about the identity and count of PE genes [Futschik and Herzel (2008)].
Furthermore, all previous approaches were designed for analyzing single time se-
ries per gene, which did not allow for an efficient combination of data from mul-
tiple experiments and therefore lacked the power to identify a large fraction of all
PE genes. Recently Tsiporkova and Boeva (2008) proposed a procedure to com-
bine multi-experiment data based on a dynamic time warping alignment technique,
which is potentially useful for analyzing multiple cell cycle data sets if combined
with a periodicity detection algorithm. However, the procedure requires each time
point within a time series to be aligned to a time point within the other time series,
which is not always appropriate when the lengths of cell cycle period, the sampled
time ranges and the sampling frequencies are all different between experiments.

Recently, three independent studies [Rustici et al. (2004); Oliva et al. (2005);
Peng et al. (2005)] conducted elutriation and cdc25 block-release synchronization
experiments to measure genome-wide expression in the fission yeast (Schizosac-
charomyces pombe) cell cycle. The results from these three studies also showed
discrepancies with regard to the identity and count of PE genes. They reported
407, 747 and 750 PE genes, respectively, with only 176 genes being common to
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all three lists. However, the availability of 10 genome-wide experiments produced
by these three different labs has made the fission yeast currently the organism with
the largest cell cycle transcriptome data, which provides us an opportunity to ob-
tain a better understanding of the cell cycle. Marguerat et al. (2006) combined the
ten data sets from the three studies by multiplying p-values for gene regulation
and periodicity from each experiment. They concluded that no more than about
500 PE genes can be reliably identified from the combined data. While observing
that well over 1000 fission yeast genes could be periodically expressed and that
each study had detected a different subset of these, they attributed the discrepancy
to inconsistent gene naming, the use of different data analysis methods and the use
of arbitrary thresholds.

We investigated the PE gene identification problem by employing a Bayesian
approach to provide (1) a more realistic and comprehensive model for the cell cy-
cle time series data, and (2) an efficient and rigorous way to combine data from
multiple experiments. A hierarchical model together with MCMC computation is
used to integrate different sources of variation and correlation into a single coher-
ent probabilistic framework. We applied this approach to integrate the ten genome-
wide time series data sets. A striking finding from our analysis is that more than
2000 genes are significantly periodically expressed. This number greatly enhances
the count of possible cell cycle regulated genes in the current literature. Most inter-
estingly, our finding can be visualized clearly from Figure 3, which merely displays
the original data, but with the genes ordered according to our inferred periodicity
strength and peaking phase.

2. Materials and methods. In Section 2.1 we describe the cell cycle gene
expression data. In Section 2.2 we outline our parametric model for cell cycle gene
expression. The Bayesian computation of the model is described in Section 2.3 and
Section 2.4. In Section 2.5 we present our strategies for distinguishing PE genes
from APE genes based on the model fitting results.

2.1. Microarray time series data. We obtained the normalized gene expres-
sion data for ten genome-wide experiments by three cell cycle microarray studies
[Rustici et al. (2004); Oliva et al. (2005); Peng et al. (2005)] from the websites
listed in Table 1. For each experiment, a culture of cells is grown and synchro-
nized. A set of microarrays is used to measure gene expressions at selected time
points (possibly with technical replication of the microarray). All values were con-
verted to log-ratios with base 2. To make the log-ratios comparable across arrays,
we transformed the values for every array separately to set the median log-ratio of
each array to zero. Log-ratios from technical replicates, if present, were averaged.
Time series with more than 25 percent missing entries were omitted. We unified
gene names across the studies based on GeneDB database entries [Hertz-Fowler
et al. (2004)]. The genes without a consistent nomenclature were excluded.
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TABLE 1
Summary of the ten experiments for the fission yeast cell cycle

Data set name Rustici et al. Peng et al. Oliva et al.

Microarray type spotted PCR array spotted oligo array spotted PCR array

Synchronization technique elutriation cdc25 elutriation cdc25 elutriation cdc25

Experiment name Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10

Number of covered gene 4113 3921 4176 4281 4173 4263 4571 4543 4400 4727
Number of time point (Se) 20 20 20 19 18 33 38 33 50 52
Time point frequency (min) 15 15 15 15 15 10 10 15–21 2–10 10–15

Note:
1. The data set Rustici et al. is downloaded from http://www.sanger.ac.uk/PostGenomics/S_pombe/projects/cellcycle/. Peng et al. is downloaded from

http://giscompute.gis.a-star.edu.sg/~gisljh/CDC/CDC_dnld_data.html. Oliva et al. is downloaded from http://publications.redgreengene.com/oliva_plos_
2005/.

2. The downloaded data set Rustici et al. has been normalized on an array-by-array basis using an in-house normalization script, which performs three
steps: masking bad spots, filtering lower quality spots, applying local window-based normalization. Peng et al. has filtered low intensity features (2-fold
less than the background) and done LOWESS normalization within array. Oliva et al. has been normalized within array by the GenePix Pro software with
default setting.

3. Elutriation experiments are done to wild-type fission yeast, where samples of uniformly sized cells are obtained. Because cell size is correlated
with cell cycle stage, these cells are synchronized with respect to their position in the cycle. Cdc25 block-and-release experiments are done to the fission
yeast strain carrying the temperature-sensitive cdc25-22 mutant gene, where cells are initially synchronized by blocking them at some particular cell cycle
stage, then releasing them from the block and taking samples at different times.

http://www.sanger.ac.uk/PostGenomics/S_pombe/projects/cellcycle/
http://giscompute.gis.a-star.edu.sg/~gisljh/CDC/CDC_dnld_data.html
http://publications.redgreengene.com/oliva_plos_2005/
http://publications.redgreengene.com/oliva_plos_2005/
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Let Yget denote the gene expression log-ratio at time Tet in experiment e for
gene g, where g = 1, . . . ,G, e = 1, . . . ,E, t = 1, . . . , Se. Here Yget is the observed
data; Tet , the time of the measurement; G, the total number of genes studied; E,
the total number of independent experiments; and Se, the total number of time
points measured in experiment e. The whole data set can be visualized as a G-by-
E matrix of time series, where each row corresponds to one gene and each column
corresponds to one experiment. If we pool together all filtered data from the ten
data sets, we have that G = 4994, E = 10, and Se ranges from 18 to 52. A detailed
overview of the data is given in Table 1. For illustration, the data for two genes are
shown in Figure 1.

2.2. Model. We model each time series as a mean curve with additive inde-
pendent and identically distributed (i.i.d.) Gaussian noise for measured time points.
The mean curve is a function of time consisting of a trend component and a pe-
riodic component. For the trend component, we use a linear function along with
a truncated quadratic function to model the block-release effect [artifacts intro-
duced by experimental protocols for synchronization; see Lu et al. (2004)] and
the general trend shown by the time series. We assume a first order Fourier model
for the periodic component. A damping term is added to the periodic component
to model the cell cycle de-synchronization effect, which implies that the periodic
phenomenon eventually disappears as time increases. To model the whole matrix
of time series, we assume that the periodic components for all genes within one
experiment share the same period, which is equal to the cell division time (i.e.,
duration between the birth of a cell up to its division into two daughter cells).
We further assume that the relative peak time within the cell cycle for every gene
is fixed, which allows all genes to share the same phase shift when the periodic
components across experiments are compared. More specifically, we assume the
following model (M1) for each time series:

Yget = age + bgeTet + cge

(
min(Tet − dge,0)

)2

+ Age cos(μeTet + ψe + φg)e
−λeTet + εget ,

where

age + bgeTet + cge(min(Tet − dge,0))2: trend component,
Age cos(μeTet + ψe + φg)e

−λeTet : periodic component,
εget ∼ N(0, σ 2

ge): i.i.d. noise,
age, bge: coefficients of the linear trend of a time series,
dge: ending time of block-release effect of a time series,
cge: magnitude of block-release effect of a time series,
σ 2

ge: noise level of a time series,
Age: amplitude of periodic component of a time series,
μe: cell cycle angular frequency, equal to 2π divided by the period of cell cycle

of an experiment,
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FIG. 1. Observed data and fitted mean curves for two samples of genes. For each sub-figure, the horizontal axis is the time (minutes) and the vertical
axis is the gene expression value (log-ratio). The first row of sub-figures shows the ten time series for a known PE gene (SPAPYUG7.03C). The second
row is for a stress response gene (SPAC23C4.09C), which is not regulated by the cell cycle. The bullet dots are the observed data. They are connected by
dotted lines. The solid lines are the mean curves obtained by fitting the M1 model to the data. The dashed lines are the mean curves obtained by fitting
the M0 model to the data. The details of model fitting are given in the following text.
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ψe: experiment-specific phase, which models the phase-shift between two ex-
periments,

φg : gene-specific phase, which decides its peaking time,
λe: magnitude of the de-synchronization effect of an experiment.

For each gene, we use different amplitude parameter Age for different experi-
ments to account for the effects of different experimental platforms and synchro-
nization techniques. If a gene is not periodic, the fitted amplitude Age should be
close to zero. For such time series, the phase parameter φg is redundant. To capture
different noise levels in different experiments, we specify a hierarchical structure
for the noise component by assuming that all σ 2

ge from the same experiment share
the same inverse chi-square distribution with chosen degree of freedom C12 (a con-
stant specified in the Appendix) and unknown hyper-parameters ζe:

σ 2
ge|ζe ∼ Inv-χ2(C12, ζe).

For convenience, we introduce the following notation:

Y ≡ {Yget , for g = 1, . . . ,G; e = 1, . . . ,E; t = 1, . . . , Se}: expression values,

e ≡ {μe,ψe,λe, ζe}: experiment-specific parameters,

 ≡ {
1, . . . ,
E},
� ≡ {φ1, . . . , φG}: gene phases,
�ge ≡ {age, bge, cge, dge,Age, σ

2
ge}: time-series-specific parameters,

�g ≡ {�g1, . . . ,�gE},
� ≡ {�1, . . . ,�G}.

All variables may be visualized within a gene-by-experiment (i.e., G × E) ma-
trix (Figure 2), which shows their dependence structure. Each row corresponds to
a gene-specific parameter φg and each column represents the set of experiment-
specific parameters (μe,ψe, λe, ζe). Each cell of the matrix corresponds to the
variables specific to a time series. The gene-specific parameter φg is the key to in-
tegrate the time series for gene g from multiple experiments. Experiment-specific
parameters 
e are used to pool information across all genes within a particular
experiment.

For model comparison, we also introduce the following model (M0) for APE
genes:

Yget = age + bgeTet + cge

(
min(Tet − dge,0)

)2 + εget .

The only difference between M0 (null model) and M1 (alternative model) is the
periodic component Age cos(μeTet + ψe + φg)e

−λeTet .

2.3. Identifiability. In the M1 model, the phase parameters ψe and φg are not
identifiable because the joint posterior distribution remains the same if we add a
constant z to all ψe and subtract z from all φg . This nonidentifiability problem
can be solved by fixing one of the phase parameters, but the loss of one degree of
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FIG. 2. Dependence structure of all variables. All links are undirected. Bullets represent a variable
or a group of variables. Diamonds represent the dependence of the variables linked to it. Corre-
sponding to the G-by-E matrix of time series, the main parameter structure can be visualized as a
matrix, where each row corresponds to a gene-specific parameter φg and each column corresponds
to experiment-specific parameters (μe,ψe,λe, ζe). Each cell of the matrix corresponds to the vari-
ables specific to a time series. For example, all φg ’s are independent of each other conditional on all
(μe,ψe,λe, ζe); a time series is independent of all other time series conditional on the union of φg

and (μe,ψe,λe, ζe).

freedom makes the MCMC algorithm very “sticky” (slow-mixing). Since we only
care about the relative values of ψe’s and φg’s, we solve the problem by assigning a
reasonably tight prior distribution to one of the phase parameters and flatter priors
to others, and using a transformation group move to improve mixing of the MCMC
chain (see Appendix A.3).

For periodic signal fitting, the angular frequency parameter μe is usually non-
identifiable because a time series with angular frequency μe is also a time series
with angular frequency μe/n for any positive integer n. We avoid this problem by
specifying the periodic signal as a damping single sinusoidal curve and limiting
the domain of μe to a bounded range. The bound of μe is instituted via its prior
which is based on our prior knowledge of the cell cycle duration in fission yeast.

2.4. Bayesian computation. We estimate all unknown parameters through
MCMC simulation of their joint posterior distribution. More specifically, we use
a Metropolis-within-Gibbs algorithm to iteratively sample one set of parameters
given all the others:

• Step 1: sample experiment-specific parameters 
e conditional on �, � and Y ,
• Step 2: sample gene-specific parameters φg conditional on 
, � and Y ,
• Step 3: sample time series-specific parameters �ge conditional on 
, � and Y .

The MCMC chain composed of these basic moves suffers from a slow mixing
problem caused by strong correlations among some parameters. We can alleviate
the problem by parallelizing each of the three steps based on the conditional in-
dependence of the parameters. For instance, we can parallelize the sampling of
�ge from their full conditional distribution since they are independent of each
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other given 
, � and Y . When some parameters are highly correlated in their
joint distribution, single-component moves cause very slow-mixing. To cope with
this problem, we designed a new sampler called the Metropolized independence
group sampler (MIPS) by combining the ideas of grouping [Liu, Wong and Kong
(1994)] and the Metropolized independence sampler [Hastings (1970); Liu (1996);
Liu (2001)]. The key idea is to update the whole subset of correlated variables si-
multaneously independent of the current state using a sequential proposing proce-
dure. MIPS moves are inserted to the main Metropolis-within-Gibbs iteration. The
details of the MCMC implementation are given in the Appendix.

2.5. Strategies for discerning PE genes from APE genes. We used three sta-
tistics to judge which genes are PE ones. Among them, the Bayesian Information
Criterion is used to compare the fitting of model M1 with that of model M0, both
to real data. The other two statistics measure the periodicity by comparing the fit-
ting of the M1 model to the real data with that to the permuted data or the data
simulated from the M0 model.

2.5.1. Permutation test. Since we fit model M1 to every gene, even the APE
genes are modeled with experiment-specific parameters 
 that are primarily deter-
mined by PE components. Therefore, to examine the effect of our Bayesian model
fitting procedure on APE genes, we generate background data by permuting each
time series for every gene in the real data, which destroys any periodic pattern
therein. We run the same MCMC algorithm to fit the M1 model to the background
data set by fixing all experiment-specific parameters 
 at the posterior mode ob-
tained from the MCMC run for the real data.

2.5.2. Simulation from the null model. One problem of using the permutation
data as background control is that the permuted time series do not capture the in-
trinsic autocorrelation of the measured time series, which exists even if it is not
periodically expressed. For example, many time series in the real data show a gen-
eral trend without oscillation, which may be a result of the gene’s response to the
perturbation caused by synchronization techniques. To accommodate this possible
bias, we generate a second data set from the M0 model. Compared to the permuted
time series, M0 explains the autocorrelation in the time series by a mean curve. We
run the same MCMC algorithm to fit M0 to all genes in the real data.

We simulated from the M0 model a data set of similar size and structure as
the combined real data set. All parameters are simulated from their corresponding
prior distributions. Both M1 and M0 are fitted to this simulated data set. While
fitting M1, we fix all experiment-specific parameters 
 at the posterior mode ob-
tained from the MCMC run for the real data.
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2.5.3. Model comparison. One approach for discerning PE genes from APE
genes is to use permuted data or data simulated from the null model as background
control, and to fit the M1 model to both the real data and the background data.
The fitting of the background data is then used to determine a threshold for the
desired false positive rate (FPR). Another approach is to fit both models M1 and
M0 to the real data, and then do the classification based on a comparison of the
fitness of the models. Various information criteria can be used for this task, such as
Akaike’s Information Criterion (AIC) [Akaike (1973)], the Bayesian Information
Criterion (BIC) [Schwarz (1978)] and the Deviance Information Criterion (DIC)
[Spiegelhalter et al. (2002)], to just name a few.

A full Bayesian alternative to our approach here is to introduce a latent variable
Ig for each gene to indicate whether it comes from M1 or M0. Then, the reversible-
jump strategy [Green (1995)] can be used to build a MCMC sampler to traverse the
joint space of the latent indicators and model parameters. But due to the global na-
ture of many parameters in our model, this approach is computationally extremely
expensive. Additionally, the results so obtained may be too sensitive to our model
assumptions. Thus, we feel that using randomization and null model approaches in
the spirit of posterior predictive model checking [Gelman, Meng and Stern (1996)]
provides a more robust detection of PE genes.

2.5.4. Statistics for periodicity. We use multiple gene-specific statistics to
measure the periodicity of a gene. Based on the fitted parameter values for the
M1 model, we define the gene-specific Signal-to-Noise Ratio (SNR) as the relative
strength of the fitted periodic component compared to the noise level:

SNRg =
E∑

e=1

∑Se

t=1{Age cos(μeTet + ψe + φg)e
−λeTet }2

σ 2
ge

.

The SNR statistic combines periodicity information for a gene from every exper-
iment in terms of the amplitude of its periodic component. For each gene, we
calculate SNR for each iteration of the MCMC chain, and then summarize the
posterior samples of SNR using the 2.5th percentile, the 97.5th percentile and the
mean. Genes with higher SNR values are more likely to be periodically expressed.
We also use the fitted phase to measure periodicity from the fitted parameters of
the M1 model. More specifically, we use the length of the 95% central posterior
interval (denoted by LPI) of a gene’s relative phase φg + ψ1 (ψ1 is chosen arbi-
trarily since only the difference of relative phase matters) as one of the periodicity
measures. Genes with higher LPIs are less likely to be periodic either because
their periodic components are too weak or their multiple time series might show
inconsistent peaking time within the cell cycle.

We use the Bayesian Information Criterion difference (BIC01) to measure pe-
riodicity based on the fitted posterior modes of the two models. Let L0

g and L1
g

denote the likelihood values for gene g at the posterior mode of the parameters for
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models M0 and M1, respectively. The model comparison criterion BIC01 is defined
as BIC01

g = 2 log(L1
g) − 2 log(L0

g) − (k1 − k0) log(N), where N is the number of
observed data points for the gene, and k0 and k1 are the number of free parame-
ters in models M0 and M1, respectively. A gene with positive BIC01 value prefers
model M1 to M0. Genes with higher BIC01 values are more likely to be periodi-
cally expressed.

3. Results and discussion.

3.1. Model fitting check. The MCMC chain on the entire real cell cycle data
converged in approximately 2000 iterations. The autocorrelation function of the
posterior probabilities from each chain showed that the MCMC algorithm is effi-
cient in terms of effective sample sizes after burn-in. The details of the model fit-
ting diagnosis are given in the supplemental material of this paper [Fan, Pyne and
Liu (2009)]. Figure 7 in the supplementary material [Fan, Pyne and Liu (2009)]
displays the posterior distribution of the cell cycle length 2π/μe for each of the
ten experiments. After convergence, the experiment-specific parameters 
 showed
little variation, that is, their marginal posterior distributions had very small vari-
ance compared to their ranges. Based on the posterior mode determined from the
MCMC chain, we calculated the residue of each time series. The autocorrelation
analysis of the residue showed that by fitting M1 to the data, the autocorrelation
was reduced to the level comparable to those of i.i.d. noise. Comparison of variance
reduction between the real and the permuted data suggested that the M1 model ex-
plained a significant amount of variance for most of the genes showing significant
autocorrelation in their time series.

3.2. Number of periodically expressed genes. We ranked all genes in the order
of decreasing posterior mean SNR value. Thus, highly ranked genes are more likely
to be periodically expressed. We then stratified this sorted list into 6 groups and
reordered each group according to the fitted peaking time. Figure 3 shows the
whole sorted data set. Strikingly, a periodic pattern stands out for all gene groups
after simply reordering them (note that these are simply rearranged original data).
The pattern is clear and consistent across all experiments for the top 2000 genes,
which suggests that about 40% of all genes in the organism could be periodically
expressed. The pattern is still strong for genes in the range 2001–3500. We can
even observe periodicity among the remaining genes shown in the bottom group,
which, however, is comparable to the top ranking “genes” in the permuted data.

For a comparison with the result from traditional clustering methods, the mi-
croarray clustering software Cluster [Eisen et al. (1998)] was used to group genes
with similar gene expression. A heatmap similar to Figure 3 is included in the
supplemental material of this paper [Fan, Pyne and Liu (2009)]. Compared to the
ubiquitous periodic pattern in Figure 3, only several small clusters with visible
periodic pattern may be observed from the hierarchical clustering result.
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FIG. 3. Heatmap of all genes’ time series data ranked by decreasing mean SNR value. Columns
correspond to time points, which are grouped by experiment and sorted by time within each group.
Rows correspond to genes, which are ranked by their mean SNR value and sorted by their mean
peak times within each group. For example, the first row group contains the 300 genes with the
highest mean SNR value from our combined analysis of all 10 experiments, and they are sorted by
their relative phase φg + ψ1 within the group. Each time series is normalized to zero mean and unit
variance for display. The heatmap is drawn by TreeView [Eisen et al. (1998)] with default setting.
Red indicates up-regulation, green indicates down-regulation, black means no change of expression
levels, and grey is missing data. It shows a periodic pattern for all gene groups.

We used two approaches to test whether the visual periodic pattern in Figure 3 is
statistically significant. The first approach compares the fitting of the M1 model to
the real and background data, that is, the permuted data or the data simulated from
the M0 model. Two statistics are used to measure the periodicity for this approach.
The SNR statistic measures the amplitude of the periodic component, while the
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LPI statistic measures the uncertainty of the relative phase of every gene. Figure 4
and Figure 8 in the supplementary material [Fan, Pyne and Liu (2009)] show the
estimated posterior densities of these measures. The curves from the background
data provide a null distribution for the corresponding statistic, from which we can
estimate FPR for any given threshold. The clear separation of the posterior densi-
ties for the real and background data suggests that a lot of genes show a periodic
pattern that is stronger than i.i.d. noise or M0 data. For example, by comparing the
LPI curves of the real and permuted data in Figure 8 in the supplementary material
[Fan, Pyne and Liu (2009)], we can claim 3086 PE genes for FPR = 0.002, corre-
sponding to about 10 false positives. Similarly, by comparing the posterior mean
SNR values of the real and permuted data in Figure 4, we can claim 3599 PE genes
for FPR = 0.002. The number of claimed PE genes when using the simulated data
from the M0 model as background control is similar. For instance, the comparison

FIG. 4. Density comparison of SNR from the three data sets. The M1 model is fitted to the real
data, permuted data and the data simulated from the M0 model. For each gene, we get the posterior
mean of the SNR statistic from the combined analysis. For each data set, we pool all genes together
to get a kernel density estimate, which is shown in this graph. The vertical line indicates the threshold
corresponding to FPR = 0.002 in the permuted data, from which one can claim 3599 PE genes from
the real data.



BAYESIAN META-ANALYSIS OF CELL CYCLE GENE EXPRESSION 1001

TABLE 2
Correlation of different statistics and their classification results

Statistic SNR LPI BIC01

SNR 3599 3051 1967
LPI −0.93 3086 1906
BIC01 0.86 −0.83 2003

Note: The permuted data was used as background control. The lower-left part of the table shows the
Spearman correlation between pairs of statistics. The numbers on the diagonal are the number of PE
genes claimed by the corresponding statistic. For SNR, we use a cutoff corresponding to FPR = 0.002
for the two mean SNR density. For LPI, we also use the threshold corresponding to FPR = 0.002.
We use zero as the threshold for BIC01. The upper-right part of the table shows the number of PE
genes claimed by a pair of statistics. Within them, 1898 genes are claimed by all three statistics.

of the posterior mean SNR densities yields 3414 PE genes for FPR = 0.002, and
that of the LPI densities yields 3036 PE genes for FPR = 0.002.

The second approach compares the fitting of the two models M1 and M0, both
using the real data. We used BIC as the model comparison criterion. As shown
in Figure 9 in the supplementary material [Fan, Pyne and Liu (2009)], almost all
BIC01 values from the permuted data as well as the simulated data from the M0
model are smaller than zero. For the real data, we can claim 2003 PE genes from
the combined analysis by using zero as the threshold for BIC01. Corresponding
to this threshold, the permuted data will only produce one false positive PE gene,
corresponding to FPR = 0.0002.

The results of these three statistics are summarized in Table 2. Here we used
the permuted data as background control. The average Spearman correlation be-
tween pairs of the statistics is 0.87, suggesting that the three statistics are highly
consistent in ranking the genes’ periodicity. The approaches based on permuta-
tion control (SNR, LPI) made more significant claims than the model selection
approach. Overall, we obtained a list of 1898 significant PE genes that are claimed
by all three statistics.

3.3. Performance comparison. To evaluate the performance of identifying PE
genes, we defined a benchmark set as the union set of the list of PE genes derived
from small-scale experiments [Marguerat et al. (2006)] and a core set of genes
whose periodic regulation is conserved between budding yeast and fission yeast
[Lu et al. (2007)]. The resulting benchmark set consists of 162 genes. We used this
benchmark set to compare our method with the method used by Marguerat et al.
(2006).

The statistic used for gene classification by Marguerat et al. (2006) is a score
calculated from a p-value of regulation and a p-value of periodicity. When com-
bining multiple experiments for gene classification, they multiplied the p-values
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FIG. 5. Performance on the benchmark set. For each of the four methods listed in the figure legend,
we plot FNR against FPR under various thresholds. For each threshold, the benchmark set of 162 PE
genes is used to estimate FNR. The permuted version of the data is used to estimate FPR. A smaller
under-curve area corresponds to a better classification performance for the benchmark set.

from individual experiments to get a total p-value of regulation and a total p-value
of periodicity. To estimate the FPR of their statistic, we calculated the scores for
the permuted data. For our method, we use the SNR statistic for gene classification.

Figure 5 shows the performance of the SNR statistic and Marguerat et al.’s
score on both the combined data (all experiments) and the Exp1 data (a single
experiment) in the form of ROC curves. For any given FPR value, we estimate the
threshold of a statistic from the permuted version of the data. The corresponding
false negative rate (FNR) is estimated by the fraction of the genes in the bench-
mark set that are classified as APE gene according to this threshold. When applied
on the data from a single experiment (Exp1 data), the SNR statistic apparently
outperforms Marguerat et al.’s score. The gain of statistical power at the single ex-
periment level could be due to our explicit modeling of the trend component and
the de-synchronization effect, which makes our model more realistic for the cell
cycle time series. When comparing their performances on the combined data, it
seems that the SNR statistic increases the statistical power over Marguerat et al.’s
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score significantly. This is due not only to a more realistic model for single time
series, but also to our approach of the Bayesian meta-analysis. Instead of com-
bining the p-values from individual experiments, we model multiple experiments
simultaneously so as to borrow information across experiments.

Figure 5 indicates that the same statistic performed better at discerning PE genes
with the combined data than with the data from a single experiment. This is also
true when comparing the performances of a statistic using the overall combined
versus that using any subset of the experiments. The detailed information is given
in Table 2 in the supplementary material [Fan, Pyne and Liu (2009)]. This is natural
because any subset contains less information than the full combined data; but on
the other hand, it also indicates that each experiment captured some information
about genes’ periodicity during the cell cycle.

3.4. Subset analysis. To compare three individual studies [Rustici et al.
(2004); Oliva et al. (2005); Peng et al. (2005)] and different experimental tech-
niques, we used the same method for the combined data set to fit model M1 to
all three individual data sets, and also the two collections of experiments using
different synchronization techniques (elutriation or cdc25 block-release). We first
determined the 95% posterior interval of the SNR statistic for each gene to account
for the uncertainty of its SNR estimate. Then for comparison of all the subsets at
the same significance level, we claim a gene to be PE if its posterior mean SNR
value is above the upper 97.5% posterior limits of the SNR of at least 4984 (out of
4994) permuted “genes.” For the combined data, we thus claimed 2032 PE genes.
Figure 6(a) and Figure 6(b) show the overlap of the results from our subset analy-
ses. Figure 6(c) shows the overlap of the original results from the three individual
studies. There are 976 genes which are reported as PE by our combined analysis
but not by any of the three original studies. Supporting evidences for these genes
are included in the supplementary material [Fan, Pyne and Liu (2009)].

Similar to Figure 6(c), the discrepancy about the count and identity of PE
genes exists between individual data sets [Figure 6(a)] and across synchronization
techniques [Figure 6(b)] although we have unified the whole analysis procedure.
Therefore, instead of attributing the discrepancy between the subsets to incon-
sistent gene naming or use of different analysis methods or arbitrary thresholds
[Marguerat et al. (2006)], we suggest that the cause is intrinsic to the data. It also
shows that most genes in the discrepant part show significant periodicity in the
combined analysis. The combined analysis also captured many genes which can
not be detected by subset data analysis. Combined with the benchmark analysis,
we observed that 5 out of the 40 benchmark genes whose periodicity have been
confirmed by small-scale experiments [Marguerat et al. (2006)] were missed by
all three original studies as well as our combined analysis. On the other hand, 6
out of the 92 core environmental stress response genes with known function [Chen
et al. (2003)] were claimed as periodically expressed by all three original studies
as well as by our combined analysis, suggesting that their periodic signal is clear to
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FIG. 6. Venn diagrams showing overlap between claimed PE genes from subsets of the data. Each
gene set in all diagrams is compared with the result from the combined analysis that we did using
our method. The number before the plus sign is the number of genes also claimed as periodically
expressed by our combined analysis. The stand-alone circle represents the part which is reported
only by the combined analysis. (a) Comparing the results from individual data sets using our method.
(b) Comparing the results from two synchronization techniques using our method. (c) Comparing the
results reported in original studies.

all methods. Possibly, the periodicity measure for widely used positive or negative
benchmark sets are not quite accurate.

To investigate the discrepancy between different subsets, we systematically
tested these subsets’ pairwise reproducibility using the posterior mean SNR val-
ues. If it is true that the genes have an intrinsic order in terms of periodicity and
all individual data sets are of similar quality in revealing this ordering information,
the periodicity measures across pairs of subsets should be consistent. Each data
set yields a SNR vector measuring the periodicity of all genes. The key idea is
to check whether the Spearman correlation of the two SNR vectors is still signif-
icant after removing genes which are top ranked in both vectors. The details are
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shown in Figure 10 in the supplementary material [Fan, Pyne and Liu (2009)]. Af-
ter removing the 847 genes that are highly ranked by both Peng et al. and Oliva
et al., the remaining genes’ SNR values from these two data sets show no posi-
tive Spearman correlation at the significance level of 0.05. This sets the number of
reproducible genes supported by these two data sets (5 experiments) to 847. This
same count increases to 934 for Rustici et al. versus Peng et al. (7 experiments),
and to 1008 for Rustici et al. versus Oliva et al. (8 experiments). The increasing
of reproducible genes is consistent with the increase in the size of data involved
in comparison. The number further increases to 1554 when comparing elutriation
experiments with cdc25 experiments. This suggests that although the number of re-
producible genes is less than the number of PE genes suggested by the combined
analysis, the reproducibility is improved by including more data in the comparison
or by partitioning the data according to the experiment technique.

To explain the above subset discrepancy, possible flaws in the benchmark sets
and the high number of significant genes in the combined analysis, we hypothe-
size a network-based dynamics for the cell cycle process. For instance, periodic
signals from transcription of key cell cycle-regulated genes propagate through the
relevant downstream regulatory networks of the organism potentially targeting a
considerable number of genes. Thus, depending on the status of the network, these
genes may show an observable periodic pattern under one condition, and be too
weak to detect under another condition. As a consequence of the combined effect
of the variation in periodicity and experimental noise, each study could capture a
different subset of the PE genes. The difference of the cell cycle length shown in
Figure 7 in the supplementary material [Fan, Pyne and Liu (2009)], which could
not be explained solely by microarray platform difference, is a further evidence of
such variation. For example, the cell cycle lengths in the posterior mode for the
two cdc25 experiments in Rustici et al. are 135 and 138 minutes, while in Oliva
et al. and Peng et al., this number increases to 164 and 173 minutes, respectively.
Although they are using the same synchronization technique on the same organ-
ism, subtle environmental or physiological differences have changed the speed of
the cell cycle oscillation. Therefore, it may have also changed relative amplitudes
of oscillation of the genes leading to overall ranking discrepancy.

4. Conclusion. In spite of the rapid rise in the number of microarray experi-
ments, many of which address related issues, a systematic meta-analysis of such
data is rarely attempted. We conducted a meta-analysis of ten fission yeast cell cy-
cle genome-wide time-series experiments with a model-based Bayesian approach.
Compared to other methods, key features of our model include the fixed relative
phase of the peaking time of the genes across all experiments (e.g., a gene will
peak 10 degrees earlier than another gene in an experiment if and only if the same
happens in another experiment) and a flexible amplitude for periodic components.
Our approach does not require training sets to estimate important global parame-
ters such as the period of cell cycle, but to infer them from all the data. Notably, our
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parametric approach deals with phase shift, signal amplitude difference, noise level
difference and de-synchronization automatically. Despite the high dimensionality,
the implemented MCMC chain mixes well with the help of global moves. The
residual analysis shows that our model fits the data well.

A striking finding of our analysis is that more than 2000 genes are significantly
periodically expressed, which accounts for approximately 40% of all the genes in
the fission yeast genome. The subset analysis suggests that this number may in-
crease with more data included. This enhances greatly the current knowledge of
only 10–15% of all fission yeast genes that are reported as periodically expressed
during the cell cycle. Interestingly, genome-wide oscillation has also been reported
by recent studies on other cyclic phenomena in the cell, such as the metabolic cycle
and circadian periodicity [Klevecz et al. (2004); Tu et al. (2005); Ptitsyn, Zvonic
and Gimble (2007)]. Clearly, a certain amount of influence of the global cell cy-
cle processes on most genes in the genome, in particular, in unicellular organisms
such as fission yeast, cannot be ruled out. For instance, the folding and unfolding
of chromosomes over the course of the cell cycle will have genome-wide inciden-
tal effect on transcription. However, earlier studies concede that limited ability to
distinguish precisely the weakly periodic oscillations from prevalent microarray
noise only allowed conservative estimates of PE genes. By explicitly modeling pe-
riodic and nonperiodic components, and different sources of variation and noise,
our model-based approach helps to overcome this long-standing limitation. The
resulting list of more than 2000 PE genes would allow the researchers to cast a
much wider and deeper net for cell cycle regulated genes that can lead to inves-
tigation of novel or relatively less known gene modules and networks involved in
the machinery of cell cycle regulation.

It should be noted that the key idea behind our model is rather general. It can be
applied to detect periodic patterns where the amplitude is noisy but the patterns are
nonetheless consistent across different experiments. The data can be any collection
of time series. A study of cell cycle data from other species, such as the budding
yeast, mouse, human, etc., using the proposed method can be of immediate interest.

One possible way to improve the current method is to employ a more robust
error model, using, for example, t-distributions instead of Gaussians for the noise
term [Hampel et al. (1986); Lange, Little and Taylor (1989)]. But as a price to pay,
the computational complexity may be increased substantially. It should be noted
that, as stated in Section 2.5.3, alternative Bayesian model selection methods may
also be applied to this problem. For example, Green (1995) provides a way to per-
form joint model selection and parameter estimation via reversible jump MCMC.
It may be applicable to this problem if the efficiency of reversible jump MCMC
moves can be improved significantly. The methods proposed by Chib (1995) and
Chib and Jeliazkov (2001), which estimate the marginal likelihood of the data un-
der a model, may also be a worthwhile direction to explore.



BAYESIAN META-ANALYSIS OF CELL CYCLE GENE EXPRESSION 1007

APPENDIX: MCMC IMPLEMENTATION

A.1. Prior distribution. We assigned reasonably diffuse but still proper prior
distributions for all parameters:

age ∼ N(0,C1),

bge ∼ N(0,C2),

cge ∼ N(0,C3),

dge ∼ Unif(0,C4),

Age ∝ Exp(rate = C5), 0 ≤ Age < C6,

μe ∼ Unif(C7,C8),

ψ1 ∝ N(0,C9), −π ≤ ψ1 < π,

ψe ∝ N(0,C10), e = 2, . . . ,E,−π ≤ ψe < π,

φg ∼ Unif(−π,π),

λe ∼ Unif(0,C11),

σ 2
ge|ζe ∼ Inv-χ2(C12, ζe),

ζe ∼ Exp(C13).

The constants in the prior distributions are assigned correspondingly, mak-
ing use of our prior knowledge: C1 = 1,C2 = 0.0052,C3 = 0.00012,C4 =
500,C5 = 10,C6 = 10,C7 = 2π/180,C8 = 2π/120,C9 = 0.22,C10 = 12,C11 =
0.006,C12 = 4,C13 = 50.

A.2. Posterior distributions and Metropolis-within-Gibbs. We can write
down the joint distribution of the data and parameters as

p(Y,
,�,�)

= p(Y |
,�,�)p(
,�,�)

=
[

G∏
g=1

{
E∏

e=1

〈
Se∏

t=1

p(Yget |age, bge, cge, dge,Age, σ
2
ge, φg,μe,ψe, λe)

〉

× p(age)p(bge)p(cge)p(dge)p(Age)p(σ 2
ge|ζe)

}

× p(φg)

]

×
〈

E∏
e=1

p(μe)p(ψe)p(λe)p(ζe)

〉
.
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We assume that all missing data are missing completely at random, so their
corresponding components are simply omitted from this expression.

Again, we introduce the following symbols for convenience:

Dget ≡ Yget − age − bgeTet − cge

(
min(Tet − dge,0)

)2
,

Rget ≡ Dget − Age cos(μeTet + ψe + φg)e
−λeTet ,

Xget ≡ (
1, Tet , [min(Tet − dge,0)]),

Xge ≡
⎛
⎜⎝

Xge1
...

XgeSe

⎞
⎟⎠ ,

Zget ≡ Yget − Age cos(μeTet + ψe + φg)e
−λeTet ,

Zge ≡
⎛
⎜⎝

Zge1
...

ZgeSe

⎞
⎟⎠ ,

V ≡
⎡
⎢⎣

1
C1

1
C2

1
C3

⎤
⎥⎦ .

From the joint distribution, we can get all full conditional posterior distributions:⎛
⎝age

bge

cge

⎞
⎠∣∣∣rest ∼ N

((
XT

geXge

σ 2
ge

+ V

)−1 XT
geZge

σ 2
ge

,

(
XT

geXge

σ 2
ge

+ V

)−1)
,

p(dge|rest) ∝ 1

C4
exp

{
−

∑Se

t=1 R2
get

2σ 2
ge

}
,

Age|rest ∝ N(μ,σ 2), 0 ≤ Age < C6,

where

μ =
∑Se

t=1 cos(μeTet + ψe + φg)e
−λeTet Dget − σ 2

geC5∑Se

t=1{cos(μeTet + ψe + φg)e−λeTet }2
,

σ 2 = σ 2
ge∑Se

t=1{cos(μeTet + ψe + φg)e−λeTet }2
,

p(μe|rest) ∝ 1

C8 − C7

G∏
g=1

Se∏
t=1

exp
{
−R2

get

2σ 2
ge

}
, C7 ≤ μe < C8,

p(ψe|rest) ∝ C−0.5
9

G∏
g=1

Se∏
t=1

exp
{
−R2

get

2σ 2
ge

− ψ2
e

2C9

}
, −π ≤ ψe < π, for e = 1,
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p(ψe|rest) ∝ C−0.5
10

G∏
g=1

Se∏
t=1

exp
{
−R2

get

2σ 2
ge

− ψ2
e

2C10

}
,

−π ≤ ψe < π, for e = 2, . . . ,E,

p(φg|rest) ∝
G∏

g=1

Se∏
t=1

exp
{
−R2

get

2σ 2
ge

}
, −π ≤ φg < π,

p(λe|rest) ∝
G∏

g=1

Se∏
t=1

exp
{
−R2

get

2σ 2
ge

}
, 0 ≤ λe < C11,

σ 2
ge ∼ Inv-χ2

(
Se + C12,

C12ζe + ∑Se

t=1 R2
get

Se + C12

)
,

ζe ∼ Gamma

(
C12

2
G + 1,

C12

2

G∑
g=1

1

σ 2
ge

+ C13

)
.

For conditional distributions which we only know up to a normalization con-
stant, we used the Metropolis–Hastings algorithm to draw samples. When fitting
the M0 model to a gene, the full conditional distribution of its parameters can be
obtained by simply replacing all Age with zero in the corresponding full condi-
tional distribution from M1.

A.3. Advanced MCMC moves for better mixing. Besides the basic Metro-
polis-within-Gibbs iteration, we insert the following moves to perturb the MCMC
chain in order to help it traverse faster through the high dimensional space where
there are many local modes and strong correlations among a group of parameters.

• Phase parameters ψe and φg are not identifiable in model M1 because the joint
posterior distribution is invariant if we add a value to all ψe and subtract the
same value from all φg . One way to solve this nonidentifiability problem is to
fix one of them, but it appears that the loss of one degree of freedom makes the
chain very sticky, that is, slow to converge. As an alternative, we assign zero-
centered normal prior distributions to all ψe, and use a transformation group
move [Liu and Wu (1999); Liu and Sabatti (2000); Liu (2001)] to improve mix-
ing of the MCMC sampler. Specifically, we first propose a move by adding a
random number z to all ψe and subtracting z from all φg , and then use the
Metropolis–Hastings rule to accept or reject this move. Since we only care about
the relative phases of genes and experiments, we use φg + ψ1 as the gene’s rel-
ative phase and ψe − ψ1 as the phase for an experiment.

• When a gene violates the assumption that its peaking time in the cell cycle
relative to all other genes is fixed across different experiments, its multiple time
series will show inconsistent phases, which leads to multiple modes for its phase
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parameter φg and amplitude parameters Age. It is difficult to get out of this kind
of local mode by updating φg and Age separately and locally. We combine the
idea of grouping [Liu, Wong and Kong (1994)] and Metropolized independence
sampling [Hastings (1970); Liu (1996, 2001)] to deal with this kind of local
mode. We call it the Metropolized independence group sampler (MIPS). We
first propose a new φg independent of old φg , say, from its prior distribution or
an approximation of its conditional posterior distribution. Then, we sample all
Age conditional on the new φg . The Metropolis–Hastings rule is used to decide
whether to accept this move or not. To get a good proposal of Age, we use linear
regression to get the least square estimate of Age and use it as the center of the
proposal distribution of Age.

• We again use MIPS to deal with the strong correlation within the trend para-
meters (age, bge, cge, dge) for a time series. The key is to propose a new dge

independent of the old dge and sample (age, bge, cge) jointly conditional on the
new dge, which is a multivariate normal distribution here.

• There are also strong correlations between λe and all Age of the same experi-
ment e. We still use MIPS to perturb the MCMC chain. We propose a new λe

independent of the old λe and sample all Age of the same experiment e condi-
tional on the new λe. Similar to the MIPS moves for φg and Age of the same
gene g, we used the least square estimate of Age to improve the proposal effi-
ciency.

It should be noted that MIPS improves the mixing of the MCMC chain, espe-
cially at the initial state of the sampling, with an extra cost in computation. Our
simulations indicated that this is a worthy effort. In meta-analysis, it is not unusual
that different experiments support different values for a shared parameter. As a
result, the shared parameter may have a multi-modal distribution. In that case,
strategies such as MIPS for making global moves are desirable.
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SUPPLEMENTARY MATERIAL

Various supporting materials (DOI: 10.1214/09-AOAS300SUPP; .pdf). In
this supplement we provide model fitting diagnoses, hierarchical clustering re-
sults, the effect of data size on the statistical power, supporting evidences for newly
found genes, and figures referred to in this paper.
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