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Support Vector Machines are a widely used classification technique.
They are computationally efficient and provide excellent predictions even for
high-dimensional data. Moreover, Support Vector Machines are very flexible
due to the incorporation of kernel functions. The latter allow to model nonlin-
earity, but also to deal with nonnumerical data such as protein strings. How-
ever, Support Vector Machines can suffer a lot from unclean data containing,
for example, outliers or mislabeled observations. Although several outlier de-
tection schemes have been proposed in the literature, the selection of outliers
versus nonoutliers is often rather ad hoc and does not provide much insight
in the data. In robust multivariate statistics outlier maps are quite popular
tools to assess the quality of data under consideration. They provide a visual
representation of the data depicting several types of outliers. This paper pro-
poses an outlier map designed for Support Vector Machine classification. The
Stahel–Donoho outlyingness measure from multivariate statistics is extended
to an arbitrary kernel space. A trimmed version of Support Vector Machines
is defined trimming part of the samples with largest outlyingness. Based on
this classifier, an outlier map is constructed visualizing data in any type of
high-dimensional kernel space. The outlier map is illustrated on 4 biological
examples showing its use in exploratory data analysis.

1. Introduction. Support Vector Machines [SVM; Vapnik (1998)] are a pop-
ular tool for classification. Two important aspects contributed a lot to this popu-
larity. First, Support Vector Machines handle high-dimensional, low sample size
data very well, in terms of computational efficiency as well as prediction quality.
Therefore, they are well suited to tackle, for example, microarray data containing
thousands of gene expression levels (high dimensionality) for a limited number of
subjects (low sample size); see, for example, Guyon et al. (2002) and Pochet et al.
(2004). Second, Support Vector Machines allow for incorporating kernel functions
via the so-called kernel trick. This way nonlinearity in the data can be handled,
for example, using a polynomial or a Gaussian kernel. Moreover, nonnumerical
data can be modeled by designing an appropriate kernel function using a priori
biological information about the data at hand. This strategy is reported to per-
form very well, for instance, in protein homology detection, for example, Fisher
SVM [Jaakkola, Diekhans and Haussler (2000)], pairwise SVM [Liao and Noble

Received April 2009; revised May 2009.
Key words and phrases. Support Vector Machine, high-dimensional data analysis, robust statis-

tics, data visualization.

1566

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/09-AOAS256
http://www.imstat.org


AN OUTLIER MAP FOR SVM CLASSIFICATION 1567

(2002)], spectrum kernel [Leslie, Ekin and Noble (2002)], mismatch kernel [Leslie
et al. (2003)] and local alignment kernel [Saigo et al. (2004)].

For high-dimensional and complex data sets, the assumption of clean, indepen-
dent and identically distributed samples is not always appropriate. In Alon et al.
(1999) and West et al. (2001), for instance, several samples are regarded as sus-
picious. A potential drawback of Support Vector Machines is the sensitivity to an
even very small number of outliers [Christmann and Steinwart (2004); Steinwart
and Christmann (2008); Malossini, Blanzieri and Ng (2006)]. Outlier detection
is thus important and many approaches have been proposed in the literature. Al-
though often useful, these methods come with some important drawbacks as well:

• As discussed by Malossini, Blanzieri and Ng (2006), many techniques are lim-
ited to situations where the sample size exceeds the dimension, thus excluding
modern high-dimensional data analysis.

• Several types of outliers exist. Algorithms such as those proposed by Furey et al.
(2000), Li et al. (2001) and Malossini, Blanzieri and Ng (2006) focus on sam-
ples that are potentially mislabeled. However, not every outlier is a mislabeled
observation and vice versa: a sample can be correctly labeled yet behave in a
completely different way than its group members. Such discrimination between
several types of outliers is usually not provided.

• Most algorithms basically provide a ranking of the samples according to poten-
tial mislabeling. However, intuitively it is not always clear how many of the top
ranked samples are serious outlier candidates. Automatic cut-off procedures of-
ten turn out too conservative (not detecting all outliers) or too aggressive (point-
ing out good samples as outliers).

• The role of the kernel is highly undervalued. Some methods [Li et al. (2001),
Kadota et al. (2003)] do not use Support Vector Machines or kernels at all.
Malossini, Blanzieri and Ng (2006) use Support Vector Machines, but restrict
themselves to a linear kernel and even a constant regularization parameter,
whereas optimization of hyperparameters through cross validation is preferred.

In order to avoid some of these difficulties, we propose an outlier map for SVM
classification. Outlier maps (also called diagnostic plots) are quite common in mul-
tivariate statistics, for example, for linear regression [Rousseeuw and Van Zomeren
(1990)] and linear Principal Component Analysis [Hubert and Engelen (2004),
Hubert, Rousseeuw and Vanden Branden (2005)]. The idea is to start from a ro-
bust method guaranteeing resistance to potential outliers. Based on this robust fit,
appropriate measures of interest (e.g., residuals in regression) are computed and
plotted.

In this paper a similar idea is developed for providing an outlier map which is
easy to interpret, distinguishes different types of potential outliers, and works for
any type of kernel. On the y-axis of this map we put the Stahel–Donoho outlying-
ness. In Section 2 we explain how to compute this outlyingness measure in a gen-
eral kernel induced feature space. On the x-axis of the outlier map we put the value
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of the classification function of a trimmed Support Vector Machine. More details
on this robustified SVM are given in Section 3. The main part of the paper is Sec-
tion 4, where the outlier map is defined and illustrated in a simple two-dimensional
example. In Section 5 the outlier map is discussed in 4 high-dimensional real life
examples.

2. The Stahel–Donoho outlyingness. Let Z = {z1, . . . , zk} be a data set of
d-dimensional samples zi ∈ R

d . In multivariate statistics the Stahel–Donoho out-
lyingness of sample zi [Stahel (1981), Donoho (1982)] is defined by

r(zj ) = max
a∈P

|atzj − m(atZ)|
s(atZ)

,(1)

with m a robust univariate estimator of location and s a univariate estimator of
spread. Popular choices are, for instance, the median for m and the median absolute
deviation (mad) for s. The set P ⊂ Rd is a set of p directions in R

d . In practice,
this set is often constructed by selecting directions orthogonal to subspaces con-
taining d observations if d is sufficiently small. Another possibility is taking p

times a direction through 2 randomly chosen observations. This strategy works in
any dimension d and since we will extend the outlyingness to high-dimensional
kernel spaces, this is the strategy of our choice. The Stahel–Donoho outlyingness
plays a crucial role in several multivariate robust algorithms, for example, covari-
ance estimation [Maronna and Yohai (1995)] and PCA [Hubert, Rousseeuw and
Vanden Branden (2005)].

First we note that this outlyingness measure can be computed in an arbitrary
kernel induced feature space. Let {z1, . . . , zk} ∈ Z be k elements in a set Z . Let
K be an appropriate kernel function K : Z × Z → R with corresponding feature
space H and feature map � such that the inner product 〈·, ·〉 between feature vec-
tors in H can be computed by K :

〈�(zi),�(zj )〉 = K(zi, zj ).

Denote � the matrix containing K(zi, zj ) as entry i, j . This matrix is called the
kernel matrix. A typical kernel method such as SVM consists of applying a linear
method in the feature space H such that the computations only depend on pairwise
inner products and thus on the kernel matrix [Schölkopf and Smola (2002)]. We
now show that the Stahel–Donoho outlyingness (1) can be computed in such a
manner. Let a be the direction in H through 2 feature vectors �(zi) and �(zj ):

a = �(zi) − �(zj )

‖�(zi) − �(zj )‖ .

The projection of a feature vector �(zl) onto the direction a is then

〈a,�(zl)〉 =
〈

�(zi) − �(zj )

‖�(zi) − �(zj )‖ ,�(zl)

〉
.
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Since the squared norm of an element equals the inner product of the element with
itself, we have that

‖�(zi) − �(zj )‖ =
√

〈�(zi) − �(zj ),�(zi) − �(zj )〉
=

√
K(zi, zi) − 2K(zi, zj ) + K(zj , zj )

=
√

(γ i,j )t�γ i,j .

The vector γ i,j ∈ R
k denotes the vector with entry i equal to 1, entry j equal to

−1 and all other entries equal to 0. Then

〈a,�(zl)〉 =
〈
�(zi) − �(zj )√

(γ i,j )t�γ i,j
,�(zl)

〉

= K(zi, zl) − K(zj , zl)√
(γ i,j )t�γ i,j

=
(

�γ i,j√
(γ i,j )t�γ i,j

)
l

.

Denote v
i,j
proj the vector containing the projections of all feature vectors onto the

direction a through feature vectors �(zi) and �(zj ):

v
i,j
proj =

⎛
⎜⎝

〈a,�(z1)〉
...

〈a,�(zk)〉

⎞
⎟⎠ = �γ i,j√

(γ i,j )t�γ i,j
.

Note that only the kernel matrix � is needed and not the explicit feature vectors
�(zi) to compute the projections v

i,j
proj. From these projections the Stahel–Donoho

outlyingness of a feature vector �(zj ) in H can be calculated as follows:

r(�(zl)) = max
(i,j)∈{1,...,k}×{1,...,k}

(v
i,j
proj)l − m(v

i,j
proj)

s(v
i,j
proj)

.(2)

Again m and s are univariate robust estimators of location and scale. From this
point on we always take

m(v
i,j
proj) = median(v

i,j
proj),

s(v
i,j
proj) = mad(v

i,j
proj) = median |vi,j

proj − median(v
i,j
proj)|.

Note that in (2) we have to check k(k−1)/2 directions to find the maximum, where
k denotes the number of observations in the data set. Then all directions through 2
observations are considered. If k is too large, a random subset of directions can be
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taken. Typically a few hundred is already enough to provide a good approximation
[Hubert, Rousseeuw and Vanden Branden (2005)]. In our implementation we use
the full set if k ≤ 100. Otherwise we select 2000 directions at random.

3. A simple robust SVM classifier.

3.1. Algorithm. Let us now turn to the typical SVM setup. Let (x1, . . . , xn)

be a data set of n training samples in some set X and let K be a kernel function
X × X → R. Let y1, . . . , yn be the corresponding labels: yi = −1 if sample i

belongs to the negative group, yi = 1 if sample i belongs to the positive group.
Denote by n− the number of samples with label −1 and n+ the number of samples
with label +1. The following algorithm basically trims a fraction of the data with
largest outlyingness and trains a standard SVM on the remaining samples. We will
refer to this algorithm as SD-SVM (SD stands for Stahel–Donoho):

1. Set 0.5 ≤ κ ≤ 1. Denote h− = 	κn−
 and h+ = 	κn+
 (	c
 denotes the largest
integer smaller than c ∈ R).

2. Trimming step: Consider only the inputs with group label −1. Compute the
Stahel–Donoho outlyingness for every sample in this set using (2). Retain the
h− observations with smallest outlyingness. Denote this set of size h− as T−.
Analoguously obtain the set T+ containing the h+ samples with group label +1
with smallest outlyingness.

3. Training step: Train a standard SVM on the reduced training set T = T− ∪ T+.
Thus solve

max
α

∑
xi∈T

αi − ∑
xi∈T

∑
xj∈T

αiαjyiyjK(xi, xj )

(3)
subject to 0 ≤ αi ≤ C and

∑
xi∈T

αiyi = 0.

The classifying function is given by

f (x) = ∑
xi∈T

αiK(xi, x) + b.(4)

To predict the group membership of a sample x ∈ X , one takes y = sign(f (x)).

Note that the computations in the training step are exactly the same as for an
ordinary SVM. The only difference is that the reduced set T containing the obser-
vations with smallest outlyingness is used, in order to avoid negative effects from
possible outliers.

3.2. The regularization parameter. The regularization parameter C in (3) is
sometimes set to C = 0.1 as a default value. However, it is preferable to optimize
the value of C. SD-SVM is of course compatible with any type of model selection
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strategy: it suffices to add the model selection strategy to the training step (step 3)
of the algorithm outlined in Section 3. In all the examples of this paper, 10-fold
cross-validation was used to optimize C.

3.3. Discussion. To illustrate SD-SVM, consider the following simple experi-
ment: 25 samples (negative group) are generated, each with d = 1000 independent
standard normal components. Another 25 samples (positive group) are generated
with 1000 independent normal components with mean 0.18. In a second setup the
same data is used with additional outliers: 4 samples are added to the negative
group with 1000 independent normal components with mean 3. To the positive
group, 4 samples are added with 1000 independent normal components with mean
−3. In both situations SD-SVM with a linear kernel is applied for several values
of κ ∈ {0.5,0.7,0.9,1}. The fraction of misclassifications on 600 newly generated
test data is computed. Figure 1 shows boxplots over 50 simulation runs. In the case
without outliers the number of misclassifications increases as κ decreases. This is
quite expected since a lower κ means more trimming, which is unnecessary in this
case since all samples are nicely generated from two Gaussian distributions. Thus,
it is no surprise that a classical SVM (κ = 1) performs best. However, a relatively
small amount of outliers (8 out of 58) changes things completely (right-hand side
of Figure 1). A classical SVM (κ = 1) is no better than guessing anymore (more
than 50% misclassifications). SD-SVM with κ = 0.9 is not good enough either,
since the trimming percentage is still smaller than the percentage of outliers. Only
if κ is chosen small enough, good performance is obtained. Thus, a small κ pro-
vides protection against outliers at the cost of a slightly worse classification per-
formance at uncontaminated data. For the outlier map it is most important to avoid
the huge effects of outliers, whereas the small effect of unnecessary trimming is
practically invisible. Therefore, a default choice of κ = 0.5 turns out to be a good
choice for the construction of the outlier map, and we retain this choice throughout
the remainder of the paper.

FIG. 1. Fractions of misclassifications in a small simulation study for SD-SVM with various values
of κ .
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4. The outlier map.

4.1. Construction. The following visualization is proposed:

1. Make a scatterplot of the outlyingness and the value of the classifier f . Thus,
for j = 1, . . . , n, plot pairs (f (xj ), r(�(xj ))) where r(�(xj )) is the Stahel–
Donoho outlyingness of sample j computed in the trimming step of the algo-
rithm and f (xj ) can be calculated from (4).

2. Plot the inputs with group labels +1 as circles and those with group labels −1
as crosses. Add a solid vertical line at horizontal coordinate 0.

4.2. How to read the map: Toy example. Consider a simple example in 2 di-
mensions as follows: 30 observations are generated from a bivariate Gaussian dis-
tribution with mean (0,0) and identity covariance matrix. They have group la-
bel −1. Thirty observations are generated from a bivariate Gaussian distribution
with mean (1.5,1.5) and identity covariance matrix. They receive group label +1.
Apart from these 60 observations, 6 more are added, representing several types
of outliers: 3 data points (denoted 61–63) are placed around position (5,7) with
label +1. Two observations (denoted 64 and 65) with label +1 are placed around
(5,−5). One point (denoted 66) is placed at position (0,0) with label +1. A two-
dimensional view of the data is given in Figure 2(a). The solid line represents the
SD-SVM classification boundary with a linear kernel. Despite the 6 outliers in the
data, SD-SVM still manages to separate both groups quite nicely.

Figure 2(b) shows the corresponding outlier map. On the vertical axis one reads
the Stahel–Donoho outlyingness. Observations 12 and 46 are positioned in the
center of their respective group. Their outlyingness is indeed small. Observations
further away from the group center have a larger outlyingness, for example, 14,
3 and 5. On the horizontal axis the value of the classifying function f as in (4)
can be read. The sign of this function determines the predicted group labels. The
vertical line at f = 0 divides the plot in two parts: every point left of the line
is classified into the negative group by SD-SVM and every point on the right is
classified into the positive group. We can now see, for instance, that observation
66 is a misclassification: it belongs to the positive group, but receives group label
−1 since it lies on the left of the vertical line in Figure 2(a). The absolute value
of the x-coordinate in the diagnostic plot represents a distance to the classification
boundary. In Figure 2(a) it can be seen, for example, that observations 3 and 14 are
almost equally distant from the negative group center, but observation 3 is much
closer to the classification line. This information can be found in the outlier map in
Figure 2(b) as well, since both have almost the same outlyingness (vertical axis),
but 3 is much closer to the vertical line than sample 14 (horizontal axis).

The outliers in the data can be detected and characterized too. Observations 61–
63 are outlying with respect to the other data points in their group, which is clearly
indicated by their large outlyingness. However, both samples still follow the clas-
sification rule. Indeed, both are lying on the right side in Figure 2(b). Samples 64
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(a)

(b)

FIG. 2. (a) 2-dimensional classification problem. The solid line is the SD-SVM classifying line.
(b) Corresponding outlier map visualizing the two main groups and the different types of outliers.

and 65, on the other hand, are outlying with respect to the other observations in
their group as well as with respect to the classification line: their outlyingness is
large and the value of the classification function is negative, although it should
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have been positive to obtain a correct classification. Finally consider observation
66. Its not extremely outlying with respect to the other data points in the positive
group. However, taking the negative group and the classification line into account,
it seems to share more characteristics with the negative group than with its own
positive group colleagues. In the outlier map this is revealed by a moderate out-
lyingness and by its position almost in the middle of the left side of the vertical
line.

5. Examples.

5.1. Leukemia data. The first example considers a data set by Chiaretti et al.
(2004). The data consist of microarrays from 128 different individuals with acute
lymphoblastic leukemia (ALL), publicly available in the ALL package in the soft-
ware environment R. The number of gene expressions at each individual equals
12625. There are 33 adult patients with T-cell ALL and 95 with B-cell ALL. Fig-
ure 3 presents the outlier map for SVM with a linear kernel applied to this data
set. It turns out that the data is well classified and that there are no samples with a
very large outlyingness. Both T-cell and B-cell form homogeneous groups as one
would like when applying a linear SVM. Thus, the outlier map immediately shows
that the data is clean and one can safely proceed analysis without worrying about
outliers.

FIG. 3. Outlier map for the leukemia data. Two nicely separated homogeneous groups are dis-
played and one can thus safely proceed analysis without worrying about outliers.
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5.2. Breast cancer data. The breast cancer data set from West et al. (2001)
contains 49 tumor samples that are either positive (ER+) or negative (ER−) to es-
trogen receptor. The expression levels of 7129 genes are given for each sample. For
a linear kernel the corresponding outlier map is shown in Figure 4(a). Samples 7,
8 and 11 immediately catch the eye. Their outlyingness is unusually large. In West
et al. (2001) samples 7 and 8 were already rejected and taken out of the analysis
due to failed array hybridization. Also sample 11 was characterized as unusual. It
was the only sample in the ER+ group for which the out of sample prediction was
highly unreliable in the analysis performed by West et al. (2001). The samples 46
and 33 attract attention as well. They have a large outlyingness and both are clearly
misclassified. It turns out that for this data the group membership ER+ or ER−
was determined not only by immunohistochemistry at time of diagnosis, but also
by later immunoblotting. For samples 33 and 46 both methods returned different
results. West et al. (2001) show via statistical analysis that the initial labeling ER+
for 33 and ER− for 46 is probably wrong and that the immunoblotting results are
more appropriate. This is clearly confirmed by the outlier map.

It is worth noting that the same data set was analyzed in Malossini, Blanzieri
and Ng (2006), where a comparison was made between a proposed stability crite-
rion, a simple leave-one-out criterion and the algorithm from Furey et al. (2000).
However, none of these methods was able to detect the 5 clear outliers discussed so
far. Five more suspicious samples were indicated in West et al. (2001): 14, 16, 40,
43 and 45. In Figure 4(b) these samples are shown on a zoom-in from the full out-
lier map into the region (0,30) on the vertical axis. Except for 14, these samples
are suspicious in the sense that they are not confidently classified, since the value
of the classifying function is close to 0. It is no surprise that these samples are
found by the algorithms compared in Malossini, Blanzieri and Ng (2006), since
those methods are designed to detect potentially mislabeled samples. Also note
that some of these mislabeling detection algorithms pointed out samples 19 and 36
as suspicious, although these samples were not considered in West et al. (2001).
From the outlier map it can be seen that 19 and 36 are indeed wrongly classified
by SD-SVM.

5.3. Colon cancer data. The colon cancer data set from Alon et al. (1999)
contains 2000 gene expression levels for 40 tumor samples and 22 normal sam-
ples. The outlier map with a linear kernel is shown in Figure 5. In the tumor group
T2, T33, T36 and T30 are misclassified. Sample T37 is classified correctly, but
with low confidence: it is very close to the classification boundary. In the normal
group N8 and especially N34 and N36 are the suspicious cases that behave differ-
ently from the other normal samples. The 8 aforementioned samples plus sample
N12 were identified as possible outliers in the original paper by Alon et al. (1999)
for biological reasons. Thus, 8 out of 9 true outliers can be identified on the out-
lier map, only leaving N12 undetected. However, in Malossini, Blanzieri and Ng
(2006) none of the methods that were compared could detect N12. Moreover, the
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(a)

(b)

FIG. 4. (a) Outlier map for the breast cancer data. Five outliers are clearly visible. Samples 7,8,11
are outlying but well classified. Samples 33 and 46 are slightly outlying with respect to their groups,
but are clearly wrongly classified. This suggests that they are mislabeled rather than erroneous,
confirming the original analysis by West et al. (b) Same plot, but zoomed-in at the region (0,30) on
the vertical axis for better visibility. Observations flagged by algorithms searching for mislabelings
are shown (19,36,40,43,45,16).



AN OUTLIER MAP FOR SVM CLASSIFICATION 1577

FIG. 5. Outlier map for the colon cancer data. Misclassifications and samples with large outlying-
ness are labeled. These were also flagged in the original analysis by Alon et al. (1999).

stability criterion proposed by Malossini et al. was unable to detect T37 and N8
too and incorrectly pointed at N2 and N28 as possibly suspicious samples. Also
note the interesting sample T6. From the outlier map we see that this sample is
classified correctly and with much confidence. Nevertheless, its outlyingness with
respect to the other tumor samples is rather large. This means that T6 behaves
quite differently than the other tumor samples, but without distorting the classifi-
cation. In Malossini et al. most of the methods analyzed did not detect T6 at all.
Again this is no surprise since methods such as the stability criterion of Malossini
et al. specifically focus on mislabeled observations, whereas T6 is certainly not
mislabeled. Only the outlier detection method of Kadota et al. (2003) is able to
detect T6, but does rather poorly on the other samples detecting only 5 out of 9
true outliers.

5.4. Protein data. The protein data set taken from Pollack, Li and Pearl (2005)
contains 131 protein sequences of the essentially ubiquitous glycolytic enzyme
3-phosphoglycerate kinase (3-PGK) in three domains: Archaea, Bacteria and Eu-
karyota. The data set is available in the Protein Classification Benchmark Col-
lection at http://net.icgeb.org (accession number PCB00015). We consider here
classification task number 10 where the positive group consists of 35 Eukaryota.
The negative group consists of 4 Archaea and 40 Bacteria. To classify these two
groups of protein sequences, we use SVM with the local alignment kernel [Saigo
et al. (2004)]. Default parameter values were used: gap opening penalty = 11,
gap extension penalty = 1, scaling parameter = 0.5. The outlier map is shown
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FIG. 6. Outlier map for the protein data. The heterogeneity of the positive group is clearly visible,
with different clusters according to the subgroups of different phyla, also confirming the original
clustering analysis by Pollack et al. (2005).

in Figure 6. One observes that the positive group of Eukaryota is very heteroge-
neous as several clusters appear. These clusters all have a biological interpretation,
as the group of Eukaryota contains several subgroups of different phyla. For in-
stance, observations 29–31 are from the phylum of Alveolata. Samples 13–17 are
the Euglenozoa. Note that 18 (named Q8SRZ8), which belongs to the Fungi, was
clustered in the group of Euglenozoa by Pollack et al.; this is actually confirmed
by the outlier map. Finally, samples 33 and 34 are outlying with respect to the pos-
itive group. They form, together with 32, the group of Stramenopiles. Note that the
different behavior of sample 32 from its fellow Stramenopiles is again a confirma-
tion of the analysis by Pollack et al.: their clustering method assigned 32 (named
Q8H721) in the main group of Eukaryota Metazoa. Also, in the outlier map 32 is
situated in the main group, whereas 33 and 34 form a separate cluster. In the posi-
tive group the heterogeneity is less clear, although the 4 Archaea (36–39) do have
the largest outlyingness compared to the other samples which are all Bacteria.

6. Conclusion. An outlier map is proposed for Support Vector Machine clas-
sification. If the outlier map shows two homogeneous and well classified groups,
one can safely proceed analysis without worrying about outliers. However, in some
situations this may not be the case and the outlier map can be a simple and useful
tool to detect this. Moreover, the outlier map can be drawn for any choice of kernel,
including rather exotic ones such as used in protein analysis. It can also be helpful
to gain insight in the type of outliers, for example, whether outliers are mislabeled
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observations or not, or whether the outliers are isolated errors or rather a small
subgroup of the group structure considered. This is important to know how to pro-
ceed analysis. If the outliers are truly erroneous observations, one should not take
them into account to build a classifier, and one can manually discard them from
the data set or apply a robust classifier. If the outliers are mislabeled observations,
one probably should re-examine the labeling and change the label of the outlier if
this seems indeed appropriate. If the outliers form a small subgroup of the data,
one might reconsider the use of a binary classifier and turn to a more appropriate
modeling technique. In any event, the outlier map can be helpful for practitioners
of SVM classification to make such decisions.
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