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EXACT ASYMPTOTIC DISTRIBUTION OF CHANGE-POINT MLE
FOR CHANGE IN THE MEAN OF GAUSSIAN SEQUENCES

BY STERGIOS B. FOTOPOULOS1, VENKATA K. JANDHYALA1

AND ELENA KHAPALOVA

Washington State University

We derive exact computable expressions for the asymptotic distribution
of the change-point mle when a change in the mean occurred at an unknown
point of a sequence of time-ordered independent Gaussian random variables.
The derivation, which assumes that nuisance parameters such as the amount
of change and variance are known, is based on ladder heights of Gaussian
random walks hitting the half-line. We then show that the exact distribution
easily extends to the distribution of the change-point mle when a change oc-
curs in the mean vector of a multivariate Gaussian process. We perform sim-
ulations to examine the accuracy of the derived distribution when nuisance
parameters have to be estimated as well as robustness of the derived distrib-
ution to deviations from Gaussianity. Through simulations, we also compare
it with the well-known conditional distribution of the mle, which may be
interpreted as a Bayesian solution to the change-point problem. Finally, we
apply the derived methodology to monthly averages of water discharges of
the Nacetinsky creek, Germany.

1. Introduction. While modeling time-ordered data, one is concerned about
the parameters of the model being dynamically stable. One way of addressing the
dynamic instability of the model parameters is to model the time dependence of
parameters through a possible change at an unknown time-point so that the pa-
rameters remain stable both before and after the unknown change-point. Clearly,
the methodology is extremely important from a practical point of view, mainly be-
cause the changes in phenomena observed over time usually occur unannounced,
such as change in the quality characteristic of a manufacturing process, changes in
water or air quality overtime, changes in the pattern of stock market indices and
so on. The change-point problem allows modelers to detect the presence of any
such unknown change-points and further capture them through either point or in-
terval estimates. Such modeling has found applications from all areas of scientific
endeavor, including environmental monitoring, global climatic changes, quality
control, reliability, financial and econometric time series, and medicine, to name
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a few. For examples of real life applications, see Braun and Müller (1998) for
application of change-point methods in DNA segmentation and bioinformatics;
Fearnhead (2006), Ruggieri et al. (2009) for applications in geology; Perreault et
al. (2000a, 2000b) for application in hydrology; Jarušková (1996) for applications
in meteorology; Fealy and Sweeney (2005) and DeGaetano (2006) for applica-
tions in climatology; Kaplan and Shishkin (2000) and Lebarbier (2005) for appli-
cations in signal processing; Andrews and Ploberger (1994), and Hansen (2000)
for applications in econometrics; and Lai (1995), Wu, Cheng and Jeng (2005) and
Zou, Qiu and Hawkins (2009) for applications in statistical process control. Even
though there are recent advances in addressing multiple changes in scientific phe-
nomena [see Fearnhead (2006), Fearnhead and Liu (2007), Girón, Moreno and
Casella (2007) and Seidou and Ouarda (2007)], the classical change-point litera-
ture is most well developed in the case of a single unknown change-point in time-
ordered processes.

Classical change-point methods involve two fundamental inferential problems,
detection and estimation. Under the likelihood-based approach, the detection part
is addressed through likelihood ratio statistics and their asymptotic sampling distri-
butions. Maximum likelihood estimation of an unknown change-point first begins
with obtaining the mle as a point estimate. Interval estimates of any desired level,
which are preferred over point estimates, can be constructed around the mle, pro-
vided distribution theory for the mle is available. However, distribution theory for
a change-point mle can be analytically intractable, particularly when no smooth-
ness conditions are assumed regarding the amount of change. In contrast, advances
in the Bayesian approach to change-point methodology have been occurring at a
faster pace. Ever since Markov chain Monte Carlo (MCMC) methods were seen as
a tool for overcoming the computational complexities in Bayesian analysis, there
has been rapid progress in the overall development of this important methodolog-
ical tool, and advances in Bayesian change-point analysis have not lagged behind.

While the classical change-point problem dates back to Page (1955), there has
been a large amount of literature on the problem covering both detection and es-
timation aspects. One may consult the monographs of Brodsky and Darkhovsky
(1993, 2000), Basseville and Nikiforov (1993), Csörgő and Horváth (1997), Chen
and Gupta (2000) and Wu (2005), as well as a rich collection of references in
these monographs for a comprehensive account of various approaches to inference
on change-point problems. In reviewing the literature in terms of both theory and
applications, it becomes clear that the detection aspect of the change-point prob-
lem attracted greater attention than its counterpart of estimation. Perhaps this has
not been accidental, in that asymptotic theory for change-point estimators is tech-
nically a more challenging problem than deriving asymptotic distribution theory
for change detection statistics. In an attempt to make estimation of the unknown
change-point more accessible to practitioners, the main purpose of this paper is to
derive exact computable expressions for the asymptotic distribution of the maxi-
mum likelihood estimate (mle) of the unknown change-point when a change occurs
abruptly in the mean only of a Gaussian process.
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Asymptotic distribution theory for the change-point mle in the abrupt case was
first initiated by Hinkley (1970, 1971, 1972). While Hinkley (1970) derived the
asymptotic theory for the change-point mle in a fairly general setup, the distribu-
tion was not in a computable form, and was primarily technical in nature. It turns
out that Hinkley (1970) computed the distribution for change in the mean of a
normal distribution only through certain approximations. While Hu and Rukhin
(1995) provided a lower bound for the probability of the mle being in error of
capturing the true change-point, Jandhyala and Fotopoulos (1999) and Fotopou-
los and Jandhyala (2001) derived upper and lower bounds and also suggested two
approximations for the asymptotic distribution of the change-point mle. Similarly,
Borovkov (1999) also provided only upper and lower bounds for the distribution
of the change-point mle. Thus, despite the attempts of various authors, the problem
of deriving computable expressions for the asymptotic distribution of the change-
point mle remained unsolved to date. It is particularly striking that exact com-
putable expressions for the asymptotic distribution of the change-point mle have
not been derived in the literature for even selected distributions of the underlying
process such as the Gaussian and exponential distributions.

Tackling this important problem, we derive in this article exact computable ex-
pression for the distribution of the change-point mle when a change occurs in the
mean only of a univariate or multivariate Gaussian process. The derived asymp-
totic distribution is not only exact but is also quite elegant and can be computed
in a simple and straightforward manner. In fact, the result we derive demonstrates
that the second suggested approximation in Jandhyala and Fotopoulos (1999) is the
exact solution to the problem, in the Gaussian case. It should be pointed out that
the distribution we derive assumes that the parameters of the distribution before
and after the change-point are known. However, this should not pose difficulties,
since Hinkley [(1972), page 520], in a theorem has shown that the asymptotic
distribution of the change-point mle remains the same even for unknown parame-
ter scenarios. From a practical point of view, this asymptotic equivalence result
is extremely important. In practice, apart from the change-point being unknown,
the parameters before and after the change-point also invariably remain unknown.
The problem of deriving the distribution of the change-point mle when the pa-
rameters are unknown is the one that practitioners would be most interested, as
opposed to the distribution of the change-point mle for the case when the para-
meters are known. There is no a priori reason to believe that the distributions of
the change-point mle for the known and unknown cases be asymptotically equiv-
alent. It is in this sense that the asymptotic equivalence result of Hinkley (1972)
plays a key role for practitioners. One only needs to examine whether this asymp-
totic property holds well for reasonable sample sizes, and for this we carry out a
simulation study in Section 4.

Since the exact solution derived in the paper assumes Gaussianity, it is tempting
to explore robustness of this exact computable expression when the true process
deviates from Gaussianity. If the derived result is indeed robust to such departures,
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then it can be applied more widely than merely Gaussian processes. While a sim-
ulation study covering a wide class of non-Gaussian families of distributions may
be of interest for practitioners, in this paper we pursue a limited robustness study
by performing large scale simulations wherein the error process is assumed to be
symmetric and follows the t-distribution, or asymmetric and follows the standard-
ized chi-square distribution. In both cases, we change the degrees of freedom from
being small to large, so that one approaches Gaussianity as the degrees of freedom
become large.

Hinkley’s approach to deriving distribution of the change-point mle is perceived
as the unconditional approach in the literature. Against this, Cobb (1978) proposed
a conditional approach to the distribution of the change-point mle, wherein the
distribution of the mle is derived by conditioning upon sufficient information on
either side of the unknown change-point. Since the exact distribution of the uncon-
ditional mle is now available, it is relevant to compare the conditional and uncondi-
tional distributions in terms of their performance, including robustness properties.
Thus, we have also included Cobb’s conditional distribution in our simulations. As
pointed out by Cobb (1978), since the conditional distribution of the change-point
mle can also be interpreted as the Bayesian posterior for the change-point under
a uniform prior on the unknown change-point, the comparisons between the two
distributions have a broader appeal than what might appear at first glance.

Finally, we apply the methodology derived in the paper to multivariate analysis
of hydrological data. The data, previously analyzed in a univariate setup by Gom-
bay and Horváth (1997), represents averages of log transformed water discharges
for the Nacetinsky creek for the months of February, July and August during the
years 1951–1990. The bivariate and trivariate change-point analysis shows that a
significant increase has occurred in the water discharges, whereas the univariate
change-point analyses show no significant changes in the mean water flows.

The organization of the paper is as follows. In Section 2 we present some gen-
eral background regarding the change-point mle and its asymptotic distribution.
Then, we state the main theorem in Section 3, and the proof of the theorem is
presented in Appendix A. While Section 4 consists of empirical assessment of the
performance of derived theory for the case of known and unknown parameters,
Section 5 contains the multivariate change-point analysis of the Nacetinsky creek
data. Finally, Section 6 concludes the paper with a discussion.

2. Distribution of the mle. Let Y1, Y2, . . . , Yn, n ≥ 1, be a sequence of
real-valued independent time ordered random variables defined on a probability
space (�,F,P ). Let there be a natural number τn ∈ {1,2, . . . , n − 1} such that
Y1, Y2, . . . , Yτn have a common distribution F1, whereas the subsequent observa-
tions Yτn+1, Yτn+2, . . . , Yn have a common distribution F2 with F1 �= F2. Here,
the change-point τn is an unknown parameter and should be estimated. The like-
lihood function of τn is given by pn(Y ; τn) =∏τn

i=1 f1(Yi)
∏n

i=τn+1 f2(Yi), where
the functions f1 and f2 are densities of F1 and F2, respectively, with respect to
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some dominating measure μ(F1,F2 � μ). In the sequel we assume that the densi-
ties f1 and f2 are known, perhaps through known parameters. Following Hinkley
(1970), the mle τ̂n may be expressed as

τ̂n = arg max
1≤j≤n−1

j∑
i=1

a(Yi),(2.1)

where a(Yi) = log{f1(Yi)/f2(Yi)}, i = 1, . . . , n − 1. For establishing distribution
theory, it is convenient to work with τ̂n − τn ∈ {−τn + 1, . . . , n − τn − 1} instead
of τ̂n. Hence, we have

ξn = τ̂n − τn = arg max
−τn+1≤j≤n−τn−1

τn+j∑
i=1

a(Yi),(2.2)

where the maximizer is a result of the following two-sided random walk �(·):

�n(j ; τn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

j∑
i=1

a(Y ∗
i ) =

j∑
i=1

X∗
i = S∗

j , j ∈ {1, . . . , n − τn − 1},
0, j = 0,

−
−j∑
i=1

a(Yi) =
−j∑
i=1

Xi = S−j , j ∈ {−1, . . . ,−τn + 1}.
(2.3)

Here, {Y,Yi : i ≥ 1} and {Y ∗, Y ∗
i : i ≥ 1} are two independent sequences with inde-

pendent and identical copies on (R,R) such that Y is distributed according to F1,
and Y ∗ is distributed according to F2. Note that X and X∗ are real valued random
variables defined on R. Also note that when F1 �= F2,

E(X) = −
∫
S

log{f1(x)/f2(x)}f1(x)μ(dx) = −K(f1, f2)

= −Ef1{a(Y )} < 0 and
(2.4)

E(X∗) =
∫
S

log{f1(x)/f2(x)}f2(x)μ(dx) = −K(f2, f1)

= Ef2{a(Y ∗)} < 0,

where K is the usual Kullback–Leibler information. It can be seen that (2.4) is also
related to the entropy function, which in many instances is used for measuring the
distinctness of probabilities. We assume that P(X > 0) > 0. For θ > 0, let

φ(θ) = E{exp(θX)} and ψ(θ) = E{exp(θX∗)}.(2.5)

Note that φ(θ) = ψ(1 − θ). Moreover, φ(θ) ≤ 1,∀θ ∈ [0,1], since

φ(λ) =
∫
S
f1(x){f1(x)/f2(x)}−λμ(dx) =

∫
S
f 1−λ

1 (x)f λ
2 (x)μ(dx)

(2.6)

≤
{∫

S
f1(x)μ(dx)

}1−θ{∫
S
f2(x)μ(dx)

}θ

= 1.
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It is known that when E(X) < 0, P(X > 0) > 0 and ϑ = sup{θ > 0 :φ(θ) ≤ 1},
the asymptotic behavior of the tail for the ultimate maximum, M = sup{Sn :n ∈ N},
can be described by the following three cases:

(i) ϑ = 0, the tail has a polynomial form (sub-exponential case),
(ii) ϑ > 0 and φ(ϑ) < 1 an intermediate case,

(iii) ϑ > 0 and φ(ϑ) = 1 the Cramér’s case.

Now, in a sequence of observations for which F1 �= F2, the μ-derivatives also
satisfy f1 �= f2. From (2.6), it is clear that the choice of ϑ greater than zero for
which (iii) is satisfied is ϑ = 1, the unity. Consequently, it follows that X sat-
isfies Cramér’s condition. Furthermore, merely noting that ψ(ϑ) = φ(1 − ϑ), it
follows that X∗ also satisfies Cramér’s condition. This observation implies that
ϑ = ϑ∗ = 1, in Proposition 1 of Jandhyala and Fotopoulos (1999) for general dis-
tributions including Gaussian random variables.

It also follows that φ(θ) < 1,∀θ ∈ (0,1) and that φ is strictly convex on
θ ∈ (0,1). This suggests that φ(θ) attains its minimum at a unique θ0 ∈ (0,1) such
that φ(θ0) = infθ∈(0,1) φ(θ) < 1. This firmly establishes that assumptions 1–3 in
Jandhyala and Fotopoulos (1999) are no more required and that they hold natu-
rally whenever F1 �= F2, and P(X > 0) > 0 are satisfied.

In this paper we are interested in deriving the distribution of the limiting vari-
able ξ∞, by letting n → ∞ in such a way that τn → ∞ and n − τn → ∞. In this
regard, it has been shown that ξ∞ is a proper random variable and ξn → ξ∞ a.s.
[see, e.g., Fotopoulos and Jandhyala (2001)].

We begin by stating a theorem found in Fotopoulos (2009). For all purposes,
this result is a restatement of Theorem 2 in Jandhyala and Fotopoulos (1999).

THEOREM 2.1. Let F1 �= F2 and P(X > 0) > 0. Then, the probability distri-
bution of ξ∞ is given by

P(ξ∞ = j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(T +
1 = ∞)

{
P(T −

1 > −j)

−
∫ ∞

0+
P(M∗ ≥ x)P (T −

1 > −j ∩ S−j ∈ dx)

}
,

j ≤ −1,−2, . . . ,

P (T +
1 = ∞)P (T ∗+

1 = ∞), j = 0,

P (T ∗+
1 = ∞)

{
P(T ∗−

1 > j)

−
∫ ∞

0+
P(M ≥ x)P (T ∗−

1 > j ∩ S∗
j ∈ dx)

}
,

j = 1,2, . . . ,

where T +
1 := inf{j > 0 :Sj > 0}, T −

1 := inf{j > 0 :Sj ≤ 0} and M := max0≤n Sn,
and M∗, T ∗+

1 and T ∗−
1 are defined in a similar manner.
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The convergence rate of the above asymptotic result is of interest for purposes
of both theory and practice. Knowledge about the convergence rate allows one to
judge the appropriateness of the sample size and other ancillary parameters for
which the asymptotic distribution can be utilized for finite sample sizes without
committing disproportional errors. In this regard, both Borovkov (1999) and Jand-
hyala and Fotopoulos (2001) derived important results that establish the conver-
gence rate applicable to Theorem 2.1. We state here some relevant facts from these
articles and then formulate a theorem without proof that establishes a bound for the
total variation distance between the finite sample and infinite sample distributions
of the change-point mle.

From Theorem 2 of Jandhyala and Fotopoulos (2001), we have

sup
B∈Bτn,n

|P(ξn ∈ B) − P(ξ∞ ∈ B)| = P(ξ∞ ≤ −τn or ξ∞ ≥ n − τn),

where Bτn,n is the Borel σ -field defined on Zτn,n ≡ {−τn + 1, . . . ,0, . . . ,

n − τn − 1}. Then, as argued in Jandhyala and Fotopoulos (2001), upon augment-
ing Bτn,n into the Borel σ -filed on Z, it follows that the total variation distance
between ξn and ξ∞ defined by

dTV(ξn, ξ∞) = sup
B∈B

|P(ξn ∈ B) − P(ξ∞ ∈ B)|

may be seen to yield

dTV(ξn, ξ∞) = P(ξ∞ ≤ −τn or ξ∞ ≥ n − τn).(2.7)

The following theorem, which provides a bound for dTV(ξn, ξ∞), follows imme-
diately upon applying (2.7) into Theorem 1 of Borovkov (1999).

THEOREM 2.2. Let F1 �= F2 and P(X > 0) > 0. Let ξn and ξ∞ be the cen-
tered random variables of the change-point mle for finite and infinite samples,
respectively. Then, the total variation distance between ξn and ξ∞ admits the in-
equality given by

dTV(ξn, ξ∞) ≤ 4 max{φ(θ0)
τn, φ(θ0)

n−τn},
where φ(θ0) = infθ∈(0,1) φ(θ) < 1.

Theorem 2.2 clearly establishes a geometric rate of convergence as ξn ap-
proaches ξ∞, asymptotically. The above result is more friendly from a compu-
tational point of view than Theorem 3 of Jandhyala and Fotopoulos (2001).

While Theorem 2.1 provides the probability distribution of ξ∞, the expressions
therein are still only of technical interest. The main problem is that, as far as we
know, a computable expression for the distribution function M(x) [or M∗(x)] is
not available in the literature. Clearly, the behavior of 1 − M(x) (or 1 − M∗(x))

depends upon the characteristics of the underlying distributions f1 and f2, in study.
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Moreover, the term P(T +
1 = ∞) that appears in both Theorems 2.1 and 2.2 may

also be unavailable for computation unless we know the exact distribution of Sn,
for all n ∈ N . Thus, the determination of an exact expression for the distribution
of M for any general distribution is beyond analytical scope, and consequently,
an exact computable form for the probability distribution P(ξ∞ = j), j ∈ Z, in
Theorem 2.1 is also analytically not tractable. To this extent, in this paper we shall
concentrate on developing the analysis by assuming that the underlying process is
of Gaussian type.

3. Asymptotic distribution of the mle under Gaussian processes. We shall
establish the main theorem regarding computationally accessible distribution
of ξ∞ first under the univariate Gaussian case. Subsequently, we shall illustrate
how the univariate case itself can be directly applied to the more general multivari-
ate setup.

3.1. The univariate Gaussian case. We begin by assuming that the underlying
process is univariate Gaussian, and the means before and after the change-point
are given by μ1,μ2, wherein we let μ1 �= μ2. We do assume that the standard de-
viation σ is known and remains the same throughout the sampling period. Clearly,
the likelihood ratios in (2.1) may then be expressed as

X = −a(Y ) = log{f2(Y )/f1(Y )}
= log

{
1√

2πσ 2
e−(Y−μ2)

2/2σ 2/ 1√
2πσ 2

e−(Y−μ1)
2/2σ 2

}
(3.1)

=D −(μ1 − μ2)
2

2σ 2 − (μ1 − μ2)

σ
Z,

where Z ∼ N(0,1), and, similarly,

X∗ =D −(μ1 − μ2)
2

2σ 2 + (μ1 − μ2)

σ
Z∗,(3.2)

where Z∗ ∼ N(0,1), and is independent of Z. Note that in this case, the random
variables X and X∗ are both identically distributed with means E(X) = E(X∗) =
−η2/2 < 0 and variances var(X) = var(X∗) = η2, where η = |μ1−μ2|

σ
represents

the standardized amount of change. Hence, it is sufficient to confine our analysis
to only one side of the random walk �(·).

Under the formulation in (3.1), it can be seen that Sn =D −n
η2

2 − η
√

nZ, where
again Z ∼ N(0,1). Note [Asmussen (1987), Corollary 4.4] that when E(X) < 0,
the ladder height distribution given by G+(dx) = P(ST +

1
∈ dx ∩ T +

1 < ∞) is de-

fective. Thus, ‖G+‖ = P(T +
1 < ∞) < 1 and 1

E(T −
1 )

= 1−‖G+‖ = P(T +
1 = ∞) =

P(M = 0). We shall now state our main theorem, which provides a computable
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expression for the distribution of ξ∞. The computability of the terms in the ex-
pression will be demonstrated in the discussion following the theorem. The proof
of the theorem is presented in Appendix A. Subsequent to the theorem, we state a
corollary, which establishes a closed form computable expression for the bound in
Theorem 2.2.

THEOREM 3.1. Suppose that the time-ordered sequence Y1, Y2, . . . , Yn,
n ≥ 1, is such that Yi ∼ N(μ1, σ

2), i = 1, . . . , τn, and Yi ∼ N(μ2, σ
2),

i = τn + 1, . . . , n. Then, the probability distribution of ξ∞ is given by

P(ξ∞ = k) =
{

(1 − ‖G+‖)(q|k| − ‖G+‖q̃|k|
)
, k = ±1,±2, . . . ,

(1 − ‖G+‖)2, k = 0,

where 1 − ‖G+‖ = exp{−∑∞
j=1

1
j
�̄(η

√
j/2)} and qk = E{I (T −

1 > k)}, q̃k =
E{e−Sk I (T −

1 > k)}, k = 1,2, . . . and q0 = q̃0 = 1.

It is fairly straightforward to state the bound in Theorem 2.2 for the Gaussian
case. Specifically, it follows that the total variation distance in the Gaussian case
admits

dTV(ξn, ξ∞) ≤ 4 max
{

exp
(
−η2τn

8

)
, exp

(
−η2(n − τn)

8

)}
.(3.3)

3.2. The multivariate Gaussian case. Here, we let {Y,Yi : i ∈ N} be a sequence
of time-ordered independent Gaussian elements defined on Rd , the d-dimensional
Euclidean space with f (x;μd×1,�d×d) denoting the corresponding probability
density function. In the sequel, mainly for convenience, we represent the parameter
only as (μ,�) by dropping the respective dimension subscripts. Let the parameter
(μ,�) change from its initial value of (μ1,�) to (μ2,�), at some unknown index
point τn ∈ {1,2, . . . , n−1}, with mean vectors μ1,μ2 ∈ �, and common variance-
covariance matrix �. For reason of convenience, we assume that � is positive
definite and the mean vectors satisfy μ1 �= μ2.

The functional 〈x, y〉 denotes the usual inner product and the extended semi-
norm is defined if there exists a covariance operator � such that ‖x‖2

� = 〈�x,x〉.
Then, we may write Y =D μ1 + �1/2Z for all data before the change-point,
where Z is a d-variate standard normal vector. Consequently, the random variable
X = − lnf (Y ;μ1,�)/f (Y ;μ2,�) is expressed as

X = 1
2{〈�−1(Y − μ1), Y − μ1〉 − 〈�−1(Y − μ2), Y − μ2〉}

(3.4)
=D −1

2‖μ1 − μ2‖2
�−1 − ‖μ1 − μ2‖�−1Z,

where Z now stands for the standard normal random variable with mean zero and
variance one.
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Similarly, for data after the change-point, we have Y =D μ2 +�1/2Z∗, where Z∗
is the d-variate standard normal vector, and in this case, we obtain

X∗ = lnf (Y ;μ1,�)/f (Y ;μ2,�)
(3.5)

=D −1
2‖μ1 − μ2‖2

�−1 + ‖μ1 − μ2‖�−1Z
∗,

where Z∗ is univariate standard normal independent of Z. Upon letting η = ‖μ1 −
μ2‖�−1 represent the amount of standardized change in the means, it should be
clear that the multivariate case translates itself into a corresponding univariate case
with η as defined above.

4. Performance of the distribution of the change-point mle. In this sec-
tion we wish to assess the performance of the derived asymptotic distribution in
two different ways. First, we investigate the equivalence result of Hinkley (1972)
and, second, we compare the derived distribution of the mle with the conditional
distribution of mle as derived by Cobb (1978).

4.1. Distribution of the change-point mle for known and unknown parameters.
The assumption of known parameters does not apply in practice, and it is common
that they must be estimated from the data. While Hinkley (1972) has shown as-
ymptotic equivalence of change-point mle under both known and estimated cases,
its applicability to sample sizes of practical interest requires empirical evidence.
This issue is perhaps even more important in the multivariate case, mainly because
the multivariate case involves estimation of many more parameters. As discussed
in Sections 2 and 3, for comparing the closeness of two distributions, we find it
convenient to utilize the total variation distance measure, which for discrete ran-
dom variables X and Y is given by dTV(X,Y ) = 1

2
∑

i∈Z |P(X = i) − P(Y = i)|.
Simulations are performed by letting the parameter choices for sample size and

true change-point be as follows: n = 40, τ = 20; n = 60, τ = 20; n = 60, τ = 30;
n = 100, τ = 20; n = 100, τ = 30; n = 100, τ = 40 and n = 100, τ = 50. For
each of the above cases, the choice of values for η are set at η = 1.0,1.5,2.0,2.5.
The results for univariate and bivariate cases based on 500,000 simulations for
each individual scenario are presented in Tables 1 and 2, respectively. As one might
expect, the situation of known parameters yields excellent agreement with the the-
oretical distribution in both tables, irrespective of the sample size as well as the
location of the change-point. When parameters are estimated, the univariate case
(Table 1) shows very good to extremely good agreement with the theoretical distri-
bution. The values, for even the bivariate case (Table 2), show very good agreement
except when η is very small (η = 1).
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TABLE 1
Total variation distances of known and estimated empirical distributions (based on 500,000

simulations) from theoretical distribution of change-point mle in the univariate case

n τ η = 1 η = 1.5 η = 2 η = 2.5

Known Est. Known Est. Known Est. Known Est.

100 20 0.0106 0.0665 0.0070 0.0264 0.0033 0.0139 0.0014 0.0082
100 30 0.0113 0.0493 0.0065 0.0205 0.0032 0.0104 0.0021 0.0057
100 40 0.0112 0.0437 0.0065 0.0189 0.0033 0.0091 0.0020 0.0050
100 50 0.0109 0.0412 0.0068 0.0176 0.0040 0.0082 0.0022 0.0044

60 20 0.0105 0.0721 0.0070 0.0298 0.0033 0.0155 0.0014 0.0086
60 30 0.0112 0.0641 0.0065 0.0271 0.0032 0.0133 0.0021 0.0076

40 20 0.0104 0.0852 0.0070 0.0383 0.0033 0.0191 0.0014 0.0105

4.2. Unconditional change-point mle against Cobb’s conditional mle. Cobb
(1978) derived conditional distribution of the change-point mle by conditioning
upon sufficient observations around the true change-point, which according to
Cobb (1978) is also equivalent to the Bayesian posterior when the prior on the
unknown change-point is uniform. If δ denotes the number of data points to be con-
sidered on either side of τ̂n, then Cobb’s conditional solution for l ∈ {−δ, . . . , δ} is
given by

P(τ̂n − τn = l|Yτ̂n−δ+1, . . . , Yτ̂n+δ)
(4.1)

∼= pn(Y ; τ̂n + l)
/ δ∑

l=−δ

pn(Y ; τ̂n + l).

TABLE 2
Total variation distances of known and estimated empirical distributions (based on 500,000

simulations) from theoretical distribution of change-point mle in the bivariate case

n τ η = 1 η = 1.5 η = 2 η = 2.5

Known Est. Known Est. Known Est. Known Est.

100 20 0.0108 0.0991 0.0066 0.0376 0.0035 0.0197 0.0018 0.0126
100 30 0.0110 0.0718 0.0065 0.0281 0.0034 0.0153 0.0016 0.0099
100 40 0.0119 0.0624 0.0070 0.0252 0.0044 0.0135 0.0017 0.0075
100 50 0.0121 0.0595 0.0076 0.0236 0.0040 0.0126 0.0016 0.0075

60 20 0.0107 0.1140 0.0066 0.0466 0.0035 0.0248 0.0018 0.0157
60 30 0.0107 0.1006 0.0065 0.0410 0.0034 0.0218 0.0016 0.0146

40 20 0.0105 0.1383 0.0065 0.0647 0.0035 0.0350 0.0018 0.0233
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The method of choosing δ is clearly detailed in Cobb (1978). It is then relevant
to compare the unconditional distribution of the mle derived in Section 3 with the
above conditional solution. Also, we investigate the robustness of the exact lim-
iting distribution for departures from normality through simulations, limiting the
study to the univariate framework only. Here, incorporating both symmetric and
asymmetric distributions, the error structures are modeled by the standardized tν
and χ2

ν distributions.
For simplicity, we let only η = 1.0 and η = 2.5, and then perform simula-

tions for all the choices of sample sizes and true change-points considered in Sec-
tion 4.1. The choices of ν under tν -distribution were ν = 5,10,20 and they were
ν = 1,5,20 under χ2

ν -distribution. Note that while implementing Cobb’s condi-
tional solution, we determined the value of δ so that the error rate detailed in
Cobb (1978) is close to 10−5. To save space, we present the computed distribu-
tions (based on 50,000 simulations) in the form of figures only, and that too only
for the case of n = 100, τ = 50. Figure 1(a–c) correspond to the cases of normal,
t5 and χ2

1 distributions when η = 1.0, and Figure 1(d–f) correspond to the same
cases when η = 2.5.

For the remaining cases, we summarized the computed distributions through
Bias and mean square error (MSE), and to save space, we only describe the salient
features of these computations. It can be seen from Figure 1(a) that in the normal
case, the unconditional distributions under both known and estimated cases are al-
most identical and they closely agree with the theoretical distribution even when
change is small with η = 1.0. While the distributions of cmle under known and
estimated cases are also quite identical to each other, there is more spread in the
cmle, with the probability at the true change-point being substantially smaller than
that of the unconditional mle. It is clear from Figure 1(b) and (c) that robust to de-
viations from normality is quite pronounced even when degrees of freedom under
t5 and χ2

1 distributions are small. Moving on to η = 2.5, we find from Figure 1(d–f)
that, overall, there is greater robustness and even better agreement between known
and estimated solutions.

Though not presented, the Bias and MSE values show some differences from
known case to the estimated case, mainly when η is small (η = 1.0). The robust-
ness for large changes (η = 2.5) is extremely good throughout the computations,
thus depicting good tail behavior for large changes under both t and χ2 distribu-
tions. Also, extreme behavior is noticed for the estimated case when η = 1.0 and
n = 100, τ = 20. In this case, Cobb’s cmle shows somewhat smaller MSE values
than the mle, though only marginally. For all other parameter choices, the mle
performs better in terms of MSE values.

Finally, we noticed that the behavior of MSE values for mle in the known case
are lower than the corresponding theoretical MSE values and that the MSE values
increase with the sample size. This behavior can be explained by the fact that
the theoretical distribution derived for infinite samples possesses infinite domain,
whereas the domain under finite samples is truncated by the sample size. This
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FIG. 1. Plots of theoretical mle, empirical mle (known), empirical mle (estimated), empirical
cmle (known) and empirical cmle (estimated) distributions of the centered change-point when
n = 100, τ = 50 under normal (a); t5 (b) and χ2

1 (c) when η = 1.0; and normal (d); t5 (e) and

χ2
1 (f) when η = 2.5.
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truncation effect for finite samples is found to be most pronounced when n = 40.
The same argument also explains why MSE values in both tables increase with
increasing sample sizes.

5. Multivariate change-point analysis of water discharges at Nacetinsky
creek. The Nacetinsky is a small creek in the German part of the Ergebirge
Mountains. Gombay and Horváth (1997) analyzed the monthly averages of wa-
ter discharges for the Nacetinsky creek during the years 1951–1990 and found that
the lognormal distribution appropriately models the monthly average discharges in
the creek. Consequently, applying the log transformation, they applied likelihood
ratio based change detection methodology in a univariate framework for detecting
changes in mean only as well as changes in the variance only of the normal distri-
bution for the transformed data. When changes were detected, they obtained point
estimates of the unknown change-point by the value at which the likelihood ratio
was maximum. In detecting the change points, Gombay and Horváth (1997) found
that the change-detection methodology under independence was applicable for the
monthly water discharges.

We revisited the monthly data and first analyzed the data in a univariate setup,
mainly for detecting changes in mean only or variance only of the transformed
data. Applying the respective likelihood ratio change-detection statistics (B.2)
and (B.4) in Appendix B, we found no evidence of change in either the mean or in
the variance for almost all months. We were then interested to learn whether bivari-
ate or multivariate analyses might convey a different message than what has been
learned from the univariate analysis. One can expect significant covariances in the
water discharges among various months within a year, and it is of interest to know
whether such covariances contribute significantly as one pursues change-detection
and estimation. To this extent, we found that a multivariate analysis of the data for
the months of February, July and August yields some interesting results.

Change-point analysis, whether at the univariate level or at the multivariate
level, involves two parts, namely, change-detection and change-point estimation
whenever a change-point is detected. The focus of this paper clearly is on esti-
mation, where we derive computable expressions for the asymptotic distribution
of the change-point mle. Change-detection is not pursued in the theoretical part
of this paper. However, change-detection precedes change-point estimation for the
analysis of data. Keeping this in mind, we first present analysis and results from
change-detection in Appendix B, and only results from change-point estimation
will be emphasized in this section. Once again, our analysis in both detection and
estimation is based on log transformed water discharges data for the months of
February, July and August as reported in Figure 2.

To proceed with the formulation, let Yi represent the log transformed monthly
water discharges at the Nacetinsky creek for the months of February, July and
August for the for the ith year, i = 1, . . . ,40, so that in this case the dimen-
sion d = 3, and the sample size n = 40. We begin modeling the data by as-
suming that Y1, . . . , Yn are independent and that Yi ∼ N(μ(i),�), i = 1, . . . , n.
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FIG. 2. Time series plot of log transformed data on mean monthly water discharges of the
Nacetinsky creek for the months of February, July and August for the years 1951–1990.

Under the change-point setup with τn as the unknown change-point, one lets
μ(i) = μ1, i = 1, . . . , τn and μ(i) = μ2, i = τn + 1, . . . , n.

With the above as the basic setup, one can first apply change-detection method-
ology, and this has been done comprehensively in Appendix B. Basically, it has
been found that the bivariate tests for Feb–Jul, and Feb–Aug pairs as well as the
multivariate test for all the three months, were found to be significant even though
none of the univariate tests showed significance. The bivariate and multivariate
analyses resulted in the change-point mle being τ̂n = 14, so that a change in water
discharges occurred subsequent to the year 1964. The analysis in the Appendix
was quite supportive of the assumptions of both Gaussianity and independence.

We shall now implement the theoretical distribution derived in Section 3 to the
data in Figure 2 under the bivariate and trivariate cases. Based on τ̂n = 14, we
estimated the values of η to be η̂FJ = 1.47, η̂FA = 1.52 and η̂FJA = 1.60. Visual-
izing these as known values, we implemented the theoretical distribution for each
of the three cases. We found the period 1960–1968 to yield confidence levels of
94.8%, 95.6% and 96.5%, respectively. Simulations suggest that the same period
under both bivariate and trivariate estimated cases with true parameter values set
at η = 1.51 and n = 40, τ = 14 yields a confidence level of 90%. Applying the
conditional distribution of Cobb (1978) for the same data with an error rate of
approximately 10−5, we found that 95% coverage probability for Feb–Jul is the
period 1963–1971, for Feb–Aug the period is 1963–1969, and for Feb–Jul–Aug
the period is obtained as 1963–1967. Clearly, for this particular data, Cobb’s cmle
seems to yield shorter confidence interval than the unconditional mle. However,
under repeated samples for data of the same size with the true parameters set at
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η = 1.51 and n = 40, τ = 14, we found that the period 1960–1968 under Cobb’s
cmle yields a coverage probability of 88% under both bivariate and trivariate cases,
thus showing a similar performance as the mle on average.

6. Discussion. Asymptotic distribution of the change-point mle is quite com-
plicated and an exact computable expression for the distribution of the mle has
not been derived in the literature to date, even though Hinkley (1970, 1971, 1972)
published his seminal work more than three decades back. Assuming the parame-
ters before and after the unknown change-point to be known, this investigation
establishes an exact and yet computationally attractive form for the asymptotic
distribution of the change-point mle, thus far not available in the literature.

To have a better understanding of its performance, we carried out an empirical
study to compare the distribution under known parameters with the case where the
nuisance parameters remain unknown. We also compare the derived distribution
with the conditional distribution of Cobb (1978) as well as assessing the robustness
of the derived distribution for departures from normality. Simulations have shown
good agreement between known and estimated cases except for the case where
parameters are estimated and amount of change is relatively small. Also, both mle
and cmle are quite robust to deviations from normality, for the most part.

We have applied the derived change-point estimation methodology to compute
the asymptotic distribution under both mle and cmle methods for the log trans-
formed data on annual mean discharges for the months of February, July and Au-
gust for the Nacetinsky creek for the years 1951–1990. At first it may appear that
sample size of n = 40 may be somewhat small for asymptotics to apply. However,
simulations under the estimated case for samples of this size show excellent accu-
racy in the univariate case (Table 1, η = 1.5) and good accuracy in the bivariate
case (Table 2, η = 1.5). Detection methodology for this data set under univari-
ate setup yields no significance for the presence of a change-point for any of the
three months. However, change-detection under the multivariate setup shows sig-
nificance for Feb–Jul and Feb–Aug in the bivariate case and also for the trivariate
case of Feb–Jul–Aug.

In summary, the methodology proposed in this article appears quite useful for
practitioners in all areas, mainly because it is readily computable, and it is quite
robust to deviations from the assumption Gaussianity. Also, sample size does not
seem to be a serious concern while implementing the asymptotic result. In terms
of future directions, it would be of interest to derive such computationally fea-
sible distributions for other distributions such as exponential and Weibull in the
continuous case and binomial and Poisson in the discrete case.

APPENDIX A

Proof of Theorem 3.1. The proof of the theorem essentially follows upon
applying the following three lemmas into Theorem 2.1.
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The following lemma is well known [see, e.g., Shiryaev et al. (1994)], and will
be given without proof. It should be noted that even though the original result
was given for the continuous Brownian motion, the same can be applied for a
random walk with negative drift. This lemma addresses the fundamental issue of
establishing the distributions of M (and M∗) in a simple exponential form, thereby
making the integrals in Theorem 2.1 analytically tractable.

LEMMA 1. Let the random walk {Sn,n ≥ 0} be as specified in (2.3). Then, for
x ≥ 0,

P
(
max
m≤n

Sm ≤ x
)

= �

(
x + nη2/2

σ
√

n

)
− e−x�

(−x + nη2/2

σ
√

n

)
→ 1 − e−x

= P(M ≤ x) as n → ∞.

The following remark, which provides the complementary probability for M for
strictly positive values (x > 0), plays an important role in the proof of the theorem.

REMARK. Note that P(M ≥ x) = P(M ≥ x|M > 0)P (M > 0) = ‖G+‖e−x,

x > 0.

The next lemma provides an analytical and convenient expression for P(T −
1 >

n ∩ S−n ∈ dx). As can be seen from the proof of Lemma 3, this lemma is critical
for carrying out the integrals in Theorem 2.1 in a fully analytical manner.

LEMMA 2. Let the random walk {Sn,n ≥ 0} be as specified in (2.3). Then, for
x ≥ 0,

P(T −
1 > n ∩ Sn ∈ dx) = η−1E

{
(T −

1 > n − 1) ∩ ϕ

(
x − Sn−1 + η2/2

η

)}
,

n ≥ 1.

PROOF. In light of (3.1), we have that, for x > 0,

P {T −
1 > n ∩ Sn ∈ (0, x]}

= P

{
n−1⋂
j=0

(Sj > 0) ∩ Sn ∈ (0, x]
}

= E

[
I

{
n−1⋂
j=0

(Sj > 0)

}
P
(
Xn ∈ (−Sn−1, x − Sn−1]|Fn−1

)]

= E

[
I

{
n−1⋂
j=0

(Sj > 0)

}
(A.1)
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× P

(
Zn ∈

(−Sn−1 + η2/2

η
,
x − Sn−1 + η2/2

η

]∣∣∣Fn−1

)]

= E

[
I (T −

1 > n − 1) ∩
{
�

(
x − Sn−1 + η2/2

η

)

− �

(−Sn−1 + η2/2

η

)}]
, n ≥ 1.

Thus, differentiating (A.1) with respect to x, the proof of Lemma 2 is now in order.
�

The next lemma provides a manageable expression for the second term in The-
orem 2.1.

LEMMA 3. The following holds:∫ ∞
0+

P(M∗ ≥ x)P (T −
1 > n ∩ Sn ∈ dx) = ‖G∗+‖E{e−SnI (T −

1 > n)}, n ≥ 1.

PROOF. Using Lemma 2, and the remark following Lemma 1, we note that∫ ∞
0+

P(M∗ ≥ x)P (T −
1 > n ∩ Sn ∈ dx)

= η−1‖G∗+‖E
{
I (T −

1 > n − 1)

∫ ∞
0+

e−xϕ

(
x − Sn−1 + η2/2

η

)
dx

}

= ‖G∗+‖E{I (T −
1 > n − 1)e−SnI (ηZn > −Sn−1 + η2/2)}

= ‖G∗+‖E{e−SnI (T −
1 > n)}, n ≥ 1. �

Remarks regarding computational aspects of expressions in Theorem 3.1.
Here, we first address computational issues of the two sequences {qn :n ≥ 1}
and {q̃n :n ≥ 1} that appear in Theorem 3.1. Set bn = P(Sn > 0) and b̃n =
E{e−SnI (Sn > 0)}, for n ≥ 1. From Feller (1971), Volume II, page 416, and
Chover, Ney and Wainger (1973), it is well known that the generating function
of the sequences {qn :n ≥ 1} and {q̃n :n ≥ 1}, respectively, satisfy the following
relationships:

∞∑
n=1

snqn = exp

{ ∞∑
n=1

snbn

n

}
and

∞∑
n=1

snq̃n = exp

{ ∞∑
n=1

snb̃n

n

}
.(A.2)

Note that the second equation in (A.2) appears in Chover, Ney and Wainger
(1973) as a type of a Laplace transform. In addition, both the equations in (A.2)



EXACT ASYMPTOTIC DISTRIBUTION OF CHANGE-POINT MLE 1099

may be obtained iteratively as simple consequences of the Weiner–Hopf factor-
ization. In particular, the Leibnitz rule yields the following iterative relations, and
thus enables one to compute {qn :n ≥ 1} and {q̃n :n ≥ 1}:

nqn =
n−1∑
j=0

bn−j qj and nq̃n =
n−1∑
j=0

b̃n−j q̃j ,

(A.3)
n = 1,2, . . . , and q̃0 = q0 = 1.

Note that, in the Gaussian case, bn = �̄(η
√

n/2) and b̃n = enη2
�̄(3η

√
n/2),

n ≥ 1.
Next, we demonstrate that the probabilities in Theorem 3.1 sum to one, and then

provide an expression for the variance of the limiting distribution.
From Hinkley (1970), and the remark after Lemma 1 above, it follows that

P(ξ∞ > 0) = P(M∗ > M,M∗ > 0) =
∫ ∞

0+
P(M < x)P (M∗ ∈ dx)

=
∫ ∞

0+
(1 − ‖G+‖e−x)‖G+‖e−x dx = 1 − (1 − ‖G+‖)2/2.

Since P(ξ∞ = 0) = (1 − ‖G+‖)2, and ξ∞ is symmetric, the claim that the proba-
bilities for ξ∞ sum to one follows immediately. The following expression for the
variance may be derived in a somewhat tedious but straightforward manner:

Var(ξ∞) = 2{B ′′(1) + (B ′(1))2}
− 2 exp

(−B(1) + B̃(1)
)(

1 − exp(−B(1))
){B̃ ′′(1) + (B̃ ′(1))2},

where B(1) =∑∞
n=1 bn/n, B ′(1) =∑∞

n=1 bn, B ′′(1) =∑∞
n=1 nbn and B̃(1), B̃ ′(1)

and B̃ ′′(1) are defined upon b̃n, n ≥ 1, in a similar manner.

APPENDIX B

Change-point detection for Nacetinsky water discharges. We first formu-
late the following hypotheses that test for the presence of an unknown change-point
in the mean vector of the data series:

H0 :μ(1) = · · · = μ(n) = μ1 vs.
(B.1)

Ha :μ(1) = · · · = μ(τ) = μ1 �= μ(τ+1) = · · · = μ(n) = μ2,

where τ ∈ {1, . . . , n − 1} is the unknown change-point. Asymptotic theory of the
generalized likelihood ratio statistic for testing the above hypothesis has been well
addressed in the literature and the limiting result may be found in Csörgő and
Horváth (1997). It may be shown that the twice log-likelihood ratio statistic for
testing the above hypothesis is

Un = max
1≤t≤n−1

n log(|�̂n|/|�̂t |),(B.2)
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where �̂t = n−1{∑t
i=1(Yi −μ̂1,t )(Yi −μ̂1,t )

T +∑n
i=t+1(Yi −μ̂2,t )(Yi −μ̂2,t )

T },
μ̂1,t = t−1∑t

i=1 Yi and μ̂2,t = (n − t)−1∑n
i=t+1 Yi , t = 1, . . . , n. The asymp-

totic distribution of the above statistic is based upon Wn = (2 log lognUn)
1/2 −

(2 log logn + p
2 log log logn − log�(p/2)), where p denotes the number of pa-

rameters that change under the alternative hypothesis, and in this case we have
p = d = 3. The limiting distribution of Wn is given by the following double expo-
nential form:

lim
n→∞P [Wn ≤ t] = exp(−2e−t ).(B.3)

The p-value is obtained based on a two-sided critical region of the above lim-
iting distribution. When a test is significant, the maximum likelihood estimator of
the unknown change-point τ is obtained as the argument at which Un attains its
maximum. In principle, we may apply the above procedure for the data of each
month individually with p = 1, and also for data on each pair of months with
p = 2. The results of the tests for all cases are presented in Table 3. Clearly, all
univariate tests are not significant. Among the bivariate tests, the pair July–August
is not significant, whereas the other two pairs yield significance. The multivariate
test for all three months is also significant. The significance based upon the biviari-
ate and multivariate tests takes into account the covariance structure in the data and
hence should be believed more so than the univariate tests where no significance
is found. The change-point mle is obtained as τ̂ = 14.

At this point, we need to investigate the validity of the main assumptions,
namely, constancy of the covariance matrix, Gaussianity and independence over
time. The investigation regarding the covariance matrix requires that we compute
the deviation vector Di, i = 1, . . . ,40, from the estimated mean for each observa-
tion, taking into account the differences in the means before and after the estimated
change-point. It is of interest then to know whether the covariance structure of
the deviations remained constant throughout the sampling period. The generalized
log-likelihood ratio statistic for the constancy of the covariance matrix over time

TABLE 3
The statistic W for change in mean for various months and

their p-values

Months W p-value τ̂

Feb 2.74 0.1206 15
Jul 1.86 0.2674 14
Aug 2.29 0.1825 14
Feb–Jul 3.59 0.0539 14
Feb–Aug 3.76 0.0455 14
Jul–Aug 1.90 0.2593 14
Feb–Jul–Aug 3.78 0.0448 14
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against the alternative that the covariance matrix has changed at an unknown time
is given by

U∗
n = max

1≤t≤n−1
log
{|�̂1 : n|n/(|�̂1 : t |t |�̂t+1 : n|(n−t))},(B.4)

where |�̂1 : t | and |�̂t+1 : n| are the usual estimators of the covariance matrix based
on the first t and last n − t deviations, respectively. The limiting distribution of
U∗

n is obtained through the distribution of W ∗
n , where W ∗

n is defined upon U∗
n in

an analogous manner. It follows that p, the number of parameters that change in
this case, is given by p = d(d + 1)/2. The p-values for the univariate, bivariate
and multivariate tests are reported in Table 4. Clearly, all tests are insignificant
except the multivariate test. However, the significance is not particularly relevant
since the change-point mle of 3 obtained in this case implies no change in the
covariance structure, for all practical purposes. Thus, there is no evidence in the
data against the assumption of stationarity of the covariance matrix. Utilizing the
estimated change-point (τ̂ = 14), estimates for the mean vector before and after
the change-point as well as the pooled estimator of the common covariance matrix
are then obtained as μ̂1τ̂ = (6.738,7.137,6.725), μ̂2τ̂ = (7.383,7.483,7.166) and

�̂τ̂ =
⎡
⎣ 0.365 −0.032 −0.029

−0.032 0.161 0.104
−0.029 0.104 0.211

⎤
⎦ .

It remains to be seen whether the assumptions of Gaussianity and independence
over time are valid. We can verify this by utilizing the deviation vectors Di ,
i = 1, . . . ,40, and the covariance matrix �̂τ̂ found above. Specifically, if Di is
multivariate normal, then it is well known that d2

i = ‖Di‖2
�̂−1

τ̂

is approximately chi-

square with 3 degrees of freedom i = 1, . . . ,40. The same can be applied for the
bivariate case also with the degrees of freedom being 2 in this case. Thus, one only
needs to verify whether d2

i , i = 1, . . . ,40 form a sample from the corresponding
chi-square distribution. Upon applying the Anderson–Darling statistic, we found

TABLE 4
The statistic W for change in variance for various months and

their p-values

Months W p-value τ̂

Feb 3.18 0.0796 3
Jul 1.91 0.2556 5
Aug 1.39 0.3929 2
Feb–Jul 3.02 0.0927 3
Feb–Aug 2.28 0.1842 2
Jul–Aug 2.32 0.1788 2
Feb–Jul–Aug 4.26 0.0278 3
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the p-value for the three months case to be 0.185. The corresponding p-values for
Feb–Jul, Feb–Aug and Jul–Aug pairs were 0.244, 0.250 and 0.10, respectively. In
the univariate case, we applied the Anderson–Darling test for the deviations for
each individual month and found the p-values to be 0.927, 0.530 and 0.177, re-
spectively. Thus, the assumption of Gaussianity seems quite appropriate at each of
the univariate, bivariate and multivariate levels.

As for independence over time, we first tested each of the three deviation se-
ries for significance of both autocorrelations and partial autocorrelations up to the
first twenty lags. The ACF and PACF plots for each individual series showed no
evidence of significant correlations. We then computed the cross-correlations for
each pair and found that these were also not significant and, thus, there was no in-
dication that the assumption of independence over time was in violation. Overall,
the change-point model with estimated parameters may be seen to fit the data quite
well.
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