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Rapid developments in geographical information systems (GIS) continue
to generate interest in analyzing complex spatial datasets. One area of activity
is in creating smoothed disease maps to describe the geographic variation of
disease and generate hypotheses for apparent differences in risk. With mul-
tiple diseases, a multivariate conditionally autoregressive (MCAR) model is
often used to smooth across space while accounting for associations between
the diseases. The MCAR, however, imposes complex covariance structures
that are difficult to interpret and estimate. This article develops a much sim-
pler alternative approach building upon the techniques of smoothed ANOVA
(SANOVA). Instead of simply shrinking effects without any structure, here
we use SANOVA to smooth spatial random effects by taking advantage of the
spatial structure. We extend SANOVA to cases in which one factor is a spatial
lattice, which is smoothed using a CAR model, and a second factor is, for ex-
ample, type of cancer. Datasets routinely lack enough information to identify
the additional structure of MCAR. SANOVA offers a simpler and more intel-
ligible structure than the MCAR while performing as well. We demonstrate
our approach with simulation studies designed to compare SANOVA with
different design matrices versus MCAR with different priors. Subsequently a
cancer-surveillance dataset, describing incidence of 3-cancers in Minnesota’s
87 counties, is analyzed using both approaches, showing the competitiveness
of the SANOVA approach.

1. Introduction. Statistical modeling and analysis of spatially referenced
data receive considerable interest due to the increasing availability of geograph-
ical information systems (GIS) and spatial databases. For data aggregated over
geographic regions such as counties, census tracts or ZIP codes (often called areal
data), with individual identifiers and precise locations removed, inferential objec-
tives focus on models for spatial clustering and variation. Such models are often
used in epidemiology and public health to understand geographical patterns in dis-
ease incidence and morbidity. Recent reviews of methods for such data include
Lawson et al. (1999), Elliott et al. (2000), Waller and Gotway (2004) and Rue and
Held (2005). Traditionally such data have been modeled using conditionally speci-
fied probability models that shrink or smooth spatial effects by borrowing strength
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from neighboring regions. Perhaps the most pervasive model is the conditionally
autoregressive (CAR) family pioneered by Besag (1974), which has been widely
investigated and applied to spatial epidemiological data [Wakefield (2007) gives an
excellent review]. Recently the CAR has been extended to multivariate responses,
building on multivariate conditional autoregressive (MCAR) models described by
Mardia (1988). Gelfand and Vonatsou (2003) and Carlin and Banerjee (2003) dis-
cussed their use in hierarchical models, while Kim, Sun and Tsutakawa (2001)
presented a different “twofold CAR” model for counts of two diseases in each
areal unit. Other extensions allowing flexible modeling of cross-correlations in-
clude Sain and Cressie (2002), Jin, Carlin and Banerjee (2005) and Jin, Banerjee
and Carlin (2007). The MCAR can be viewed as a conditionally specified probabil-
ity model for interactions between space and an attribute of interest. For instance,
in disease mapping interest often lies in modeling geographical patterns in disease
rates or counts of several diseases. The MCAR acknowledges dependence between
the diseases as well as dependence across space. However, practical difficulties
arise from MCAR’s elaborate dependence structure: most interaction effects will
be weakly identified by the data, so the dependence structure is poorly identified.
In hierarchical models [e.g., Gelfand and Vonatsou (2003), Jin, Carlin and Baner-
jee (2005, 2007)], strong prior distributions may improve identifiability, but this
is not uncontroversial, as inferences are sensitive to the prior and perhaps unreli-
able without genuine prior information. This article proposes a much simpler and
more interpretable alternative to the MCAR, modeling multivariate spatial effects
using smoothed analysis of variance (SANOVA) as developed by Hodges, Car-
lin and Fan (2007), henceforth HCSC. Unlike an ANOVA that is used to identify
some interaction effects to retain and others to remove, SANOVA mostly retains
effects that are large, mostly removes those that are small, and partially retains
middling effects. (Loosely speaking, “large,” “middling” and “small” describe the
size of the unsmoothed effects compared to their standard errors.) To accommodate
rich dependence structures, MCAR introduces weakly identifiable parameters that
complicate estimation. SANOVA, on the other hand, focuses instead on smooth-
ing interactions to yield more stable and reliable results. Our intended contribution
is to show how SANOVA can solve the multiple disease mapping problem while
avoiding the dauntingly complex covariance structures imposed by MCAR and its
generalizations. We demonstrate that SANOVA produces inference that is largely
indistinguishable from MCAR, yet SANOVA is simpler, more explicit, easier to
put priors on and easier to estimate. The rest of the article is as follows. Section 2
reviews SANOVA and MCAR, identifying SANOVA as a special case of MCAR.
Section 3 is a “tournament” of simulation experiments comparing SANOVA with
MCAR for normal and Poisson data, while Section 4 analyzes data describing the
number of deaths from lung, larynx and esophagus cancer in Minnesota between
1990 and 2000. A summary and discussion of future research in Section 5 con-
cludes the paper. Zhang, Hodges and Banerjee (2009) (Appendices) gives compu-
tational and technical details.
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2. The competitors.

2.1. Smoothing spatial effects using SANOVA.

2.1.1. SANOVA for balanced, single-error-term models [HCSC (2007)]. Con-
sider a balanced, single-error-term analysis of variance, with M1 degrees of free-
dom for main effects and M2 degrees of freedom for interactions. Specify this
ANOVA as a linear model: let A1 denote columns in the design matrix for main ef-
fects, and A2 denote columns in the design matrix for interactions. Assume the de-
sign has c cells and n observations per cell, giving cn observations in total. To sim-
plify later calculations, normalize the columns of A1 and A2 so A′

1A1 = IM1 and
A′

2A2 = IM2 . (Note: HCSC normalized columns differently, fixing A′
1A1 = cnIM1

and A′
2A2 = cnIM2 .) Then write the ANOVA as

y = [A1|A2]
[
�1
�2

]
+ ε = A1�1 + A2�2 + ε,(1)

where ε ∼ N(0, 1
η0

I ) with η0 being a precision, y is cn × 1, A1 is cn × M1, A2 is
cn × M2, �1 is M1 × 1, �2 is M2 × 1, and ε is cn × 1. This ANOVA is smoothed
by further modeling �. HCSC emphasized smoothing interactions, although main
effects can be smoothed by exactly the same means. Following HCSC, we add
constraints (or a prior) on �2 as θM1+j ∼ N(0,1/ηj ) for j = 1, . . . ,M2, written
as

0M2 = [
0M2×M1 |IM2

] [�1
�2

]
+ δ,(2)

where δ ∼ N(0,diag( 1
ηj

)), in the manner of Lee and Nelder (1996) and Hodges
(1998). Combining (1) and (2), express this hierarchical model as a linear model:[

y
0M2

]
=
[

A1 A2
0M2×M1 IM2

][
�1
�2

]
+
[
ε
δ

]
.(3)

More compactly, write

Y = X� + e,(4)

where Y has dimension (cn + M2) × 1 and e’s covariance � is block diagonal
with blocks �1 = 1

η0
Icn for the data cases (rows of X corresponding to the obser-

vation y) and �2 = diag(1/η1, . . . ,1/ηM2) for the constraint cases (rows of X with
error term δ). For convenience, define the matrix XD = [A1|A2], the data-case
part of X. This development can be done using the mixed linear model (MLM)
formulation traditionally written as y = Xβ + Zu + ε, where our (1) supplies this
equation and u = �2 ∼ N(0,�2). The development to follow can also be done
using the MLM formulation at the price of slightly greater complexity, so we omit
it. HCSC developed SANOVA for exchangeable priors on groups formed from
components of �2. The next section develops the extension to spatial smoothing.
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2.1.2. What is CAR? Suppose a map has N regions, each with an unknown
quantity of interest φi , i = 1, . . . ,N . A conditionally autoregressive (CAR) model
specifies the full conditional distribution of each φi as

φi | φj , j �= i,∼ N

(
α

mi

∑
i∼j

φj ,
1

τmi

)
, i, j = 1, . . . ,N,(5)

where i ∼ j denotes that region j is a neighbor of region i (typically defined as
spatially adjacent), and mi is the number of region i’s neighbors. Equation (5)
reduces to the well-known intrinsic conditionally autoregressive (ICAR) model
[Besag, York and Mollié (1991)] if α = 1 or an independence model if α = 0. The
ICAR model induces “local” smoothing by borrowing strength from neighbors,
while the independence model assumes spatial independence and induces “global”
smoothing. The CAR prior’s smoothing parameter α also controls the strength of
spatial dependence among regions, though it has long been appreciated that a fairly
large α may be required to induce large spatial correlation; see Wall (2004) for
recent discussion and examples. It is well known [e.g., Besag (1974)] that the con-
ditional specifications in (5) lead to a valid joint distribution for φ = (φ1, . . . , φN)′
expressed in terms of the map’s neighborhood structure. If Q is an N × N matrix
such that Qii = mi , Qij = −α whenever i ∼ j and Qij = 0 otherwise, then the
intrinsic CAR model [Besag, York and Mollié (1991)] has density

p(φ|τ) ∼ τN∗/2 exp
(
−τ

2
φ′Qφ

)
, with

(6)

N∗ =
{

N, if α ∈ (0,1),
N − G, if α = 1.

In (6) τ is the spatial precision parameter, τQ is the precision matrix in this
multivariate normal distribution and G is the number of “islands” (disconnected
parts) in the spatial map [Hodges, Carlin and Fan (2003)]. When α ∈ (0,1), (6) is
a proper multivariate normal distribution. When α = 1, Q is singular with Q1 = 0;
Q has rank N − G in a map with G islands, therefore, the exponent on τ becomes
(N − G)/2. In hierarchical models, the CAR model is usually used as a prior on
spatial random effects. For instance, let Yi be the observed number of cases of
a disease in region i, i = 1, . . . ,N , and Ei be the expected number of cases in re-
gion i. Here the Yi are treated as random variables, while the Ei are treated as fixed
and known, often simply proportional to the number of persons at risk in region i.
For rare diseases, a Poisson approximation to a binomial sampling distribution for
disease counts is often used, so a commonly used likelihood for mapping a single
disease is

Yi
ind∼ Poisson(Eie

μi ), i = 1, . . . ,N,(7)

where μi = x′
iβ + φi . The xi are explanatory, region-specific regressors with co-

efficients β and the parameter μi is the log-relative risk describing departures of
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observed from expected counts, that is, from Ei . The hierarchy’s next level is spec-
ified by assigning the CAR distribution to φ and a hyper-prior to the spatial preci-
sion parameter τ . In the hierarchical setup, the improper ICAR with α = 1 gives
proper posterior distributions for spatial effects. In practice, Markov chain Monte
Carlo (MCMC) algorithms are designed for estimating posteriors from such mod-
els and the appropriate number of linear constraints on the φ suffices to ensure
sampling from proper posterior distributions [Banerjee, Carlin and Gelfand (2004),
pages 163–164, give details].

2.1.3. How does CAR fit into SANOVA? To use CAR in SANOVA, the key is
re-expressing the improper CAR, that is, (6) with α = 1. Let Q have spectral de-
composition Q = V DV ′, where V is an orthogonal matrix with columns contain-
ing Q’s eigenvectors and D is diagonal with nonnegative diagonal entries. D has G

zero diagonal entries, one of which corresponds to the eigenvector 1√
N

1N , by con-

vention the N th (right-most) column in V . Define a new parameter � = V ′φ, so
� has dimension N and precision matrix τD. Giving an N -vector � a normal
prior with mean zero and precision τD is equivalent to giving φ = V � a CAR
prior with precision τQ. � consists of �N = 1√

N
1′
Nφ = √

N φ, the scaled aver-

age of the φi , along with N − 1 contrasts in φ, which are orthogonal to 1√
N

1N by
construction. Thus, the CAR prior is informative (has positive precision) only for
contrasts in φ, while putting zero precision on �GM = �N = 1√

N
1′
Nφ, the overall

level, and on G − 1 orthogonal contrasts in the levels of the G islands. In other
words, the CAR model can be thought of as a prior distribution on the contrasts
rather than individual effects (hence the need for the sum-to-zero constraint). A re-
lated result, discussed in Besag, York and Mollié (1995), shows the CAR to be
a member of a family of “pairwise difference” priors. This reparameterization al-
lows the CAR model to fit into the ANOVA framework, with �GM corresponding
to the ANOVA’s grand mean and the rest of �, �Reg, corresponding to V (−)′φ,
where V (−) is V excluding the column 1√

N
1N , consisting of N − 1 orthogonal

contrasts among the N regions and giving the N − 1 degrees of freedom in the
usual ANOVA:

φ = [φ1, φ2, . . . , φN ]′
= V �

= [
V (−) 1√

N
1N
] [�Reg

�GM

]
.

Giving φ a CAR prior is equivalent to giving � a N(0, τD) prior; the latter are the
“constraint cases” in HCSC’s SANOVA structure. The precision DNN = 0 for the
overall level is equivalent to a flat prior on �GM , though �GM could alternatively
have a normal prior with mean zero and finite variance. If G > 1, the CAR prior
also puts zero precision on G − 1 contrasts in φ, which are contrasts in the levels
of the G islands [Hodges, Carlin and Fan (2003)].
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2.2. SANOVA as a competitor to MCAR.

2.2.1. Multivariate conditionally autoregressive (MCAR) models. With multi-
ple diseases, we have unknown φij corresponding to region i and disease j , where
i = 1, . . . ,N and j = 1, . . . , n. Letting 	 be a common precision matrix (i.e., in-
verse of the covariance matrix) representing correlations between the diseases in
a given region, MCAR distributions arise through conditional specifications for
φi = (φi1, . . . , φin)

′:

φi |{φi′ }i′ �=i ∼ MVN
(

α

mi

∑
i′∼i

φi′,
1

mi

	−1
)
.(8)

These conditional distributions yield a joint distribution for φ = (φ′
1, . . . ,φ

′
N)′:

f (φ|	) ∝ ‖	‖(N−G)/2 exp
(−1

2φ′(Q ⊗ 	)φ
)
,(9)

where Q is defined as in Section 2.1.2 and again (9) is an improper density when
α = 1. However, as for the univariate CAR, this yields proper posteriors in con-
junction with a proper likelihood. The specification above is a “separable” disper-
sion structure, that is, the covariances between the diseases are invariant across
regions. This may seem restrictive, but relaxing this restriction gives even more
complex dispersion structures [see Jin, Banerjee and Carlin (2007) and references
therein]. As mentioned earlier, our focus is to retain the model’s simplicity without
compromising the primary inferential goals. We propose to do this using SANOVA
and will compare it with the separable MCAR only.

2.2.2. SANOVA with Minnesota counties as one factor. We now describe the
SANOVA model using the Minnesota 3-cancer dataset. Consider the Minnesota
map with N = 87 counties, and suppose each county has counts for n = 3 can-
cers. County i has an n-vector of parameters describing the n cancers, φi =
(φi1, φi2, . . . , φin)

′; define the Nn vector φ as φ = (φ′
1,φ

′
2, . . . ,φ

′
N)′. For now, we

are vague about the specific interpretation of φij ; the following description applies
to any kind of data. Assume the N × N matrix Q describes neighbor pairs among
counties as before. The SANOVA model for this problem is a 2-way ANOVA with
factors cancer (“CA,” n levels) and county (“CO,” N levels) and no replication. As
in Section 2.1.1, we model φ with a saturated linear model and put the grand mean
and the main effects in their traditional positions as in ANOVA (matrix dimensions
and definitions appear below the equation):

φ = [φ′
1,φ

′
2, . . . ,φ

′
N ]′ = [A1|A2]�

=
[ ∣∣∣∣(10)

1√
Nn

1Nn︸ ︷︷ ︸
Grand mean

Nn×1

1√
N

1N ⊗ HCA︸ ︷︷ ︸
Cancer

main effect
Nn×(n−1)
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V (−) ⊗ 1√
n

1n︸ ︷︷ ︸
County

main effect
Nn×(N−1)

V (−) ⊗ H
(1)
CA · · · V (−) ⊗ H

(n−1)
CA︸ ︷︷ ︸

Cancer×County
interaction

Nn×(N−1)(n−1)

]

×

⎡⎢⎢⎢⎣
�GM

�CA

�CO

�CO×CA

⎤⎥⎥⎥⎦ ,

where HCA is an n × (n − 1) matrix whose columns are contrasts among can-
cers, so 1′

nHCA = 0′
n−1, and H ′

CAHCA = In−1; H
(j)
CA is the j th column of HCA;

and V (−) is V without its N th column 1√
N

1N , so it has N − 1 columns, each

a contrast among counties, that is, 1′
NV (−) = 0′

N−1, and V (−)′V (−) = IN−1. The
column labeled “Grand mean” corresponds to the ANOVA’s grand mean and has
parameter �GM ; the other blocks of columns labeled as main effects and inter-
actions correspond to the analogous ANOVA effects and to their respective pa-
rameters �CA,�CO,�CO×CA. Defining prior distributions on � completes the
SANOVA specification. We put independent flat priors (normal with large vari-
ance) on �GM and �CA, which are, therefore, not smoothed. This is equivalent to
putting a flat prior on each of the n cancer-specific means. To specify the smooth-
ing priors, define H

(0)
CA = 1√

n
1n. Let the county main effect parameter �CO have

prior �CO ∼ NN−1(0, τ0D
(−)), where D(−) corresponds to V (−), that is, D with-

out its N th row and column, τ0 > 0 is unknown and τ0D
(−) is a precision ma-

trix. Similarly, let the j th group of columns in the cancer-by-county interaction,
V (−) ⊗ H

(j)
CA , have prior �

(j)
CO×CA ∼ NN−1(0, τjD

(−)), for τj > 0 unknown. Each

of the priors on �CO and the �
(j)
CO×CA is a CAR prior; the overall level of each

CAR, with prior precision zero, has been included in the grand mean and cancer
main effects.

To compare this to the MCAR model, use SANOVA’s priors on � to produce
a marginal prior for φ comparable to the MCAR’s prior on φ (Section 2.2.1); in
other words, integrate �CO and �CO×CA out of the foregoing setup. A priori,⎡⎢⎢⎢⎢⎣K

⎛⎜⎜⎜⎜⎜⎝
�CO

�
(1)
CO×CA

...

�
(n−1)
CO×CA

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦(11)

has precision Q⊗(H
(+)
A diag(τj )H

(+)
A

′), where K is the columns of the design ma-
trix for the county main effects and cancer-by-county interactions—the right-most
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FIG. 1. Comparing prior precision matrices for φ in MCAR and SANOVA.

n(N − 1) columns in equation (10)’s design matrix—and H
(+)
A = ( 1√

n
1n|HCA) is

an orthogonal matrix. Appendix A in Zhang, Hodges and Banerjee (2009) gives
a proof.

2.2.3. Comparing SANOVA vs MCAR. Defining φ as in Sections 2.2.1
and 2.2.2, consider the MCAR prior for φ, with within-county precision matrix
	. Let 	 have spectral decomposition V	D	V ′

	, where D	 is n × n diagonal and
V	 is n×n orthogonal. Then the prior precision of φ is Q⊗ (V	D	V ′

	), where Q

is the known neighbor relations matrix and V	 and D	 are unknown. Comparing
MCAR to SANOVA, the prior precision matrices for the vector φ are as in Fig-
ure 1. SANOVA is clearly a special case of MCAR in which H

(+)
A is known. Also,

as described so far, H(+)
A has one column proportional to 1n with the other columns

being contrasts, while MCAR avoids this restriction. MCAR is thus more flexible,
while SANOVA is simpler, presumably making it better identified and easier to
set priors for. MCAR should have its biggest advantage over SANOVA when the
“true” V	 is not like H

(+)
A for any specification of the smoothing precisions τj .

However, because data sets often have modest information about higher-level vari-
ances, it may be that using the wrong H

(+)
A usually has little effect on the analysis.

In other words, SANOVA’s performance may be relatively stable despite having to
specify H

(+)
A , while MCAR may be more sensitive to 	’s prior.

2.3. Setting priors in MCAR and SANOVA.

2.3.1. Priors in SANOVA. For the case of normal errors, based on equa-
tions (1) and (10), setting priors for �, τj , η0 completes a Bayesian specification.
Since τ and η0 are precision parameters, one possible prior is Gamma; this pa-
per uses a Gamma with mean 1 and variance 10. As mentioned, the grand mean
and cancer main effects θ1, θ2, θ3 have flat priors with π(θ) ∝ 1, though they
could have proper informative priors. The priors for θ4, . . . are set according to the
SANOVA structure as in Section 2.2.2. We ran chains drawing in the order θ , τ

and η0 [Appendix B in Zhang, Hodges and Banerjee (2009) gives details]. Hodges,
Carlin and Fan (2007) also considered priors on the degrees of freedom in the fit-
ted model, some conditioned so the degrees of freedom in the model’s fit were
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fixed at a certain degree of smoothness. The present paper emphasizes comparing
MCAR and SANOVA, so we do not consider such priors. For the case of Poisson
errors, we use a normal prior with mean 0 and variance 106 for the grand mean
and cancer main effects θ1, θ2, θ3. The other θis are given normal CAR priors as
discussed in Section 2.2.2. For the prior on the smoothing precisions τj , we use
Gamma with mean 1 and variance 10. To reduce high posterior correlations among
the θs, we used a transformation during MCMC; Appendix C in Zhang, Hodges
and Banerjee (2009) gives details.

2.3.2. Priors in MCAR. MCAR models were fitted in WinBUGS. For the
normal-error case, we used this model and parameterization:

Yij ∼ N

(
μij ,

1

η0

)
,

(12)
μij = βj + Sij ,

i = 1, . . . ,N; j = 1, . . . , n, where η0 has a gamma prior with mean 1 and vari-
ance 10 as for SANOVA. To satisfy WinBUGS’s constraint that

∑
i Sij = 0, we

add cancer-specific intercepts βj . We give βj a flat prior and for S, the spatial ran-
dom effects, we use an intrinsic multivariate CAR prior. Similarly, in the Poisson
case

Yij ∼ Poisson(μij ),
(13)

log(μij ) = log(Eij ) + βj + Sij ,

where Eij is an offset. Prior settings for βj and Sij are as in the normal case.
For MCAR priors, the within-county precision matrix 	 needs a prior; a Wishart
distribution is an obvious choice. If 	 ∼ Wishart(R, ν), then E(	) = νR−1. We
want a “vague” Wishart prior; usually ν = n is used but little is known about how to
specify R. Thus, we considered three different Rs, each proportional to the identity
matrix. One of these priors sets R’s diagonal entries to Rii = 0.002, close to the
setting used in an example in the GeoBUGS manual (oral cavity cancer and lung
cancer in West Yorkshire). The other two Rs are the identity matrix and 200 times
the identity. For the special case n = 1, where the Wishart reduces to a Gamma,
these Wisharts are �(0.5,0.001), �(0.5,0.5) and �(0.5,100), respectively.

3. Simulation experiment. For this simulation experiment, artificial data
were simulated from the model used in SANOVA with a spatial factor, as de-
scribed in Section 2.2.2. Three different types of Bayesian analysis were ap-
plied to the simulated data: SANOVA with the same H

(+)
A used to generate the

simulated data (called “SANOVA correct”); SANOVA with incorrect H
(+)
A ; and

MCAR. SANOVA correct is a theoretical best possible analysis in that it takes as
known things that MCAR estimates, that is, it uses additional correct information.
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SANOVA correct cannot be used in practice, of course, because the true H
(+)
A is

not known. MCAR vs SANOVA with incorrect H
(+)
A is the comparison relevant to

practice, and comparing them to SANOVA correct shows how much each method
pays for its “deficiency” relative to SANOVA correct. Obviously it is not enough
to test the SANOVA model using only data generated from a similar SANOVA
model. To avoid needless computing and facilitate comparisons, instead of gener-
ating data from an MCAR model and fitting a SANOVA model as specified above,
we use a trick that is equivalent to this. Section 3.1.2 gives the details.

3.1. Design of the simulation experiment. We simulated both normally-
distributed and Poisson-distributed data. For both types of data, we considered
two different true sets of smoothing parameters r = τ/η0 or τ (Table 1). For the
normal data, we considered τ/η0, since this ratio determines smoothing in normal
models, and we also considered two error precisions η0 (Table 1).

3.1.1. Generating the simulated data sets. To generate data from the
SANOVA model, we need to define the true H

(+)
A . Let

HA1 =
⎛⎝1 −2 0

1 1 −1
1 1 1

⎞⎠
⎛⎜⎜⎝

1√
3

0 0

0 1√
6

0

0 0 1√
2

⎞⎟⎟⎠ .

We used HA1 as the correct H
(+)
A ; its columns are scaled to have length 1. Given

V (−) and with H
(+)
A known, one draw of � and ε produces a draw of XD� + ε,

therefore a draw of y. In the simulation, we let the grand mean and main ef-
fects, which are not smoothed, have true value 5. Each observation is simulated
from a 3 × 20 factorial design, where 3 is the number of cancers and 20 is the
number of counties. We used the 20 counties in the right lower corner of Min-
nesota’s map, with their actual neighbor relations. Thus, the dimension of each
artificial data set is 60. The simulation experiment is a repeated-measures de-
sign, in which a “subject” s in the design is a draw of (δ(s),γ (s)), referring

TABLE 1
Experimental conditions in the simulation experiments

Error distribution η0 (τ0/η0,τ1/η0,τ2/η0)|(τ0,τ1,τ2) Data name

Normal 1 (100, 100, 0.1) Data1
1 (0.1, 100, 0.1) Data2
10 (100, 100, 0.1) Data3
10 (0.1, 100, 0.1) Data4

Poisson NA (100, 100, 0.1) Data5
NA (0.1, 100, 0.1) Data6
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to equation (3), where δ
(s)
1−3 = 5 and δ

(s)
4−60 ∼ N57(0, I3 ⊗ D(−)) specify � and

γ (s) ∼ N60(0, I60) gives ε. For the normal-errors case, 100 such “subjects” were
generated. Given a design cell in the simulation experiment with τ = (a, b, c)

and η0 = d , the artificial data set for subject s is y(s) = XD diag(1′
3,

1√
a

1′
19,

1√
b

1′
19,

1√
c
1′

19)δ
(s)+ 1√

d
γ (s). All factors of the simulation experiment were applied

to each of the 100 “subjects.” For the normally-distributed data, the simulation
experiment had these factors: (a) the true (τ0/η0, τ1/η0, τ2/η0): (100,100,0.1)

or (0.1,100,0.1); (b) the true error precision η0: 1 or 10; and (c) six statistical
methods, described below in Section 3.1.2. Each design cell described in Table 1
thus had 100 simulated data sets. Similarly, for the Poisson-data experiment, an-
other 100 “subjects” were generated, but now there is no γ (s). Thus, each “sub-
ject” s is a vector δ(s), where δ(s) is as described above. For the design cell with
τ = (100,100,0.1), the artificial data for subject s is y(s) ∼ Poisson(μ(s)), where
log(μ(s)) = log(E)+XD diag(1′

3,
1

101′
19,

1
101′

19,
1√
0.1

1′
19)δ

(s). In the simulation ex-
periment, we use “internal standardization” of the Minnesota 3-cancer data to sup-
ply the expected numbers of cancers Eij . Among the 20 extracted counties, Hen-
nepin county has the largest average population over 11 years, about 1.1 million;
its cancer counts are 5294, 119 and 439 for lung, larynx and esophagus respec-
tively. Faribault county has the smallest average population, 16,501, with cancer
counts 110, 7 and 13 respectively. The Eij have ranges 80 to 5275, 2 to 113 and
7 to 449 for lung, larynx and esophagus cancer respectively. For the Poisson data,
the simulation experiment had these factors: (a) the true τ0, τ1, τ2: (100,100,0.1)

or (0.1,100,0.1); and (b) six statistical methods described below in Section 3.1.2.
Again, each of the two design cells in Table 1 had 100 simulated data sets.

3.1.2. The six methods (procedures). For each simulated data set, we did
a Bayesian analysis for each of six different models described in Table 2. The
six models are: SANOVA with the correct H

(+)
A , HA1; SANOVA with a somewhat

incorrect H
(+)
A , HA2 given below; a variant SANOVA with a very incorrect H

(+)
A ,

TABLE 2
The six statistical methods used in the simulation experiment

Procedure Prior

SANOVA with correct H
(+)
A η0, τj ∼ �(0.1,0.1) for j = 0,1,2

SANOVA with incorrect H
(+)
A η0, τj ∼ �(0.1,0.1) for j = 0,1,2

Variant SANOVA with HAM η0, τj ∼ �(0.1,0.1) for j = 0,1,2
MCAR 	 ∼ Wishart(R,3), R = 0.002I3
MCAR 	 ∼ Wishart(R,3), R = I3
MCAR 	 ∼ Wishart(R,3), R = 200I3
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HAM given below; MCAR with Rii = 0.002; MCAR with Rii = 1; and MCAR
with Rii = 200 (see Section 2.3.2). HA2 and HAM are

HA2 =
⎛⎝1 1 1

1 −2 0
1 1 −1

⎞⎠
⎛⎜⎜⎝

1√
3

0 0

0 1√
6

0

0 0 1√
2

⎞⎟⎟⎠ ,

HAM =
⎛⎝ 0.56 −0.64 −0.52

−0.53 −0.77 0.36
−0.63 0.07 −0.77

⎞⎠ .

The incorrect HA2 has the same first column (grand mean) as the correct HA1,
so it differs from the correct HA1, though less than it might. As noted above, we
need to see how the SANOVA model performs for data generated from an MCAR
model in which V	 from Figure 1 does not have a column proportional to 1n. To
do this without needless computing, we used a trick: we used the data generated
from a SANOVA model with HA1 and fit the variant SANOVA mentioned above,
in which H

(+)
A is replaced by the orthogonal matrix HAM with no column pro-

portional to 1n, chosen to be very different from HA1. For normal errors (Data1
through Data4), this is precisely equivalent to fitting a SANOVA with H

(+)
A = HA1

to data generated from an MCAR model with V	 = BHA1, for B = HA1H
−1
AM , that

is,

V	 =
⎡⎣ 0.43 −0.74 −0.52

−0.13 −0.63 0.77
−0.89 −0.26 −0.37

⎤⎦(14)

(to 2 decimal places). For Poisson errors (Data5, Data6), the equivalence is no
longer precise but the divergence of fitted SANOVA [using H

(+)
A = HAM] and

generated data [using H
(+)
A = HA1] is quite similar. Finally, we considered three

priors for MCAR because little is known about how to set this prior and we did
not want to hobble MCAR with an ill-chosen prior. For the SANOVA and variant
SANOVA analyses, we gave τj a �(0.1,0.1) prior with mean 1 and variance 10
for both the normal data and the Poisson data.

3.2. Outcome measures. To compare the six different methods for normal and
Poisson data, we consider three criteria. The first is average mean squared error
(AMSE). For each of the 60 (XD�)ij , the mean squared error is defined as the
average squared error over the 100 simulated data sets. AMSE for each design cell
in the simulation experiment is defined as the average of mean squared error over
the 60 (XD�)ij . Thus, for the design cell labeled DataK in Table 1, define

̂AMSEK = 1

L

L∑
d=1

N∑
i=1

n∑
j=1

[(XD�̂)dij − (XD�)dij ]2/Nn,(15)
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where L = 100,N = 20, n = 3,K = 1, . . . ,4 for Normal, K = 5,6 for Pois-
son, � is the true value and �̂ is the posterior median of �. For each design
cell (K), the Monte Carlo standard error for AMSE is (100)−0.5 times the stan-
dard deviation, across DataK’s 100 simulated data sets, of

∑N
i=1

∑n
j=1[(XD�̂)dij −

(XD�)dij ]2/Nn. The second criterion is the bias of XD�. For each of DataK’s 100
simulated data sets, first compute posterior medians of (XD�)1,1, . . . , (XD�)20,3,
then average each of those posterior medians across the 100 simulated data sets.
From this average, subtract the true (XD�)ij s to give the estimated bias for each
of the 60 (XD�)ij s. MBIAS is defined as the 2.5th, 50th and 97.5th percentiles of
the 60 estimated biases. More explicitly, for design cell DataK, MBIAS is

̂MBIASK = 2.5th,50th,97.5th percentiles of
(16) (

1

L

L∑
d=1

(XD�̂
d − XD�d)

)
.

Finally, the coverage rate of Bayesian 95% equal-tailed posterior intervals, “PI
rate,” is the average coverage rate for the 60 individual (XD�)ij s.

3.3. Markov chain Monte Carlo specifics. While the MCAR models were im-
plemented in WinBUGS, our SANOVA implementations were coded in R and run
on Unix. The different architectures do not permit a fair comparison between the
run times of SANOVA and MCAR. However, the SANOVA models have lower
computational complexity than the MCAR models: MCAR demands a spectral
decomposition in every iteration, while SANOVA does not. For each of our mod-
els, we ran three parallel MCMC chains for 10,000 iterations. The CODA package
in R (www.r-project.org) was used to diagnose convergence by monitoring mixing
using Gelman–Rubin diagnostics and autocorrelations [e.g., Gelman et al. (2004),
Section 11.6]. Sufficient mixing was seen within 500 iterations for the SANOVA
models, while 200 iterations typically revealed the same for the MCAR models;
we retained 8000 × 3 samples for the posterior analysis.

3.4. Results. Table 3 and Figures 2 and 3 show the simulation experiment’s
results. Table 3 shows AMSE; for all methods and design cells, the standard Monte
Carlo errors of AMSE are small, less than 0.07, 0.005 and 0.025 for Data1/Data2,
Data3/Data4 and Data5/Data6 respectively. Figure 2 shows MBIAS, where the
middle symbols represent the median bias and the line segments represent the 2.5th
and 97.5th percentiles. Figure 3 shows coverage of the 95% posterior intervals.
Denote SANOVA with the correct H

(+)
A (HA1) as “SANOVA correct,” SANOVA

with HA2 as “SANOVA incorrect,” the variant SANOVA with HAM as “SANOVA
variant,” MCAR with Rii = 0.002 as “MCAR0.002” and so on.

http://www.r-project.org
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TABLE 3
AMSE for simulated normal and Poisson data

Normal-error model Poission-error model

Model Data1 Data2 Data3 Data4 Data5 Data6

SANOVA with HA1 0.34 0.60 0.04 0.06 0.02 0.04
SANOVA with HA2 0.47 0.84 0.05 0.07 0.02 0.14
SANOVA with HAAM 0.48 0.74 0.05 0.06 0.03 0.11
MCAR with Rii = 0.002 0.66 1.88 0.04 0.13 0.02 0.04
MCAR with Rii = 1 0.36 0.84 0.04 0.06 0.02 0.06
MCAR with Rii = 200 0.93 0.92 0.09 0.09 0.24 0.36

3.4.1. As expected, SANOVA with correct H
(+)
A performs best. For normal

data, SANOVA correct has the smallest AMSE for all true η0 and τ (Table 3). The
advantage is larger in Data1 and Data2 where the error precision η0 is 1 than in
Data3 and Data4 where η0 is 10 (i.e., error variation is smaller). For Poisson data,
SANOVA correct also has the smallest AMSE. Considering MBIAS (Figure 2),
SANOVA correct has the narrowest MBIAS intervals for all cases. In Figure 3,
the posterior coverage for SANOVA correct is nearly nominal. As expected, then,
SANOVA correct performs best among the six methods.

3.4.2. SANOVA with incorrect HA2 and HAM perform very well. Table 3
shows that, for normal data, both SANOVA incorrect and SANOVA variant have
smaller AMSEs than MCAR200 and MCAR0.002, and AMSEs at worst close
to MCAR1’s. For Poisson data, Table 3 shows that MCAR0.002 and MCAR1

FIG. 2. MBIAS for simulated normal and Poisson data.
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FIG. 3. PI rate for simulated normal and Poisson data.

do somewhat better than SANOVA incorrect and variant SANOVA. Considering
MBIAS in normal data [Figure 2(a)], the width of the 95% MBIAS intervals for
SANOVA incorrect are the same as or smaller than for all three MCAR proce-
dures. Similarly, SANOVA variant has MBIAS intervals better than MCAR0.002
and MCAR200 and almost as good as MCAR1. Figure 2(b) for Poisson data
shows SANOVA correct, MCAR0.002 and MCAR1 have similar MBIAS inter-
vals. SANOVA variant in Data5 and SANOVA incorrect in Data6 show the worst
performance for MBIAS apart from MCAR200, whose MBIAS interval is much
the widest. Figure 3(a) shows that, for normal data, interval coverage for SANOVA
incorrect and SANOVA variant is very close to nominal. It appears that the spe-
cific value of H

(+)
A has little effect on PI coverage rate for the cases considered

here. Apart from MCAR200 for Data1/Data2 and MCAR0.002 for Data1 through
Data4, which show low coverage, all the other methods have coverage rates greater
than 90% for normal data, most close to 95%. For Data3 and Data4, PI rates for
MCAR200 reach above 99%. For Poisson data, the PI rates for SANOVA incor-
rect and SANOVA variant are close to nominal and better than MCAR0.002 and
MCAR200. In particular, all SANOVAs have the closest to nominal coverage rates
for both normal and Poisson data, which again shows the stability of SANOVA
under different H

(+)
A settings.

3.4.3. MCAR is sensitive to the prior on 	. To fairly compare SANOVA and
MCAR, we considered MCAR under three different prior settings. For normal
data, MCAR1 has the smallest AMSEs and narrowest MBIAS intervals among the
MCARs considered, while MCAR0.002 has the largest and widest, respectively.
For Poisson data, however, MCAR0.002 has the best AMSE and MBIAS among
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the MCARs. MCAR200 performs poorly for both Normal and Poisson. The cover-
age rates in Figure 3 show similar comparisons. These results imply that the prior
matters for MCAR: no single prior was always best. By comparison, SANOVA
seems more robust, at least for the cases considered.

3.5. Summary. As expected, SANOVA correct had the best performance be-
cause it uses more correct information. For normal data, SANOVA incorrect and
SANOVA variant had similar AMSEs, better than two of the three MCARs for the
data sets considered. For Poisson data, SANOVA incorrect and SANOVA variant
had AMSEs as good as those of MCAR0.002 and MCAR1 for Data5 and some-
what worse for Data6, while showing nearly nominal coverage rates in all cases
and less tendency to bias than MCAR in most cases. Replacing the �(0.1,0.1)

prior for τ with �(0.001,0.001) left AMSE and MBIAS almost unchanged and
coverage rates a bit worse (data not shown). MCAR, on the other hand, seems more
sensitive to the prior on 	. MCAR0.002 tends to smooth more than MCAR1, more
so in normal models where the prior is more influential than in Poisson models.
(The latter is true because data give more information about means than variances,
and the Poisson model’s error variance is the same as its mean, while the normal
model’s is not.) For the normal data, MCAR0.002’s tendency to extra shrinkage
appears to make it oversmooth and perform poorly for Data2 and Data4, where the
truth is least smooth. For the Poisson data, MCAR0.002 and MCAR1 give results
similar to each other and somewhat better than the SANOVAs except for interval
coverage. Therefore, SANOVA, with stable results under different H

(+)
A and with

parameters that are easier to understand and interpret, may be a good competitor
to MCAR in multivariate spatial smoothing.

4. Example: Minnesota 3-cancer data. Researchers in different fields have
illustrated that accounting for spatial correlation could provide insights that would
have been overlooked otherwise, while failure to account for spatial association
could potentially lead to spurious and sometimes misleading results [see, e.g.,
Turechek and Madden (2002), Ramsay, Burnett and Krewski (2003), Lichstein et
al. (2002)]. Among the widely investigated diseases are the different types of can-
cers. We applied SANOVA and MCAR to a cancer-surveillance data set describ-
ing total incidence counts of 3 cancers (lung, larynx, esophagus) in Minnesota’s
87 counties for the years 1990 to 2000 inclusive. Minnesota’s geography and his-
tory make it plausible that disease incidence would show spatial association. Three
major North American land forms meet in Minnesota: the Canadian Shield to the
north, the Great Plains to the west, and the eastern mixed forest to the south-
east. Each of these regions is distinctive in both its terrain and its predominant
economic activity: mining and outdoors tourism in the mountainous north, highly
mechanized crop cultivation in the west, and dairy farming in the southeast. The
different regions were also settled by somewhat different groups of in-migrants,
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for example, disproportionately many Scandinavians in the north. These factors
imply spatial association in occupational hazards as well as culture, weather, and
access to health care especially in the thinly-populated north, which might be ex-
pected to produce spatial association in diseases. With multiple cancers one obvi-
ous option is to fit a separate univariate model for each cancer. But diseases may
share the same spatially distributed risk factors, or the presence of one disease
might encourage or inhibit the presence of another in a region, for example, lar-
ynx and esophagus cancer have been shown to be closely related spatially [Baron
et al. (1993)]. Thus, we may need to account for dependence among the different
cancers while maintaining spatial dependence between sites. Although the data
set has counts broken out by age groups, for the present purpose we ignore age
standardization and just consider total counts for each cancer. Age standardization
would affect only the expected cancer counts Eij , while other covariates could be
added to either SANOVA or MCAR as unsmoothed fixed effects (i.e., in the A1
design matrix). Given the population and disease count of each county, we esti-
mated the expected disease count for each cancer in each county using the Poisson
model. Denote the 87 × 3 counts as y1,1, . . . , y87,3; then the model is

yij |μij ∼ Poisson(μij ),
(17)

log(μij ) = log(Eij ) + (XD�)ij ,

where XD� is the SANOVA structure and � has priors as in Section 2.2.2. For

disease j in county i, Eij = Pi

∑
i Oij∑
i Pi

, where Oij is the disease count for county i

and disease j and Pi is county i’s population. For the SANOVA design matrix,
we consider HA1 and HA2 from the simulation experiment, though now neither
is known to be correct. We also consider a variant SANOVA analysis using H

(+)
A

estimated from the MCAR1 model, to test the stability of the SANOVA results.
Appendix D in Zhang, Hodges and Banerjee (2009) describes the latter analysis.
Figures 4 to 6 show the data and results for MCAR1 and SANOVA with HA1.
In each figure, the upper left plot shows the observed yij /Eij ; the two lower
plots show the posterior median of μij/Eij for MCAR1 and SANOVA with HA1.
Lung cancer counts tended to be high and thus were not smoothed much by any
method, while counts of the other cancers were much lower and thus smoothed
considerably more (see also Figure 7). Since SANOVA with HA1, HA2 and es-
timated H

(+)
A gave very similar results, only those for HA1 are shown. Results

for MCAR0.002 are similar to those for MCAR1, so they are omitted. As ex-
pected, MCAR200 shows the least shrinkage among the three MCARs and gives
some odd μij/Eij . To compare models, we calculated the Deviance Information
Criterion [DIC; Spiegelhalter et al. (2002)]. To define DIC, define the deviance
D(θ) = −2 logf (y|θ) + 2 logh(y), where θ is the parameter vector in the likeli-
hood and h(y) is a function of the data. Since h does not affect model comparison,
we set logh(y) to 0. Let θ be the posterior mean of θ and D the posterior ex-
pectation of D(θ). Then define pD = D(θ) − D(θ) to be a measure of model
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complexity and define DIC = D + pD . Table 4 shows D,pD and DIC for nine
analyses, SANOVA with 3 different H

(+)
A , MCAR with 3 different priors for 	,

and 3 fits of univariate CAR models to the individual diseases, discussed below.
Considering D, the three SANOVAs and MCAR1 are similar; Figures 4 to 6 show
the fits are indeed similar. Figure 7 reinforces this point, showing that MCAR1
and SANOVA with HA1 induce similar smoothing for the three cancers. SANOVA
with H

(+)
A estimated from MCAR has the smallest D (1458), though its model

complexity penalty (pD = 103) is higher than MCAR0.002’s (pD = 79). Despite
having the second worst fit (D), MCAR0.002 has the best DIC, and the three
SANOVAs have DICs much closer to MCAR0.002’s than to the other MCARs.
Generally, all SANOVA models have similar D (≈ 1460) and DIC (≈ 1562), while
MCAR results are sensitive to 	’s prior, consistent with the simulation experiment.
For comparison, we fit separate univariate CAR models to the three diseases con-
sidering three different priors for the smoothing precision, τ ∼ Gamma(a, a) for
a = 0.001, 1 and 1000. For each prior, we added up D, pD and DIC for three
diseases (see Table 4). With a = 0.001 and 1, we obtained D’s (1461 and 1453
respectively) competitive with SANOVA, MCAR0.002 and MCAR1 but with con-
siderably greater complexity penalties (141 and 149 respectively) and thus DICs
slightly larger than 1600. For a = 1000, we obtained an even lower D (1432),

but an increased penalty (180) resulted in a poorer DIC score. Figure 7 shows fit-
ted values for CAR1, which were smoothed like MCAR1 and SANOVA for lung
and esophagus cancers but smoothed rather more for larynx cancer. Overall, these
results reflect some gain in performance from accounting for the space-cancer in-
teractions/associations.

To further examine the smoothing under SANOVA, Figure 8 shows separate
maps for the county main effect and interactions from the SANOVA fit with HA1.
The upper left plot is the cancer main effect, the mean of the three cancers; the
lower left plot is the comparison of lung versus average of larynx and esopha-
gus; the lower right plot is the comparison of larynx versus esophagus. All val-
ues are on the same scale as yij /Eij in Figures 4 to 6 and use the same legend.
The two interaction contrasts are smoothed much more than the county main ef-
fect, agreeing with previous research that larynx and esophagus cancer are closely
related spatially [Baron et al. (1993)]. To see whether the interactions are neces-
sary, we fit a SANOVA model (using HA1) without the interactions. As expected,
model complexity decreased (pD = 77), while D increased slightly, so DIC be-
came 1558, a bit better than SANOVA with interactions. Now consider the poste-
rior of the MCAR’s precision matrix 	. The posterior mean of 	 is much larger
for MCAR0.002 than MCAR200; the diagonal elements are larger by 4 to 5 or-
ders of magnitude. This may explain the poor coverage for MCAR0.002 in the
simulation. Further, consider the correlation matrix arising from the inverse of 	’s
posterior mean. As the diagonals of R change from 0.002 to 200, the correlation
between any two cancers decreases and the complexity penalty pD increases. By
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FIG. 4. Lung cancer data and fitted values.

comparison, the three SANOVAs have similar model fits and complexity penalties,
leading to similar DICs. So again, in this sense SANOVA shows greater stabil-
ity.

5. Discussion and future work. We used SANOVA to do spatial smooth-
ing and compared it with the much more complex MCAR model. For the cases
considered here, we found SANOVA with spatial smoothing to be an excellent
competitor to MCAR. It yielded essentially indistinguishable inference, while be-
ing easier to fit and interpret. In the SANOVA model, H

(+)
A is assumed known.

For most of the SANOVA models considered, H
(+)
A ’s first column was fixed to
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FIG. 5. Larynx cancer data and fitted values.

represent the average over diseases, while other columns were orthogonal to the
first column. Alternatively, H

(+)
A could be treated as unknown and estimated as

part of the analysis. With this extension, SANOVA with spatial effects is a repara-
meterization of the MCAR model and gains the MCAR model’s flexibility at the
price of increased complexity. This extension would be nontrivial, involving sam-
pling from the space of orthogonal matrices while avoiding identification problems
arising from, for example, permuting columns of H

(+)
A . Other covariates can be

added to a spatial SANOVA. Although (10) is a saturated model, spatial smoothing
“leaves room” for other covariates. Such models would suffer from collinearity of
the CAR random effects and the fixed effects, as discussed by Reich, Hodges and
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FIG. 6. Esophagus cancer data and fitted values.

Zadnik (2006), who gave a variant analysis that avoids the collinearity. For data
sets with spatial and temporal aspects, for example, the 11 years in the Minnesota
3-cancer data, interest may lie in the counts’ spatial pattern and in their changes
over time. By adding a time effect, SANOVA can be extended to a spatiotempo-
ral model. Besides spatial and temporal main effects, their interactions can also
be included and smoothed. There are many modeling choices; the simplest model
is an additive model without space-time interactions, where the spatial effect has
a CAR model and the time effect a random walk, which is a simple CAR. But
many other choices are possible. We have examined intrinsic CAR models, where
Qij = −1 if region i and region j are connected. SANOVA with spatial smooth-
ing could be extended to more general CAR models. Banerjee, Carlin and Gelfand



1826 Y. ZHANG, J. S. HODGES AND S. BANERJEE

FIG. 7. Comparing data and fitted values for each cancer. The “Data” panel shows the density
for yij /Eij , while the other three panels show the posterior median of μij /Eij for univariate CAR,
SANOVA and MCAR.

(2004) replaced Q with the matrix Dw − ρW , where Dw is diagonal with the
same diagonal as Q and Wij = 1 if region i is connected with region j , otherwise
Wij = 0. Setting ρ = 1 gives the intrinsic CAR model considered in this paper.
For known ρ, the SANOVA model described here is easily extended by replac-
ing Q in Section 2 with Dw − ρW . However, for unknown ρ, our method cannot
be adjusted so easily, because updating ρ in the MCMC would force V and the
design matrix to be updated as well, but this would change the definition of the
parameter �. Therefore, a different approach is needed for unknown ρ. A differ-
ent extension of SANOVA would be to survival models for areal spatial data [e.g.,
Li and Ryan (2002), Banerjee, Wall and Carlin (2003), Diva, Dey and Banerjee
(2008)]. If the regions are considered strata, then random effects corresponding
to nearby regions might be similar. In other words, we can embed the SANOVA
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TABLE 4
Model comparison using DIC

Model D pD DIC

SANOVA with HA1 1461 103 1564
SANOVA with HA2 1463 102 1565
SANOVA with HA estimated from MCAR1 1458 103 1561
MCAR0.002 1476 79 1555
MCAR1 1459 132 1591
MCAR200 1559 356 1915
CAR0.001 1461 141 1602
CAR1 1453 149 1602
CAR1000 1432 180 1612

structure in a spatial frailty model. For example, the Cox model with SANOVA
structure for subject j in stratum i is

h(tij ,Xij ) = h0(tij ) exp(Xijβ),(18)

where X is the design matrix, which may include a spatial effect, a temporal ef-
fect, their interactions and other covariates. Banerjee, Carlin and Gelfand (2004)
noted that in the CAR model, considering both spatial and nonspatial frailties, the
frailties are identified only because of the prior, so the choice of priors for preci-
sions is very important. Besides the above extensions, HCSC introduced tools for
normal SANOVA models that can be extended to nonnormal SANOVA models.
For example, HCSC defined the degrees of freedom in a fitted model as a function
of the smoothing precisions. This can be used as a measure of the fit’s complexity,
or a prior can be placed on the degrees of freedom as a way of inducing a prior on
the unknowns in the variance structure. The latter is under development and will
be presented soon.
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SUPPLEMENTARY MATERIAL

Appendices, data and code (DOI: 10.1214/09-AOAS267SUPP; .zip). Our sup-
plementary material includes four sections as appendices. In Appendix A we
present a derivation of the precision matrix of (11). Details of our MCMC algo-
rithms can be found in Appendix B. Appendix C discusses the mean transforma-
tion for the Poisson case, while Appendix D discusses the estimation of the H

(+)
A

from MCAR1. In addition, we provide a compressed folder containing the data set
for our 3-cancer Minnesota example as well as an R code example to implement
the SANOVA models.

http://dx.doi.org/10.1214/09-AOAS267SUPP
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FIG. 8. SANOVA with HA1: (a) county main effect; (b) cancer × county interaction 1 for larynx;
(c) cancer × county interaction 2 for esophagus.
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