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LIKELIHOOD INFERENCE FOR PARTICLE LOCATION IN
FLUORESCENCE MICROSCOPY1

BY JOHN HUGHES, JOHN FRICKS AND WILLIAM HANCOCK

Pennsylvania State University

We introduce a procedure to automatically count and locate the fluores-
cent particles in a microscopy image. Our procedure employs an approximate
likelihood estimator derived from a Poisson random field model for photon
emission. Estimates of standard errors are generated for each image along
with the parameter estimates, and the number of particles in the image is de-
termined using an information criterion and likelihood ratio tests. Realistic
simulations show that our procedure is robust and that it leads to accurate
estimates, both of parameters and of standard errors. This approach improves
on previous ad hoc least squares procedures by giving a more explicit sto-
chastic model for certain fluorescence images and by employing a consistent
framework for analysis.

1. Introduction. The accurate and precise tracking of microscopic fluores-
cent particles attached to biological specimens (e.g., organelles, membrane pro-
teins, molecular motors) can give insights into the nanoscale function and dynam-
ics of those specimens. This tracking is accomplished by analyzing digital images
produced by a CCD (charge-coupled device) camera attached to a microscope used
to observe the specimens repeatedly. In this paper we introduce an improved tech-
nique for analyzing such images over time. Our method, which applies maximum
likelihood principles, improves the fit to the data, derives accurate standard er-
rors from the data with minimal computation, and uses model-selection criteria
to “count” the fluorophores in an image. The ability to automate the process and
quickly derive standard errors should allow for the analysis of thousands of im-
ages obtained from a typical experiment and aid in methods to track individual
fluorophores across sequential images.

In fluorescence microscopy, a specimen of interest is tagged with a fluorescent
molecule or particle. The fluorescence microscope then irradiates the specimen
with light at the excitation wavelength of the fluorophore, and when the excited
electrons revert to the ground state they emit photons at the emission wavelength.
A filter separates the emitted light from the excitation light so that only the light
from the fluorescent material can pass to the microscope’s eyepiece and camera
system [Rost (1992)].
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In general, the Rayleigh criterion implies that the maximum resolution for a
light microscope should be roughly 250 nm (half of the wavelength of visible
light); however, Selvin and his collaborators found that by fitting the center point
of the point spread function one can locate a particle of interest. This technique
is known as FIONA (Fluorescence Imaging with One-Nanometer Accuracy) and
was introduced in Yildiz et al. (2003). The key element of FIONA is to focus atten-
tion on single fluorophores used as markers in biological specimens [Kural, Balci
and Selvin (2005)]. By analyzing sequences of images, molecular motors (e.g.,
myosin VI and kinesin) and other specimens can be tracked through time, giv-
ing researchers insight into their dynamics and biological function. For instance,
Yildiz et al. used FIONA to find compelling support for the hypothesis that myosin
V walks hand over hand and evidence to eliminate other hypotheses [Yildiz et al.
(2003); Kural, Balci and Selvin (2005)].

A number of analysis techniques have been proposed for FIONA images. In
2001, Cheezum, Walker and Guilford compared four methods—cross-correlation,
sum-absolute difference, centroid, and Gaussian fit—and ultimately recommended
the Gaussian-fit method for single-fluorophore tracking. In the Gaussian-fit ap-
proach, the method of ordinary least squares (OLS) is used to fit a sum of symmet-
ric bivariate Gaussian functions to the image. Least squares fitting is relatively ef-
ficient, and software to do it is widely available. Thompson, Larson and Webb sub-
sequently proposed a “Gaussian mask” algorithm that is easier to implement than
the Gaussian-fit method, is computationally less intensive, and performs nearly as
well in simulations (2002). The Gaussian-mask algorithm is essentially a centroid
calculation that weights each pixel with the number of photons in the pixel and
with a bivariate Gaussian function integrated over the pixel. In both cases, sim-
ulation studies using typical experimental values showed that sub-pixel or even
nanometer resolution was possible.

The above mentioned Gaussian-fit and Gaussian-mask methods, while appeal-
ing, share two shortcomings. Since one or more beads may move out of frame for
a particular image, the number of beads from one image to the next is not known
a priori and must be determined for each image. Previous authors have attempted
to solve this problem by means of a grid search, the first step of which is to scan
the image for all pixels greater than some arbitrary threshold value. Each of these
extreme pixels is taken to be a bead location, and some region surrounding each
extreme pixel is extracted from the image and processed by OLS or the Gaussian
mask. Thompson et al. suggest a threshold that is eight standard deviations above
the mean pixel value, but no explicit evidence is given in support of this choice
[Thompson, Larson and Webb (2002)]. The correct threshold level for a set of
images could possibly be approximated using simulations, but this would be a
complex and computationally intensive task that would be necessary for each set
of images, since the level of background noise may vary significantly from one
experiment to the next.
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The second drawback is that estimates of precision are derived from simulation
studies alone. If the probability model for the problem is misspecified, then error
estimates based on simulations from that model will be inaccurate even if reason-
able parameter values were used in the studies. And these values will vary from
image to image due to changing experimental conditions, for example, elevated
background noise or slight changes in focus. A possible solution is to perform
a Monte Carlo simulation study using parameter values derived from the current
experiment. But, given that the fitting procedures themselves are time consuming,
these approaches to standard error calculation may prove infeasible. It takes our al-
gorithm several minutes—on a dual 2.8GHz Quad-Core Intel Xeon Mac Pro—to
process an image with fifteen particles, which implies that bootstrapping standard
errors for such an image would require hours of computation. Moreover, a full
analysis of an experiment requires processing many hundreds of images.

In what follows we present a new approach to counting and locating fluo-
rophores. Our approach eliminates the need for a grid search and estimates stan-
dard errors from the data, without additional simulation, via standard likelihood
tools. In Section 2 we present an explicit probability model for a FIONA image
along with a maximum likelihood estimation procedure suitable for this model.
In Section 3 we discuss the properties of the approximate likelihood estimator
presented in Section 2. In Section 4 we discuss stepwise model selection, which
allows our procedure to automatically determine the number of beads in an image
in a consistent manner. In Section 5 we describe the results of realistic simulation
studies that support the approximations presented in Section 2 and demonstrate the
robustness of our procedure. Finally, in Section 6 we carry out a complete analy-
sis of an experimentally collected FIONA image, introducing relevant diagnostic
criteria for our fit.

2. Model for data from a single FIONA image. We first develop a model
for the photon emission from particles distributed over a microscope slide. Photon
emission from a constant source generally follows a Poisson distribution; this fact
naturally leads to a Poisson random field model for the emission from a slide.
We then express the effect of pixelation on the field, representing the emission as
viewed from the digital camera, and employ a normal approximation to the Poisson
distribution. We arrive at our final approximate model by accounting for additional
error introduced by the camera and its associated equipment.

We begin with the standard model for the photon-emission pattern (as distorted
by the point-spread function of a microscope objective) of a collection of fluo-
rophores distributed at random over some region of R

2 [Cheezum, Walker and
Guilford (2001); Thompson, Larson and Webb (2002)].

Let N , a Poisson random field on a rectangular subset T of R
2, represent the

emission pattern of the sample. The intensity function can be defined for any Borel
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set R ⊂ T as

E{N(R)} =
∫ ∫

R

{
B +

J−1∑
j=0

Aj · exp
(
−(x − xj )

2 + (y − yj )
2

S2

)}
dx dy.(1)

Thus, N(R) is a Poisson random variable with the mean equal to a sum of J

Gaussian functions, one for each bead, with Gaussian function j symmetric about
(xj , yj ) (which is contained in T ). In addition, there is a constant background
intensity of magnitude B representing background fluorescence. Although the in-
tensity function for a bead is more often modeled in the physics literature by an
Airy function, a Gaussian function approximates the Airy function quite well, and
so we take the Gaussian centered at (xj , yj ) to represent the (distorted) emission
of bead j [Saxton (1997); Thompson, Larson and Webb (2002)].

The photons emitted by the sample are collected by a camera, the pixels of
which can be represented by partitioning T into a uniform grid, where each pixel
in the grid is square with side length (a) nm. Then, for a given pixel Zi with center
(xi, yi),

E(Zi) =
∫ yi+a/2

yi−a/2

∫ xi+a/2

xi−a/2

{
B +

J−1∑
j=0

Aj

(2)

· exp
(
−(x − xj )

2 + (y − yj )
2

S2

)}
dx dy,

which is approximately equal to{
B + ∑

j

Aj · exp
(
−(xi − xj )

2 + (yi − yj )
2

S2

)}
a2.(3)

Since a2 is a constant, we allow the Aj and B to absorb it, arriving at

E(Zi) ≈ B + ∑
j

Aj · exp
(
−(xi − xj )

2 + (yi − yj )
2

S2

)
= fi.(4)

Moreover, B is generally large enough to justify using a normal approximation
to the Poisson distribution. More precisely,

Zi
·∼ N(fi, fi),(5)

where we note that fi depends on the parameters of interest. In this model it is
obviously important that B and the Aj ’s be constrained so that fi is nonnegative.

The discretized Poisson random field described above is taken as the underly-
ing model for the photon emission; however, additional error, which we will call
instrumentation error, arises from various sources such as signal quantization and
dark current, an electric current that flows through a CCD even when no light is
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entering the device [Bobroff (1986); Thompson, Larson and Webb (2002)]. If we
model the instrumentation error as a N(0, θ) random variable independent of the
intensity, then we have as a final approximate model for the data

Zi
·∼ N(fi, fi + θ).(6)

Consequently, the approximate likelihood of a given image with n pixels is

Ln(β) =
n∏

i=1

1√
2π(fi + θ)

exp
(
−(zi − fi)

2

2(fi + θ)

)
,(7)

where β = (x0, y0,A0, . . . , xJ−1, yJ−1,AJ−1, S,B, θ)T , the parameters of inter-
est. This implies that the log-likelihood, without unnecessary constants, is

�n(β) = −∑
i

ln(fi + θ) − ∑
i

(zi − fi)
2

fi + θ
,(8)

which we maximize with respect to β to obtain β̂MLE.

3. Estimating standard errors. From the theory of maximum likelihood es-
timators we know that, provided certain regularity conditions are met, a properly
scaled MLE converges asymptotically to a normally distributed random variable.
In our case,

[In(β)]1/2(β̂n − β)
D−→ Np(0, Ip),(9)

where In(β) is the Fisher information about β contained in a sample of size n, p

is the dimension of β , and I is the p × p identity matrix. This implies that

β̂n

·∼ Np(β, [In(β)]−1)(10)

for large n, and so the diagonal elements of [In(β)]−1 are approximate sampling
variances for the estimators β̂n. However, we do not know [In(β)]−1 because the
true β is unknown and analytical calculation of the information is prohibitively
complicated.

Consequently, we use the standard substitution [In(β)]−1 using the observed
information, J n(β̂n) = [− ∂2

∂βi ∂βj
�n(β̂n)], that is, [In(β)]−1 ≈ [J n(β̂n)]−1. Esti-

mating [In(β)]−1 by inverting J n(β̂n) has the advantage of avoiding closed form
derivatives which are unwieldy in this case.

The preceding implies that the joint distribution of x̂j and ŷj is approximately
bivariate normal. More precisely,

μ̂j = (x̂j , ŷj )
T ·∼ N2[μj = (xj , yj )

T , �̂j ],(11)

where

�̂j = [J n(β̂n)]−1 =
[

V̂ar(x̂j ) Ĉov(x̂j , ŷj )

Ĉov(x̂j , ŷj ) V̂ar(ŷj )

]
.(12)
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Since the contours, that is, the equidensity curves, of the bivariate normal distri-
bution are ellipses, an approximate 95% confidence region for the location of bead
j also takes the form of an ellipse:

{μj : (μ̂j − μj )
T �̂

−1
j (μ̂j − μj ) = χ2

0.95,2},(13)

where χ2
0.95,2 denotes the 95th percentile of the χ2 distribution with 2 degrees of

freedom [Ravishanker and Dey (2002)]. For an image with multiple beads, the
typical case, we may want a collection of random ellipses, the union of which will
enclose all J beads with probability 0.95. We can accomplish this by using the
Bonferroni correction, which assigns to each bead an error rate of 0.05

J
, thereby

making the image wide error rate 0.05. The resulting collection of simultaneous
confidence ellipses is given by

{μj : (μ̂j − μj )
T �̂

−1
j (μ̂j − μj ) = χ2

1−0.05/J,2}.(14)

We evaluated our standard-error estimation and the convergence of our estima-
tor by way of a simulation study. Ten thousand 100×100 single-bead images were
simulated, each image having its lone bead located at (7823,3353), where the co-
ordinates are given in nanometers from the lower left corner. (For an idea about
the nature of the data, see Figure 2, which has four beads.) Table 1 shows β̂MLE
for a single image along with standard-error estimates for that image and the true
standard errors gleaned from all 10,000 images. Our estimated standard errors are
in close agreement with the true standard errors.

Figure 1 shows estimated densities for the sampling distributions of x̂0, ŷ0, Â0,
Ŝ, B̂ , and θ̂ , respectively. Appropriate normal densities (dashed) are shown super-
imposed. Each normal density is centered at the true value for its parameter. It is
clear that the sampling distributions converge to normality, but the estimators of
S and A0 are slightly biased in opposing directions; intuitively, estimation of S

works in opposition to that of A0. This is because the fitting procedure is attempt-
ing to simultaneously conform Ŝ to the base of the Gaussian peak and Â0 to the
peak’s height, and an adjustment of either estimate nudges the other in the opposite
direction.

TABLE 1
Estimation of standard errors. Estimation error is the
true value of the parameter minus the estimated value

Parameter Truth Est error Sim SE ŜE

x0 7823 −0.4 0.420 0.422
y0 3353 0.1 0.424 0.421
A0 15,000 99.8 77.4 61.2
S 200 −0.2 0.393 0.341
B 200 0.1 0.173 0.171
θ 100 6.7 4.26 4.16
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FIG. 1. These plots show density estimates for the sampling distributions of x̂0, ŷ0, Â0, Ŝ, B̂ , and
θ̂ , respectively, with normal densities (dashed) superimposed.
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4. Model selection: how many beads are in the image. Previous authors
have suggested that the number of beads in an image be determined by applying
a grid search algorithm prior to fitting [Cheezum, Walker and Guilford (2001);
Thompson, Larson and Webb (2002)]. As we mentioned in Section 1, any pixel
with an intensity above some threshold is identified with a bead, and then some re-
gion in the vicinity of the pixel is extracted from the image and fitted. This thresh-
olding approach may be adequate for producing initial estimates of bead locations,
but thresholding prevents full automation because the threshold must be chosen by
the investigator. And even a seemingly well-chosen threshold may be too large to
distinguish dim beads from background noise.

Our procedure eliminates these problems by fitting first and selecting the num-
ber of beads based on those fits. In our scheme, an approximate information cri-
terion derived from an OLS fit is used to approximate the size of the model, and
then, because the candidate models are nested, likelihood ratio tests are used to se-
lect the final model. As we will show in Section 5, this approach is able to identify
all of the beads, even very dim ones, automatically.

Our algorithm has a preliminary stage for estimating the number of beads and
producing initial estimates of all parameters except θ , and a final stage for esti-
mating θ , giving maximum likelihood estimates of the other parameters, and accu-
rately determining the number of beads. The preliminary stage assumes zero beads
initially and fits f (x, y) = B to the image using OLS. Using the least squares fit
at each stage, the information criterion

IC(k) = n ln
(

RSS

n

)
+ p

√
n(15)

is computed, where k is the (assumed) number of beads, n is the sample size, RSS
is the residual sum of squares, and p is the number of free parameters. Note that
IC is an increasing function of RSS and p, which implies that IC rewards a better
fit (smaller RSS) and penalizes more free parameters. On the next iteration, one
bead is assumed, and so

f (x, y) = B + A0 · exp
(
−(x − x0)

2 + (y − y0)
2

S2

)
(16)

is fit to the image, producing IC(1). Iteration continues until IC(k) > IC(k−1), which
indicates that the image contains k − 1 beads.

Note that IC is a nonstandard information criterion. We found that even the
Bayesian Information Criteria (BIC) does not penalize additional parameters suf-
ficiently. This can allow the initial stage of the algorithm to significantly overesti-
mate the correct number of beads, causing much unnecessary computation during
the final stage of the algorithm. Our simulations showed that replacing BIC’s ln(n)

with
√

n minimizes overfitting.
As the algorithm makes an initial forward sweep over possible models, the OLS

parameter estimates are saved. This initial sweep stops based on the information
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criteria, IC. Those estimates are used to initialize the maximum likelihood esti-
mation carried out in the final backward sweep which terminates using likelihood
ratio criteria. Providing the MLE routine with good initial estimates of all parame-
ters except θ allows the MLE to converge faster than it otherwise would.

The parameter fits and the selection criteria initially computed are then used
to find the final parameter estimates and make the final model selection. The key
differences are that OLS is replaced by MLE and IC is replaced by the likelihood
ratio statistic

G2
(beads) = −2

{
�n

(
β̂

(beads)
MLE

) − �n

(
β̂

(beads+1)

MLE
)}

,(17)

which should be approximately χ2 distributed with three degrees of freedom (be-
cause each bead is associated with three parameters: Aj , xj , and yj ). The full
algorithm is given in pseudocode below.

Algorithm 4.1 LocateBeads (pixels)
beads ← 0
{β̂(beads)

OLS , IC(beads)} ← OLS(pixels,beads)
repeat{ beads ← beads + 1

{β̂(beads)
OLS , IC(beads)} ← OLS(pixels,beads)

until IC(beads) > IC(beads−1)

beads ← beads − 1
{β̂(beads)

MLE , �n(β̂
(beads)
MLE )} ← MLE(pixels,beads, β̂

(beads)
OLS )

repeat⎧⎪⎨⎪⎩
beads ← beads − 1
{β̂(beads)

MLE , �n(β̂
(beads)
MLE )} ← MLE(pixels,beads, β̂

(beads)
OLS )

G2
(beads) ← −2{�n(β̂

(beads)
MLE ) − �n(β̂

(beads+1)

MLE )}
until G2

(beads) > 7.81 = χ2
0.95,3

return (β̂
(beads+1)

MLE )

5. Simulated examples. In this section we present a series of simulated ex-
amples. We first apply our procedure to a typical image simulated from the Poisson
plus Gaussian model presented above. Then we examine the robustness of our pro-
cedure by applying it in three atypical scenarios: dim beads, beads in close proxim-
ity, and beads that are not entirely contained by the image. Finally, we investigate
the sensitivity of our procedure to misspecification of the instrumentation error.

First, we fit an image with fifteen roughly even-spaced fluorophores to verify
that our method can handle the substantial numbers that are sometimes found in
experimental data. The parameter estimates and their approximate standard errors
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TABLE 2
Localization for a Typical FIONA Image. A = 15,000

for each bead, and S = 200, B = 200, θ = 100. No
estimation error for A was greater than 105, and every
approximate confidence interval save one covered the
truth. The estimation errors for S, B , and θ were 0.1,

−0.1, and 1.7, respectively, and their confidence
intervals covered the true values

Parameter Truth Est error ŜE

x0 23,566 0.9 0.422
y0 4852 0.9 0.423
x1 2522 −0.6 0.423
y1 18,672 0.1 0.421
x2 10,475 −0.6 0.424
y2 4858 −0.05 0.423
x3 16,643 −0.3 0.422
y3 19,505 0.6 0.423
x4 6842 0.4 0.423
y4 16,060 0.1 0.421
x5 17,753 −0.3 0.421
y5 28,518 1 0.423
x6 28,956 0.2 0.421
y6 6771 0.2 0.421
x7 27,512 0.3 0.419
y7 3454 −0.4 0.419
x8 4165 0.3 0.422
y8 13,466 −0.5 0.422
x9 28,960 0.4 0.421
y9 11,712 −0.5 0.421
x10 25,394 0.1 0.422
y10 28,468 −0.4 0.421
x11 29,112 0.1 0.423
y11 28,770 −0.6 0.422
x12 18,028 0 0.422
y12 21,796 0.1 0.422
x13 28,318 0.2 0.434
y13 12,251 0.2 0.428
x14 27,757 0.8 0.432
y14 11,937 0.5 0.426

appear in Table 2. While the time to fit such a larger example is considerable, the
method works well and finds the correct number of beads without difficulties.

Figure 2 shows an image that contains a bead that is very dim (A = 400) relative
to the image’s other three beads (A = 15,000). We simulated 1000 such images
and applied our procedure to each. Our procedure was able to estimate the bead’s
location to within a standard error of less than six nm, which, relative to the other
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FIG. 2. An image with four beads, one very dim. Our procedure locates all four beads.

beads, represents a tenfold decrease in resolution for a fortyfold decrease in bright-
ness. Table 3 gives the results for this simulation study. Additionally, simulations
showed our algorithm capable of consistently locating (against a background of
200) beads as dim as A = 75, which implies a contrast ratio, that is, the ratio of
the brightest pixel value and the background value, equal to 1.4 (versus 75 for a
typical bead).

Figure 3 shows an image with two beads whose centers are separated by only
400 nm. We again applied our procedure to 1000 like images, each image having
four beads. Our algorithm was able to distinguish the two close beads with only a
slight loss of precision in the direction of the line between the beads, as is shown
in Table 4.
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TABLE 3
Localization of a dim bead

Parameter Truth Est error Sim SE ŜE

x0 4021 0.03 0.431 0.422
y0 5172 −0.13 0.440 0.422
A0 15,000 69.9 63.339 49.337
x1 1497 −0.49 0.430 0.422
y1 9241 −0.04 0.428 0.422
A1 15,000 −8 61.846 49.508
x2 7920 −0.61 0.425 0.423
y2 1807 0.29 0.405 0.424
A2 15,000 −7.3 60.757 49.513
x3 6000 4.69 5.10 5.03
y3 8722 11.89 5.30 5.08
A3 400 −8.761 12.377 11.11

S 200 −0.174 0.220 0.197
B 200 −0.194 0.176 0.174
θ 100 2.575 4.076 4.25

The second image in Figure 3 shows a bead whose center is only 50 nm from
the image’s edge. Our algorithm was able to localize such beads with a loss of
precision in the y direction that is quite acceptable and perhaps even surprisingly
small given that nearly half of the bead is missing. Table 5 reports the results for a
1000-image study, where again each image had four beads.

Maximum likelihood estimation is often sensitive to model misspecification,
and so we investigate the performance of our procedure when the instrumentation
error is not N(0, θ). The instrumentation error for each image has mean zero and
variance θ , but otherwise the errors are distributed rather differently. The model
was simulated, but with heavy-tailed (t3 distributed) and asymmetric (exponen-
tially distributed) instrumentation error. More specifically, the model was simu-
lated according to

Zi ∼ Poi(fi) +
√

θ/3t3(18)

and according to

Zi ∼ Poi(fi) + Exp
(√

θ
) − √

θ,(19)

where Poi(λ) denotes the Poisson distribution with rate λ, tν denotes the t distrib-
ution with ν degrees of freedom, and Exp(λ) denotes the exponential distribution
with mean λ. Tables 6 and 7 show that localization was not affected by these mis-
specifications. Again, 1000 images were used for each study.

Table 8 gives the coverage rates of our approximate 95% confidence regions
for all of the previously mentioned simulation studies and for (first row) a study
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FIG. 3. The upper image shows two beads in close proximity. The lower is an image with a partial
bead.

of 1000 typical images. The coverage rates clearly suffer a bit for all except the
typical and asymmetric scenarios.

6. Analysis of an experimentally observed FIONA image. In this section
we apply our procedure to an experimentally observed FIONA image shown in
Figure 4. Table 9 shows our parameter estimates for this image.

To evaluate the fit to the image, we ran numerous diagnostics to verify that the
observed data originates from our random field model. Our approximate model
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TABLE 4
Localization of beads in close proximity

Parameter Truth Est error Sim SE ŜE

x0 4021 −0.22 0.430 0.422
y0 5172 0.45 0.418 0.421
A0 15,000 22.5 66.827 54.260
x1 1497 0.06 0.424 0.422
y1 9241 0.36 0.417 0.423
A1 15,000 30 62.375 48.019
x2 7920 −0.21 0.467 0.445
y2 1807 1.89 0.579 0.555
A2 15,000 −17.5 61.06 48.328
x3 7920 0.06 0.449 0.445
y3 2207 −0.85 0.563 0.552
A3 15,000 13.8 67.593 54.291

S 200 −0.119 0.190 0.178
B 200 −0.196 0.169 0.173
θ 100 6.518 4.261 4.182

implies that for the ith pixel

Zi
·∼ N(fi, fi + θ),(20)

TABLE 5
Localization of a partial bead

Parameter Truth Est error Sim SE ŜE

x0 4021 −0.09 0.413 0.424
y0 5172 −0.03 0.410 0.423
A0 15,000 143 69.09 48.217
x1 1497 −0.39 0.421 0.424
y1 9241 0.39 0.432 0.424
A1 15,000 143 69.581 71.17
x2 7920 0.37 0.430 0.422
y2 1807 0.35 0.417 0.422
A2 15,000 104.4 64.671 48.416

x3 6000 0.11 0.524 0.525
y3 50 −0.822 0.924 0.846
A3 15,000 37.2 62.715 48.738

S 200 −0.51 0.214 0.187
B 200 −0.119 0.169 0.175
θ 100 0.588 4.243 4.265
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TABLE 6
Estimation when instrumentation error is heavy-tailed

Parameter Truth Est error Sim SE ŜE

x0 4021 −0.25 0.433 0.422
y0 5172 −0.29 0.409 0.422
A0 15,000 −18.3 59.564 47.923
x1 1497 −0.3 0.437 0.421
y1 9241 −0.54 0.425 0.421
A1 15,000 26.9 65.228 47.658
x2 7920 −0.19 0.428 0.422
y2 1807 −0.13 0.422 0.422
A2 15,000 33 58.357 47.671
x3 6000 −0.6 0.432 0.421
y3 8722 −0.1 0.413 0.422
A3 15,000 −19.8 65.419 47.830
S 200 0.073 0.190 0.171
B 200 −0.017 0.175 0.173
θ 100 6.435 9.759 4.191

spatially independent of the other pixels. If our model is correct, then we should
have, for the ith error,

εi = Zi − fi√
fi + θ

·∼ N(0,1),(21)

TABLE 7
Estimation when instrumentation error is asymmetric

Parameter Truth Est error Sim SE ŜE

x0 4021 −0.26 0.428 0.420
y0 5172 −0.75 0.398 0.421
A0 15,000 5.1 60.595 47.619
x1 1497 −0.39 0.410 0.421
y1 9241 0.07 0.422 0.422
A1 15,000 −149.7 62.130 48.146
x2 7920 −0.17 0.413 0.421
y2 1807 0.08 0.442 0.421
A2 15,000 −68 57.774 47.940
x3 6000 0.67 0.424 0.420
y3 8722 0.04 0.420 0.419
A3 15,000 −74 61.813 48.109
S 200 0.12 0.188 0.170
B 200 0.44 0.178 0.173
θ 100 5.075 4.798 4.203
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TABLE 8
Coverage rates of approximate 95% confidence ellipses

Scenario Bead type Coverage rate

Typical typical 94.4%
typical 95.6%
typical 95.1%
typical 95.4%

Dim typical 95.6%
typical 94.6%
typical 95.2%

dim 93.7%

Close typical 95.1%
typical 94.6%
close 94.3%
close 93.8%

Partial typical 95.3%
typical 94.5%
typical 95.8%
partial 93.0%

Heavy-tailed typical 94.9%
typical 94.3%
typical 94.8%
typical 93.5%

Asymmetric typical 96.1%
typical 95.6%
typical 95.8%
typical 95.2%

spatially independent of the other errors. This implies that the variogram

γ (h) = 1
2 Var{ε(s + h) − ε(s)}(22)

should equal one for all locations s and lag (displacement) vectors h.
We plot empirical (residual) variograms to determine spatial independence and

use a normal probability plot to check for normality [Cressie and Hawkins (1980)].
The plots for our example image are shown in Figure 5. Except for some anom-
alous features in the lower tail of the probability plots, the diagnostics give a good
indication that our proposed model is sound. The standardized residuals were also
checked and no blatant violations of what would be expected for independent,
identically distributed data were found.

7. Conclusions. The method outlined in this paper allows for the automated
analysis of FIONA images, including the ability to select the number of fluo-
rophores in an image. By using a likelihood framework, the method also allows
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FIG. 4. An experimentally observed FIONA image.

for standard errors to be calculated simultaneously with the estimates. The method
was then verified through simulation and the analysis of collected data. We hope
that this case study will serve as an example of applying traditional statistical the-
ory to enhance the analysis of nanoscale experimental methods where algorithmic
approaches have been favored.

Since this method is largely automated through model selection techniques, it
can handle the analysis of “movies” by processing each frame. Since the method
also returns standard errors for the locations of the fluorophores, this opens the
possibility of creating tracking methods to follow dynamic specimens using not
only the position data but the information on observational errors which are given.
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TABLE 9
Parameter estimates for an experimentally

observed FIONA image

Parameter Estimate ŜE

x0 12,168.1 4.83
y0 7570.4 4.79
A0 269.8 10.5
x1 12,296.1 4.71
y1 16,509 4.63
A1 275.7 10.3
S 175.7 3.31
B 33.4 0.0418
θ 80.8 0.632

FIG. 5. A variogram plot and a normal probability plot of the standardized residuals for the real
FIONA image. The lags for the variogram plot are given in nanometers, and the image in question
was approximately 27,000 nm on a side.
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Estimation and model selection can be done using our free C++ application,
beads, which makes extensive use of the GNU Scientific Library, and fit diagnos-
tics can be carried out using our free R software package, FIONAdiag [Galassi et al.
(2008)].
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