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To investigate whether treating cancer patients with erythropoiesis-
stimulating agents (ESAs) would increase the mortality risk, Bennett et al.
[Journal of the American Medical Association 299 (2008) 914–924] con-
ducted a meta-analysis with the data from 52 phase III trials comparing ESAs
with placebo or standard of care. With a standard parametric random effects
modeling approach, the study concluded that ESA administration was sig-
nificantly associated with increased average mortality risk. In this article we
present a simple nonparametric inference procedure for the distribution of
the random effects. We re-analyzed the ESA mortality data with the new
method. Our results about the center of the random effects distribution were
markedly different from those reported by Bennett et al. Moreover, our pro-
cedure, which estimates the distribution of the random effects, as opposed to
just a simple population average, suggests that the ESA may be beneficial
to mortality for approximately a quarter of the study populations. This new
meta-analysis technique can be implemented with study-level summary sta-
tistics. In contrast to existing methods for parametric random effects models,
the validity of our proposal does not require the number of studies involved
to be large. From the results of an extensive numerical study, we find that the
new procedure performs well even with moderate individual study sample
sizes.

1. Introduction. Conventional meta-analysis techniques have been utilized
frequently to make inferences about a single parameter, for example, the center of
the distribution of the random or fixed effects. Under the random effects model,
the procedure for estimating the mean of the random effects proposed by DerSi-
monian and Laird (DL) (1986) is routinely used in practice. Their method utilizes
a linear combination of study-specific point estimates with the weights depending
on the within- and among-study variance estimates. This procedure is simple to
implement and does not require patient-level data. Its validity, however, depends
heavily on the individual study sample sizes and the number of studies [Brockwell
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and Gordon (2001), Bohning et al. (2002), Sidik and Jonkman (2007) and Viecht-
bauer (2007)]. In addition, this and other related methods for random effects mod-
els in meta-analysis do not provide inferences about the distribution function of the
random effects. Estimation of this distribution function or its quantile counterpart
provides valuable information for the complex risk-benefit decision on a new drug
or device.

In a meta-analysis using the data from 52 phase III comparative trials (ESA
vs. placebo or standard of care), Bennett et al. (2008) examined whether the
erythropoiesis-stimulating agents (ESAs) for treating anemia of cancer patients
would increase the patients’ risk of mortality. The point and 95% interval esti-
mates of two-sample study-specific hazard ratio were presented in Figure 2 of
Bennett et al. Bennett et al. (2008) concluded that administration of ESAs was
significantly associated with increased mortality. Using the DL method, the result-
ing 95% confidence interval for the mean of the random hazard ratios (treated
vs. untreated with ESA) across the studies was (1.01, 1.20). The lower bound
of the interval is barely above 1. Furthermore, it is known that the DL method
can produce liberal confidence interval estimates, that is, the true coverage level
tends to be smaller (sometimes substantially) than the nominal value [Emerson,
Hoaglin and Mosteller (1993), Hardy and Thompson (1996), Brockwell and Gor-
don (2001, 2007) and Sidik and Jonkman (2002)]. Therefore, the interval estimates
reported by Bennett et al. may be “too tight.” Moreover, from Figure 2 of Bennett
et al., it appears that the study-specific hazard ratio estimates for 22 out of 52 trials
are less than 1, suggesting that even if the average hazard ratio is more than 1,
the ESA may not be harmful in all study populations. Last, since the DL method
is based on a weighted average of hazard ratio estimates, the resulting interval
estimates may be sensitive to outliers.

In this article we propose a simple inference procedure for the percentiles of the
random effects distribution based on study-level data without assuming a paramet-
ric form of the distribution. We re-analyzed the mortality data reported in Bennett
et al. (2008). The resulting 95% confidence interval for the median of the random
hazard ratios was (0.94, 1.26). The 95% confidence interval for the lower quar-
tile of the random hazard ratios was (0.70, 0.99), indicating that, in approximately
a quarter of the study populations, ESA treatment may reduce mortality. In con-
trast to all existing methods, which can only handle inference for the center of
the random effects distribution, the new proposal does not require the number of
studies to be large. The new proposal is theoretically valid when the sample sizes
of individual studies are large. Through an extensive numerical study, we find that
the new method performs well even with moderate individual study sample sizes.
On the other hand, the DL method tends to give liberal confidence interval esti-
mators, that is, their coverage levels can be markedly smaller than the nominal
value.
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2. Interval estimates for percentiles of the random effects distribution.
Consider a typical two-level hierarchical model. Let �′ = (�,�′) be a row vec-
tor of random parameters, where � is a univariate parameter of interest and � is
a finite- or infinite-dimensional vector of nuisance parameters. Let G(·) be the con-
tinuous, completely unspecified distribution function of �. Given an unobservable
realization �, a data set X is generated. Let {�k,Xk}, k = 1, . . . ,K, be K inde-
pendent copies of {�,X}. The problem is how to make inferences, for instance,
about the median μ of G(·) with {Xk, k = 1, . . . ,K}. As an example, consider the
case with K 2 × 2 tables and let �k be the log-risk-ratio or risk difference for the
kth table. Here, the nuisance parameter �k consists of the underlying event rate
for the “control” group and the sample size for the kth study nk .

If we can observe {�k, k = 1, . . . ,K}, a simple nonparametric estimator for μ

is the sample median. Exact confidence intervals for μ can be obtained by invert-
ing a sign test for the null hypothesis that the median is μ0. Under H0 :μ = μ0,
consider

T (μ0) =
K∑

k=1

Bk,(1)

where Bk = I (�k < μ0)− I (�k > μ0) and I (·) is the indicator function. The null
distribution of T (μ0) can be generated by

T ∗ =
K∑

i=1

�k where �k =
{

1, with probability 0.5,
−1, otherwise.

(2)

Suppose that, given �k, �̂k is a consistent estimator for �k based on the
data Xk . To test H0, one may replace �k in (1) with �̂k. This results in the test
statistic

T̃ (μ0) =
K∑

k=1

B̂k =
K∑

k=1

{I (�̂k < μ0) − I (�̂k > μ0)}.(3)

When the sample size nk for each individual study is large, we can make inferences
about the median by comparing the observed value of (3) to the distribution of (2).

Now, the test based on (3) does not take into account the precision of the estima-
tor �̂k. It gives equal weight to each individual study. For the kth study, suppose
that the variance σ̂ 2

k of �̂k is large relative to the distance between �k and μ0.

Then the likelihood of the unobservable �k < μ0 can be quite close to 1/2 (like
tossing a fair coin). Therefore, the noise generated from such an unstable B̂k may
well outweigh its added value to the power of the test based on T̃ (μ0). On the
other hand, if σ̂ 2

k is small and �̂k < μ0, the likelihood of �k < μ0 would be closer
to 1.

This motivates us to modify test statistic (3) by putting weight wk on B̂k . Here,
wk is a measure of likelihood of the event �k < μ0, for example, the observed
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coverage level of the interval (−∞,μ0) for the realized �k . When the individ-
ual study size nk is large, and the distribution of �̂k conditional on �k is ap-
proximately normal with mean �k and variance σ̂ 2

k , where nkσ̂
2
k converges to a

constant, this coverage level is approximately �((μ0 − �̂k)/σ̂k), where � is the
distribution function of the standard normal. Let the resulting test statistic be

T̂ (μ0) =
K∑

k=1

∣∣�(
(μ0 − �̂k)/σ̂k

) − 1/2
∣∣B̂k.(4)

In the Appendix we show that, in probability, for any given μ,∣∣�(
(μ − �̂k)/σ̂k

) − 1/2
∣∣B̂k − Bk/2 → 0 as nk → ∞.(5)

It follows that, for fixed K, for large nk, k = 1, . . . ,K, the distribution of T̂ (μ0)

approximates that of T (μ0). This approximation, however, is rather discrete; and
for moderate sample sizes, the resulting confidence intervals for μ do not have
adequate coverage levels in our numerical study (Section 4). An alternative way to
generate an approximation to the null distribution of T̂ (μ0) is to use

T̂ ∗(μ0) =
K∑

k=1

∣∣�(
(μ0 − �̂k)/σ̂k

) − 1/2
∣∣�k.(6)

Here, the �k’s are the only random quantities and are analogous to the random
multipliers used in the wild bootstrap [Wu (1986)]. The weight from the kth study
is multiplied by �k , which is 1 or −1 with probability 0.5 and is generated by the
analyst independently of the observed data. In the Appendix, we also justify the
asymptotic validity of the test based on (4) and (6). Confidence intervals for μ can
be obtained by inverting this test. In contrast to other methods, the new proposal
does not require the number of studies (K) to be large. In Section 4 we show
empirically that the new interval estimation procedure performs well even when
the sample sizes (nk) are not large.

The above proposal can be generalized easily to make inferences about certain
percentiles of the distribution G(·). Specifically, let us hypothesize that the 100pth
percentile is μ0. As for the median, define Bk = I (�k < μ0) − I (�k > μ0), and
obtain B̂k by replacing �k in Bk with �̂k. The test statistic is given by

T̂p(μ0) =
K∑

k=1

∣∣�(
(μ0 − �̂k)/σ̂k

) − 1/2
∣∣B̂k,(7)

and the null distribution is generated by

T̂ ∗
p (μ0) =

K∑
k=1

∣∣�(
(μ0 − �̂k)/σ̂k

) − 1/2
∣∣�k,(8)

where �k = 1 with probability p and = −1 with probability 1 − p. Let the result-
ing test statistic corresponding to (3) be denoted by T̃p(μ0). Confidence intervals
for the 100pth percentile can then be obtained by inverting the conditional test
accordingly.
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3. Safety meta-analysis of erythropoiesis-stimulating agents. We re-ana-
lyzed the data reported in Bennett et al. (2008) using the new proposal. Here
K = 52, and for the kth study, �k was the log-hazard ratio and �̂k was its esti-
mate. Since the patient-level data were not available, we approximated the standard
error estimate of �̂k by one-fourth of the reported length of the 95% confidence
interval (converted to the log-scale). The 95% confidence interval for the median
of the distribution of the random hazard ratio (exp(�)) was (0.94,1.21) based on
the test statistic T̂ (·) and (6). The corresponding interval based on the indicator
functions {I (�̂k < μ)} via T̃ (·) was (0.90,1.26), which was wider than the above
interval. The 95% confidence interval for the mean of the random effects distrib-
ution reported in Bennett et al. (2008) using the DL method was (1.01,1.20). In
the next section we show that the empirical coverage levels of the DL method can
be substantially lower than their nominal counterparts even when the number of
studies is not that small (say, K = 40).

The 95% intervals for the 25th and 75th percentiles based on (7) and (8) were
(0.70, 0.99) and (1.18, 1.48), respectively. The counterparts based on T̃p(·) were
(0.49, 0.93) and (1.25, 1.72). Again, the intervals based on T̂p(·) were shorter
than those with T̃p(·). Note that the upper bound of the 95% interval for the 25th
percentile was smaller than 1, which suggested that, approximately, for a quarter
of the study populations, their average hazard ratios for the ESA versus the control
were most likely less than one. That is, on average, the patients in these study
populations may benefit from taking ESA with respect to mortality.

Further investigation to identify characteristics of these trials would be infor-
mative for identifying future cancer patients who would benefit from the ESAs
through reduction of blood cell transfusions and improved quality of life. On the
other hand, it is crucial to identify future patients who would have unacceptable
toxicity risks.

Bennett et al. (2008) also separately evaluated cancer-related anemia with six
studies (see the top portion of Figure 2 in Bennett et al.) and investigated whether
ESAs would increase the risk of a venous thromboembolism event (VTE) from 38
comparative phase III trials. The results obtained using the new proposal are re-
ported in the supplemental article [Wang et al. (2009)].

4. Numerical studies to evaluate performance of the new proposal. We
conducted extensive numerical studies to examine the performance of the proposed
interval estimation procedure for the percentiles of the random effects model under
various practical settings. The existing random effects methods for meta-analysis
have focused on making inferences about the mean of the random effects distrib-
ution. To the best of our knowledge, no other methods address the same issue as
our proposed procedure does. Our numerical studies included the DL interval es-
timation method, the method proposed by Sidik and Jonkman (2002) (SJ), and the
one based on T̃ (·) for comparisons. We considered cases with binary or continu-
ous responses, various symmetric or asymmetric random effects distributions, and
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a wide range of study sample sizes and number of studies. From the results of our
numerical investigation, we find that the new proposal performs well with respect
to the confidence interval coverage level and length. The DL (or SJ) method tends
to be liberal, that is, the empirical coverage levels can be markedly lower than
their nominal counterparts. The procedure based on the test statistic T̃ (·) produces
confidence intervals whose average lengths are uniformly wider than those with
our method. For percentiles other than the median, the method based on T̃p(·) may
have under-coverage.

Specifically, in our numerical studies, we first considered meta-analysis for
multiple 2 × 2 tables under settings similar to the meta-analysis of VTE rates
in Figure 3 of Bennett et al. (2008). There are 41 studies listed and the raw
data are available for 40 studies. We let �k = log(P1k/P0k) be the log-relative
risk for the kth study, where P1k and P0k are the underlying event rates for
the ESA and control groups, respectively. We then assumed that the random
vectors (logit(P0k), logit(P1k))

′ were a random sample of size K from a bi-
variate normal, whose mean η and variance–covariance matrix 	 were esti-
mated by their sample counterparts via the observed rates in Figure 3 of Ben-
nett et al. (2008). We used the conventional 0.5 continuity correction for stud-
ies with zero cells. The resulting sample means and variance–covariance matrix
are (−3.56,−2.86)′ and

(
0.90
0.62

0.62
1.10

)
, respectively. The density of � is given in

Figure 1 [panel (a)], which appears to be quite symmetric. For each realization
{(P0k,P1k)

′, k = 1, . . . ,K}, we generated the corresponding set of 2 × 2 tables.
We then used DL, SJ, T̂ (·) and T̃ (·) to construct 95% confidence intervals for
the median of the distribution of �. For each realized data set, we excluded stud-
ies with 0–0 cells (that is, no events occurred in either group), and used the 0.5
continuity correction for studies with one zero cell. The average empirical cover-
age levels and the median interval lengths were obtained from 2000 realized data
sets.

Under the same setting, we repeated this process with K = 40, 30, 20, 10 and 6.
For each K, the sample sizes came from the first K studies listed in Figure 3
of Bennett et al. (2008). The results are summarized in Table 1 (top half). The
average coverage levels for our proposed method, T̂ (·), range from 0.94 to 0.95.
On the other hand, the average empirical coverage level can be as low as 0.86 for
the DL method, and 0.88 for the SJ method. The median lengths of the intervals
obtained via T̂ (·) are uniformly smaller than those of the procedure using T̃ (·). In
Table 2 (top half), we report the results for the 25th and 75th percentiles. Again our
proposal behaves well, but the one with T̃p(·) may not have the correct coverage
level.

We also considered rather asymmetric random effects distributions. For exam-
ple, we considered a bivariate beta distribution for {(P0k,P1k)

′, k = 1, . . . ,40}
via three independent gamma random variables with a common unit scale para-
meter and shape parameters of 2, 8 and 10, respectively [Olkin and Liu (2003)].
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FIG. 1. The true density functions for the random log-relative-risk parameter for the simulation
study.

TABLE 1
Empirical coverage levels (ECL) and median lengths (ML) of 95% interval estimates for median

based on DerSimonian–Laird (DL), Sidik and Jonkman (SJ), T̂ (·) and T̃ (·) with a bivariate
logit-normal or a bivariate beta distribution for the two underlying random event rates

Number of
studies, K

DL SJ T̂ (·) T̃ (·)
ECL ML ECL ML ECL ML ECL ML

Bivariate logit-normal
40 86% 0.62 88% 0.65 94% 0.72 95% 0.90
30 88% 0.71 91% 0.75 94% 0.83 95% 1.03
20 88% 0.85 91% 0.90 94% 1.00 95% 1.23
10 88% 1.18 94% 1.36 95% 1.54 97% 2.15
6 91% 1.57 97% 2.06 95% 2.29 97% 2.89

Bivariate beta
40 87% 0.40 89% 0.42 95% 0.52 96% 0.65
30 88% 0.46 90% 0.48 95% 0.61 96% 0.75
20 90% 0.55 92% 0.59 96% 0.75 96% 0.91
10 91% 0.76 93% 0.89 96% 1.10 98% 1.56
6 88% 1.00 94% 1.30 95% 1.58 97% 2.10
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TABLE 2
Empirical coverage levels (ECL) and median lengths (ML) of 95% confidence intervals for the 25th

and 75th percentiles based on T̂p(·) and T̃p(·) with a bivariate logit-normal or a bivariate beta
distribution for the two underlying random event rates

25th percentile 75 percentile

Number of
studies, K

T̂p(·) T̃p(·) T̂p(·) T̃p(·)
ECL ML ECL ML ECL ML ECL ML

Bivariate logit-normal
40 95% 0.86 86% 1.16 95% 0.81 92% 0.92
35 96% 0.91 88% 1.21 96% 0.86 90% 1.02
30 96% 1.00 90% 1.37 96% 0.94 91% 1.12
25 96% 1.12 90% 1.49 97% 1.06 92% 1.23
20 96% 1.24 92% 1.52 97% 1.16 92% 1.32

Bivariate beta
40 96% 0.48 93% 0.55 96% 0.73 92% 0.96
35 96% 0.52 95% 0.61 96% 0.78 93% 1.04
30 95% 0.56 94% 0.64 96% 0.85 93% 1.07
25 96% 0.62 93% 0.65 96% 0.94 92% 1.10
20 96% 0.72 95% 0.80 96% 1.37 95% 1.37

The resulting density function of the random parameter �, the log-relative risk, is
given in Figure 1 [panel (b)]. Under the same setting as the previous simulation,
the results are reported in the bottom half portions of Tables 1 and 2. Again, the
new procedure performs well. The DL (or SJ) method still has coverage problems.
Although the DL method produces confidence interval estimates for the mean of
G(·), not the median, its empirical coverage for the mean was also lower than the
nominal 95%. For example, when K = 40, the coverage of DL for the mean was
only 64%.

Although our method assumes that the random effects distribution is continu-
ous, we also considered cases with fixed effects models in our numerical study.
For example, we let (P0k,P1k) = (0.1,0.2), k = 1, . . . ,K. The results are sum-
marized in Table 3. For this case, the DL method has correct coverage level for
most scenarios under which our interval estimation procedure is comparable with
the DL method with respect to efficiency, which is reflected in the interval length.
We also studied the performance of our method for �k = P1k − P0k, the risk dif-
ference for the kth study. The results were very similar to those for the relative
risk.

Our numerical studies with continuous responses yielded similar results. We
summarize the study settings and the results in the supplemental article [Wang
et al. (2009)]. We expect similar results for censored time to event observations,
where hazard ratios are used for treatment effect measurements.
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TABLE 3
Empirical coverage levels (ECL) and median lengths (ML) of 95% interval estimates for median

based on DerSimonian–Laird (DL), T̂ (·) and T̃ (·) under a fixed effect model (the underlying
event rates are 0.1 and 0.2)

Number of
studies, K

DL T̂ (·) T̃ (·)
ECL ML ECL ML ECL ML

40 92% 0.24 95% 0.27 96% 0.35
30 94% 0.26 95% 0.30 96% 0.39
20 95% 0.30 95% 0.35 97% 0.45
10 97% 0.47 96% 0.57 98% 0.84

6 96% 0.75 95% 1.03 97% 1.34

5. Discussion. In this article we present a simple nonparametric interval es-
timation procedure for percentiles of the random effects distribution. Random
effects meta-analysis is frequently employed in medical research. However, the
validity of the most popular method (DL) and its variations [Hardy and Thomp-
son (1996), Biggerstaff and Tweedie (1997), Hartung (1999), Hartung and Knapp
(2001a, 2001b) and DerSimonian and Kacker (2007)] is not clear when the number
of studies is not large or the parametric assumption for the random effects is vio-
lated. An excellent review on meta-analysis with the random effects model is given
by Sutton and Higgins (2008). In contrast to previous methods, our proposal does
not require the number of studies to be large. The new proposal is valid provided
the individual study sample sizes are large.

In addition, if the random effects distribution is symmetric and the exact distri-
bution of �̂k, k = 1, . . . ,K, conditional on �k , is symmetric around the unknown
fixed realized �k, it is easy to show that the resulting interval estimators based
on T̂ (·) for the median (or mean) are valid without requiring the sizes of the indi-
vidual studies or the number of studies to be large. For instance, under the usual
two-sample location shift model with continuous response variable, let � be the
location shift parameter of interest. Then, the two-sample rank estimator �̂ is sym-
metric around � under rather mild conditions [Lehmann (1975), page 86]. If the
unspecified random effects distribution is symmetric around μ, one can use our
procedure to obtain exact confidence intervals for μ. To examine the performance
of the method in this setting, we conducted a simulation study, described in detail
in the supplemental article [Wang et al. (2009)].

The proposed procedure can be implemented with study level summary statis-
tics. When patient level data are available, various novel procedures have been
studied for mixed effects regression models for continuous, discrete or censored
event time observations [Laird and Ware (1982), Hougaard (1995), Hogan and
Laird (1997), Henderson, Diggle and Dobson (2000), Lam, Lee and Leung (2002),
Nelder, Lee and Pawitan (2006), Cai, Cheng and Wei (2002), Zeng and Lin (2007)
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and Zeng, Lin and Lin (2008)]. To the best of our knowledge, all of the existing
asymptotic procedures for mixed effects models assume that the number of studies
is large.

In the current practice of meta-analysis, inferences are made only for the “cen-
ter” of the random effects distribution. A conclusion on the risk or benefit from an
intervention based solely on an estimated center of the random effects distribution
provides limited information and is usually not sufficient. If the number of stud-
ies involved is not small, we highly recommend estimating this distribution or its
percentiles as proposed in this article.

Under the fixed effects model, this distribution has a single unknown mass
point. The standard estimation procedure for such a fixed parameter value utilizes
a weighted average of study-specific point estimates. For analyzing multiple 2 × 2
tables, the most commonly used procedures are the Mantel–Haenszel [Mantel and
Haenszel (1959)] and Peto methods [Yusuf et al. (1985)]. These methods are valid
when the number of studies and each individual study sample size are large. More-
over, when the event rate is small, these standard methods may not perform well.
For the fixed effects model, Tian et al. (2009) proposed a general exact interval es-
timation procedure that combines study-specific exact confidence intervals instead
of point estimates. If the fixed effects model is approximately correct, the existing
interval procedures for the common parameter value μ may be more efficient than
those developed under the random effects model. The standard heterogeneity tests
generally do not have the power to detect violations of the fixed effects modeling
assumption. Therefore, in practice, sensitivity analyses with both random and fixed
effects models are highly recommended.

APPENDIX: JUSTIFICATION FOR THE CONDITIONAL TEST T̂ (·) BASED
ON THE APPROXIMATION GENERATED BY T̂ ∗(·)

Let Dk = |�((μ − �̂k)/σ̂k) − 1/2|B̂k − Bk/2. We show that Dk goes to 0,
in probability, as nk → ∞. Here, the probability is generated by the ran-
dom element (Xk,�k). For any fixed positive constant c, first we show that
pr(|Dk| ≥ c|�k) → 0 for any given �k with �k �= μ. To this end, consider two
cases. First, if �k < μ, then conditional on �k,

|Dk| =
∣∣�(

(μ − �̂k)/σ̂k

) − 1
∣∣ = 1 − �

(
(μ − �k)/σ̂k + (�k − �̂k)/σ̂k

)
.

As nk → ∞, (μ − �k)/σ̂k → ∞ in probability, and (�k − �̂k)/σ̂k → N(0,1) in
distribution. Therefore, for any c > 0, we can find N such that, when nk > N ,
pr((μ − �k)/σ̂k + (�k − �̂k)/σ̂k ≤ �−1(1 − c)) < c, which is equivalent to
pr(�((μ− �̂k)/σ̂k) < 1 − c) = pr(|Dk| ≥ c) < c. Therefore, pr(|Dk| ≥ c | �k) →
0. Similarly, if �k > μ, we can show that pr(|Dk| ≥ c | �k) → 0 as nk → ∞.

Therefore, pr(|Dk| ≥ c | �k) → 0 for any �k such that �k �= μ.
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This, coupled with the fact that G(·) is continuous, implies that pr(|Dk| ≥
c) = E�k

{pr(|Dk| ≥ c | �k)} → 0 for any c by the dominated convergence the-
orem. Therefore, Dk → 0 in probability as nk → ∞. It follows that |T̂ (μ) −∑K

k=1 Bk/2| → 0, in probability, as min{n1, . . . , nK} → ∞.

Similarly, since∣∣∣∣�(
(μ − �̂k)/σ̂k

) − 1/2
∣∣�k − |I (�k < μ) − 1/2|�k

∣∣ ≤ |Dk|,
one can show that T̂ ∗(μ) − ∑K

k=1 |I (�k < μ) − 1/2|�k → 0, in probability, as
min{n1, . . . , nK} → ∞, where

�k =
{

1, with probability p,

−1, with probability 1 − p,

for the 100pth percentile and is independent of the data. Therefore, for any t and
positive c,

pr{(Xk,�k)k=1,...,K }

(∣∣∣∣∣pr
(
T̂ ∗(μ) ≤ t |(Xk,�k)k=1,...,K

) − pr

(
K∑

k=1

�k/2 ≤ t

)∣∣∣∣∣ ≥ c

)

≤ c,

when min{n1, . . . , nK} is large. This, coupled with the fact that
∑K

k=1 Bk/2 ∼∑K
k=1 �k/2 under the null hypothesis that the 100pth percentile of �k is μ, im-

plies that one can approximate the null distribution of T̂ (μ) by the distribution of
T̂ ∗(μ) conditional on the observed data.
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SUPPLEMENTARY MATERIAL

Additional examples, simulation results and computer codes (DOI:
10.1214/09-AOAS280SUPP; .pdf). We present the results for the mortality data
set restricted to the six trials for anemia of cancer and the results for the venous
thromboembolism rates data set in Bennett et al. (2008) using the proposed ap-
proach, report the simulation results for continuous responses and for the setting
where the sample sizes for individual studies are small, and provide R codes for
implementation of the proposed procedure.
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