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ESTIMATION OF CONSTANT AND TIME-VARYING DYNAMIC
PARAMETERS OF HIV INFECTION IN A NONLINEAR

DIFFERENTIAL EQUATION MODEL1

BY HUA LIANG, HONGYU MIAO AND HULIN WU

University of Rochester

Modeling viral dynamics in HIV/AIDS studies has resulted in a deep
understanding of pathogenesis of HIV infection from which novel antiviral
treatment guidance and strategies have been derived. Viral dynamics models
based on nonlinear differential equations have been proposed and well de-
veloped over the past few decades. However, it is quite challenging to use
experimental or clinical data to estimate the unknown parameters (both con-
stant and time-varying parameters) in complex nonlinear differential equation
models. Therefore, investigators usually fix some parameter values, from the
literature or by experience, to obtain only parameter estimates of interest from
clinical or experimental data. However, when such prior information is not
available, it is desirable to determine all the parameter estimates from data.
In this paper we intend to combine the newly developed approaches, a multi-
stage smoothing-based (MSSB) method and the spline-enhanced nonlinear
least squares (SNLS) approach, to estimate all HIV viral dynamic parameters
in a nonlinear differential equation model. In particular, to the best of our
knowledge, this is the first attempt to propose a comparatively thorough pro-
cedure, accounting for both efficiency and accuracy, to rigorously estimate
all key kinetic parameters in a nonlinear differential equation model of HIV
dynamics from clinical data. These parameters include the proliferation rate
and death rate of uninfected HIV-targeted cells, the average number of viri-
ons produced by an infected cell, and the infection rate which is related to
the antiviral treatment effect and is time-varying. To validate the estimation
methods, we verified the identifiability of the HIV viral dynamic model and
performed simulation studies. We applied the proposed techniques to esti-
mate the key HIV viral dynamic parameters for two individual AIDS patients
treated with antiretroviral therapies. We demonstrate that HIV viral dynamics
can be well characterized and quantified for individual patients. As a result,
personalized treatment decision based on viral dynamic models is possible.
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1. Introduction. The AIDS pandemic continues to pose a serious threat to
public health worldwide. AIDS has killed an estimated 2.9 million people, with
close to 4.3 million people newly infected with HIV in 2006 alone. The total num-
ber of people living with HIV has reached its highest level (WHO web site). Al-
though highly active antiretroviral therapy (HAART) regimens are effective in sup-
pressing plasma HIV RNA levels (viral load) below the limit of detection, many
patients may fail HAART treatments due to drug resistance, lack of potency, poor
drug adherence, pharmacokinetic problems and adverse effects. In addition, the
complexity of regimens and lack of full understanding of the pathogenesis of HIV
infection also pose great challenges to AIDS researchers. Over the past 2 decades,
many mathematicians and statisticians have developed mechanism-based models
and statistical approaches to assist in understanding HIV pathogenesis and have
made significant contributions in this area [Ho et al. (1995), Wei et al. (1995),
Perelson et al. (1996, 1997), Wu et al. (1999)]. In particular, differential equation
models have been widely used in describing dynamics and interactions of HIV and
the immune system. Some survey on these models can be found in Perelson and
Nelson (1999), Nowak and May (2000), and Tan and Wu (2005).

For the mechanism-based models of HIV infection, one critical question is how
to use experimental or clinical data to estimate the parameters in the nonlinear dif-
ferential equation models which do not have closed-form solutions in most cases.
Researchers have made a substantial effort to get an approximate closed-form so-
lution under various assumptions, and then use the standard regression approach to
estimate the dynamic parameters in the models [Ho et al. (1995), Wei et al. (1995),
Perelson et al. (1996, 1997), Wu et al. (1999), Wu and Ding (1999), Wu (2005)].
But these approximations and assumptions may not always hold, in particular, for
patients undergoing long-term treatment.

In this paper we consider the following HIV dynamic model for patients under
long term treatments [e.g., Perelson and Nelson (1999)]:

d

dt
TU(t) = λ − ρTU(t) − η(t)TU(t)V (t),(1.1)

d

dt
TI (t) = η(t)TU(t)V (t) − δTI (t),(1.2)

d

dt
V (t) = NδTI (t) − cV (t),(1.3)

where TU is the concentration of uninfected target CD4+ T cells, TI the concentra-
tion of infected cells, V the viral load, λ the proliferation rate of uninfected target
cells, ρ the death rate of uninfected target cells, η(t) the time-varying infection
rate depending on antiviral drug efficacy, δ the death rate of infected cells, c the
clearance rate of free virions, and N the number of virions produced by a single
infected cell on average. In this system, TU(t), TI (t) and V (t) are state variables,
and (λ,ρ,N, δ, c, η(t))T are unknown dynamic parameters. Notice that here we do
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not distinguish the infected cells by various subpopulations such as productively
infected cells, latently infected cells and long-lived infected cells [Perelson et al.
(1996, 1997)], since we intend to model the viral dynamics for an HIV-infected
patient under long-term treatment. We also use a time-varying parameter η(t) to
model the infection rate since the infection rate may change nonparametrically
due to the variation in treatment effect over time. Generally speaking, all kinetic
parameters in this model could be time-varying [not only η(t)]; however, it is usu-
ally unfeasible to do so due to the limited data collected in the clinical studies.
Thus, this model provides a flexible although simple approach for studying long-
term viral dynamics. In clinical trials or clinical practice, viral load, V (t) and total
CD4+ T cell count, T (t) = TU(t) + TI (t), are closely monitored and measured
over time.

In practice, some parameters can be fixed from previous studies and only the re-
maining parameters are needed to be estimated. However, when such prior knowl-
edge is not available, it is important to estimate all viral dynamic parameters,
(λ,ρ,N, δ, c, η(t))T, for each individual patient from the clinical measurements
of V (t) and T (t), since the estimated dynamic parameters may be used to guide
clinical decisions for individualized treatment. Although AIDS investigators have
tried to estimate some of these dynamic parameters based on viral load data [Ho
et al. (1995), Wei et al. (1995), Perelson et al. (1996, 1997), Wu et al. (1999)],
none of them have successfully estimated all these dynamic parameters directly
for an individual patient. Huang and Wu (2006) and Huang, Liu and Wu (2006)
have made an effort to use the Bayesian method to estimate all these parameters,
but strong priors are required for most parameters in order to make all parame-
ters identifiable. In the work of Xia (2003), Filter, Xia and Gray (2005), Gray et
al. (2005), and Ouattara, Mhawej and Moog (2008), all model parameters were
estimated for HIV dynamic models with only constant coefficients. In this paper,
to the best of our knowledge, this effort represents the first attempt to simultane-
ously estimate all the constant and time-varying HIV viral dynamic parameters for
individual patients using both viral load and total CD4+ T cell count data.

In this paper we propose two estimation approaches. The first one is a multistage
smoothing-based (MSSB) approach. We derive the direct relationships between
the unknown dynamic parameters and measurement variables from the original
differential equation models, and then we employ these relationships to formulate
regression models for the unknown parameters. These regression models involve
not only the time function of measurement variables, but also their derivatives.
We propose using a nonparametric smoothing method, such as the local polyno-
mial smoothing, to obtain the measurement variables and their derivatives which
are substituted into the regression models to estimate the unknown dynamic para-
meters (including the time-varying parameter) in the second step. This approach
avoids directly solving the ODEs by numerical methods and is computationally
efficient. The second approach that we propose is to use a spline-enhanced nonlin-
ear least squares (SNLS) method. This approach is to use splines to approximate
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the time-varying parameter so that the original ODE model becomes a model only
containing constant parameters. The standard NLS method can be employed to
estimate the unknown dynamic parameters and spline coefficients. This approach
needs to use a numerical method to repeatedly solve the nonlinear ODEs for the
high-dimensional NLS optimization problem which is computationally challeng-
ing. Some cutting-edge computational techniques are necessary to solve this prob-
lem. Note that the MSSB approach is computationally efficient, but the derived
estimates are quite rough; however, these estimates can be used as the initial val-
ues for the SNLS method so that the two approaches can be efficiently combined
for practical applications.

The rest of this paper is organized as follows. In Section 2 we briefly discuss the
identifiability of the HIV dynamic model, then propose the multistage smoothing-
based (MSSB) approach. In Section 3 we introduce the spline-enhanced nonlinear
least squares (SNLS) method. In particular, a hybrid optimization technique com-
bining a gradient method and a global optimization algorithm will be used to tackle
the high-dimensional NLS optimization problem. The simulation studies are pre-
sented to evaluate the performance of the proposed approaches in Section 4. We
apply the proposed methods to estimate HIV viral dynamic parameters (including
the time-varying infection rate) from data for two AIDS patients in Section 5. We
demonstrate that some of these dynamic parameters are estimated from clinical
data for the first time. We conclude the paper with some discussions in Section 6.
The details of the proposed hybrid optimization algorithm are given in the Appen-
dix.

2. A multistage smoothing-based (MSSB) approach. Before introducing
the estimation methods, it is critical to determine whether all unknown model pa-
rameters can be uniquely and reliably identified from a given system input and
measurable output. The technique to answer this question is called identifiability
analysis. There are mainly two types of identifiability problems: structural (math-
ematical) identifiability and practical (statistical) identifiability. Structural identifi-
ability analysis techniques use model structure information only (without knowl-
edge of experimental observations) to determine whether all unknown parameters
are uniquely identifiable. Therefore, it is also called the prior identifiability analy-
sis. In contrast, practical identifiability analysis techniques should be applied after
model fitting to verify the reliability of estimates, so it is called the posterior iden-
tifiability analysis [Rodriguez-Fernandez, Egea and Banga (2006)]. A thorough
discussion and review of identifiability techniques and theories is out of the scope
of this study; for more details, the interested reader is referred to Ritt (1950), Bell-
man and Åström (1970), Kolchin (1973), Pohjanpalo (1978), Cobelli, Lepschy and
Jacur (1979), Walter (1987), Vajda, Godfrey and Rabitz (1989), Ollivier (1990),
Chappel and Godfrey (1992), Ljung and Glad (1994), Audoly et al. (2001), Xia and
Moog (2003), Jeffrey and Xia (2005), Wu et al. (2008) and Miao et al. (2008). In
this study we employed the differential algebra approach [Ljung and Glad (1994)]



464 H. LIANG, H. MIAO AND H. WU

and it can be easily verified that all constant and time-varying parameters in mod-
els (1.1)–(1.3) are structurally identifiable.

Parameter estimation for ODE models has been investigated using the least
squares principle by mathematicians [Hemker (1972), Bard (1974), Li, Osborne
and Prvan (2005)], computer scientists [Varah (1982)] and chemical engineers
[Ogunnaike and Ray (1994), Poyton et al. (2006)]. Mathematicians have focused
on the development of efficient and stable algorithms to solve the least squares
problem. Recently statisticians have started to develop various statistical methods
to estimate dynamic parameters in ODE models. For example, Putter et al. (2002),
Huang and Wu (2006), and Huang, Liu and Wu (2006) have developed hierarchi-
cal Bayesian approaches to estimate dynamic parameters in HIV dynamic models
for longitudinal data. Li et al. (2002) proposed a spline-based approach to estimate
time-varying parameters in ODE models. Ramsay (1996) proposed a technique
named principal differential analysis (PDA) for estimation of differential equation
models [see a comprehensive survey in Ramsay and Silverman (2005)]. Recently
Ramsay et al. (2007) applied a penalized spline method to estimate the constant
dynamic parameters in ODE models. Chen and Wu (2008, 2009) and Liang and
Wu (2008) proposed a two-step smoothing-based approach to estimate both con-
stant and time-varying parameters in ODE models separately.

In this section we adopt the ideas from Liang and Wu (2008) and Chen and Wu
(2008, 2009) to use the smoothing-based approach to estimate all dynamic para-
meters, including both constant and time-varying parameters, in model (1.1)–(1.3)
in three stages. Stage I is to smooth the noisy data to estimate the state variables
and their derivatives; Stage II is to estimate constant dynamic parameters (λ,ρ, c);
Stage III is proposed to estimate both constant dynamic parameters, δ and N , and
the time-varying parameter η(t). We introduce these three stages in detail in the
following subsections.

2.1. Stage I: Local polynomial estimation of the state variables. In this sub-
section we briefly describe how we use the local polynomial regression technique
to estimate the functions T (t) and V (t) and their derivatives. Consider a general
situation that a state variable, X(t), is observed at n time points, (Y1, . . . , Yn), that
is, Yi = X(ti) + ei for i = 1, . . . , n, where (e1, e2, . . . , en) are independent mea-
surement errors with mean zero. Assume that the fourth derivative of X(t) exists.
For each given time point t0, we approximate the function X(ti) locally by a pth-
order polynomial, X(ti) ≈ X(t0)+ (ti − t0)X

(1)(t0)+· · ·+X(p)(t0)(ti − t0)
p/p! �∑p

j=0 ζj (t0)(ti − t0)
j , for ti , i = 1, . . . , n, in a neighborhood of the point t0, where

ζj (t0) = X(j)(t0) for j = 0,1, . . . , p. Following the local polynomial fitting [Fan
and Gijbels (1996)], the estimators X̂(ν)(t) of X(ν)(t) (ν = 0,1,2 in our case) can
be obtained by minimizing the locally weighted least-squares criterion,

n∑
i=1

{
Yi −

p∑
j=0

ζj (ti − t)j

}2

Kh(ti − t),
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where K(·) is a symmetric kernel function, Kh(·) = K(·/h)/h, and h is a proper
bandwidth. Let Y = (Y1, . . . , Yn)

T denote Tp,t as an n × (p + 1) design matrix
whose ith row is (1, ti − t, . . . , (ti − t)p)T, and Wt an n × n diagonal matrix of
kernel weights, that is, diag{Kh(t1 − t), . . . ,Kh(tn − t)}. Assuming that the matrix
TT

p,tWtTp,t is not singular, a standard weighted least squares theory leads to the
solution, ζ̂ = (TT

p,tWtTp,t )
−1TT

p,tWtY, where p = 1,2,3. We use the local lin-
ear regression to estimate X(t), the local quadratic regression to estimate X′(t),
and the local cubic regression to estimate X(2)(t). Consequently, using the above
notation, the estimators X̂(q)(t) can be expressed as

X̂(q)(t) = ξT
(q+1)(T

T
1+q,tWtT1+q,t )

−1TT
1+q,tWtY for q = 0,1,2,

where ξq is the (q + 2) × 1 vector having 1 in the (q + 1) entry and zeros in the
other entries.

We apply the local polynomial smoothing technique to the viral load data, V (t)

and total CD4+ T cell count data, T (t) = TU(t) + TI (t) to obtain the estimates
of V̂ (t), T̂ (t), V̂ ′(t) and T̂ ′(t) that will be used in Stage II, and the estimate of
V (2)(t) that will also be used in Stage III.

2.2. Stage II: PsLS estimates. In this subsection we apply the approach pro-
posed by Liang and Wu (2008) to estimate constant dynamic parameters (λ,ρ, c)
in models (1.1)–(1.3). Notice that we can combine equations (1.1) and (1.2), and
obtain

d

dt
[TU(t) + TI (t)] = λ − ρTU(t) − δTI (t).

Recalling that T (t) = TI (t) + TU(t) and substituting TU(t) = T (t) − TI (t) in the
above equation, we obtain

d

dt
T (t) = λ − ρ[T (t) − TI (t)] − δTI (t).

From the above equation, we obtain

TI = −λ

ρ − δ
+ ρ

ρ − δ
T + 1

ρ − δ
T ′,

where T ′ = dT (t)/dt . Substituting this expression into equation (1.3) and letting
α0 = −Nδλ

ρ−δ
, α1 = Nδρ

ρ−δ
and α2 = Nδ

ρ−δ
, we have

V ′(t) = α0 + α1T (t) + α2T
′(t) − cV (t),(2.1)

where V (t) and T (t) for t = t1, t2, . . . , tn are the measurements of viral load and
CD4+ T cell count from clinical studies which are subject to measurement errors.

Let V̂ (t), T̂ (t), V̂ ′(t) and T̂ ′(t) be the estimates of V (t), T (t), V ′(t) and T ′(t)
from Section 2.1, respectively, and substitute these estimates in (2.1). We then
obtain a linear regression model [Liang and Wu (2008)],

V̂ ′(t) = α0 + α1T̂ (t) + α2T̂
′(t) − cV̂ (t) + ε(t),(2.2)
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where ε(t) includes all substitution errors. Using the least squares regression tech-
nique, we obtain the estimates of α0, α1 and α2 which are termed as the pseudo-
least squares (PsLS) estimates in Liang and Wu (2008). Notice that, from the above
derivation, we have the relationship λ = −α0/α2 and ρ = α1/α2. Thus, we can ob-
tain the estimates of c, λ and ρ from model (2.2).

Write α = (α0, α1, α2, c) and � = diag(1, T̂ , T̂ ′,−V̂ ). Let μl(K) =∫ 1
−1 zlK(z) dz for l = 0,1,2. Using the arguments similar to those in Liang and

Wu (2008), we can establish asymptotics for the smoothing-based estimators α̂
of α. The Delta-method can then be used for establishment of the asymptotic
properties of the estimators for λ and ρ. Notice that, when the mean of ε(t) is
zero, the least squares estimates of α0, α1 and α2 are unbiased. However, the sub-
stitution error ε(t) in model (2.2) is not mean zero, instead its mean is in the order
of h2, and variance is of the order (nh)−1 which goes to zero when n → ∞. Thus,
ε(t) is different from a standard measurement error with mean zero and constant
variance.

2.3. Stage III: Semiparametric regression for estimation of both constant and
time-varying parameters. Now we propose how to estimate the remaining con-
stant parameters, N and δ, and the time-varying parameter, η(t). Recalling (1.2),
we have

d

dt
TI (t) = η(t){T (t) − TI (t)}V (t) − δTI (t),(2.3)

while from (1.3) we can obtain

d

dt
TI (t) = V (2)(t) + cV ′(t)

Nδ
.(2.4)

A combination of (2.3) and (2.4) deduces

V (2)(t) + cV ′(t) = η(t)NδT (t)V (t) − η(t){V ′(t)V (t) + cV 2(t)}
(2.5)

− δ{V ′(t) + cV (t)}.
Let Z(t) = V̂ (2)(t)+ ĉV̂ ′(t), U1(t) = −{V̂ ′(t)V̂ (t)+ ĉV̂ 2(t)}, U2(t) = −{V̂ ′(t)+
ĉV̂ (t)}, U3(t) = T̂ (t)V̂ (t), in which all functions and parameters have been esti-
mated from Stages I and II. Thus, from (2.5), we can formulate a semiparametric
time-varying coefficient regression model [Wu and Zhang (2006)]:

Z(t) = U1(t)δ + U2(t)η(t) + U3(t)Nδη(t) + ε∗(t),(2.6)

where ε∗(t) includes all substitution errors. Note that δ and Nδ are constant para-
meters, while η(t) is an unknown time-varying parameter. To fit this model, we can
approximate the time-varying parameter η(t) by the local polynomial approach,
a basis spline method or other nonparametric techniques [Wu and Zhang (2006)].
The basis spline approach is straightforward and simple if the function η(t) does
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not fluctuate dramatically as in our case of HIV dynamic models. Thus, we select
to use the B-spline approximation here, that is,

η(t) ≈
s∑

j=1

ajbj,k(t),(2.7)

where aj are constant B-spline coefficients, and bj,k(t) the basis functions of or-
der k. For more details about B-splines such as construction of higher order basis
functions via recurrence relations, the reader is referred to de Boor (1978). Thus,
model (2.6) can be approximately written as

Z(t) = U1(t)δ +
s∑

j=1

{bj,k(t)U2(t)}aj

(2.8)

+
s∑

j=1

{bj,k(t)U3(t)}Nδaj + ε∗(t).

This becomes a standard linear regression model and we can easily estimate the
unknown constant parameters δ, aj and Nδaj (j = 1,2, . . . , s) from which we can
derive the estimates of δ,N and η(t). Note that AIC, BIC or AICc can be used to
determine the order of the B-splines in our numerical data analysis. See detailed
discussion on this in the next section.

Also notice that Wu and Ding (1999) suggested that fitting viral dynamic data
to different models for different time periods may result in better estimates of viral
dynamic parameters. For example, we may fit a viral dynamic model with a closed-
form solution to the early (first week) viral load data to obtain a better estimate of
parameters δ and c as proposed by Perelson et al. (1996). These estimates can then
be substituted into the regression models in Stages II and III to obtain the estimates
of other parameters. We will adopt this alternative strategy in our real data analysis.

In summary, we are able to use a multistage approach to derive the estimates
of all dynamic parameters in an HIV dynamic model. This approach only involves
parametric and nonparametric/semiparametric regressions and the implementation
is straightforward. The numerical evaluations of ODEs are avoided and the initial
values of the state variables are not required. However, there are two issues that
should be addressed for this approach. First, in this study, we focused on mod-
els (1.1)–(1.3) and the three stages were therefore particularly proposed for the
specific model. However, the MSSB approach itself is a general method for es-
timating parameters in ODE models; for general guidelines in use of the MSSB
approach, the interested reader is referred to Liang and Wu (2008). Second, al-
though the estimators based on the MSSB approach have some attractive asymp-
totic properties, some limitations exist for this approach. In particular, it needs
to estimate the derivatives of state variables which are sensitive to measurement
noise when the data are sparse. This may result in biased estimates of parame-
ters and measurement errors. In order to improve the estimates, we propose the
spline-enhanced least squares approach in the next section.
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3. The spline-enhanced nonlinear least squares (SNLS) approach. In this
section we introduce a spline-enhanced nonlinear least squares (SNLS) method to
refine parameter estimates for models (1.1)–(1.3). The basic idea is to approximate
the time-varying parameter η(t) by the B-spline approach. Then models (1.1)–
(1.3) become the standard ODEs with constant parameters only. We can use the
standard NLS approach to estimate the constant dynamic parameters and B-spline
coefficients by numerically evaluating the ODEs repeatedly. This method is com-
putationally intensive. Li et al. (2002) used a similar idea to approximate the un-
known time-varying parameter in a pharmacokinetic ODE model.

3.1. Spline approximation and nonlinear least squares. Different types of
splines can be constructed based on different basis functions, such as the well-
known piecewise polynomial splines and basis splines. Note that, for an arbi-
trary spline function of a specific degree and smoothness over a given domain
partition, a linear combination of basis splines of the same degree and smooth-
ness over the same partition can always be found to represent this spline function
[de Boor (1978)]. Therefore, B-splines can be employed to approximate the time-
varying parameter η(t) in this study without loss of generality.

Similar to the approximation (2.7) in the previous section, η(t) can be approx-
imated by a B-spline of order k with s control points [de Boor (1978)], that is,
η(t) ≈ ∑s

j=1 ajbj,k(t). In addition, it should be noted that once the number and
positions of control points are determined, the number and positions of knots are
also automatically determined at the knot average sites [de Boor (1978)]. Thus,
our model equations (1.1)–(1.3) can be approximated by

d

dt
TU(t) = λ − ρTU(t) −

{
s∑

j=1

ajbj,k(t)

}
TU(t)V (t),(3.1)

d

dt
TI (t) =

{
s∑

j=1

ajbj,k(t)

}
TU(t)V (t) − δTI (t),(3.2)

d

dt
V (t) = NδTI (t) − cV (t),(3.3)

where θ = (λ,ρ,N, δ, c, a1, a2, . . . , as)
T are unknown constant parameters. Note

that we have measurements of total CD4+ T cell counts, T (ti) = TU(ti) + TI (ti),
and viral load, V (ti), that is, the measurement model can be written as

Y1i = T (ti) + ε1i , i = 1,2, . . . , nT ,(3.4)

Y2j = V (tj ) + ε2j , j = 1,2, . . . , nV ,(3.5)

where ε1i and ε2j are assumed to be mean zero with constant variances and in-
dependent. Then the standard NLS estimator can be obtained by minimizing the
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objective function

RSS(θ) =
nT∑
i=1

{Y1i − T (ti, θ)}2 +
nV∑
j=1

{Y2j − V (tj , θ)}2,(3.6)

where nT is the total number of CD4+ T cell measurements and nV is the total
number of viral load observations; and T (ti, θ) and V (tj , θ) are numerical so-
lutions to equations (3.1)–(3.3) using the Runge–Kutta method. However, if ε1i

and ε2j are correlated, the weighted (generalized) NLS method can be used. To sta-
bilize the variance and the computational algorithms, the log-transformation of the
data is usually used in practice. More generally, the weighted NLS approach can
be used to more efficiently estimate the unknown parameters if the weights for dif-
ferent terms in the objective function are known. Usually the Fisher-Information-
Matrix can be used to obtain the confidence intervals for the unknown parameters,
but the bootstrap approach is more precise although it is more computationally
intensive [Joshi, Seidel-Morgenstern and Kremling (2006)]. We will use the boot-
strap method in our real data analysis.

3.2. Hybrid optimization and spline parameter selection. For the SNLS ap-
proach, a critical step is to minimize a multimodal objective function (3.6) over
a high-dimensional parameter space. In practice, it is challenging to find the global
solution to such problems if the parameter space is high-dimensional (as always
the case in many biomedical problems), and/or the parameter values are of dif-
ferent orders of magnitude, and/or the objective function is multimodal or even
not smooth with noisy data. Thus, it is critical to develop an efficient and stable
optimization algorithm.

There are three main categories of optimization methods: direct search meth-
ods, gradient methods and global optimization methods. However, both the di-
rect search methods (e.g., the Simplex method) and the gradient methods (e.g,
the Levenberg–Marquardt method and the Gauss–Newton method) can be easily
trapped by local minima and even just fail for our problems [Miao et al. (2008)].
For details and application of such methods in ODE models, the reader is referred
to Nocedal and Wright (1999) and Englezos and Kalogerakis (2001). Therefore,
the global optimization methods are more suitable for the parameter estimation
problem for ODE models. Moles, Banga and Keller (2004) compared the perfor-
mance and computational cost of seven global optimization methods, including the
differential evolution method [Storn and Price (1997)]. Their results suggest that
the differential evolution method outperforms the other six methods with a reason-
able computational cost. Unfortunately, existing global optimization methods are
very computationally intensive. Improved performance can be achieved by com-
bining gradient methods and global optimization methods, called hybrid methods.
A hybrid method based on the scatter search and sequential quadratic program-
ming (SQP) has been proposed by Rodriguez-Fernandez, Egea and Banga (2006),
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who showed that the hybrid scatter search method is much faster than the differ-
ential evolution method for a simple HIV ODE model. However, our preliminary
work did not show improved performance of the scatter search method without
SQP with respect to the differential evolution method in terms of computational
cost and convergence rate. Thus, the performance improvement of the hybrid scat-
ter search method is mainly due to the incorporation of the SQP local optimization
method. In addition, Vrugt and Robinson (2007) suggested that a significant im-
provement of efficiency can be achieved by combining multiple global optimiza-
tion algorithms. Here we combined the differential evolution and the scatter search
method and incorporated with the SQP local optimization method [e.g., SOLNP
by Ye (1987)] for parameter estimation of ODE models. We present the details of
the proposed algorithm in the Appendix.

Another critical problem that needs to be addressed in order to fit models (3.1)–
(3.3) is to determine the order k and the number and positions of control points s

for the spline approximation. In general, we assume that η(t) is a first-order con-
tinuous function of time. Therefore, B-splines of order 2 (piecewise straight lines)
should not be considered. Also, since the high order B-spline approximation (e.g.,
k ≥ 5) may introduce unnecessary violent local oscillations (called Runge’s phe-
nomenon) [Runge (1901)], we consider up to 4th order B-splines in this study. As
to the positions of the control points, to account for highly-skewed data, we select
the control points’ positions such that they are equally-spaced in the logarithm time
scale. We can use AIC, BIC and AICc criteria [Akaike (1973), Schwarz (1978),
Burnham and Anderson (2004)] to determine the order and the knots, that is,

AIC = −2 lnL + 2K,(3.7)

BIC = −2 lnL + K ln(N),(3.8)

AICc = AIC + 2K(K + 1)

N − K − 1
,(3.9)

where L denotes the likelihood function, N the total number of observations and K

the number of unknown parameters. Under the normality assumption of measure-
ment errors, these model selection criteria can be rewritten as

AIC = N ln
(

RSS

N

)
+ 2K,(3.10)

BIC = N ln
(

RSS

N

)
+ K ln(N),(3.11)

AICc = N ln
(

RSS

N

)
+ 2NK

N − K − 1
,(3.12)

where RSS is the residual of sum squares obtained from the NLS model fitting. It
should also be noticed that, as the number of spline knots goes to large, the associ-
ated parameter space will be high-dimensional. In this case, the novel and efficient
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optimization methods such as the hybrid optimization algorithms are necessary to
locate the global minima of the NLS objective function. In addition, it is neces-
sary to predetermine a good and informative search range for each of the unknown
parameters in order to ease the computational burden of the proposed optimiza-
tion algorithm. Thus, it is necessary and a good strategy to combine the proposed
two approaches to estimate the dynamic parameters in a complex dynamic system.
That is, first the MSSB approach introduced in the previous section can be used
to obtain a rough estimate and the search range for the unknown parameters, and
then the SNLS approach can be used to refine the estimates.

4. Simulation studies. In this section we evaluate the performance of the
MSSB and the SNLS approaches based on equations (1.1)–(1.3) by Monte Carlo
simulations. An ad hoc bandwidth selection procedure is used for selecting
a proper bandwidth h for MSSB. See Liang and Wu (2008) for more detailed dis-
cussions. The following parameter values were used to generate simulation data:
TU(0) = 600, TI (0) = 30, V (0) = 105, λ = 36, ρ = 0.108, N = 1000, δ = 0.5,
c = 3, and η(t) = 9 × 10−5 × {1 − 0.9 cos(πt/1000)}. Let T = TU + TI denote
the total number of infected and uninfected CD4+ T cells and V denote the vi-
ral load, the measurement models (3.4)–(3.5) were used to simulate the obser-
vation data with measurement noise, where ε1i and ε2j were assumed to be in-
dependent and generated from normal distributions with mean zero and constant
variances σ 2

1 and σ 2
2 , respectively. Equations (1.1)–(1.3) were numerically solved

within the time range [0,20] (days) using the Runge–Kutta method, and solutions
were output for equally-spaced time intervals of 0.1 and 0.2 which correspond to
the number of measurements 200 and 100, respectively. The measurement errors
σ 2

1 = 20,30,40 and σ 2
2 = 100,150,200 were added to the numerical results of the

ODE model according to the measurement models (3.4)–(3.5), respectively.
To evaluate the performance of the MSSB and SNLS approaches for smaller

samples sizes and larger variances that are similar to the actual clinical data
evaluated in the next section, we also performed the simulations for the num-
ber of measurements n = nT = nV = 30 and 50, and σ 2

1 = 202,302,402 and
σ 2

2 = 502,752,1002. To evaluate the performance of the estimation methods, we
use the average relative estimation error (ARE) which is defined as

ARE = 1

N

N∑
j=1

|θ − θ̂ j |
|θ | × 100%,

where θ̂ j is the estimate of parameter θ from the j th simulation data set and N is
the total number of simulation runs. We applied the MSSB and SNLS approaches
to 500 simulated data sets for each simulation scenario. We used the AICc and
determined that the time-varying parameter η(t) was approximated by a spline of
order 2 with 3 knots in our simulation studies.
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TABLE 1
Simulation study: a comparison of the MSSB and SNLS approaches. The average relative

error (ARE) was calculated based on 500 simulation runs. The time-varying
parameter η(t) is approximated by a 3-knots spline of order 2

ARE (%): MSSB ARE (%): SNLS

n σ 2
1 σ 2

2 λ ρ N δ c λ ρ N δ c

30 400 2500 183.70 277.74 104.55 110.60 92.37 14.50 28.00 5.95 6.31 1.16
900 5625 345.03 537.24 105.48 130.67 93.26 18.90 36.40 7.60 8.38 1.72

1600 10,000 411.94 668.88 112.47 139.69 94.96 22.80 44.60 9.34 10.70 2.19

50 400 2500 77.41 99.53 81.93 308.40 65.46 11.70 22.80 4.66 4.69 0.68
900 5625 98.32 106.77 104.55 384.52 66.59 15.20 29.40 6.10 6.41 0.95

1600 10,000 267.91 259.13 112.00 458.14 67.86 19.30 38.00 7.68 8.20 1.18

100 20 100 24.37 40.89 15.70 65.18 36.92 2.50 5.89 1.54 1.16 0.12
30 150 25.13 42.50 16.37 97.53 37.65 2.84 6.44 1.68 1.14 0.13
40 200 27.56 46.98 16.45 114.09 38.84 2.96 7.19 1.72 1.18 0.15

200 20 100 8.01 14.17 9.72 153.74 15.15 1.59 4.55 1.52 0.61 0.09
30 150 8.24 14.52 10.42 156.17 15.54 2.32 4.97 1.06 0.84 0.10
40 200 8.85 15.62 10.76 156.83 16.25 2.13 5.37 1.32 0.96 0.12

The simulation results are reported in Table 1. From these results, we can see
that the SNLS approach significantly improves the performance of the MSSB
approach in all simulation cases as we expected. When the number of measure-
ments is large (e.g., n = nT = nV = 100 or 200) and variances are small, the
SNLS approach performs extremely well, but the AREs of the MSSB estimates
of some parameters such as ρ and δ are very large. When the number of mea-
surements is small (similar to our real data analysis in the next section, that is,
n = nT = nV = 30 or 50) and the variances are large, the performance of the
SNLS estimates is still reasonably good, but the MSSB approach performs poorly
for all parameter estimates. Similarly, the estimate of time-varying parameter η(t)

from the SNLS approach outperforms that of the MSSB approach. Thus, the simu-
lation results and our experience suggest that it is a good strategy to use the MSSB
approach to obtain rough search ranges for unknown parameters, and then use the
SNLS approach to refine the estimates.

5. Viral dynamic parameter estimation for AIDS patients. We applied the
proposed MSSB and SNLS approaches to estimate viral dynamic parameters from
data for individual AIDS patients based on model equations (1.1)–(1.3). Two
HIV-1 infected patients were treated with a four-drug antiretroviral regimen in
combination with an immune-based therapy. Frequent viral load measurements
were scheduled at baseline and after initiating the combination treatment: 13 mea-
surements during the first day, 14 measurements from day 2 to week 2, and then
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one measurement at each of the following weeks, 4, 8, 12, 14, 20, 24, 28, 32, 36,
40, 44, 48, 52, 56, 64, 74 and 76, respectively. Total CD4+ T cell counts were
monitored at weeks 2, 4 and monthly thereafter.

As suggested in Section 2, first we applied the nonlinear regression model in
Perelson et al. (1996) to fit the viral load data for the first week to obtain the
estimates of δ and c. The estimation results for the two patients are as follows:
Patient I, δ = 1.09 and c = 2.46; and Patient II, δ = 0.43 and c = 3.78. Then we
applied the proposed MSSB and SNLS approaches to estimate all other viral dy-
namic parameters including the time-varying parameter η(t) in models (1.1)–(1.3).
The log10 transformation of the data was used in order to stabilize the variance and
computational algorithms.

A rough estimate and a reasonable search range for each of the unknown para-
meters and the initial values of the state variables were obtained using the MSSB
method. Then we applied the SNLS approach to refine the estimates. For the SNLS
approach, we selected the smoothing parameters using the AIC, BIC and AICc
criteria. We considered all the combinations of two spline orders (3 and 4) and 8
different numbers of control points (from 3 to 10), and the results are reported in
Tables 2 and 3 for Patients I and II, respectively. Note that as a practical guide-
line, if the number of unknown parameters exceeds n/40 (where n is the number
of measurements), the AICc instead of AIC should be used. For our clinical data,
n is about 40, and the number of unknown parameters varies between 8 and 15

TABLE 2
Model selection for Patient I: the time-varying parameter η(t) is approximated

using splines of order 3 or 4 with the number of knots from 3 to 10

Model Spline order Number of knots AIC BIC AICc

1 3 3 −165.7 −151.5 −161.7
2 4 −163.8 −147.7 −158.8
3 5 −174.4 −156.5 −168.4
4 6 −173.6 −154.0 −165.6
5 7 −172.9 −151.4 −162.9
6 8 −177.0 −153.8 −165.0
7 9 −177.1 −152.2 −163.1
8 10 −173.9 −147.1 −156.9

9 4 3 – – –
10 4 −170.5 −154.4 −165.5
11 5 −173.7 −155.8 −167.7
12 6 −173.4 −153.7 −165.4
13 7 −171.5 −150.1 −161.5
14 8 −172.3 −149.1 −160.3
15 9 −175.5 −150.6 −161.5
16 10 −174.0 −147.3 −157.0
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TABLE 3
Model selection for Patient II: the time-varying parameter η(t) is approximated

using splines of order 3 or 4 with the number of knots from 3 to 10

Model Spline Order Number of knots AIC BIC AICc

1 3 3 −246.5 −229.1 −244.5
2 4 −244.5 −225.0 −241.5
3 5 −250.7 −229.0 −246.7
4 6 −245.0 −221.1 −241.0
5 7 −252.4 −226.3 −246.4
6 8 −247.3 −219.1 −240.3
7 9 −249.5 −219.0 −241.5
8 10 −247.9 −215.3 −238.9

9 4 3 – – –
10 4 −245.7 −226.2 −242.7
11 5 −248.5 −226.7 −244.5
12 6 −243.9 −220.0 −239.9
13 7 −249.8 −223.7 −243.8
14 8 −245.7 −217.4 −238.7
15 9 −247.1 −216.6 −239.1
16 10 −244.0 −211.4 −235.0

for different models (the unknown initial conditions were also considered as un-
known parameters), which is much larger than n/40 = 40/40 = 1. So the AICc is
more appropriate for our case. In fact, the AICc converges to AIC as the number
of measurements gets larger, thus, the AICc is often suggested to be employed re-
gardless of the number of measurements [Burnham and Anderson (2004)]. There-
fore, our model selection is mainly based on AICc, although the AIC and BIC
scores are also reported in Tables 2 and 3 for comparisons. From Table 2, we can
see that both AICc and BIC selected the best spline model for η(t) as order 3
and 5 control points for Patient I, although the AIC selected a different model.
From Table 3, we can see that the AICc selected the same spline model (order 3
with 5 control points) for Patient II and both AIC and BIC ranked this model as the
second best model. Based on above discussions, we are confident that the spline
model with order 3 and 5 control points is the best approximation to the time-
varying parameter η(t). Thus, we will mainly report and discuss the results from
this model.

Figure 1 shows the data and model fitting results from the best SNLS approach
for the two patients. The fitted curves are reasonably well. Table 4 reports the es-
timation results from both MSSB and SNLS methods for the two patients. The
MSSB approach provided good search ranges of unknown parameters for the
SNLS approach. From the SNLS estimates, the proliferation rates of uninfected
CD4+ T cells are λ = 397 and 45 cells per day, respectively for Patients I and II;
the death rates are ρ = 0.49 and 0.10 per day which correspond to the half-life
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FIG. 1. The SNLS model fitting for two AIDS patients.

TABLE 4
The estimated values and associated 95% confidence intervals (CI) of viral dynamic parameters for

two AIDS patients. Perelson’s model [Perelson et al. (1996)] was first fitted to the viral load data
within the first week to obtain estimates of δ and c. For Patient I, δ = 1.09 and c = 2.46; for

Patient II, δ = 0.43 and c = 3.78. The time varying parameter η(t) of both Patients I
and II was approximated using a spline of order 3 with 5 control points

Patient I Patient II

MSSB SNLS MSSB SNLS
Parameter (CI) (CI) (CI) (CI)

λ (cell per day) 254.49 397.09 18.38 45.45
(181.11, 327.87) (216.43, 594.30) (3.50, 33.27) (29.78, 81.48)

ρ (per day) 0.34 0.49 0.04 0.10
(0.24, 0.44) (0.26, 0.75) (0.00, 0.08) (0.06, 0.18)

N (virion per cell) 1178.23 264.74 2769.32 1114.37
(558.20, 1798.26) (203.40, 350.00) (2484.54, 3074.10) (856.62, 1428.93)
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of 1.4 and 6.9 days for the two patients, respectively; the numbers of virions pro-
duced by each of the infected cells are 265 and 1114 per cell for Patients I and II,
respectively.

Note that the nonlinear regression estimates of the death rate of infected cells, δ,
for the two patients are 1.09 and 0.43 per day with the corresponding half-life of
0.64 and 1.61 days, respectively, which indicates a higher death rate of infected
cells compared to the uninfected cells for both patients. The estimates of viral
clearance rate (c) were 2.46 and 3.78 per day with the corresponding half-life of
0.28 and 0.18 days for the two patients, respectively. These results are similar to
those from the previous studies [Perelson et al. (1996, 1997)] and biologically
reasonable. However, to our knowledge, this is the first time the estimates of the
proliferation rate and death rate of uninfected CD4+ T cells (λ and ρ) and the
number of virions produced by an infected cell (N ) have been obtained directly
from the clinical data of AIDS patients. From the estimation results in Table 4,
we can see that the death rate of infected cells is 2 to 4 fold higher than that
of uninfected cells for Patients I and II, respectively. We can also see that the
difference in the estimated dynamic parameters between the two patients is large.
This is consistent with the argument that the between-subject variation of viral
dynamics in AIDS patients is large [Wu and Ding (1999), Wu et al. (1999)]. Thus,
the personalized treatment is necessary for AIDS patients.

The estimated time-varying parameter, the infection rate η(t) for Patients I
and II are plotted in Figure 2. From the estimates, we can see that the infection
rates for the two patients have similar patterns which are primarily due to similar
patterns of viral load and CD4+ T cell counts for the two patients. It seems that
there was an initial fluctuation in the infection rate at the beginning of treatment,
and then the infection rate was stabilized after one or two weeks. We can also see

FIG. 2. The estimated infection rate η(t) (solid line) and its bootstrap 95% confidence interval
(dashed line).
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that the estimated infection rate is not zero, which may suggest the imperfectness
of the long-term treatment and the development of drug-resistant mutants. This is
inconsistent with the perfect treatment assumption in Perelson et al. (1996, 1997),
although it may be valid in a short period of time after initiating the treatment.

6. Discussion and conclusion. We have proposed two approaches to identify
all dynamic parameters including both constant and time-varying parameters in an
HIV viral dynamic model which is characterized by a set of nonlinear differen-
tial equations. This is a very challenging problem in the history of HIV dynamic
studies. The proposed multistage smoothing-based (MSSB) approach is straight-
forward and easy to implement since it does not require numerically solving the
ODEs and the initial values of the state variables are not needed. However, one lim-
itation of this approach is that it requires the estimates of derivatives of the state
variables, which are usually poor when the data are sparse. This may result in poor
estimates of unknown dynamic parameters. The second method that we proposed
is the spline-enhanced nonlinear least squares (SNLS) approach. This method is
more accurate in estimating the unknown parameters, but it requires numerical
evaluations of ODEs repeatedly in the optimization procedure and the convergence
of the computational algorithm is problematic when the parameter space is high-
dimensional. We have proposed a hybrid optimization technique to deal with the
nonconvergence and the local solution problems, but the computational cost is
high and a good search range for each of the unknown parameters is required. In
practical implementation, we propose to combine the two approaches, that is, first
using the MSSB approach to obtain rough estimates and possible ranges for the
unknown parameters and then using the SNLS approach to refine the estimates.
We have applied this strategy to estimate all dynamic parameters from data for
two AIDS patients.

It is very important to estimate all dynamic parameters in HIV dynamic models
directly from clinical data when prior knowledge is not available or fixing some
parameters will significantly affect the estimates of other parameters in a dynamic
model. To our knowledge, this is the first attempt to propose a procedure to es-
timate both constant and time-varying parameters in the proposed HIV dynamic
model directly from clinical data. Although Huang, Liu and Wu (2006) have at-
tempted to do so using a Bayesian approach, strong priors were used for most of
the dynamic parameters and a parametric form for the time-varying parameter was
employed. Notice that the time-varying parameter η(t) is a function of antiviral
treatment effect in the HIV dynamic model [Huang, Liu and Wu (2006)]. It is very
important to estimate this time-varying parameter for each AIDS patient individu-
ally in order to better design the treatment strategy and personalize the treatment
for each individual. In addition, to better assess the treatment efficacy, the time-
varying infection rate η(t) can be further modeled as η(t) = ηpre × (1 − ηtreat(t)),
where ηpre denotes the infection rate at the pre-treatment equilibrium, and ηtreat(t)

the time-varying infection rate after treatment. By comparing ηpre with η(t), it will
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be easy to quantify the treatment effects on infection rate. However, since ηpre is
strongly correlated with ηtreat(t), ηpre has to be fixed to estimate ηtreat(t). Unfor-
tunately, the pre-treatment equilibrium data were not collected in this study such
that we could not determine the value of ηpre and therefore to do the comparison.
Finally, the treatment could also affect parameter N ; however, limited by the clin-
ical measurements, we simplified our model without considering parameter N as
time-varying.

We used both viral load and CD4+ T cell count data in order to identify all dy-
namic parameters in the HIV dynamic models (1.1)–(1.3). Usually AIDS investi-
gators believe that CD4+ T cell count data are very noisy with a large variation due
to both measurement errors and natural variations of CD4+ T cell counts. Thus,
it is important to improve the data quality in order to get more reliable estimates
of dynamic parameters, although it is beyond statisticians’ control. Our study also
suggests that the frequent measurements, in particular, the viral load measurements
during the early stage after initiating an antiviral therapy, are important to identify
some constant dynamic parameters such as c and δ, and long-term monitoring of
viral load and CD4+ T cell counts is necessary to estimate other parameters, in
particular, the time-varying parameter.

APPENDIX: DIFFERENTIAL EVOLUTION AND SCATTER SEARCH

The differential evolution (DE) algorithm [Storn and Price (1997)] is a typical
evolutionary algorithm that searches the optimum by inheritance, mutation, selec-
tion and crossover of parent populations (e.g., vectors of possible parameter values
in the parameter space). The initial population is randomly generated from a uni-
form distribution within the search range to cover the whole region, denoted by
xi,G (i = 1,2, . . . ,NP ), where NP is the number of members in this generation.
The subsequent population inherits and mutates by randomly mixing the previous
generation with certain weights. Storn and Price (1997) recommended a mutation
method

vi,G+1 = xr1,G + F(xr2,G − xr3,G),(A.1)

where vi,G+1 is the ith member of generation (G + 1), xr1,G, xr2,G and xr3,G the
members of the previous generation G, and F > 0 the amplification factor. Inte-
gers r1, r2 and r3 are randomly chosen from {1,2, . . . ,NP } which are mutually
different from each other and different from i. Also, to increase diversity, the mu-
tated member vi,G+1 exchanges its components with xi,G with a given probability,
the crossover ratio. For this purpose, a number within [0,1] is generated for each
component of vi,G+1 by a uniform random number generator. If this number is
greater than the crossover ratio, then the component of xi,G is kept. Finally, the
best member in the mutated population is selected by comparing the values of the
objective function. The convergence rate of the differential evolution method de-
pends on specific mutation strategies used, that is, the amplification factor and the
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crossover ratio. This method has been successfully employed in previous studies
[Miao et al. (2008, 2009)]. For more details about the DE algorithm, the reader is
referred to Storn and Price (1997).

The scatter search method was first proposed by Glover (1977) and extended
later by Laguna and Marti (2003, 2005). The scatter search method is not a ge-
netic algorithm; instead, it locates the optimum by tracking the search history and
balancing visiting frequency within different segments of the search region us-
ing sophisticated strategies. Here we give a brief introduction to this method. For
more details, the reader is referred to Laguna and Marti (2003) and Rodriguez-
Fernandez, Egea and Banga (2006).

Let li and ui denote the lower and upper boundary of the ith component of the
parameter vector, respectively. Then the region between li and ui can be divided
into m segments (e.g., m = 4), which are usually of equal length. Let sij (j =
1,2, . . . ,m) denote the j th segment of the search region [li , ui]. If a parameter
value candidate of θi falls in sij , we call it a visit to sij . Let fij denote the total
number of visits to sij , then a visiting history matrix F can be formed:

F =

⎡⎢⎢⎢⎣
f11 f12 · · · f1m

f21 f22 · · · f2m
...

...
...

...

fq1 fq2 · · · fqm

⎤⎥⎥⎥⎦ .(A.2)

Then we can calculate the probability of historic visits to sij as

pij = 1/fij∑m
k=1 1/fik

, i = 1,2, . . . , q; j = 1,2, . . . ,m.(A.3)

Since the scatter search method is population-based, the first population needs to
be generated to start the algorithm. Let NG denote the total number of parameter
vectors in the first population, then m parameter vectors are generated first such
that the ith component of the j th vector falls into sij . In this way, all elements of
matrix F become one. To generate the rest (NG − m) parameter vectors in the first
population, a random vector z = (z1, z2, . . . , zq)

T is generated for each parameter
vector with zi (i = 1,2, . . . , q) following a uniform distribution on [0,1]. Then
the ith component of the parameter vector to be generated falls into sik for the
smallest k satisfying

zi ≤
k∑

j=1

pij , k = 1,2, . . . ,m.

Note that after each new parameter vector is generated, the matrix F is also up-
dated.

Once the first population is generated, the parameter vectors are divided into
two categories: elite vectors and diverse vectors. Let ne denote the number of all
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elite vectors, which is usually a small fixed number (e.g., 20). Then ne/2 elite
vectors are chosen based on the smallest objective function values; the rest half of
the elite vectors are chosen to be farthest from all the first half elite vectors in the
sense of Euclidean distances. Thus, both fitness and diversity are considered in the
construction of the elite vectors. Then the new parameter vectors can be generated
by combination of the elite vectors. Let x(1) and x(2) denote two different elite
vectors and x(1) has a smaller objective function value than x(2). Then three types
of combinations can be employed to generate new parameter vectors:

• Type 1: p1 = x(1) − d ,
• Type 2: p2 = x(1) + d ,
• Type 3: p3 = x(2) + d ,

where d = rT ·(x(2)−x(1)) with all the components of r generated from an uniform
distribution on [0,1]. If both x(1) and x(2) are in the first half elite vectors in terms
of fitness, one new vector of type 1, one of type 3 and two of type 2 are generated;
if only x(1) belongs to the first half elite vectors in terms of fitness, one new vector
of each type is generated; if both x(1) and x(2) belong to the second half elite
vectors in terms of farthest distance, then one new vector of type 2 and one of
either type 1 or 3 are generated. The fitness of these new generated vectors is
then compared to that of the elite vectors. The new vectors with smaller objective
function values (that is, better fit) will replace the elite vectors with larger objective
function values. This procedure is repeated until no new vectors can replace any
elite vectors. Now the algorithm can either stop or continue by regenerating diverse
vectors.
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